
Triangel: A High-Performance, Accurate, Timely
On-Chip Temporal Prefetcher

Sam Ainsworth
University of Edinburgh
sam.ainsworth@ed.ac.uk

Lev Mukhanov
Queen Mary University of London

l.mukhanov@qmul.ac.uk

Abstract—Temporal prefetching, where correlated pairs of
addresses are logged and replayed on repeat accesses, has recently
become viable in commercial designs. Arm’s latest processors
include Correlating Miss Chaining prefetchers, which store such
patterns in a partition of the on-chip cache. However, the state-
of-the-art on-chip temporal prefetcher in the literature, Triage,
features some design inconsistencies and inaccuracies that pose
challenges for practical implementation. We first examine and
design fixes for these inconsistencies to produce an implementable
baseline. We then introduce Triangel, a prefetcher that extends
Triage with novel sampling-based methodologies to allow it to
be aggressive and timely when the prefetcher is able to handle
observed long-term patterns, and to avoid inaccurate prefetches
when less able to do so. Triangel gives a 26.4% speedup compared
to a baseline system with a conventional stride prefetcher alone,
compared with 9.3% for Triage at degree 1 and 14.2% at degree
4. At the same time Triangel only increases memory traffic by
10% relative to baseline, versus 28.5% for Triage.

Index Terms—Memory Systems, Prefetching, Temporal
Prefetching

I. INTRODUCTION

The ever-growing memory wall has led to large classes of
applications becoming latency-bound on cache misses. The
solution in commercial cores has been to deploy an army of
different types of prefetcher to bring in data to the caches be-
fore the user requests it, via prediction. Stride prefetchers [10],
which predict incremental patterns in memory, and Spatial
memory streaming [36], which repeats patterns common to
multiple regions of memory, have long been commonplace,
but more recently, temporal prefetchers [21], [24], [29], [44],
[45], which store and replay historical sequences, have been
deployed in real cores [31].

The Correlated Miss Chaining temporal prefetchers that
have been deployed [4]–[6], [31] store the large volume of
metadata necessary in a segment of the cache, and bear striking
resemblance to Triage [44], [45], a prefetcher published by
authors from Arm and UT Austin. However, despite the recent
commercial viability of temporal prefetchers, remarkably little
exploration in the literature has occurred since.

This paper seeks to ask two questions. First, is the design
of Triage [44], [45] feasible for use in real processors?
Second, are there simple improvements to the design that can
significantly improve its timeliness, accuracy and/or coverage?
Regarding the first question, our study suggests challenges,
as certain properties of Triage are physically impossible to
implement, while others are impractical due to design com-
plexity or silicon area. Additionally, some design solutions

result in severe performance degradation in edge cases. We
explore these to provide a foundation for a solid baseline.

For the second question, Triage [45] already observes that
an aggressive high-degree prefetcher increases performance.
We find performance can be improved further by increasing
lookahead offsets to store non-adjacent entries in the Markov
table to improve timeliness, and by using metadata formats
better able to deal with the physical-address fragmentation
seen with a realistic operating system. Still, under its highest-
performance configuration, Triage’s accuracy drops to 50
percent [45], which is unviable for energy-efficient cores.

We introduce Triangel, a prefetcher based on Triage that
adds several new structures to evaluate potential prefetches
before we store metadata in the Markov table, to allow high
aggression to still be efficient. We add new Samplers to
observe long-term reuse and discover whether patterns will
generate accurate prefetches. We add a Metadata Reuse Buffer,
to allow high-degree aggressive prefetching without increasing
traffic to the L3 cache, where prefetch metadata is stored. We
also replace Triage’s Bloom-filter sizing mechanism with a
novel Set-Dueller, which is able to model arbitrary cache-
partition configurations to find the best tradeoff between
prefetch metadata and cache hit rates.

Triangel gives 26.4% geomean speedup compared to a
baseline with stride prefetcher alone, versus 9.3% for Triage,
on the same workloads and similar core setup to the original
papers [44], [45]. It does this while being significantly more
efficient, at only 10% memory-traffic increase versus 28.5%
for Triage. When Triage is run more aggressively to counter-
act its baseline’s low performance, by being unconditionally
degree-4 (Triangel’s maximum degree), it still only achieves
14.2% geomean speedup with 43.8% memory traffic overhead,
meaning Triangel represents a Pareto improvement in both
efficiency and performance against all Triage configurations.

II. BACKGROUND: TRIAGE

Triage [45] is a temporal prefetcher published by authors
from UT Austin and Arm in 2019. It is an address-correlating
Markov prefetcher [24], in that it stores (x, y) address pairs:
when an L2 cache miss (or tagged prefetch hit, when data that
was prefetched into the cache is first used) to x occurs, y is
prefetched, as the recorded miss (or prefetch hit) that occurred
after x the last time it was brought into the cache.

Triage is PC-localized, in that it separates patterns based on
the PC that accesses the location. This manifests as a training
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Fig. 1: The basic operation of Triage [44], [45]. On a cache
miss (or tagged prefetch hit), the PC is used to index the
training table. The previous address is used as an index to train
the Markov history table. The current access is then looked
up in the Markov table to generate a prefetch. Not shown:
index- and target-compression mechanisms (section III-A),
confidence bits (section III-D), partition sizing (section III-E).

table indexed by PC, used to store the previous miss/tagged
hit for each PC. This training data then feeds into a Markov
table (storing historically correlated address-pairs from the
miss/prefetch-hit stream) that is not tagged by PC, and is
stored as a variable-sized partition of the L3 cache. A detailed
example of its behavior is given in fig. 1.

Triage-ISR [44], published in 2022, is an extension by
the same authors. It changes the method of Markov-table
compression (section III-A), simplifies the Markov-partition
sizing mechanism (section III-E), and extends the Markov-
table format to represent groups of contiguous locations1.

Triage has influenced temporal prefetchers in production.
Arm’s Correlated Miss Chaining [31] prefetcher, introduced
in the X1 and A78 onwards [16], stores and replays Markov-
table pairs in a partition of the L2 cache [4], [6]. The Cortex
X4 [40] adds another temporal prefetcher at the L1 cache.

III. FIXING INCONSISTENCIES IN TRIAGE

Although the original papers present an intriguing approach,
many of the details in these papers [44], [45] are missing,
incomplete, and/or impossible to implement. Here we work
through the subtler details. Where it is implementable, we use
the most modern mechanism at the source of our baseline [44],
and refer to this as “Triage” in our evaluation. Where ambigu-
ity is impossible to clear up otherwise, we reference a public
implementation contributed to by an author of the original

1This extended format gives only a marginal speedup, and reduces capacity
for non-sequential accesses to 3/4 of the original, extending entries from 32
bits to 42 bits, but achieving only 3% compression. We leave it as orthogonal
for this work, though we consider Triage-ISR’s other features in Triangel.

(a) Lookup-Address Example: 0xDEADBEEF looks at the 16 entries inside cache
index 1, and finds a match of its hashed tag at the blue element.

(b) Prefetch-Target Example: the lookup-table index (LUT-idx) indirects into
entry 64 of the lookup table, and the result is combined with the 11-bit offset
flag and 6 zero-bits for the cache line, to create a full address.

Fig. 2: Fields in the Markov table [24] segment of the cache in
our reimplementation of Triage [44], [45]. Its lookup address is
indexed by cache set and sub-set (section III-B, and tagged by
an XOR hash of the full address (tag-#). The prefetch target is
generated by using the LUT-idx bits as an index into the 1024-
entry lookup table, which is then combined with the Offset and
6 zero bits for cache-line alignment.

papers [30], which does not always match either paper but
sheds light on some inconsistencies and design choices.

We first cover fixes for these, choose the most appropriate
option for our baseline where no one solution is obvious,
and discuss inefficiencies, before discussing how to design an
energy-efficient, timely, accurate and high-coverage temporal
prefetcher, Triangel, in the following section.

A. Markov Metadata Format

Triage [45] and Triage-ISR [44] have very different ap-
proaches to storing Markov-table metadata (temporally cor-
related pairs of addresses). While Triage-ISR fixes some of
the implementation complexities in Triage, it introduces other
mechanisms that we believe are impossible to implement. The
table we use for our Triage experiments is based on choosing
the implementable parts of each, and is shown in fig. 2.

In both original techniques, two addresses (the lookup
address and prefetch target) are compressed to fit both within
32 bits total. Each address is cache-line aligned, so the 6
least significant bits are implicit (always zero). We assume
addresses are physical, typically without loss of generality.

In Triage [45], both addresses are treated identically. 11 bits
of the lookup address are stored implicitly based on the set that
is indexed during its lookup. For the prefetch target, these 11
bits are stored explicitly in the 32-bit Markov metadata entry.
The remaining “tag” bits for each are stored as 10-bit indices
into a (presumably 1024-entry) lookup table. Using the same
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lookup table for both causes issues, in that the index of the L3
cache must be exactly 11 bits as a result (2MiB for a 64-byte-
line 16-way set-associative cache), otherwise the offset for the
otherwise unrelated prefetch target inside the 32-bit Markov-
table entry must grow, meaning the Markov-table entry itself
must grow to unaligned sizes to still fit both entries.

This lookup table is likely stored in a separate SRAM
structure rather than a cache partition: e.g. 4-byte tags would
result in only a 4KiB structure. Its capacity is limited by the
number of available index bits in the Markov table’s fields. It
could be considered a simple array looked up via index, except
finding the correct 10-bit tag for a lookup address, to access
the correct Markov-table entry, requires a reverse lookup in
the same table, as does checking for an existing mapping on
inserting a new prefetch target. This structure must therefore
also support cache-like indexing; we found that implementing
lookups via 16-way associative indexing and replacement
performed similarly to fully associative (section VI-E).

Likely due to the above issues, Triage-ISR [44] removes
this table entirely. For the lookup address, a 7-bit hash is
stored instead of the full tag being retrieved via lookup table.
However, the solution they give for the prefetch target is
impossible to implement. They suggest storing the address as
a 16-bit index of the L3 cache, followed by a 7-bit hash of
the remaining bits. This is fine if the address to be prefetched
is still in the L3 cache, because cache presence can act as a
heuristic to choose candidates: any addresses that match the
index and tag-# that are currently in the L3 can be brought into
the L22. However, it is impossible to identify a target to be
brought in from main memory with only these 29 bits (with 6-
bit line offset, 16-bit cache index, and 7-bit hash). It can only
represent 512MB of unique addresses: all the many addresses
that match in DRAM are equally likely to be the valid target.
In essence, to use it involves inverting a many-to-one hash.

It is possible to generate a working technique by combining
the two (fig. 2). The lookup address should be stored as in
Triage-ISR, with an implicit index combined with a 10-bit
hashed tag3. This avoids the cache requiring any particular
indexing policy, as the table-lookup for the prefetch target is
completely decoupled. For the lookup address, the hash of the
remaining bits of the address not in the index will be fixed-size
regardless of how many bits are in the index itself.

We find that even slight changes in the workload’s frame
locality cause severe slowdown (section VI-E), and so Triangel
stores the physical address directly in the Markov table.

2Neither Triage’s nor Triage-ISR’s mechanism is implemented in the public
code [44]. Triage-ISR’s strategy may be valid in cases where the Markov table
is stored in the L2, as is the case in CMC [5], [31], since the Markov table’s
range is less able to exceed the capacity of the L3.

3With 16 elements in each cache line, and 8 ways in the Markov partition,
there are 128 possible candidates. 7 bits is insufficient and reduces perfor-
mance; the probability of collision for each new insertion is 0.634 according
to a binomial distribution. We increase the hashed tag size to 10 bits as a result
because of the resulting performance loss, both for Triage and Triangel.

B. Associativity and Indexing

Triage and Triage-ISR store Markov-table entries [24],
compressed inside cache lines of the L3 cache, with Triage
storing 16 entries per 64-byte cache line, each containing its
own independent tag stored within the cache line’s data, rather
than the single tag for the cache line. This raises questions on
how indexing works, and how set-associative the structure ends
up being, that are not answered in either paper [44], [45].

Finding a Markov-table element requires fetching each
cache line’s data rather than just the tags, and up to eight ways
are allocated to the Markov partition. It would take 160 cycles
to access all possible tags of the resulting 128-way associative
structure as a result, rather than the 20 cycles in the paper.

The public codebase’s [30] Markov table is set to be either 0,
4 or 8-way set associative, depending on whether the metadata
partition of the history table uses 0, 4 or 8 ways of the 16-
way last-level cache. Presumably, the 16 elements inside each
cache line are indexed as direct mapped, with each index only
storable in one location within a cache line, but in any cache
line in the set. This is impractical: it would still take 160 cycles
to access just one compressed tag from within each individual
line, since the Markov tags are inside the cache lines.

Our policy is always 16-way associative, accessing just one
line, by using a second indexing policy, in addition to the bits
choosing the cache set. This chooses the sub-set: the relevant
cache line/way within the L3 cache’s set. We take the modulus
of the 10-bit tag-#, where Partition Ways is the current
number of ways reserved for Markov metadata:

Index = Tag-# % Partition Ways

The sub-set index for a given address changes every time
the partition size changes, so previously filled Markov-table
entries end up inaccessible due to being in the wrong sub-set.
We trigger a rearrangement by storing the current indexing
policy (3 bits) of a given set in the first cache line’s tag bits
(which are otherwise unused). On an access, if this does not
match the current partition size, the entire set is rearranged
asynchronously following the access.

The original papers also give no explicit information on
where LRU or HawkEye replacement state is stored. LRU
state can be stored implicitly within a line by storing the
most recently used element at index 0 and shifting down other
elements – PLRU [3], [25] bits or RRIP [23] bits can be stored
within remaining unused cache-line tag bits.

C. Cache Replacement

Triage and Triage-ISR use HawkEye [22], a complex cache-
replacement technique, to prioritize more frequently used
Markov-table entries when space-constrained. This stores a
long history of 64 randomly chosen sets (set duelling [32])
to classify PCs based on whether Belady’s optimal algorithm
would choose to store data brought in by them in the cache,
performing an O(n) walk of the data structure on each access.
Negatively classified PCs insert metadata in the most evictable
way, and never promoted above positively classified PCs’
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loads, whereas postively classified PCs are directly inserted
with a high reuse (to deter eviction) and treated as LRU.

With a default 1MiB-maximum Markov table, we found
a relative speedup of only 0.25 percent from HawkEye over
LRU for the 7 SPEC workloads in the original papers. The
benefit became noticeable only with an artificial limit for the
prefetcher of 256KiB maximum state4. The storage and use
of Markov-table entries is not the same problem as cache
replacement. To consider whether a prefetch entry should be
stored, we should not only consider if it is accessed (as with a
cache line). We also need to consider whether the prefetch will
be useful. This only occurs if there is some form of (semi-)
sequential pattern to accesses for a given PC.

D. Confidence Bit
One bit in the Markov table is used as “a confidence

counter” [45], with no other information provided. In the
public implementation [30], this is just used for same-index
replacement: If (x, y) is stored in the table, and we see (x, z),
then replacement only occurs if the confidence bit is not set.
We follow the same design; the alternative would be using
the bit to guide prefetching itself, not prefetching unless the
confidence bit is set. However, we discovered experimentally
that this was too pessimistic, and thus hurt performance.

E. Table Sizing
To choose the number of L3 cache ways that form the

Markov-table partition, Triage-ISR [44] uses a Bloom filter [9]
trained on every access to the prefetcher within a 30-million-
instruction window: if the address is a bloom-filter miss,
then it has not been seen before, and so the target size of
the partition is increased to fit it. This allows more fine-
grained set-allocation decisions than the binary 0, 4, 8 from the
original Triage [45], which was set by comparing the results
of two HawkEye predictors, and which incurs significant
implementation complexity [44]. Likewise, we can infer from
Arm’s documentation of CMC [4], [5] that it too supports fine-
grained partitioning. We use the Bloom-filter design for our
Triage baseline. The exact sizing, as with all other structures
in Triage, of the bloom filter is not given. But even a Bloom
filter with 5 percent chance of false positives is 200KiB [20];
too large to be at the side of each L2 cache. The Triage-ISR
Bloom-filter strategy also wastes space: there is a persistent
bias towards Markov-table entries regardless of how useful the
L3 cache would otherwise be: if there are unique Markov-table
indices that could be stored, the partition will grow to fit them
regardless of their utility or the effect on DRAM traffic from
the reduced L3 capacity. This is true regardless of whether
HawkEye would prioritize them, in that even entries judged
as non-temporal are added to the Bloom filter5.

4We saw even less benefit for Triangel, which already performs filtering
of entries before cache replacement. Artificially limited to 256KiB of state,
Triangel saw 2.8% geomean for LRU, 4.3% for RRIP and 6.1% for HawkEye,
versus Triage’s 1.2% for LRU, 2.9% for RRIP and 5.8% for HawkEye.

5In HawkEye [22], the extra space fills up with old, obsolete Markov entries
rather than newer non-temporal entries, as a non-temporal entry is always
evicted in preference to a temporal entry, and temporal entries do not age
beyond non-temporal entries (unlike in RRIP [23] or Mockingjay [33]).

IV. TRIANGEL

Now we have an implementable baseline for Triage, we
wish to improve upon its energy efficiency, performance,
accuracy and timeliness. The broad strategy is as follows:

• We use sampling techniques to estimate whether a PC is
likely to generate good prefetches, filtering away the rest
from being stored or used (section IV-D).

• We improve timeliness and performance by increasing
prefetch aggression when we are confident (section IV-E).

• We lower energy use by eliminating poor-quality
prefetches (section IV-E), filtering repeat L3 Markov-
table accesses from high prefetch degrees (section IV-F),
and by dynamically trading off Markov-table versus L3-
cache hit rates (section IV-G) to mitigate DRAM traffic.

A. Basic Operation

The basic structure of Triangel is given in fig. 3.
Like Triage [44], [45], it stores a training table to track
misses/tagged-prefetch hits per-PC, with new fields and coun-
ters (section IV-B) to support Triangel’s aggression control.

Triangel uses per-PC random sampling to evaluate the like-
lihood of a previous (x, y) sequence being likely to generate
an accurate future prefetch (PatternConf ) before it is evicted
from the Markov table (ReuseConf ). Sequence lengths and
exact pattern repetitions are analyzed by the History Sampler
(section IV-D). If the History Sampler finds a different target
z for a repeat index x that previously targeted y, it defers
judgement to the Second-Chance Sampler (section IV-D2),
which checks if previous successor y is accessed in close
proximity (causing a hypothetical prefetch to y to still be
accurate). Examples are given in fig. 4.

These confidence counters control prefetcher aggression
(section IV-E): not only whether prefetches and Markov-table
updates occur (to improve accuracy/energy efficiency), but also
how far ahead to prefetch: if the classifiers indicate high con-
fidence, lookahead distance and degree are increased. High-
degree prefetching is made energy efficient and timely by the
addition of a Metadata Reuse Buffer (section IV-F): if chained
walks through multiple future table entries are saved locally,
when the sequence is re-walked for following prefetches,
we avoid redundant L3 accesses. Finally, the Bloom filter is
replaced by a Set Dueller that directly trades off L3 data-cache
storage and Markov-table storage (section IV-G).

B. Training Table

We add several fields to Triage’s training table for Triangel’s
filtering and aggression analysis. It is indexed by PC, and is
updated on a miss or tagged prefetch hit (when a prefetched
element is accessed for the first time, so would have missed
without prefetching) in the L2. Its layout is given in fig. 5:

• PC-Tag-#: Hashed tag of the PC (similar to Triage-ISR’s
hashed tags, section VI-E), to identify entries in the table.

• LastAddr[0, 1]: This stores the previous misses/prefetch
hits observed at this PC, as a shift register. It is used
in the History Sampler, and in the Markov table if the
History Sampler (section IV-D) positively classifies the
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Fig. 3: The structure of Triangel. Like Triage, it tracks per-PC miss sequences (x, y) in the training table, and stores and replays
them using a Markov table [24] inside a partition of the L3 cache. Triangel adds four new structures: a History Sampler, which
randomly samples the training table to observe long-term patterns, a Second-Chance Sampler to identify inexact sequences that
still give accurate prefetches, a Metadata Reuse Buffer to eliminate duplicate L3 Markov-partition accesses from high-degree
prefetches, and a Set Dueller, to choose the partitioning of L3-data-cache versus Markov table that optimizes hit rates.

Fig. 4: An example of the classifications performed by Trian-
gel’s samplers. “ ” signifies an arbitrary address. For PC 0x42,
sampling (x.y) reveals that x is repeated within a region short
enough to be stored in our Markov table (ReuseConf). Since y
is also accessed following x on x’s repeat, the pattern repeats
(PatternConf) and thus temporal prefetching is accurate. For
0x63, when e repeats, it is followed by h rather than the f we
expect. However, Second-Chance Sampling (section IV-D2)
reveals that we access f nearby, and so a prefetch to f at ( ,e)
would be used before eviction, despite the imperfect sequence.
Note the Markov table can only store one target per index, so
will store only one of (e,f) or (e,h) at any given point.

PC. When LastAddr[0] is filled, its previous value is
shifted into LastAddr[1]. The latter is used as the Markov-
table index instead of the former when the prefetcher is in
an aggressive state, increasing lookahead (section IV-E).

• Timestamp: This is a per-PC local timestamp, incre-
mented every time the training-table entry is accessed.
It calculates distance between repetitions (section IV-D).

• ReuseConfidence: A saturating counter to evaluate
whether the address pattern at PC x repeats in a short
enough sequence to fit in the Markov table (section IV-D).

• PatternConfidence Two 4-bit saturating counters, biased
by different factors, to evaluate prefetching accuracy: they
consider if, for an (x, y) stored pair, address y is likely to
be accessed in proximity to address x the next time x is
accessed (section IV-D). The first counter saturates if we

are > 66% confident (enough to store the metadata and
issue one prefetch from it) and the second to saturate if
we are > 83% certain (to issue high-degree prefetches).

• SampleRate: Controls sampling rate for a PC, to balance
observation frequency with being able to observe repeat
accesses before eviction from the sampler (section IV-D).

• Lookahead: Stores whether we currently use LastAddr[0]
versus LastAddr[1] as the index for Markov-table training,
for aggression control via lookahead (section IV-E).

C. Markov Table

The Markov table (fig. 6) is placed in a segment of the L3
cache. It stores pairs of addresses: one to address the table
(lookup address), and the other a prefetch (prefetch target).
Triangel’s table stores 12 compressed elements inside each
64-byte cache line, and like Triage-ISR [44], uses a (10-bit)
lookup-address hash instead of a full tag. Like Triage and
Triage-ISR, we store a single confidence bit for replacing the
prefetch target for a given lookup address: a target is replaced
if confidence is 0, which is set to 1 if the new prefetch target
on training matches the existing prefetch target in the table.

D. History Sampler

The History Sampler is used to make decisions about
whether to store history for a given PC. It does this by taking
samples6 of the metadata in the training table, such that it can
see much further into the past than the data stored in the cache
itself, despite being small and 2-way associative.

The entries stored and pseudocode for the History Sampler
are given in fig. 7. Every time the training table is updated (L2
cache miss or prefetch hit), LastAddr[0] is looked up in the
sampler along with a check that Train-Idx matches the index
of the current PC’s training-table entry. If we see a hit, and the
difference in timestamps (between the one in the training-table

6Simple methods such as linear congruential [13] are fine; cryptographic
randomness is not required. The important factor is that sample rate can be
varied to read more or less of the address stream.
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PC-Tag-# LastAddr[0] LastAddr[1] Timestamp ReuseConf PatternConf SampleRate Lookahead
10 bits 31 bits 31 bits 32 bits 4 bits 2x4 bits 4 bits 1 bit

Fig. 5: Fields in the training table, which is indexed and tagged by PC. Bold fields are new to Triangel, others are taken from
Triage (assuming Triage uses a saturating counter of the same size as ReuseConf for HawkEye classification [22]).

Fig. 6: Markov-table fields in Triangel, and example prefetch-
target generation. Its lookup-address process is based on our
Triage reimplementation (fig. 2a). The prefetch target does not
use a lookup table, instead being generated by shifting the 31-
bit target-addr with 6 cache-line zero bits, with 128GB range.

Fig. 7: Layout and pseudocode for the History Sampler.

entry and in the sampler) is below a threshold, we consider
the pattern small enough to store in the L3’s Markov-table
partition (ReuseConf ). If the CurrentAddress being trained on
by the prefetcher matches the Target in the sampler entry, and
the Train-Idx matches the training-table entry for the current
PC, we consider the prefetch to be accurate (PatternConf ).

1) Reuse Confidence: If the looked-up address is in the
History Sampler, and the table index stored matches the
training-table entry for the current PC, we have a repetition of
a memory access we have seen before. We next calculate its
local reuse distance to evaluate whether, ignoring the existence
of any other PCs, the pattern for this PC alone is short
enough to be prefetched within the Markov Table’s MaxSize

(196608 entries for a 1MiB partition of 42-bit entries). The
local timestamp in the training table is incremented each time
the individual (per-PC) training-table entry is accessed, and
when an entry is sampled, the timestamp is copied into the
History Sampler. We subtract the two on a hit to find their
distance. If this is below MaxSize, we increase ReuseConf7.

2) Pattern Confidence and Second-Chance Sampler: Un-
like for cache replacement, prefetcher data being re-accessed
alone is insufficient to make a prefetch useful. If the pattern
of memory accesses is unpredictable, we will both pollute the
cache and needlessly increase DRAM traffic.

We track if the pattern (x, y) repeats, instead of just an indi-
vidual access x. If the PC’s training-table entry’s lastAddr[0]
is x, (x, y) is in the sampler, and the currentAddress just
seen is also y, we can increase PatternConf.

We decrement PatternConf if currentAddress does not
match a sampled entry for lastAddr[0], with two exceptions.
If the sampler’s target is already in the cache (so would not
generate a prefetch, inaccurate or otherwise) we leave counters
at their old values. To catch when a pattern is not a perfect
sequence, but the hypothetical prefetch to the target y in the
history sampler would still be used before cache eviction (so is
an accurate prefetch), we add a small table: the Second-Chance
Sampler (SCS, fig. 8). If a target in the History Sampler does
not match the currentAddress, it is placed in the SCS. When
the training table is updated, the SCS is checked in addition to
the History Sampler. If the currentAddress is in the SCS, the
PC matches, and we are within 512 fills to the L2 cache (an
underapproximation of L2 capacity), PatternConf is increased.
If the first access occurs outside this window, or an element
leaves the SCS before being accessed, PatternConf decreases.

PatternConf is implemented as two 4-bit saturating counters
per-PC, each behaving as above, but with different bias factors.
Rather than counting upwards and downwards symmetrically,
the BasePatternConf counts upwards by 1 and downwards by
2. This means it only reaches high values if the prefetch is
useful more than 66% of the time, rather than more than
50% for a symmetric counter, which would permit inaccurate
prefetches. The second (HighPatternConf) counts up by 1 and
down by 5, to issue aggressive prefetches (section IV-E) when
we are more than 83% ( 56 ) certain that prefetches are high
quality. Both factors can be adjusted to alter the prefetcher’s
willingness to store metadata and issue prefetches, trading off
coverage and performance for accuracy and traffic reduction.

7Where multiple PCs together fetch more than the MaxSize but not
individually, we found it was best to leave the decision of which to prefetch
to cache replacement in the Markov table, and whether to prefetch at all to the
Set Dueller, rather than try to choose based on reuse distance which ones win
or lose. In this sense, ReuseConfidence is a weak classifier that only removes
entries that are always useless; we hope future heuristics will be more precise.
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Fig. 8: Second-Chance Sampling finds more general temporal
correlations than the immediate sequences covered by the
History Sampler. If (x,y) are collocated in the History Sampler
but not the Training Table, we work out whether a prefetch to
y would be accurate despite the mismatch by storing y and a
timestamp in a small buffer. If y is accessed within 512 training
accesses, we increment confidence and otherwise decrement it.

3) Sampling Methodology: We dynamically alter sampling
rate for each PC via a 4-bit saturating counter stored in the
training table, initialized to 8. We insert an entry into the
History Sampler with probability:

SamplerSize

MaxSize
∗ 2SampleRate−8

MaxSize is the number of entries in a Markov table with
maximum cache-partition allocation, and SamplerSize is the
(smaller) number of entries in the sampler. Entries placed into
the sampler inevitably replace other, older entries that we then
lose the opportunity to observe. If this happens too frequently,
then we will fail to pick up long-term reuse patterns entirely.

If the reuse distance of the victim entry is longer than
MaxSize then we are only replacing stale entries. We decrease
the reuse confidence (if the element is unused) of the victim
entry’s PC, and increase the sampling rate of the replacement
PC. Otherwise if the victim element is not older than MaxSize
and also has not yet been used, we replace the potentially
useful victim but reduce the sampling rate of the replacement’s
PC to reduce the probability of replacing useful data in the
future. This allows us to ultimately see if repeat accesses exist
for every PC: even if some PCs fill the cache more often
than others, or reuse distances are very long, in both cases
evicting data before we see repetition, we dynamically adjust
fill rates of each PC to compensate so the sampler can store
some elements from each to analyze all of them.

E. Lookahead, Degree and Aggression Optimization

Triage [45] observes that higher degrees, i.e. following
chains of table entries to produce multiple prefetches per cache
miss, give a significant increase in performance, by making
prefetches more timely. However, accuracy drops and DRAM

traffic grows dramatically between the highest-accuracy and
highest-performance configurations (section VI).

In Triangel we have more information about the likely
success of our prefetches, since we have per-PC classifiers
of both ReuseConf and PatternConf. It follows that for PCs
where both of these are high, even high-degree prefetches will
remain accurate. However, a high degree alone is insufficient
to achieve good timeliness, as walking the linked Markov-
table data structure may be as slow as the CPU’s demand
accesses for the same locations. We can solve this problem
by increasing the lookahead to 2 from 1, instead of only
increasing the degree. For an (x, y, z, x, y, z) repetition, we
store (x, z), (y, x) and (z, y) instead of (x, y), (y, z) and
(z, x), to better hide latency via overlapping future prefetches.
Unlike increasing degree, increasing the lookahead distance
requires changing the data stored in the Markov table itself.
We must decide this at time of training rather than the time
of metadata usage, and lookahead must be consistent (for
an individual PC) over long periods of time to avoid targets
being skipped. Unlike in the Markov table, which can still
store a single payload, the training table must store a shift
register as long as the largest lookahead possible: e.g. for the
pattern (x, y, z), if x was written into lastAddr[0] two accesses
ago, then shifted it to lastAddr[1] one access ago (overwriting
lastAddr[0] with y), we will see z in the current iteration and
store (x, z) in the table (followed by setting lastAddr[0] to z
and shifting y into lastAddr[1] for the next training).

We set the lookahead distance to 28 (and thus the looka-
head bit in the training table) if HighPatternConf reaches its
maximum value (15). To avoid rapid switching, and thus
entry skipping, we only return to lookahead 1 (which requires
temporal locality only over one entry rather than two in
order to be accurate, so it is better for uncertain patterns) if
BasePatternConf subsequently drops below its initial value (8).

We can then prefetch at higher degrees as well on top of the
higher lookahead, to increase timeliness without increasing the
training table’s history shift register further in size. However,
again we should only do this when we are confident in our
prefetches, otherwise we should expect accuracy to become
untenable (such as we see with the Triage at degree 4,
section VI). If HighPatternConf is above the default 8, we
issue chained lookups to the Markov table, generating up to 4
prefetches total. When ReuseConf or BasePatternConf are at
their initial value (8, or half way) or below, we neither issue
prefetches nor store entries in the Markov table, to decrease
L3 traffic and avoid storing useless metadata.

F. Metadata Reuse Buffer

Increasing the degree causes redundant lookups in the L3
cache’s Markov table. Triage’s energy consumption doubles

8While larger lookaheads can increase performance, they also require larger
shift registers in the training table. Provided we have a lookahead of at least
2, we can use degree to get arbitrarily far ahead of the CPU. This is not true
of lookahead-1 on a linked list for example, where the CPU will be able to
walk the list as fast as the prefetcher if entries are cached in the L3, as the
prefetcher has no more memory-level parallelism than the original program.
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Fig. 9: The Set Dueller samples 64 random sets and works
out the best tradeoff between Markov table and Cache space,
by modeling the cache hit rate of each of the 9 options for
8-way maximum partition in a 16-way cache, by keeping one
copy of the Cache’s tags and one copy of the Markov table’s
tags, each modeled as though they were LRU.

at degree 8 [45]. We add a small Metadata Reuse Buffer next
to the prefetcher, storing the most recently used entries in
the Markov table (along with the four set-index bits used
to index the Markov table but not this smaller, 256-entry
2-way associative structure). This is a 256-entry, 2-way set
associative structure (so negligible in energy compared to a
multi-megabyte highly associative L3 cache), and uses FIFO9

replacement for accessed Markov entries that result in a
prefetch. This removes the vast majority of redundant accesses
to the L3, as any repeated accesses from overlapping walks
caused by degrees higher than 1 will be eliminated. It also
improves timeliness: repeat accesses will not incur an L3
latency penalty, causing most degree-4 (or higher) accesses
to result in only a single L3-cache Markov lookup. Triage’s
extra accesses to the L3 are not only caused by redundant
accesses, i.e. repeats from one prefetch to the next, because
in Triage’s case many high-degree prefetches are inaccurate.
But Triangel only increases the degree above 1 in scenarios
where it is highly confident in the quality of its prefetches.

The Metadata Reuse Buffer allows one further optimization.
When prefetches are accurate, the Markov entry (x, y) we are
about to update (on access to y) will be in the buffer, because
it has recently been used to generate a prefetch (on access to
x). If none of the information in the Markov table is due to
change (the entry’s target and confidence are identical to their
previous values), we can avoid issuing the update to the L3.

G. Set-Duelling Partition Sizing

A bloom filter covering the full 196608 entries that can
be stored in a 1MiB Triangel partition is infeasibly large
(section III-E). While this can be cut down via sampling only

9We use FIFO rather than LRU here because this structure is too small for
general temporal locality: rather, elements will be accessed four times then
should leave the cache for other entries.

a portion of the address space (and we model this for Triangel-
Bloom in the evaluation, with an experimentally determined
bias factor of 1.5 which achieved the highest performance),
a Bloom-filter policy still over-sizes the Markov table by
prioritizing its entries over standard cache lines (section III-E).

Triangel instead directly trades off cache hits versus
Markov-table hits to achieve the highest hit rate, via a custom
set-duelling [32] mechanism on 64 random cache sets. We
model two structures: a full-size L3 cache unaffected by Trian-
gel’s prefetching, and a full-size Markov table, and interpolate
the partitioning between the two that gives the best hit rate.

The 64 sampled sets each store a single Markov-table tag
and a single cache-line tag (compressed as 10-bit hash-tags)
per cache way: 8 out of 16 cache ways can be allocated to
Triangel in our case, so we only explicitly store 8 ways of
Markov table, but 16 cache ways, modelled within the dueller
as LRU10. This gives each element in both tables a unique
eviction priority, indicating whether they would hit in each
connfiguration, from a Markov-table reservation of 0 to 8
ways. We also store 9 32-bit counters (total, not per sampled
set), one for each possible partitioning decision. As shown in
fig. 9, when the ith most evictable cache element is accessed
in a sampled set, counters are incremented corresponding to
partitions where this access would be a hit: where i or more
ways are used as data cache. Likewise, each time the ith most
evictable Markov-table entry is accessed in a sampled set,
counters corresponding to partitions where i or more ways
are reserved for the Markov table are incremented.11

We use a 500000-entry window to track these counters, after
which they are reset and the optimal partition from the last
window used to set the partition for the next. This is a tradeoff
between reactiveness to new workload phases versus limiting
expensive re-indexing (section III-A), though resizes are rare
and this parameter is not sensitive outside extreme values.

H. Sizing

Triangel adds four structures to Triage: the Reuse Buffer, the
History- and Second-Chance Samplers, and the Set Dueller. It
increases the size of each training-table entry (fig. 5) by 76

10This is a very approximate model. Triangel does not use LRU replace-
ment, and the cache might not either [42]: we model LRU in the dueller
because it gives unique evictability scores per-tag that allow us to model just
two extremes (all-Markov and all-cache) and infer hit rates of the other 7
options. By contrast, RRIP [23] may share the same evictability for multiple
tags at once, and will insert in a different place depending on the associativity
(an access of a newly inserted line might be in way 6 of a 7-way cache, or
way 2 of a 3-way cache), meaning we cannot give each way a unique score.
The modelled L3-cache hits are based on the miss/prefetch-hit streams seen
by the prefetcher, rather than the true L3 state, to cancel out replacement-state
changes by the prefetcher, and by partitioning.

11This is made harder by Markov-table entries and cache lines being
different sizes, since 12 Markov-table entries fit in a single cache line, so
Markov-table entries’ lifetimes in the cache are much longer than cache lines’,
and the indexing policy is very different as a result (section III-B). We handle
this by sampling 1/12 as many entries of the Markov table, to make the ratios
of the two match, but treating each sampled Markov-table hit as being worth
12 cache-line hits. However, since prefetches cause DRAM accesses whereas
cache hits do not, we also bias against Markov entries by a factor B (2 by
default, so each Markov hit is worth 6 cache-line hits).
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Table Entries Size
Training Table 512 7808B

History Sampler 512 6080B
Second-Chance Sampler 64 584B
Metadata Reuse Buffer 256 1472B

Set Dueler 64×(8+16) 2106B
Total 17.6KiB

TABLE I: Sizing of Triangel’s structures.

Core 5-Wide, out-of-order, 2GHz
Pipeline 288-Entry ROB, 120-entry IQ, 85-entry LQ, 90-entry SQ,

150 Int / 256 FP registers, 4 Int ALUs, 2 Mul/Div, 4
FP/SIMD, 2 R/W Ports

Branch 64KiB MPP-TAGE
L1 ICache 64KiB, 4-way, 2-cycle hit lat, 16 MSHRs
L1 DCache 64KiB, 4-way, 4-cycle hit lat, 16 MSHRs, deg-8 stride pf
L2 Cache 512KiB, 8-way, 9-cycle hit lat, 32 MSHRs
L3 Cache 2MiB/core, 16-way, 20-cycle hit lat, 36 MSHRs
Memory LPDDR5 5500 1x16 BG BL32
OS Ubuntu 22.04

TABLE II: Core and memory experimental setup.

bits: 32 to increase the lookahead distance (LastAddr[1] and
Lookahead), and 44 for history sampling (Timestamp, Pattern-
Conf and SampleRate). By removing the 1024-entry upper-tag
lookup table (3840B), HawkEye’s Dueller (13KiB [22]) by
using SRRIP [23] instead, and the Bloom Filter (200KiB for
5 percent error), we save significantly: Triangel has 17.6KiB of
total dedicated storage (table II), versus 219.5KiB for Triage.

V. EXPERIMENTAL SETUP

We evaluate Triangel using gem5 v23.0.0.1, with the con-
figuration in table II. The cache configuration is set up to
be a close match to the original Triage [45] paper, with
parameters otherwise chosen to be a close match for the Arm
Cortex X2 [7], [17], [41]. Gem5 is run in Full-System mode,
with KVM used to generate checkpoints from throughout the
execution of each workload. Each experiment consists of 20
checkpoints per workload, each warmed up for 50000000
instructions and sampled for 5000000 instructions. Since it
impacts so many other metrics, we also show a breakdown of
Triangel with a Bloom filter instead of the default Set Dueller
is every graph, with other parameter tuning shown separately.

We implement Triage based on the details given in the two
papers [44], [45], with ambiguous components matching the
public implementation [30] and/or cleared up in section III.
Both Triage and Triangel allow their Markov tables to use
half the last-level cache maximum. Each Markov-table access
has a 25-cycle hit latency, accounting for 20 cycles of L3 cycle
access time and 5 cycles of compressed-metadata handling.
Both prefetch into the L2, and use the same sized structures
where relevant (section IV-H). Triage uses HawkEye [22]
replacement and Triangel the simpler SRRIP [23]. For Triage,
we evaluate both their degree-1 default setup (Triage), and
their faster but less accurate degree-4 setup (Triage-Deg4). To
isolate Triangel’s aggression control from its other improve-
ments, we further add Triangel’s new lookahead mechanism
to Triage (Triage-Deg4-Look2).

To maintain a close evaluation to the original papers [44],
[45], experiments use the 7 most irregular, memory-intensive
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Fig. 11: Normalized DRAM Traffic (lower is better).

workloads from SPEC CPU2006 [18]: Xalancbmk, Omnetpp,
Mcf, GCC (166 input), Astar, Soplex (3500 ref.mps input)
and Sphinx3, on the Ref inputs. Triage does not reduce
performance on the remainder of SPEC CPU2006 [45], and
Triangel is less willing to prefetch or take up L3 space when
it is not useful, and so we avoid repeating these experiments.
We also evaluate on multiprogrammed combinations of these
workloads (where Triangel’s structures are core-private save
for the Markov partition and its Set Dueller, which are
shared) to show a more bandwidth-constrained environment,
and evaluate on Graph500 Search [28] (s16 e10 7MiB input
and s21 e10 700MiB input [1], [2]) to evaluate performance
when a workload is cache- and memory-intensive but with
neither temporal correlation nor a small enough working set
for temporal prefetching, to stress the techniques further.

VI. EVALUATION

Figure 10 shows that, on the workloads examined in the
original papers on Triage [44], [45], Triangel achieves a
speedup of 26.4% geomean, versus 9.3% for Triage. Figure 11
shows this is despite inducing significantly less memory traffic:
only 10% above baseline, versus 28% for Triage, including
overheads from taking resources away from the L3 cache.

A. Analysis

The performance improvement of Triangel is primarily
from its increased aggression (degree-4 and lookahead-2 when
the history sampler is confident) allowing it to significantly
improve timeliness, but in spite of this, Triangel is significantly
accurate than Triage (fig. 12). Curiously, Triage-Deg4 is also
more accurate than Deg-1 by ratio, but the sheer volume
of incorrect prefetches created causes traffic issues; Triage-
Deg4 (same maximum aggression as Triangel) achieves only
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from baseline).

14.2% speedup, since it cannot selectively target high-quality
streams, nor use Triangel’s high-lookahead (section IV-E or
metadata-reuse (section IV-F) mechanisms to improve timeli-
ness. Adding Triangel’s Lookahead-2 to Triage-Deg4 improves
things but only slightly (16.6%); Triangel’s aggression controls
and metadata filtering and formatting are needed to gain
maximal benefit.

Triangel achieves only a slightly higher performance with its
default Set Dueller (26.4%) than with a Bloom Filter (26.1%),
but achieves significantly lower DRAM traffic (10% versus
14.6%). We consider the tradeoffs in section VI-F.

Coverage (fig. 13) shows a more complex picture. Both
Triangels are less willing to prefetch from poor-quality streams
such as Astar and Soplex – whereas Omnet and MCF see lower
coverage on the Set-Duelled Triangel versus the Bloom-filter
Triangel in order to alleviate DRAM requests.

B. Energy Consumption

Because Triangel discards many poor-quality PCs that do
not show history patterns, it accesses the Markov table sig-
nificantly less than Triage in every workload, significantly
reducing the traffic to the L3 cache (fig. 14). This is in
spite of the much higher prefetch degree in Triangel, where
the Metadata Reuse Buffer (versus NoMRB) successfully
prevents repeat accesses to the same locations even as they
are re-walked over overlapping high-degree prefetches, unlike
in Triage-Deg4 which exceeds 5× the number of accesses.
Indeed, improved accuracy means that even without an MRB,
Triangel (Deg-4) still only causes as many L3 accesses as Deg-
1 Triage, which itself does not benefit from an MRB due to
not issuing high-degree prefetches.
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Triangel’s lower number of memory accesses, and lower
number of Markov-table accesses, provide significant energy
savings. To estimate this, we use the same methodology as
in the original Triage paper [45]: we assign DRAM accesses
an energy cost of 25 units, and L3 accesses (including data
accesses and Markov-table accesses) a cost of one unit. We
then compare this against the number of DRAM accesses
and L3 accesses in the baseline (which has no Markov-table
accesses and no temporal prefetcher). In fig. 15, Triangel
(14%) is significantly lower than both Triage (36%) and
Triage-Deg4 (60%) – and, due to the Set Dueller’s metadata-
sizing tradeoffs, Triangel-Bloom (19%).

C. Multiprogrammed Workloads

Figure 16 shows the same workloads run in adjacent pairs
on two cores simultaneously (with Xalan doubled to make an
even set). Triangel typically maintains its performance, while
Triage slips further behind. Triage-Deg4 suffers new slow-
downs, not exceeding Triage in geomean, because its aggres-
sion is particularly misplaced when bandwidth-constrained.

D. Adversarial Workloads

Figure 17 shows the slowdown and DRAM traffic for
a workload unsuited to temporal prefetching: Graph500
search [28]. Neither input exhibits temporal correlations: the
pattern for the 700MiB s21 e10 graph is too large for a
prefetcher with maximum capacity 12MiB (16MiB for Triage),
and while the 7MiB s16 e10 can fit, its accesses show too
little repetition for prefetches to be worthwhile. Triage has
no concept of accuracy and will always increase to maximum
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Fig. 17: Slowdown and DRAM traffic for Graph500 search.

capacity given large enough input. This means the Triage tech-
niques lower performance dramatically, since they maximize
Markov-partition size and minimize L3 hits, while generating
inaccurate prefetches. Triangel-Bloom also does poorly on
s16 e10, even though it rarely generates prefetches: this is
because its PatternConf counters transiently lock on to small
patterns of genuine sequences, which are enough to fill the
Bloom filter, but do not last long enough to keep PatternConf
above threshold. Standard Triangel’s Set Dueller realises that
prefetch hits are rarer than cache hits. For s21 e10, neither
Triangel activates: the reuse distance is beyond ReuseConf.

E. Markov-Table Format: Analysis on Triage

In fig. 18 we justify our Markov-table format in Triangel
by evaluation of Triage under various scenarios. The first
(32-bit-LUT-16-way, the configuration used elsewhere) stores
metadata as described in section III-A, with each entry 32-
bits wide, using a 1024-entry lookup table to generate the full
target address [45]. Though the associativity of the lookup
table is not given in the original paper, we see that a 16-way
lookup table performs no worse than a fully associative lookup
table (32-bit-LUT-1024-way). However, there is a significant
drop from a hypothetical mechanism with a perfect lookup
table (32-bit ideal). There is also a performance increase from
the simpler strategy of removing the lookup table, and storing
each entry as 42-bits long directly (section IV-C, 42-bit) as
in Triangel. Minor changes in accesses cause even worse
behavior. If we change the lookup table to cover one more
bit, meaning the offset stored is 10 bits long instead of 11 as
in the original paper (32-bit-LUT-16-way-10b-offset), roughly
equivalent to halving physical-page locality or doubling page
fragmentation, performance drops dramatically.

We see in fig. 19 that, while the LUT works well for GCC
and Sphinx, accuracy is poor for others and plunges with
fragmentation modeled by 10-bit offsets. Unlike the Markov
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table, which stops generating prefetches if its capacity is
exhausted, the lookup table (accessed only via index) returns
addresses the program may never have accessed. It is sensitive
to minor changes in input, and assumes locality possible only
on a freshly booted system. By removing the LUT, Triangel
is immune from assumptions about physical-frame locality.

F. Ablation Study

Figure 20 shows the contribution of each individual change
that Triangel introduces, starting with Triage Degree-4 and
progressively adding new mechanisms.

Adding Triangel’s Lookahead-2 mechanism (section IV-E)
improves performance by improving timeliness, but only
slightly; the high inaccuracy results in overwhelming DRAM
traffic and limited benefit. The switch to Triangel’s Markov
table format removes the inaccuracy of Triage’s lookup table
(section VI-E), which compounds over high degrees to gener-
ate progressively more incorrect prefetches.

The use of BasePatternConf, to prevent storage of prefetch
metadata, and generation of prefetches, for patterns with less
than 66 percent accuracy, halves the DRAM traffic overhead.
It results in a substantial performance improvement on MCF,
which can now use its limited metadata storage for more
profitable patterns. However, it also makes Omnet and Sphinx3
too conservative, as these workloads have strong temporal
reuse but not always in strict sequence (so prefetches still get
used before they are evicted from the cache). The Second-
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Fig. 20: Impact of progressively adding individual features to
form Triangel, starting with Triage Degree 4.

chance sampler’s ability to track non-strict-sequential patterns
mitigates the performance impact.

The Metadata Reuse Buffer (section IV-F)’s impact on
performance is slight except for on GCC; Triangel is already
timely due to it’s high degree and lookahead. However, we
previously saw it has a favorable impact on energy (fig. 15).

The Set Dueller (fig. 9) significantly reduces DRAM traffic
by directly considering the tradeoff between the cache being
used for Markov-table storage versus data storage. In particu-
lar, it speeds up GCC through reducing traffic, at the expense
of slowing down Omnet and MCF, where the default values
for the Set Dueller decide the performance improvement is
not worth the extra traffic (though more aggressive tradeoff
parameters, not shown here, do increase performance).

With the exception of Astar and MCF, all of the workloads
here have working sets small enough to not trigger ReuseConf,
though MCF in particular sees speedup by ReuseConf not
wasting storage on patterns too large to fit in the L3. Finally
HighPatternConf lowers DRAM traffic and performance, by
triggering high-degree and high-offset prefetching only when
confidence reaches the higher 5

6 threshold rather than BaseP-
atternConf’s 2

3 threshold for storing metadata, deliberately
making the prefetcher less aggressive, though typically our
workloads’ access patterns fall above or below this range.

VII. RELATED WORK

Surveys of prefetchers have been performed by both Falsafi
and Wenisch [15], and Mittal [27]. We discuss the most
relevant work, on correlating prefetchers, below.

A. Markov Prefetchers

Markov prefetchers [24], like Triage [45] and Triangel, store
address pairs, for correlation prefetching. While such tables
were originally proposed with multiple successors (width

>1) [24], Triage and Triangel store a single successor, to
improve density and accuracy at the expense of coverage. To
increase timeliness, several approaches have been explored:
increased degree by walking multiple entries [11], storing
streams of successors [35] rather than single elements in each
table entry (at the expense of density), and storing groups of
prefetches [12] within an epoch at the index of the first miss
(used by Triage-ISR [44] for contiguous regions). Triangel also
increases the lookahead of the prefetcher (to prefetch at high
offsets, common in other types of prefetcher [1], [2], [26]).

B. Aggression Control

One of Triangel’s primary tasks is controlling the aggression
of Triage via the History Sampler. This is made harder than the
traditional problem of controlling prefetch aggression, because
decisions need to be made as to whether to store Markov-
table metadata in the first place, and entries are stored long
before they are used, requiring long-term analysis. For the
decision on whether to issue a prefetch, Srinath et al. [37] track
global prefetcher pollution and lateness using tag bits, and use
this to alter distance, degree, and LRU state on prefetch fill.
PACman [43] uses set duelling to for rereference prediction of
prefetches to influence replacement state. Ebrahami et al. [14]
coordinate prefetchers in multicores to reduce interference.
Perceptron-based Prefetch Filtering (PPF) [8] handles a similar
task to Triangel, of improving aggression while maintaining
accuracy using classifiers. Unlike Triangel, it classifies over
many more properties than just the PC, but the large state
space and long reuse distances in temporal prefetching makes
this a challenge relative to the prefetchers in PPF.

C. Other Address-Correlating Prefetchers

Triage chose a Markov-table as the structure for its address-
correlating metadata because of its relative density. For
prefetchers with off-chip metadata storage, structures that trade
storage cost in favor of timeliness are common. Global history
buffers [29], [39] do this through a layer of indirection: all
missing addresses are stored in a single, linear buffer. Upon
a miss, the history buffer entry is found via lookup in the
index table. Subsequent misses are spatially local in the history
buffer, so arbitrary degrees of prefetching can be achieved
without chained lookups. Wenisch et al [38] reduce the cost
of updating the off-chip, non-spatially-local index table via
sampling to only fill in the table on a fraction of addresses
(each of which then generates several prefetches).

Irregular Stream Buffers [21] use a similar two-layer meta-
data format, based on assigning cache blocks a structural
address that is sequential based on miss patterns. The history
buffer is replaced by a structural-to-physical mapping table,
and prefetches occur by translation of lookup address via
physical-to-structural table, which gives the relevant location
of a stream of successors in the structural-to-physical table.
This reduces storage cost compared with GHBs by enforcing
that every address is only in each table once. MISB [46] stores
per-PC irregular stream buffers in-memory, removes the earlier
constraint [21] that physical-to-structural table entries are
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brought in and evicted based on TLB entries, and introduces
metadata prefetching techniques, though sees high DRAM-
traffic overheads [45]. Voyager [34] uses an online-trained
LSTM neural network to improve the accuracy of address
correlations though needs infeasible computation and storage.

D. Non-Address-Based Correlating Prefetchers

Tag-Correlating prefetchers [19] reduce table sizes by as-
suming the same relationship between the same tag at different
indices, and that the index of both Markov-table entry pairs
will match. Delta-correlating prefetchers (such as GHB/DC as
opposed to GHB/AC, both from the same paper [29]) correlate
the differences between addresses rather than the absolute
addresses themselves. When deltas are used for both indices
and targets, the resulting table can be smaller (as different
addresses reuse the same entries if they have the same deltas)
and spatial patterns can be picked up allowing coverage of
patterns otherwise the remit of stride prefetchers [10], at the
expense of losing the ability to correlate absolute addresses,
and aliasing different address pairs with the same deltas as
each other, hampering temporal-prefetching ability.

VIII. CONCLUSION

Temporal prefetching has recently moved from the theoret-
ical to the practical. Here we have described and fixed the in-
consistencies in the state-of-the-art Triage prefetcher [44], [45]
to derive configurations suitable for real-world deployment.
We have significantly improved upon it through Triangel, using
new structures to sample the miss stream to pick up and record
high-quality, accurate prefetches, and issue them aggressively
and efficiently when they will be effective.

We hope that this is the start of a wide set of new work in
temporal prefetching. We have released our implementations
of both techniques as open-source extensions to gem5 to
accelerate the development of this vital new technology.

ARTIFACT APPENDIX

A. Abstract

Our artifact contains a modified gem5 simulator imple-
menting both the Triangel temporal prefetcher from “Triangel:
A High-Performance, Accurate, Timely On-Chip Temporal
Prefetcher”, ISCA 2024, as well as an implementation of the
Triage [44], [45] prefetcher (MICRO 2019) for comparison
against.

It also contains scripts to run the seven SPEC-CPU 2006
benchmarks evaluated in the paper, and instructions on how
to generate checkpoints from throughout the programs’ exe-
cutions by using KVM within gem5 in full-system mode.

B. Artifact check-list (meta-information)
• Algorithm: Triangel prefetcher
• Program: SPEC CPU2006 (not supplied)
• Run-time environment: Linux to run the gem5 simulator on

(we used Ubuntu).
• Hardware: An x86-64 machine with sudo access (to install

dependencies and mount images).
• Metrics: Speedup, DRAM Traffic, Accuracy, Coverage
• Experiments: Baseline, Triage prefetcher, Triage Degree-4

prefetcher, Triangel prefetcher, Triangel-Bloom prefetcher
• How much disk space required (approximately)?: 50GB
• How much time is needed to prepare workflow (approxi-

mately)?: Around 1 hour to compile gem5. Around 30 minutes
each to generate checkpoints for the seven workloads, if not
using prebuilt checkpoints.

• How much time is needed to complete experiments (ap-
proximately)?: Around 5 hours (if running all benchmarks in
parallel on 20 checkpoints each), one hour per configuration.

• Publicly available?: Yes
• Code licenses (if publicly available)?: gem5 license
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10892184

C. Description

1) How to access: Clone the git repository at

git clone https://github.com/SamAinsworth/
↪→ gem5-triangel

2) Hardware dependencies: Any recent x86-64 system
running Ubuntu should suffice. Other Linux or Mac operating
systems may also work (or Windows under WSL), perhaps
with altered package dependencies, but are untested.

3) Software dependencies: Our simulator requires several
package dependencies, which can be automatically installed
by our scripts (scripts/dependencies.sh). To regenerate check-
points for benchmarks from scratch, you will need access to a
SPEC CPU2006 .iso file, placed in the root of the repository.

D. Installation

You can install this repository as follows:

git clone https://github.com/SamAinsworth/
↪→ gem5-triangel

All scripts from here onwards are assumed to be run from
the run_scripts directory, from the root of the repository:
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cd gem5-triangel
cd run_scripts

To install software package dependencies, run

./dependencies.sh

Then, to compile gem5, run

./build.sh

If you are generating checkpoints from scratch using KVM,
follow the instructions in the README.md file.

Checkpoints should be in a folder, per-benchmark,
inside the “Checkpoints” folder at the root of the
repository (e.g. Xalan checkpoints are stored inside
gem5-triangel/Checkpoints/Xalan/m5out/cpt∗).

Your Ubuntu image, for gem5 to access in FS mode, should
be in the root of the directory, as x86-ubuntu (generated
as in Generating Your Own Checkpoints in README.md).

E. Experiment workflow

Inside the run_scripts folder, run

./run_experiments.sh

This will run experiments for all folders inside
Checkpoints.

If any unexpected behavior occurs, try removing the “&” in-
side the run experiments.sh to run the workloads sequentially
rather than in parallel, to observe the errors, and if no obvious
solution becomes apparent, please contact the authors.

F. Evaluation and expected results

Once your experiments are finished, and again inside the
run_scripts folder, run

./analyse_experiments.sh

This will print various metrics to the terminal. If you are
using our exact checkpoints, these should match the ones in
EXAMPLE_RESULTS.txt in the root directory. If you are
using your own checkpoints of the same workloads, the trends
should be comparable but the results will not be identical due
to different sampling.

G. Experiment customization

The prefetcher itself is implemented inside src/mem/-
cache/prefetch/ – see Triangel.cc and Triage.cc. See
Prefetcher.py in the same folder for the various options avail-
able – and in configs/common/CacheConfig.py to see how
they are connected. configs/common/Options.py shows the
options available on the command line. We also modified the
cache system to allow reserving part of the L3 for prefetch
metadata, to fix cross-page prefetching in gem5, and to model
access-time delay to the Markov table – see triangel.cc and
modifications to the cache structures in the commit history
for more details.

You can also run on your own checkpoints if you follow the
guide in the github readme – or more generally on other work-
loads by specifying both --triangel and --p2sl3cache
(the latter to give cores a private L2 and shared L3 cache
– where by default Triangel attaches to the former and uses
storage in the latter).

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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