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A B S T R A C T

The integration of chemistry poses a major bottleneck in numerical combustion modelling, as a significant
amount of simulation time is consumed in the direct integration (DI) of differential equations into thermo-
chemistry modelling. In this work, a probabilistic machine learning (ML) framework, using Gaussian processes
(GPs), is developed as a chemical source term integrator to replace DI for the prediction of a H2/air auto-
ignition case. In this context, two algorithms, namely Gaussian Process Regression (GPR) and Gaussian Process
Autoregressive Regression (GPAR), are investigated. The training dataset is generated using zero-dimensional
(0D) isobaric H2/air auto-ignition simulations in Cantera. To address the scalability issue of the GPs, the
variational inducing points method is used. This method leverages a subset of the original data for training,
allowing sparse approximations. The performances of the GPR and GPAR are compared to a standard artificial
neural network (ANN) model. A priori comparison with direct integration shows that both GPR (𝑅2

𝑡𝑒𝑠𝑡 = 0.997)
and GPAR (𝑅2

𝑡𝑒𝑠𝑡 = 0.998) outperform the ANNs (𝑅2
𝑡𝑒𝑠𝑡 = 0.988) by capturing latent dynamics of the chemistry

when working with small datasets. Additionally, GP models offer the capability to quantify the uncertainty
of each prediction, providing deeper insights into the model’s limitations. It is also shown that the inference
with GP-based models is slower than ANNs with speed-up factors of 1.9-2.1 relative to the 0D reactor model,
whereas the ANN speed-up factor goes up to 3.0.
1. Introduction

Decarbonising the power generation and long-range transportation
sectors is a crucial step in addressing climate change. These hard-
to-abate sectors still rely on combustion for their high-temperature
processes, with fossil fuels being a cost-effective option. Zero-carbon
fuels like hydrogen (H2) have the potential to play a strategic role
in long-term decarbonisation and reduction of greenhouse gas (GHG)
emissions from these sectors. Hydrogen has a high gravimetric energy
density and produces zero-carbon emissions, making it an attractive
alternative fuel [1]. Its high burning velocity and wide flammability
limits [2] make it ideal for various applications, including rocket
propulsion, power generation, and transportation [3,4]. Hydrogen’s
high diffusivity allows for more uniform mixing with air, enhancing
combustion efficiency and stability. Additionally, its low ignition en-
ergy enables quick and reliable ignition even under extremely lean
conditions [5]. Recent studies have shown promising advancement
in achieving ultra-low NOx emissions by ultra-lean combustion of
H2 [6]. Ultra-lean combustion, where the air-fuel mixture contains
excess air, not only reduces NOx formation but also improves thermal
efficiency [7]. This is particularly important for meeting stringent
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environmental regulations and mitigating the impact of air pollution
on public health.

To better understand hydrogen combustion and achieve clean com-
bustion, advanced computational techniques are essential. Combustion
modelling with computational fluid dynamics (CFD) simulations has
been vital for developing less-polluting and highly-efficient engine
technologies. Simulating reacting flows in such devices with strong
turbulence and fully-resolved scales and species requires quite de-
manding computational resources. Additionally, to carry out reliable
simulations, comprehensive multi-species chemical kinetic mechanisms
should be included, where the majority of the simulation time is
in the direct integration (DI) of these equations into the thermo-
chemistry modelling approach, making it a computationally intensive
simulation [8]. One standard alternative solution is to use an operator-
splitting method that solves the chemical source terms separately as
an ordinary differential equation (ODE) system [9,10]. However, direct
integration (DI) of chemical source term remains the main challenge of
combustion simulations as it can take up to 95% of the total run time
for the numerical integration of the ODE systems corresponding to the
chemical step [11,12].
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Nomenclature

Abbreviations

0D Zero-dimensional
ANN Artificial neural network
CFD Computational fluid dynamics
CNN Convolutional neural network
DI Direct Integration
DNN Deep neural network
GeLu Gaussian error linear unit activation func-

tion
ReLu Rectified linear unit activation function
GHG Greenhouse gas
GP Gaussian process
GPAR Gaussian process autoregressive regression
GPR Gaussian process regression
IP Inducing point
LBV Laminar burning velocity
LUT Look up table
MAE Mean absolute error
ML Machine learning
ODE Ordinary differential equation
SciML Scientific machine learning
SOM Self organising map

Symbols

𝑘 Covariance function
𝑁 Number of observations
𝑦𝑖 Set of outputs
𝛼 Scale mixture
𝝁 Mean vector
𝜽𝝁 Mean vector hyperparameter
𝜽𝒌 Covariance matrix hyperparameter
𝑰 Identity matrix
𝑲 Covariance matrix
𝑿 Input matrix
𝒙𝑖 Set of inputs
𝒀 Output matrix
𝜖𝑖 Gaussian noise term
𝑙 Length scale
 Training dataset
 Normal distribution
 Complexity
𝜇 Mean function
𝜙 Equivalence ratio
𝜎 Standard deviation
𝜎2 Variance
𝜎𝑓 Signal variance
𝜎𝑛 Noise variance
𝑃𝑖 Initial pressure
𝑅2 Coefficient of determination
𝑇 Temperature
𝑇𝑖 Initial temperature
𝑌 Mass fraction

In recent years, scientific machine learning (SciML) applications
ave gained popularity due to a proven ability to speed up scien-
48

ific computing tasks [13]. Machine learning (ML) offers significant
time-savings, particularly in problems that encompass stiff and highly
non-linear characteristics. ML in combustion has found applications in
various topics ranging from chemistry integration [14], flame speed
prediction [15,16], ignition delay time prediction [17], explosion lim-
its [18] and more [19]. Early applications of ML for combustion chem-
istry integration focused on using artificial neural networks (ANNs).
Christo et al. [20] showed one of the earliest applications of ANNs
to predict chemical source term, applying them to describe turbulent
diffusion flames of H2/CO2 mixtures. The implementation and the
comparisons with DI and look-up table (LUT) method were presented.
The advantages of ANN over DI and LUT were discussed in terms of
computational speed-up and memory savings. Later, Blasco et al. [21]
carried out a similar study focused on CH4 combustion using a reduced
mechanism with 13 species and 18 reactions. In their study, two distinct
ANNs were employed to predict species mass fractions and temperature
and density, respectively. The study revealed that ANN exhibited orders
of magnitude faster computational speeds compared to DI with much
less memory requirement compared to the tabulation approach. An
et al. [22] studied the application of ANNs to model H2/CO/kerosene
fuelled supersonic engines where conventional combustion modelling is
computationally expensive. The dataset was first clustered using self-
organising maps (SOM) and particle swarm optimisation was used to
optimise the training process. This approach offered up to 19 times
faster simulations compared to a standard ODE solver using a 41-
species mechanism. Another approach, also developed by An et al. [23],
utilised deep convolutional neural networks (CNNs) for combustion
simulation. This method reconstructs the turbulent flame rather than
estimating the chemistry source term. Although successful reconstruc-
tion of the flame was obtained, further research is needed to test the
applicability of the method to other complex combustion systems.

More recently, Sharma et al. [24] used deep feed forward ANNs
to predict the source term for H2/air combustion using a mechanism
with 10 species and 34 reactions. The algorithm was initially applied
to a single thermochemical condition and then expanded, resulting in
a large dataset consisting of 7.2 million temporal vectors. Although an
accurate representation of the temporal evolution of the source term
was captured, the dataset size was prohibitive for a larger coverage of
the thermochemical space. Later, Wan et al. [25] applied ANNs in the
context of a non-adiabatic non-premixed combustion case using the GRI
3.0 mechanism. The ANNs were trained to predict the reaction rates
of a reduced number of species compared to the original mechanism,
achieving a 25 times speed-up compared to direct integration. Brown
et al. [26] introduced novel deep neural networks (DNNs) to approx-
imate stiff ODEs arising from combustion integration. The approach
was based on parallel ResNets architecture using a H2/O2 combustion
dataset. The model initially demonstrated poor generalisation when the
equivalence ratio was varied, but it improved when the initial temper-
ature was varied. This challenge was addressed by segregating the data
into fuel-lean, stoichiometric, and fuel-rich regions. Zhang et al. [27]
investigated the optimum sampling and transformation methods for
DNN-based combustion integration. The method was applied to 0D,
1D, 2D, and 3D datasets. They used a large dataset with 5.3 million
data points to cover a wide thermochemical space (𝑇𝑖 = 800–3100
K, 𝑃𝑖 = 0.5–2.0 atm, no 𝜙 limits). They found that the multi-scale
sampling method and box-cox transformation can effectively handle the
multi-scale nature of the combustion data, making them well-suited for
DNN training. Nikitin et al. [28] applied multilayer NNs to compute
H2/O2 combustion. The number of layers and blocks were studied to
efficiently model the evolving chemical system. The results showed that
a relatively small network could accurately reconstruct the time–history
of the species.

In recent years, uncertainty quantification (UQ) has gained signif-
icant attention in the field of combustion. This approach has been
applied to various aspects such as kinetic modelling [29,30], laminar
burning velocity [31], and fuel compositional uncertainty [32]. How-

ever, there is a noticeable gap in its application to chemical source term
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integration. Deterministic machine learning models, including ANNs
and DNNs, exhibit predictive errors that can accumulate during source
term integration, leading to non-physical and inaccurate thermochem-
ical evolution. Incorporating UQ in source term prediction is crucial
to ensure that predictions are reliable and beneficial compared to the
inherently deterministic nature of ANNs/DNNs.

One of the primary challenges in existing literature is the limited
generalisability of models across various conditions, often constrained
to a single initial state. Additionally, a very large dataset size is often
required for acceptable prediction accuracy in most ML frameworks. To
address these issues, we establish a Gaussian process (GP) based proba-
bilistic machine learning framework (GP framework) and demonstrate
its efficacy on chemical source term prediction of a H2/air auto-ignition
case. The novelty of the current work lies in the application of GPs
as chemistry integrator to explore their data-efficient, uncertainty-
quantified inference capabilities. Specifically, we explore and compare
the performance of GP regression (GPR) and GP autoregressive regres-
sion (GPAR) algorithms, comparing them to ANNs in terms of speed and
predictive accuracy. The methodology presented in this study provides
an interesting approach that shows the potential for offering reduced
computational costs of combustion simulations.

2. Methodology

2.1. Gaussian Process Regression (GPR)

Gaussian process regression provides a probabilistic, Bayesian-based
framework for accomplishing single-output regression tasks with non-
linear characteristics [33]. GPR possesses a modular structure, mak-
ing it computationally manageable and partially interpretable. These
qualities facilitate the creation of complex non-linear models through
the design of covariance functions, i.e. kernels. These models can
subsequently undergo rigorous evaluation through principled meth-
ods, such as the calculation of marginal likelihood, enabling a better
understanding of their individual components.

Consider a process or a function, 𝑓 , that takes a set of inputs (𝒙𝑖) and
generates set of outputs (𝑦𝑖) with 𝑖 = 1,… , 𝑁 , with 𝑁 being number of
observations. The function is regulated by a noise term, 𝜖𝑖, accounting
for the uncertainty of the observations. The observations, 𝑦𝑖, can be
expressed as follows:

𝑦𝑖 = 𝑓
(

𝒙𝑖
)

+ 𝜖𝑖, (1)

where 𝜖𝑖 is Gaussian distributed, 
(

0; 𝜎2𝑛
)

, with a standard deviation
of 𝜎𝑛. The function, 𝑓 , can be modelled as a GP.

Formally, a GP is characterised by a collection of random variables,
where any finite subset of these variables follows a joint Gaussian
distribution. It is defined by its mean and covariance functions, of-
ten referred to as kernels. The mean (𝜇(𝒙)) and covariance functions
(𝑘

(

𝒙,𝒙′
)

) of a process 𝑓 (𝒙) are as follows:

𝜇(𝒙) = E[𝑓 (𝒙)]

𝑘
(

𝒙,𝒙′
)

= E
[

(𝑓 (𝒙) − 𝜇(𝒙))
(

𝑓
(

𝒙′
)

− 𝜇
(

𝒙′
))] (2)

The GP, including the hyperparameters 𝜽𝝁 and 𝜽𝒌, can be written
as,

𝑓 (⋅) ∼ 
(

𝜇
(

𝒙;𝜽𝜇
)

, 𝑘
(

𝒙,𝒙′;𝜽𝑘
))

(3)

The typical approach to learning the hyperparameters of the covari-
ance function is to maximise the marginal likelihood, which represents
the probability density of the observations based on these hyperparam-
eters [34]. This marginal likelihood is determined by integrating over
the possible values of the function 𝑓 . If the training set, , consists
of input matrix 𝑿 and output matrix, 𝒀 , the natural logarithm of the
marginal likelihood can be expressed as follows:

log(𝑝(𝒀 ∣𝑿,𝜽))=−1
2
(𝒀 −𝝁)⊤

(

𝑲+ 𝜎2𝑛𝑰
)−1(𝒀 −𝝁)

−1 log
(

|

|𝑲 + 𝜎2𝑰||
)

− 𝑛 log(2𝜋)
(4)
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2 |

𝑛
| 2 p
here 𝝁 is the mean vector and 𝑲 is the covariance matrix. Then, the
P approximation turns into a maximisation problem of Eq. (4) with

espect to the mentioned hyperparameters. The posterior predictions
re tractable assuming a Gaussian error, 𝜖𝑖, and they are calculated
sing predictive mean. The uncertainty associated with each prediction
an also be quantified using the predictive variance [34].

.2. Gaussian Process Autoregressive Regression (GPAR)

In most ML problems, a multi-output architecture that can cap-
ure the dependencies between the outputs is necessary. Gaussian
rocess Autoregressive Regression (GPAR), developed by Requeima
t al. [35], accomplishes this by decomposing the output distributions
nto a collection of one-dimensional conditional distributions. These
istributions can be seen as a decoupled group of single-output GPR
roblems. In chemical reactions, the reaction rates of chemical species
re non-linearly dependent, and these dependencies can be captured
y GPAR. A brief description of the GPAR algorithm, introduced by
equeima et al. [35], is given as follows:

Considering the problem with 𝑀 outputs (𝑦1∶𝑀 (𝒙𝑖) = (𝑦1(𝒙𝑖),… ,
𝑀 (𝒙𝑖))) as a function of input 𝒙𝑖. When the product rule is applied,
he following can be obtained where the terms multiplied with each
ther,
(

𝑦1∶𝑀 (𝒙𝑖)
)

=𝑝
(

𝑦1(𝒙𝑖)
)

⋅

𝑝
(

𝑦2(𝒙𝑖) ∣ 𝑦1(𝒙𝑖)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2(𝒙𝑖) as a random
function of𝑦1(𝒙𝑖)

⋯𝑝
(

𝑦𝑀 (𝒙𝑖) ∣ 𝑦1∶𝑀−1(𝒙𝑖)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑦𝑀 (𝒙𝑖) as a random

function of𝑦1∶𝑀−1(𝒙𝑖)

(5)

hich means that 𝑦1(𝒙𝑖) is obtained from 𝒙𝑖, according to a random
unction, 𝑓1; that 𝑦2(𝒙𝑖) is then obtained from 𝑦1(𝒙𝑖) and 𝒙𝑖, and so on
nd so forth. This chain of relations can be shown as the following:

𝑦1(𝒙𝑖) = 𝑓1(𝒙𝑖), 𝑓1 ∼ 𝑝
(

𝑓1
)

𝑦2(𝒙𝑖) = 𝑓2
(

𝑦1(𝒙𝑖),𝒙𝑖
)

, 𝑓2 ∼ 𝑝
(

𝑓2
)

⋮

𝑀 (𝒙𝑖) = 𝑓𝑀
(

𝑦1∶𝑀−1(𝒙𝑖),𝒙𝑖
)

𝑓𝑀 ∼ 𝑝
(

𝑓𝑀
)

(6)

As previously discussed, in a function-space view, a GP is a distribu-
ion over functions. Now, if 𝑓1∶𝑀 is marginalised out, the conditionals
n Eq. (5) are modelled with GPAR algorithm using GPs. The outputs
epend not only on the local values of all other outputs but their full
istory. This dependency structure is also called non-local GPAR and
he following generalisation can be made [35].

𝑚 ∣ 𝑦1∶𝑚−1
∼ 

(

0, 𝑘𝑚
((

𝑦1∶𝑚−1,𝒙𝑖
)

,
(

𝑦1∶𝑚−1,𝒙′𝑖
))) (7)

In both GPR and GPAR, the kernel is fixed to a squared exponential
ernel, found to be the best kernel after a rigorous trial-error study. The
est of the hyperparameters, such as length scale (𝑙) and signal variance
𝜎𝑓 ), and noise variance (𝜎𝑛) are automatically optimised using SciPy’s
uilt-in optimisation algorithm L-BFGS-B.

. Results and discussion

.1. Computational experiment

In this study, the capabilities of GPR and GPAR are tested as time-
ntegrators of the thermochemical variables for H2-air auto-ignition.
he primary objective is to replace the ODE solver by integrating the
hole thermochemical evolution given an initial condition and a fixed

ime-step. The auto-ignition event is chosen for two key reasons: (1) it
epresents stiff chemical kinetics, and (2) it shows highly non-linear
haracteristics. The dataset is obtained from the ignition of H2-air
ixture at isobaric and lean conditions using the ideal gas constant

ressure reactor in Cantera [36]. The initial pressure of the mixture is
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Fig. 1. Temperature and species mass fraction profiles of atmospheric lean auto-ignition of 𝐻2-air at 𝑇𝑖 = 1000 K, 𝜙 = 0.4.
Fig. 2. Noise added temperature profile for the atmospheric lean auto-ignition of H2-air
at T𝑖 = 1000 K, 𝜙 = 0.4.

set to 𝑃𝑖 = 1 atm, and the initial temperature and the equivalence ratio
are varied between 𝑇𝑖 = 900–1100 K and 𝜙 = 0.4–1.0 with increments
of 50 K and 0.1, respectively. The simulations are performed using a
constant time-step of 10−4 ms for a total simulation time of 0.5 ms.
The choice of time-step is based on the appropriate high-resolution
representation of the evolution of chemical species and temperature.

The chemical kinetic mechanism of Conaire et al. [37] developed
for H2/O2 combustion with 11 species and 19 reactions is used. After
neglecting non-reacting species, the final thermochemical state vector
consists of 8 reacting species and temperature (𝑫 𝜖 R9). This compu-
tational experiment setup results in a total dataset size of 𝑁 = 85,500
observations (rows). The evolution of temperature and species profiles
at 𝜙 = 0.4 is shown in Fig. 1.

𝑫 =
⎡

⎢

⎢

⎣

⋮ ⋮ ⋮ ⋮ ⋮
𝑇 𝑌 1 𝑌 2 … 𝑌 𝑁−1 𝑌 𝑁
⋮ ⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎦𝑁×9

(8)

3.2. Data preparation

The dataset is transformed using a power transformation since there
50

are orders of magnitude differences between the feature vectors, such
Fig. 3. The mean absolute error (MAE) of the normalised temperature and species
mass fractions versus the percentage of IP to the total data set size, 𝑁 .

as temperature and H2O2. Furthermore, data transformation helps to
avoid numerical stability issues with the Cholesky decomposition due
to entries close to machine precision (10−16). For new predictions, the
scaled predictions are easily transformed back to the original scale
without loss of information.

In real combustion systems, the profiles of thermo-chemical state
variables are noisy due to perturbations originating from turbulence,
diffusion, pressure fluctuations, and so on. Therefore, the data coming
from homogeneous reactors only describe an idealised case without
noise. Typically, the models trained using an idealised training dataset
would lack robustness and be less expressive. Alternatively, datasets
from 3D-CFD simulations of burners or engines could be used, but this
approach is computationally intensive and would only be geometry-
dependent. Therefore, to reflect the real system noise signal, a Gaussian
noise term (𝜖𝑖 in Eq. (1)) is added to each observation in the output
matrix. The noise term acts as a regulariser, increasing model robust-
ness and expressivity while reducing possible over-fitting. The noisy
temperature output at T𝑖 = 1000 K, 𝜙 = 0.4 is shown in Fig. 2.

Finally, the training dataset is randomly split into three subsets:
80% for the train (68,400 observations), 10% for validation (8,550
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bservations), 10% for the test set (8,550 observations). This partition-
ng strategy ensures a diverse representation of the data across these
ubsets, enabling effective training, validation, and evaluation of the
roposed framework.

.2.1. Scalability
The most prominent weakness of standard GP is that it suffers

rom a cubic time complexity ((𝑁3)) and memory complexity of (
𝑁2)) [33]. In large datasets (𝑁 > 104), scalability becomes an issue
ue to the computational complexity of GPs. For general multi-output
PRs, the scaling factor is (𝑀3𝑁3) while GPAR scales with (𝑀𝑁3)

ince the outputs (𝑀) are essentially decoupled one-dimensional GPs.
In cases where the function is oversampled to approximate the exact

olution, the variational inducing point (IP) method for sparse GPR of
PAR can be applied [38]. The variational IP method allows sparse ap-
roximation of the latent function using a subset of original data points.
n this study, this technique is used to achieve faster and more scalable
omputation of the posterior function distributions. The number of IPs
nd their distribution directly affects the posterior predictions. Previous
esearch has shown that regularly spaced IPs perform well with time
eries data similar to time-integration of chemistry [39].

The percentage of regularly spaced IPs of the total number of obser-
ations (𝑁) in 𝒙𝑖 required to model the latent functions for each output
𝑀) with reasonable accuracy in the training dataset is shown in Fig. 3.
he MAE for species mass fractions drastically drops as the number of
Ps is increased, also resulting in reduced uncertainty. It is seen that
he MAE reaches an asymptote at 5% for both GPR and GPAR. This
orresponds to train, validation, and test sets of 3421, 427, and 427
bservations each, respectively. It can also be noticed that the GPAR
ramework shows better overall accuracy by capturing dependencies
etween the outputs. The uncertainty, represented by 95% confidence
ntervals, for varying dataset sizes in comparison with the ground truth
rom the 0D auto-ignition simulation is shown in Fig. 4. It is evident
hat the uncertainty progressively diminishes by increasing the dataset
51

ize. d
Fig. 5. Normalised actual (dashed lines) and predicted (solid lines) normalised species
mass fractions of temperature and major species for 𝑇i = 1000 K, 𝑃i = 1 atm, and 𝜙

0.4 using GPAR.

The normalised predicted and actual profiles of temperature and
ajor species at 𝑇𝑖 = 1000 and 𝜙 = 0.4 using GPAR are shown in Fig. 5.

imilarly, normalised predicted and actual profiles of minor species at
he same conditions are shown in Fig. 6. Since these conditions are
ithin the initial training set, the framework accurately captures the

atent dynamics using a sparse approximation.
The mean absolute error between the normalised ground truth and

redictions of mass fractions for the train set is depicted in Fig. 7. It
s evident that the difference between the GPR and GPAR predictions
s minimal. The error magnitudes are mostly of the same order, except
or the HO2. This could be attributed to different local dynamics of HO2
uring ignition.
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Fig. 6. Normalised actual (dashed lines) and predicted (solid lines) normalised species
ass fractions of minor species for 𝑇𝑖 = 1000 K, 𝑃𝑖 = 1 atm and 𝜙 = 0.4 using GPAR.

Fig. 7. The train set MAE of the predictions for normalised temperature and species
ass fractions.

.3. Artificial Neural Networks (ANN)

As previously mentioned, ANNs have been the primary choice of
L algorithm in the prediction of chemical source terms in the ex-

sting literature. Therefore, a comparison between ANNs and the GP
ramework in terms of dataset size requirements, accuracy, and speed
s necessary. In this study, we reference the setup by Wan et al. [25]
or the ANN configuration. However, the architecture of the ANN is
implified to reduce the complexity of the model while maintaining its
xpressivity. The architecture consists of three dense layers with 64, 32,
nd 16 neurons, respectively, implemented in TensorFlow as shown in
ig. 8. The batch size and epochs were set to 10 and 150, respectively.
he Adam optimiser with a learning rate of 3 × 10−4 and a decay of 10−4

ecommended by Wan et al. [25] was used. The activation functions,
eLu and GeLu, were tested and it was seen that the GeLu provided
etter stability due to its smoothness and differentiability. Additionally,
he early stopping method was used with a patience parameter of 50 to
top model training when the validation loss does not further decrease
fter 50 consecutive epochs. The training dataset initially consisted
f the set of variational IPs used for the GP framework, totalling
421, 427, 427 observations for each set, respectively. This dataset
ize was later increased to achieve the same level of accuracy as the
P framework. The change in the accuracy of the ANN with training
ataset size is shown in Fig. 9. Furthermore, to ensure generality and
revent over-fitting of the model, k-fold cross-validation (10-fold) was
52

tilised. u
Fig. 8. The neural network architecture with three densely connected layers.

Fig. 9. The accuracy of ANN with increasing training dataset size.

3.4. Model benchmark

The performances of all models on train, validation, and test sets
together with the speed-up relative to the 0D code, are given in Table 1.
It is seen that both GPR and GPAR fully reconstruct the latent thermo-
chemical space with high accuracy. Both models demonstrate good
generalisation, with GPAR showing slightly better accuracy. However,
the ANN model seems to suffer from insufficient dataset size, resulting
in lower accuracy and slight over-fitting. This can also be observed in
Fig. 10-c where the ANN model has a wider spread on the test set pre-
dictions. The accuracy of the ANN model improves with a larger dataset
size as shown in Fig. 9, leading to enhanced generalisability. When the
speed-up ratios relative to the 0D reactor model are compared, the ANN
model outperforms the GPs with a speed-up ratio of 3.0. This highlights
a limitation of GPs, where quantification of uncertainty comes at the
cost of storing and processing the data points for the covariance matrix.

The models are further assessed by testing them on a randomly
selected unseen condition: an initial temperature of 𝑇𝑖 = 970 K and
an equivalence ratio of 𝜙 = 0.47. The ground truth and predictions
from each model, including the confidence intervals from the GP
models are shown in Fig. 11. It is evident from Fig. 11 that both
GP models captured the latent dynamics at the given condition with
minimal uncertainty. However, the uncertainty increases locally for
HO2, indicating challenges in capturing gradients correctly, possibly
due to different dynamics compared to other species such as H, O, and
H2O2 where the gradients increase sharply during ignition. In contrast,
he ANN model predicts the new condition reasonably well, although
eviations from the ground truth are present especially right before the
gnition starts.

. Conclusion

The present work proposes a probabilistic ML framework that builds
pon GP algorithms, namely GPR and GPAR, for chemical source
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Fig. 10. The normalised ground truth versus predicted values for the test set for (a) GPR; (b) GPAR; (c) ANN.

Fig. 11. The ground truth versus predicted values for an unseen condition at 𝑇𝑖 = 970 K and 𝜙 = 0.47 from GPR, GPAR and ANN models.
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Table 1
Comparative performance evaluation of the models.

ML model Split set R2 MAE Relative speed-up (t0𝐷/t𝑀𝐿)

GPR
Train 0.998 1.61 × 10−8

1.9Validation 0.998 1.62 × 10−8

Test 0.997 2.12 × 10−8

GPAR
Train 0.999 1.39 × 10−8

2.1Validation 0.999 1.41 × 10−8

Test 0.998 1.53 × 10−8

ANN
Train 0.993 6.24 × 10−8

3.0Validation 0.992 9.02 × 10−8

Test 0.988 2.80 × 10−7

term integration. The probabilistic nature of GPs allows them to work
with limited data and provide uncertainty-quantified predictions. The
capabilities of the framework were tested on a 0D reactor-based noisy
dataset for H2/air auto-ignition case. Variational IPs were used to
make sparse approximations of the latent dynamics of the system while
keeping the training dataset size to a minimum.

The framework was benchmarked to a standard ANN model in terms
of statistical error and relative speed-up factors. Although GPR and
GPAR reproduced similar MAEs, GPAR slightly outperformed GPR on
both accuracy and relative speed-up. In contrast, the ANN model was
prone to over-fitting due to insufficient dataset size but offered a better
relative speed-up factor compared to GP models. It was found that GP
models have the advantage of providing confidence intervals that are
especially relevant when working with small, noisy datasets derived
from experiments or high-fidelity simulations.

Future work will focus on enhancing the data efficiency of the GP
framework through optimal sampling methods such as active learning,
aiming to speed up inference processes. Moreover, the extrapolation ca-
pabilities of GPs beyond the training domain, will be explored through
the use of physics-informed kernels. Finally, we aim to investigate
the performance of the GP framework with other complex fuels and
mechanisms, assessing its effectiveness in higher-dimensional input and
output spaces.
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