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Abstract
Triadic interactions are higher-order interactions which occur when a set of nodes affects the interaction between two other nodes. 
Examples of triadic interactions are present in the brain when glia modulate the synaptic signals among neuron pairs or when 
interneuron axo-axonic synapses enable presynaptic inhibition and facilitation, and in ecosystems when one or more species can 
affect the interaction among two other species. On random graphs, triadic percolation has been recently shown to turn percolation 
into a fully fledged dynamical process in which the size of the giant component undergoes a route to chaos. However, in many real 
cases, triadic interactions are local and occur on spatially embedded networks. Here, we show that triadic interactions in spatial 
networks induce a very complex spatio-temporal modulation of the giant component which gives rise to triadic percolation patterns 
with significantly different topology. We classify the observed patterns (stripes, octopus, and small clusters) with topological data 
analysis and we assess their information content (entropy and complexity). Moreover, we illustrate the multistability of the dynamics 
of the triadic percolation patterns, and we provide a comprehensive phase diagram of the model. These results open new perspectives 
in percolation as they demonstrate that in presence of spatial triadic interactions, the giant component can acquire a time-varying 
topology. Hence, this work provides a theoretical framework that can be applied to model realistic scenarios in which the giant 
component is time dependent as in neuroscience.
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Significance Statement

In the brain, there are many scenarios in which neural activity displays spatio-temporal patterns leading to a nonstationary dynamics 
of the connectivity of the functional networks. Yet, the standard theory of percolation, highly successful in describing how the net
work connectivity responds to damage, falls short in explaining these intricate phenomena. Our research bridges this gap by intro
ducing spatial triadic percolation highlighting the importance of considering percolation in presence of higher-order triadic 
interactions. We demonstrate that triadic percolation induces dynamical topological patterns of the giant component on spatial net
works. This result opens the way to understand the fundamental mechanisms for the emergence of a time-varying topology of the 
connected components not only in neuroscience but also in complex systems more broadly.
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Percolation (1–7) is a pivotal critical phenomenon that captures 
the nonlinear response of a network to the damage of its links. 
Thus, percolation has a wide range of applications in complex sys
tems including brain and infrastructure networks (8–11). The dy
namical model usually implied by the percolation processes 
describes cascades or avalanches of failure events, typically 
reaching a static absorbing state, which might result in a disman
tled network. Hence, the traditional approach to percolation fails 
to describe the situation encountered for instance in neuroscience 
where their giant component of functional brain networks dy
namically varies in time without reaching a static configuration. 

In order to capture this scenario, higher-order triadic interactions 
have recently been shown to be a key, leading to the formulation 
of triadic percolation (12).

Higher-order networks (13–18) include interactions between 
two or more nodes. These generalized network structures are at
tracting large interest because they are transforming significantly 
our understanding of the interplay between topology and dynam
ics of complex networks. Indeed the structure of higher-order net
works captures the underlying topology and geometry of the data, 
with applications from ecology (19, 20) to cancer research (21–23). 
Evidence of higher-order coupling appears in several natural 
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systems (13–18), including brain dynamics, chemical interaction 
networks, and the climate (24–31). Higher-order interactions have 
the potential to dramatically change the emergent behavior of a dy
namical model (13, 18), as evidenced in percolation (12, 32–34), 
synchronization (35–38), diffusion (39, 40), game theory (41), and 
contagion and consensus dynamics (42–46).

Triadic interactions (12, 19, 47–49) are higher-order interac
tions that occur when one or more nodes regulate the interaction 
between two other nodes. This is the role for instance of glia cells 
in neuronal networks, as they modulate synaptic interactions be
tween neuron pairs (50). In the brain, presynaptic inhibition and 
facilitation are further examples of triadic interactions. Indeed, 
axo-axonic synapses involve interneurons that induce presynap
tic inhibition or facilitation, which reduce or enhance, respective
ly, postsynaptic response (51, 52). Similarly, in ecological systems, 
the presence of a third species may modulate the interaction be
tween two given species (19, 47).

Recently, in Ref. (12), it was shown that triadic percolation, in 
which triadic interactions up- or down-regulate links, defines a 
fully fledged dynamical process in which the giant component be
comes dynamical, and its size undergoes a period-doubling and a 
route to chaos. However, Ref. (12) only addresses triadic percola
tion on a random graph while in a large variety of cases, real-world 
networks have a geometric embedding, such is the case for in
stance for neuronal networks (53, 54), communication and trans
portation systems (55). For many of these systems, an exponential 
wiring cost fits the observed spatial distribution of link lengths (10, 
56–65). Despite many advances in the study of percolation on spa
tial random networks and lattices (6, 7, 10, 11, 66–69), their ana
lysis in the presence of a geometric embedding remains an 
important theoretical challenge.

In this work, we address the study of triadic percolation defined 
on spatially embedded networks with triadic interactions. We 
show that, since in these networks interactions are local, triadic 
percolation induces a spatial structure on the giant component, 
leading to triadic percolation patterns, which display a distinct 
time-varying geometry and topology. Here, we investigate the 
spatio-temporal complexity of the observed dynamics of the tri
adic percolation patterns, which goes beyond the basic statistics 
and dynamics of the size of the giant component. To explore these 
findings, we investigate the spatial properties of the triadic perco
lation patterns with topological data analysis (TDA) (70–73), and 
information theory tools (74–76), identifying the emergence of 
three distinct types of patterns: small clusters, stripes, and octo
pus (or complex) patterns. We launch an in-depth numerical in
vestigation of the dynamics of these patterns: we show evidence 
of intermittency with patterns of different types occurring in the 
same time-series, and we provide evidence of periodic (blinking) 
spatio-temporal behavior of the patterns. These analyses allow 
us to reveal the topological and dynamical nature of the phase 
diagram of triadic percolation in spatial networks.

Triadic percolation on spatial networks captures basic mecha
nisms at play in a large variety of spatially embedded systems 
with triadic interactions, notably including neuronal and brain 
networks. In these biological systems, active nodes can be associ
ated with neurons having large firing rates which can induce in 
some cases synaptic facilitation and axo-axonic inhibition in oth
er situations. The complex interplay among these different syn
apse regulatory processes could be in the origin of the neural 
activity patterns observed in different brain areas including, for 
instance, the reported patterns during mammalian neocortex de
velopment (77), and visual cortex (78) and hippocampus (79) neur
al activity patterns.

In order to reveal the basic implications of having spatially em
bedded triadic interactions, here we keep our model very general. 
At the same time, the stylized nature of this model proposes a 
framework that combines percolation theory, topology and non
linear dynamics that can become the starting point for more real
istic models of specific scenarios in which the giant component is 
strongly time-dependent. Thus, the observed phenomena open 
new perspectives for the understanding of brain and neuronal 
networks function.

Triadic percolation on spatial networks with 
triadic interactions
Triadic interactions are higher-order interactions that occur when 
one node regulates the interaction between two other nodes, ei
ther positively or negatively (see Fig. 1A, B). Positive regulations fa
cilitate the interaction between the two nodes while negative 
regulations inhibit their interaction. Interestingly, triadic interac
tions can also exist in a multilayer setting (80) when the regulator 
nodes are of a different type (see Fig. 1C). A typical example of this 
latter type of triadic interaction is present in neuronal systems, 

Fig. 1. Network and triadic percolation models. A) Illustration of the 
triadic interaction in which one node regulates the link between two other 
nodes with a positive (left image) or negative (right image) effect. B) 
Triadic interactions allow for several regulator nodes for each link. In this 
case, the presence of a link is determined by a function taking into 
account both positive and negative regulatory interactions. C) Triadic 
two-layer network, where each layer regulates the interactions in the 
other layer. D) Illustration of the spatial structural network. We highlight 
the local connectivity mechanism in the zoomed area. Two nodes i and j 
are connected by a structural link with a probability Pij that depends on 
the Euclidean distance dij between the two nodes, on the typical length for 
structural links d0, and on the parameter c that determines the average 
degree of the structural network. The probability is schematically 
indicated by the shaded blue color in the top zoomed area. E) Illustration 
of the spatial network with triadic interactions. The higher-order network 
is formed by the spatial structural network shown in D) and the triadic 
interactions. The higher-order network with triadic interactions is formed 
by nodes (black circles), structural links (black lines the center of each 
structural link, indicating its location, is shown by smaller blue circles), 
and triadic regulatory interactions which can either be positive (green 
arrows) or negative (red arrows) as depicted in the zoomed areas. A 
positive regulatory interaction between a node i and a structural link ℓ is 
added with a probability P̂+

iℓ, schematically indicated by the shaded green 
color, while a negative regulatory interaction is added with probability P̂−

iℓ, 
schematically indicated by a shaded red color. The probabilities P̂+

iℓ and P̂−
iℓ

depend on the Euclidean distance dil between a node and the link it 
regulates, on the typical range dr for regulatory links, and on the 
parameters c+ and c− determining the average degree of positive and 
negative regulatory interactions respectively.
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where glia cells, for example, can either facilitate or inhibit the syn
aptic signals between neurons. Another example is the existence of 
interneurons that establish axo-axonic synapses that can induce 
presynaptic facilitation and inhibition of other synapses. For the 
sake of simplicity, in this work we consider the simple scenario in 
which the regulator nodes belong to the same structural network 
whose links are regulated by triadic interactions, as it occurs in pre
synaptic inhibition and facilitation. However, the multilayer scen
arios can be a natural extension to the proposed framework.

We consider a higher-order spatial network with triadic inter
actions embedded in a 2D torus (square of size L with periodic 
boundary conditions). This higher-order network can be thought 
of as a multilayer network (80) formed by a structural network 
Gs and a regulatory network Gr. The structural network 
Gs = (V, E) comprises the set V of nodes and the set E of structural 
links between them. We indicate with N the number of nodes in 
V, i.e. N = |V|. The regulatory network Gr = (V, E, W), on the other 
hand, is a signed factor network (bipartite network) formed by the 
nodes in V (called regulators), the structural links in E (playing the 
role of factor nodes), and the signed regulatory interactions 
between them, specified in the set W. Note that the signs of regu
latory interactions are considered here as a property of the regu
latory link rather than the regulator node. This means that a 
given regulator node can positively regulate some links (thus 
called positive regulator to these links) and negatively regulate 
some other links (thus called negative regulator to these links).

The spatial structural network is constructed according to the 
Waxman model (81) (see Fig. 1). This model accounts for local inter
actions as links between pairs of nodes are drawn with a probability 
that decays exponentially with their distance as found in several 
brain structural investigations (56, 57). Similarly, our model of spa
tial triadic interactions also establishes regulatory interactions 
among pairs of nodes and structural links with a probability that 
decays exponentially with their distance (see Materials and meth
ods for details of the model). The model depends on few parame
ters: d0 and dr indicate the typical range of interactions for 
structural and regulatory links respectively, while the positive pa
rameters c, c+, and c− can be further used to modulate the average 
structural (c) or regulatory positive (c+) and negative (c−) degree of 
the structural links (number of regulator nodes).

The triadic interactions can activate or deactivate the struc
tural links giving rise to triadic percolation. In triadic percolation, 
the activity of structural links that controls the network connect
ivity is determined by the triadic interactions that regulate them. 
Conversely, the activity of the nodes is dictated by the network 
connectivity via the percolation process.

Triadic percolation is defined as follows. At t = 0, all structural 
links are active. For t ≥ 1, the dynamics is given by a simple 2-step 
iterative algorithm: 

• Step 1: Given the configuration of activity of the structural 
links at time t − 1, nodes are considered active if they belong 
to the largest connected component of the structural net
work. Otherwise the nodes are considered inactive.

• Step 2: Given the set of all active nodes obtained in Step 1, all 
the links that are connected at least to one active negative 
regulator node and/or that are not connected to any active 
positive regulator node are deactivated. The remaining links 
remain intact only with probability p.

At each time step t, the state of the structural network is given by 
the binary vector s = s(t), of elements si(t) indicating whether node 

i is active (si(t) = 1) or inactive (si(t) = 0) at time t. The size of the 
giant component R indicates the fraction of nodes in the giant 
component, which in triadic percolation is time dependent. Note 
that in triadic percolation the dynamics is deterministic for 
p = 1, while for 0 < p < 1 the dynamics is stochastic, i.e., the triadic 
interactions do not fully determine the dynamical process. Thus, p 
acts as the control parameter of the dynamics.

It follows that spatial triadic percolation includes both 
quenched and annealed disorder. The quenched disorder is deter
mined by the structure of the higher-order network with triadic 
interactions, while p drives the annealed disorder and dictates 
the randomness of deactivation events.

Triadic percolation in spatial networks generates topological 
patterns of the giant component with nontrivial dynamical evolu
tion. These patterns and their dynamics depend significantly on 
the control parameter p that determines the highly nontrivial 
phase diagram of triadic percolation in spatial networks, as we 
discuss below.

Emergence of triadic percolation patterns
Typically, in percolation theory, the percolation transition is de
scribed by monitoring the size R of the giant component as a func
tion of the control parameter p. In spatial triadic percolation, we 
see that this measure fails to capture the complex topological pat
terns, called triadic percolation patterns, acquired by the giant 
component as long as the range of the structural and regulatory 
interactions are local. Hence, we need to develop and use add
itional quantitative methods to classify these patterns and encode 
their information content.

Visual inspection of the spatial distribution of the giant compo
nent induced by spatial triadic percolation when c+ = c− and d0 = dr 

define short range spatial interaction, suggests the emergence of 
three qualitatively different types of patterns as shown in Fig. 2: 

1. Small clusters of active nodes, of relatively small size.
2. Octopus, tubular-like shapes predominantly formed by wide 

lanes that cross the borders (potentially more than once) 
and may also form inner loops.

3. Stripes, either horizontal or vertical, that reach the borders 
forming closed loops (due to the periodic boundary condi
tions) and are of similar width to the octopus patterns. 
Multiple stripes may also emerge.

The emergent patterns share a strong spatial structure, with sep
arated active (high density of active nodes) and inactive (null 
density) areas, leading to a heterogeneous distribution of activity. 
For a discussion of the patterns observed for more general choices 
of the parameter values see Supplementary Material.

TDA classification of triadic percolation patterns
To classify the triadic percolation patterns, we have considered 
their distinct topology. Even if clusters and stripes can be of simi
lar or comparable size, the critical difference between them is that 
stripes reach the borders of the torus and close a loop: whereas 
clusters have no holes, stripes have one (per stripe in the pattern). 
Conversely, octopus patterns may present more than one macro
scopic component (typically of different sizes) and at least one 
hole.

TDA, and specifically persistent homology (82, 83), is the ideal 
method to detect these differences. Persistent homology encodes 
a point cloud (in this case the triadic percolation patterns) into a 
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simplicial complex and then tracks the k-homological classes. 
The k-homological classes define the topology of the simplicial 
complex and are in one-to-one correspondence with the inde
pendent k-dimensional holes: in dimension 0, these are con
nected components; in dimension 1, cycles (or loops), i.e. 1D 
holes; in dimension 2, 2D holes (as in a triangulation of a sphere), 
and so on. Here, we consider Vietoris–Rips complexes, built from 
the point cloud by connecting all points at a spatial (Euclidean) 
distance smaller than a certain value (radius) and by filling all 
the cliques of the resulting network. By increasing the radius 
(i.e. the maximum distance between nodes to be considered con
nected), the persistent homology diagram indicates the emer
gence and death of each homological class of the data (see 
Fig. 2A). The (dis-)similarity between two patterns can then be 
measured by means of the Wasserstein distance DW between 
their respective persistence diagrams (see Materials and meth
ods section for details).

The distance DW between same-class patterns is much smaller 
than the between-class distance, as observed in Fig. 2B for hand- 
selected template patterns (n = 33 of each class). This result quan
tifies the finding that emergent pattern classes present distinct 
homology. Notably, the Wasserstein distance also captures the 
larger variability within the octopus class, with larger DW values. 
Using the set of template patterns, we classified each emergent 
pattern into one of the three nominal classes by identifying the 
closest (smallest DW) class to the pattern, as illustrated in Fig. 2.

In this manner, TDA can provide a quantitative classification 
of the topological patterns acquired by the giant component in 
spatial triadic percolation. Hence, the spatio-temporal dynamics 
of the giant component can be considered as a time-series of dis
tinct topological patterns. Note however that, as we will reveal in 
the following, triadic percolation gives rise to a dynamics of tri
adic percolation patterns that is also largely affected by their 
geometry (for instance the position of the barycenter of the 
patterns).

Information theory of triadic percolation patterns
The emergent patterns can be further investigated with informa
tion theory tools. In particular, for each class of triadic percolation 
patterns we study the distribution of the size R of the giant compo
nent, together with the permutation entropy H and the complex
ity C of the patterns. While R is the usual order parameter for 
percolation, the permutation entropy H and the complexity C 
were formulated originally for quantifying local spatial patterns 
on 2D images (74) and patterns (75, 76).

Permutation entropy H quantifies the “randomness” of the local 
spatial patterns by calculating the entropy of pixel permutations. 
Higher permutation entropy values indicate greater irregularity in 
the data. Complexity C provides additional information about the 
degree of correlational structure by considering larger spatial pat
terns of motifs. A high permutation complexity value indicates 

Fig. 2. Topological classification of the triadic percolation patterns. A) The 0-homology (H0) and 1-homology (H1) persistence diagrams corresponding to 
an exemplary Cluster (C), Octopus (O), and Stripe (S) patterns, as shown by the insets, where turquoise (pink) dots stand for inactive (active) nodes. Major 
differences in the persistence diagrams of H0 and H1 can be observed. B) Pattern dis-similarity is measured with the Wasserstein distance DW, here shown 
between template patterns corresponding to the Cluster, Octopus, and Stripe patterns as indicated by the labels. To perform the classification, 33 
templates of each pattern class have been considered. Octopus patterns show larger within-class topological variability. C) Illustrative pattern 
classification for an exemplary time-series. First, the distance of each state s(t) to each pattern class P, P ∈ {C, O, S} is taken to be the minimum DW 

distance between s(t) and the template states of each pattern class (data lines). Then, the triadic percolation pattern at time step t is assigned the closest 
template pattern (as indicated by the shaded background areas). Here the triadic percolation results are obtained for p = 0.8, N = 104, c+ = c− = 0.2, 
d0 = dr = 0.25, c = 0.4, ρ = 100.
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the presence of diverse, less repetitive patterns of the data. 
Complexity will reach a minimum on either completely random 
patterns or regular patterns, and a maximum on patterns with 
“hidden” structure (84–86).

In Fig. 3B, we report the distributions of R, H, and C for each pat
tern class. As already hinted by qualitative observations, the three 
triadic percolation pattern classes differ on the average size R̅, 
with clusters being typically small, octopus spanning up to half 
of the nodes of the network, and stripes presenting intermediate 
values. However, R is not enough to distinguish individual pat
terns, as evidenced by the overlap in the distribution of R values 
between pattern classes. For instance, a stripe pattern may in
clude more than one stripe, resulting in a stripe pattern with a 
relative large size, and similarly cluster patterns may be relatively 
large, i.e. of similar size to the typical stripes (for instance, see 
Fig. 3B third column).

Quantitatively, the topology or the complexity of the pattern 
can neither be distinguished by means of the size R alone. In par
ticular, random patterns with no spatial structure can emerge 
with any given value of R (on nonspatial networks). On the con
trary, the permutation entropy H and complexity C provide extra 
information on the rich spatial organization of the patterns, which 
is remarkably different from that of random patterns. To quantify 
this finding, in Fig. 3B, we compare the actual distribution of H and 
C (left-hand side of each violin plot, darker color) with the distribu
tion obtained from surrogate random patterns with the same size 
as each of the spatial triadic percolation patterns (right-hand side 
of each violin plot, darker color). As it can be observed, octopus 
and stripes are vastly different from random patterns, with (a) 
consistently lower permutation entropy H, (b) higher complexity 
C, and (c) wider distributions of H and, in the case of octopus, 
also wider distribution of C. Cluster patterns on the contrary are 

less different from surrogate random patterns, suggesting that 
the observed values of H and C are mostly driven by the pattern 
size R in the case of uniform clusters.

The three classes of triadic percolation patterns differ in terms 
of absolute values of entropy and complexity. Octopus patterns 
show on average the largest permutation entropy, followed by 
stripes, whereas clusters in general present low values of H. 
Regarding complexity, this is highest for stripes, followed by octo
pus, whereas clusters present typically small values but with 
large deviations. Thus, on this meso-scale description, stripes 
are the least random pattern.

Finally, we notice that not only the average value of H and C dif
fers between pattern classes, but their within-class distributions 
also show specific properties. Octopus show the largest variation 
of H and C, evidencing large within-class variability. For stripes, 
two well-defined maxima of H are observed, corresponding re
spectively to single and double stripes. Remarkably, these barely 
differ in terms of complexity, which is in strong contrast with sur
rogate random patterns of the same size, for which the two max
ima are observed again. Thus, all stripes are similar in terms of 
complexity, whereas the variability in octopus does lead to differ
ent complexity.

Dynamics of triadic percolation patterns
Triadic percolation displays a nontrivial temporal organization of 
the dynamics of its emergent topological patterns. The topology 
of the triadic percolation patterns displays metastability, with pat
terns belonging to the same topological class persisting for varying 
lifetimes depending on both the quenched and the annealed dis
order of the triadic percolation model. In particular, intermittent 
time-series of the triadic percolation patterns occur for a wide 

Fig. 3. Examples of spatial triadic percolation patterns and their properties. A) Examples of the triadic percolation patterns: Small clusters (first column), 
Octopus (second column), and Stripes (third column). Active nodes are highlighted in pink and inactive nodes are in turquoise. B) Quantitative 
characterizations of the triadic percolation patterns. The size R, permutation entropy H, and complexity C of patterns are shown to reveal important 
quantitative differences between patterns. For each pattern, a surrogate random pattern was created with the same size R and randomly selected active 
nodes. The distributions of R, H, C for each pattern class are shown by two-sided violin plots, where the left-hand side corresponds to the spatial triadic 
percolation patterns, and the right-hand side to the surrogate random patterns. The values of the entropy H and the complexity C are obtained by 
embedding active nodes into a 30 × 30 grid with sliding partitions of size dx = 2 and dy = 2 (see details in Materials and methods section). The spatial 
network with triadic interactions is obtained by a realization of the model with parameter values N = 104, c+ = c− = 0.2, dr = d0 = 0.25, c = 0.4. The triadic 
percolation patterns are derived (for classification details see Fig. 2) from simulations with p = 0.1, 0.2, . . . 1.0, each including 500 time-steps (after a 
transient period of 500 steps).
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range of parameters values. For instance, in Fig. 4, we show a 
time-series in which both octopus and stripes occur in an intermit
tent and dynamic fashion. Videos of exemplary time-series of triad
ic percolation patterns are included in the Supplementary Videos.

The temporal behavior of the fraction of nodes in the giant 
component R, and of the information theory measures (entropy 
H and complexity C) capture important aspects of the dynamics 
of triadic percolation (see Fig. 4C). However, there are several non
trivial spatio-temporal effects which go beyond the information 
that can be extracted from R, H, and C alone.

The emergence of time-varying triadic percolation patterns is a 
direct consequence of local connectivity and also local positive 
and negative regulation. Local negative regulation leads to emer
gent self-inhibition in the macroscopic scale, whereas local positive 
regulation implies that activity can only emerge on the neighbor
hood of previously active regions. Together, these mechanisms cre
ate and effect surface tension, and give rise to the emergent 
macroscopic patterns of different shapes, see Supplementary 
Material for further details. As a consequence, we observe that in 
the deterministic case stripes always emerge through surface mini
mization. Thus on a torus constructed from a rectangular map 
(rectangular torus), stripe patterns only occur along the shorter di
mension of the rectangular torus (see Supplementary Material).

Crucially, this mechanism induces an intrinsically dynamic na
ture of the triadic percolation patterns s(t). Moreover, given that 
positive regulation occurs on a local scale, the active pattern at 
time t + 1, s(t + 1), can only appear on the neighborhood of the active 
pattern at time t, s(t). In combination with effective self-inhibition, 
this causes the tubular geometry of the stripe and octopus patterns.

The combination of self-inhibition and border-excitation also in
duces the temporal dynamics of the patterns, characterized by two 

dominant mechanisms at short-time scales: short-time-blinking 
(ST-blinking) and diffusion. ST-blinking consists of the alternation 
of complementary patterns such that s(t + 1) ≈ 1 − s(t). ST-blinking 
occurs for large patterns (typically octopus) such that the pattern 
and its neighborhood encompass the whole structural network. 
Diffusion, on the contrary, occurs for smaller patterns (small clus
ters) whose neighborhood does not cover all the inactive region. In 
this case, the active pattern may not return after two steps, as 
more options are available, the probability of each one depending 
on the specific local fluctuations of connectivity.

ST-blinking and diffusion can be quantified by the overlap 
between patterns at different time-steps, defined as 
Oτ =

􏽐
i si(t)si(t + τ)/

􏽐
i si(t), where Oτ(t) ≃ 1 indicates that patterns 

s(t) and s(t + τ) are similar, whereas values close to 0 indicate that 
they are significantly different. In particular, in Fig. 4D, we show 
the overlap between consecutive active patterns, O1 = O1(t), and 
between patterns separated by two steps, O2 = O2(t), and the over
lap between the active pattern at time t and the inactive pattern at 
time t + 1, O̅1 =

􏽐
i si(t)(1 − si(t + 1))/

􏽐
i si(t). Due to emergent self- 

inhibition, O1 is always low and O̅1 high, whereas O2 distinguishes 
between ST-blinking and diffusion: it is large for ST-blinking, and 
small for diffusion. In the exemplary case of Fig. 4, we observe in 
general high O2, indicating a domination of ST-blinking, although 
it intertwines with diffusion when stripes emerge (see Fig. 4A and 
D around t = 700). In general, we have found that octopus patterns 
blink on short-time scales, and clusters diffuse, whereas stripes 
show a mixed behavior, as shown in Supplementary Material.

The microscopic organization of the structural and regulatory 
networks shapes the dynamics of the patterns, as easily observed 
for stripes. Assuming fully homogeneous local connectivity, 1D 
diffusion (akin to a random walker on a 1D lattice) would be the 

Fig. 4. Exemplary intermittent time-series of spatial triadic percolation patterns. A–D) Time-series of triadic percolation patterns observed for p = 0.7 on 
the same network realization as Fig. 2. A) shows the spatial triadic percolation patterns at exemplary time steps. B and C) show respectively the pattern 
classification (cyan for stripes S, pink for octopus O, and yellow for clusters C), the size of the giant component R, the entropy H and the complexity C of the 
triadic percolation patterns a function of time. To illustrate the temporal dynamics of the triadic percolation patterns (D), we monitor the overlap Oτ 
between active patterns at lag τ = 1, 2 (leading to O1 and O2), and the overlap O̅1 between the active and inactive patterns at lag τ = 1.
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expected behavior for stripes: a horizontal stripe may move up or 
down, with equal probability. However, we observe a location- 
dependent asymmetry in the movement, that effectively traps 
the stripes into preferred locations. This asymmetry is induced 
by microscopic inhomogeneities or quenched disorder. The ef
fect of quenched disorder is less evident for increased random 
damage, which adds annealed noise into the dynamics (see 
Supplementary Material).

Finally, we note that triadic percolation patterns can blink, i.e. 
display sustained periodic dynamics, depending on the properties 
of the structural and regulatory networks (see Fig. 5). Our previous 
discussion accounted for the case of c+ = c−. For illustration pur
poses, we now consider the case of strong positive regulation 
(c+ = 2c−) and the deterministic scenario (no random damage, 
p = 1). More general cases where c+ ≠ c− are discussed in the 
Supplementary Material. In this case, stripes are the only ob
served pattern (as for c+ = c−, p = 1). For instance, in Fig. 5A, B, 
we show evidence of blinking with a period-6 dynamics for both 
R and the barycenter location x. This blinking behavior consisting 
of sustained periodic dynamics of the triadic percolation patterns 
is also validated by the inspection of the actual triadic percolation 
patterns shown in Fig. 5C.

These results allow us to draw a general interpretation of the 
observed spatio-temporal phenomenology. Triadic percolation 
on spatial networks leads to complex spatio-temporal dynamics. 
Two spatio-temporal scales emerge. Spatially, the patterns are 
heterogeneous, with the emergence of well-defined active and in
active regions. At short-time scales, we observe a dynamics domi
nated by ST-blinking, for intermediate random damage and large 
patterns, and by diffusion, for large random damage and small 
(clusters) patterns. In the case of stripes, quenched disorder caused 
by random local connectivity breaks translational symmetry, and 
preferred locations for stripes emerge at the mesoscopic scale, lead
ing to ST-blinking and in some cases to sustained periodic blinking 

of triadic percolation patterns, particularly for the deterministic (no 
random damage) case. The specific nodes becoming active on each 
appearance of the macroscopic stripe may vary and the barycenter 
shows small microscopic variations, but it remains contained with
in the width of a macroscopic stripe. In absence of sustained period
ic blinking, a combination of random (annealed) damage and 
quenched disorder, caused by random local connectivity, deforms 
the emergent patterns on large temporal scales.

Phase diagram of spatial triadic percolation
The phase diagram of triadic percolation, studied as a function of 
the control parameter p (see Fig. 6) reflects its complex spatio- 
temporal dynamics. In order to investigate this phase diagram, 
we first monitor the relative size of the giant component R as a 
function of p (see Fig. 6A). The first important observation that 
we make is that on average, the relative size of the giant compo
nent R̅ displays a maximum and is hence not monotonically in
creasing with p as in standard percolation. Moreover, the 
relative size of the giant component is roughly bounded by half 
of the nodes of the network. This is a consequence of the compe
tition between local positive and negative regulation, given that 
active nodes at time t + 1 are limited to the area nearby (but, cru
cially, excluding) the active pattern at time t. As we have dis
cussed extensively in the previous sections, however, the value 
of R does not provide detailed information on the triadic percola
tion patterns. To investigate the nature of the triadic percolation 
patterns, we monitor the average of the information theory meas
ures H and C (given by H̅ and C̅) as a function of p (see Fig. 6B). Most 
relevantly we find that also the average permutation entropy H̅, 
has a maximum for intermediate values of p indicating more ran
dom patterns. The quantities R, H and C have the advantage of 
being unsupervised quantities, we note however that, due to their 
large within-class variability (as reported in Fig. 3), R, H, C have 

A

B

C t = 950 t = 951

t = 952 t = 953

t = 954 t = 955

Fig. 5. Blinking of stripe patterns. A) Relative size of the giant component R is shown a function of time t. B) The x-coordinate of the barycenter of the 
patterns is shown as a function of time t. C) Examples of stripe patterns. Active nodes are highlighted in pink and inactive nodes are in turquoise. All these 
measures clearly indicate the sustained blinking of the triadic percolation patterns, which in this case is a periodic dynamics with period 6. The spatial 
network is formed by N = 104 nodes. The parameters for generating the spatial network with triadic interactions are c+ = 0.4, c− = 0.2, dr = d0 = 0.25, c = 0.4, 
p = 1.
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limited ability to detect the regions of the phase diagram with dis
tinct topological organization (see Fig. 6A, B). The phase diagram of 
triadic percolation is therefore enriched by considering the results 
of TDA analysis (see Fig. 6C). The TDA analysis reveals three regions 
of the phase diagram, each dominated by a single type of pattern, al
though values of P with significant coexistence of patterns are ob
served. For small values of P (large probability of random edge 
damage), low-activity patterns, i.e. clusters, are most likely. On the 
other hand, for large values of p ≃ 1 (strongly suppressed random 
edge failure), most regulation links are active, and the combination 
of local positive and negative regulation results in stripe patterns 
due to the border-minimization effect (see Supplementary 
Material). For intermediate values of P, the octopus topology 
emerges as the most likely. The three TDA-detected regions are ob
served for ranges of P values that depend on the other parameters of 
the model, although octopus and stripe patterns require that the ac
tive cluster is percolating, ensuring the connectivity of the giant 
component. Moreover, stripes always emerge for P = 1 (no random 
damage).

As triadic percolation is a dynamical process, the phase diagram 
is not complete if we do not provide information about the dynam
ical nature of the time-series of patterns as a function of the control 
parameter p. To this end, we have considered two quantities that 
capture the temporal dynamics of the macroscopic patterns: the 
entropy rate Ĥ of the pattern time-series, and the return probability 
Pr

τ of the overlap Oτ time-series defined in a previous section. These 
quantities probe the temporal dynamics of the system at different 
scales: the entropy rate Ĥ captures the long-term behavior (as re
vealed by Fig. 5) and Pr

τ quantifies the short-time dynamics typically 
observed, and can be used to classify diffusion and ST-blinking of 
patterns in time.

The entropy rate Ĥ (see Materials and methods for details) 
quantifies the information content of the time-series of patterns 
as derived from the TDA classification analysis (Fig. 6C). 
Therefore the complex triadic percolation dynamics is codified 
by the single time-series of the pattern classification (a series of 
letters indicating the three distinct type of topological patterns – 
clusters, octopus and stripes). Very predictable time-series have 
low entropy rate, highly unpredictable ones have high entropy 
rate. Hence the entropy rate Ĥ can be used to probe intermittent 
time-series of patterns and can be related to the complexity of 
the process (87) (see Supplementary Material for details). 
Interestingly the entropy rate Ĥ presents evidence for a dynamical 
phase transition at p = pc ≃ 0.4 (see Fig. 6D). For p < pc only one 
type of pattern is observed (clusters) and the entropy rate is 
zero, i.e. Ĥ = 0; beyond this phase transition different types of pat
terns coexist and thus we have Ĥ > 0, while for p ≃ 1 the entropy 
rate is again zero, i.e. Ĥ = 0 and only stripe patterns are observed. 
Moreover the entropy rate Ĥ displays two local maxima corre
sponding to values of p with more diverse compositions of pattern 
types. The first local maximum (smaller p) is higher due to the co
existence of the three pattern classes (clusters, octopus, and 
stripes) while in correspondence of the second local maximum 
(larger values of p) we observe coexistence only of two pattern 
classes (octopus and stripes).

The second measure we introduce is the return probability Pr
τ 

(see Materials and methods section for details) that measures 
the probability that a pattern re-occurs (or returns) after τ steps, 
and is analogous to the return probability on a diffusion problem 
(88). Hence this measure differs from the first not only because it 
probes the dynamics at smaller time-scales but also because it is 
very sensible to the geometrical details of the patterns (typically 
having the same topological classification). As observed in 

Fig. 6. Phase diagram of spatial triadic percolation. A, B) The average size 
R̅ of the giant component (A), the average values of the permutation 
entropy H̅, and the complexity C̅ of the triadic percolation patterns (B) are 
plotted as a function of p. C, D) The TDA classification is adopted to enrich 
the phase diagram with static and dynamical information about the 
topology of the patterns. The fraction of triadic percolation patterns 
classified as Clusters (PC), Octopus (PO), and Stripes (PS) (C) and the 
entropy rate Ĥ of the pattern time-series (D) are plotted as a function of p. 
The black arrows indicate two local minima. E) Displays the probability Pr

τ 
of return after τ steps as a function of p, averaged over the time-series, 
revealing the nature of the short-time dynamics of the triadic percolation 
patterns. The spatial network with triadic interaction is formed by N = 104 

nodes and generated with parameter values c+ = c− = 0.2, dr = d0 = 0.25, 
c = 0.4 in all panels. A, B, E) are obtained from the same data 
corresponding to 500 steps of the triadic percolation dynamics. The 
entropy H̅ and the complexity C̅ are obtained by embedding active nodes 
into a 30 × 30 grid with sliding partitions of size dx = 2 and dy = 2. The 
accompanying violin plots show the distribution of values of each 
variable. C, D) are obtained from the average of 10 different iterations of 
the triadic percolation dynamics, each including 1500 steps of the 
dynamics. The curves show the average values, and the errorbars the 
standard deviation among network realizations. Data were considered 
after a transient of 500 steps in all cases.
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Fig. 6E, Pr
τ follows a nontrivial trend in the three regions of the 

phase diagram dominated by the three different topologies 
(Fig. 6A). For even τ values, there is a maximum in the octopus- 
dominated region (intermediate p values), with sustained high 
values in the stripes region (large p values) and minimum values 
for the cluster-dominated (small p values) region. For odd τ values 
we find low values on the octopus and stripes region due to the 
strong ST-blinking effect. Thus, octopus patterns and stripes 
have a larger probability of re-occurrence at short-time scales (as
sociated with a ST-blinking dynamics), than clusters.

The phase diagrams derived from the temporal dynamics 
(Ĥ and Pr

τ) follow closely those derived from the spatial organi
zation (pattern occurrence, R̅, H̅, and C̅), indicating that each 
pattern class not only presents distinct geometry and hom
ology, but also a characteristic macroscopic evolution of the 
patterns.

As we have seen, the phase diagram of triadic percolation pro
vides a comprehensive understanding of triadic percolation. In 
particular, this phase diagram covers the topology, the informa
tion content and the dynamics of this very rich dynamical process 
going beyond a description of triadic percolation based exclusively 
on the size of the giant component. For a discussion of the phase 
diagram depending on the other parameters of the model see the 
Supplementary Material.

Conclusions
In summary, triadic interactions are fundamental higher-order 
interactions present in a variety of complex systems, ranging 
from brain networks to ecosystems, that can dramatically change 
the properties of percolation, as captured by triadic percolation. 
Triadic percolation on random graphs (12) has been previously 
shown to lead to a nontrivial dynamics of the standard order par
ameter, given by the fraction of nodes in the giant component. 
Here, we show that, on spatial networks, triadic percolation not 
only leads to a time-varying fraction of nodes in the giant compo
nent, but displays remarkably different spatio-temporal patterns 
of the giant component. Specifically, in spatial triadic percolation 
the topology itself of the giant component changes in time. In or
der to investigate the spatio-temporal properties of triadic perco
lation we combine network science, TDA, information theory, and 
the theory of nonlinear dynamical systems to describe this re
markable critical phenomenon. The giant component displays 
patterns that are classified through persistent homology into 
three different classes: small clusters (formed by a localized scat
tered set of points), octopus patterns (patterns with nontrivial per
sistent diagram), and stripes (patterns of points going around the 
torus). These emergent spatial triadic percolation patterns are re
markably different from random patterns, as quantified by our in
formation theory analysis, which reveals the lower entropy and 
larger complexity of these patterns with respect to random un
structured patterns. These patterns have a very nontrivial dy
namics revealing that the giant component of triadic percolation 
has a topology that can change significantly over time. We show 
that for some parameter values the time-series of patterns dis
plays intermittency between different topological classes. 
Moreover, in the case of stripes, we provide evidence of blinking 
behavior with the barycenter of the giant component oscillating 
periodically. These findings are summarized using a phase dia
gram of triadic percolation, indicating the regions where patterns 
of a given type are more likely to occur. The phase diagram also 
shows how statistical, information theory, and temporal observ
ables of the complex spatio-temporal dynamics of the giant 

component change as a function of the control parameter leading 
to a comprehensive understanding of these complex dynamics.

The observed spatio-temporal modulation of the topology and 
geometry of the giant component opens new perspectives in per
colation theory and its applications. As giant components chan
ging dynamically in time are observed in a large variety of real 
systems, these findings have the potential to transform our theor
etical understanding of these systems. Our hope is that this theor
etical framework will be relevant for developing specific models in 
neuroscience and climate and for the formulation of inverse algo
rithms to analyze higher-order network data.

Materials and methods
Spatial higher-order networks with triadic 
interactions
We consider spatial higher-order networks with triadic interac
tions embedded in a 2D square of size L with periodic boundary 
conditions (a torus). The density of nodes is indicated by ρ, with 
ρ fixed as 100 nodes per unit square in all simulations of this art
icle. The structural networks Gs = (V, E) contain edges drawn ran
domly between each pair of nodes with probabilities decaying 
exponentially with their Euclidean distances. Specifically, a pair 
of nodes i and j are connected with probability

Pij = ce−dij/d0 , (1) 

where dij denotes the Euclidean distance between nodes i and j, 

and d0 denotes a typical length of structural links. The average 
structural degree 〈k〉 is controlled by 0 < c ≤ 1. The spatial regula
tory network is generated as follows. First, we define the coordin
ate of a structural link ℓ as the midpoint of its two end nodes. 
Then, a positive or negative regulatory interaction between a 

node i and a structural links ℓ is drawn with probability P̂+
iℓ and 

P̂−
iℓ, respectively. The probabilities P̂+

iℓ and P̂−
iℓ are given by

P̂+
iℓ = c+e−diℓ/d+

r ,

P̂−
iℓ = c−e−diℓ/d−

r ,
(2) 

where we exclude the possibility of conflicting regulatory interac
tions. In otherwords, we impose that if a node is a positive regula
tor of a link it cannot be simultaneously a negative regulator of the 
link. In the main, we focus on the scenario where positive and 
negative regulations have the same length scale, i.e., 
d+

r = d−
r = dr. In the Supplementary Material, we discuss the gen

eral scenario of d+
r ≠ d−

r . In Eq. 2, dr defines the typical length of 
regulatory interactions, and c+ and c− (with c+ > 0, c− > 0 and 
c+ + c− ≤ 1) control the average number of nodes that regulate a 
link positively or negatively. For dr →∞ and d0 →∞, the spatial 
network with triadic interactions reduces to the Erdös–Renyi net
work with random triadic interactions that is defined and studied 
in Ref. (12).

TDA-based classification
The spatial triadic percolation patterns are here classified by 
means of topological data analysis (TDA). TDA allows us to iden
tify a pattern’s shape and its invariant topological properties, with 
moderate noise tolerance (82, 89–91). The TDA of a set of points 
proceeds by first generating a simplicial complex that represents 
the data at different values of a filtration or threshold parameter 
fs, and then evaluating the homology classes of the simplicial 
complex as function of fs. A simplicial complex is a finite collec
tion of simplices K such that (i) every face of a simplex in K also 
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belongs to K and (ii) for any two simplices σ1 and σ2 ∈ K, if 
σ1 ∩ σ2 ≠ ∅, then σ1 ∩ σ2 is a common face of both σ1 and σ2. A 
d-simplex is the convex hull of d + 1 points: a 0-simplex is a point, 
a 1-simplex is an edge, a 2-simplex is a triangle and so on. Here, 
we consider the Vietoris–Rips filtration method to build 
simplicial complexes that represent the data. Given a pattern of 
active nodes at time t, s(t), the corresponding Vietoris–Rips 
complex is the filtered complex VRs(s(t)) that includes all 
δ-simplices, δ ≤ d, such that all pairwise distances between the 
nodes in the simplex are equal or less than fs, that is 
VRs(s) = {[v0, . . . , vn]∀ i, j d(vi, vj) ≤ fs}. The k-homological classes 
(82, 83) of a simplicial complex are in one-to-one correspondence 
with its independent k-dimensional holes: in dimension 0, these 
are connected components, in dimension 1, cycles (also called 
loops), in dimension 2, 2D holes (like in a triangulated sphere), 
and so on. Persistent homology tracks the homology classes as 
the filtration parameter fs increases and detects which topological 
features persist across different scales (92). The filtration values at 
which each homological class emerges (birth) and disappears 
(death) can be recorded on a persistence diagram PD (showing 
the death value as a function of the birth value) and characterize 
a given shape or pattern. Points further from the diagonal mark 
features that survive for long filtration intervals. PDs of different 
patterns can be compared by measuring the distance between 
them. Here, we considered the Wasserstein distance, which 
matches pairs of points between the two diagrams and measures 
the Lp distance between them. Points that cannot be matched to a 
point in the other diagram are matched to the diagonal.

The patterns were classified into Clusters (C), Octopus (O), and 
Stripes (S) using persistence homology. First, a set of representa
tive template patterns (33 for each pattern class) were manually 
identified (an example for each class is given in the insets of 
Fig. 2A), and PDs were obtained for each one (Fig. 2A). Secondly, 
persistence homology was applied to each pattern s(t) of a given 
simulation of the system. The Wasserstein distance between the 
PD of s(t) and all template PDs was measured, and state s(t) was 
assigned the pattern class of the closest template (Fig. 2D). For 
the VR filtration, we consider simplices up to d = 2, and the persist
ence diagrams included the 0-(H0) and 1-(H1) dimensional holes. 
The total Wasserstein distance was defined as the sum of the 
H0- and H1-associated distances. All TDA analyses were per
formed using the giotto-tda python library.

Entropy and complexity
The structural and information theory properties of the spatial tri
adic percolation patterns include their permutation entropy and 
statistical complexity. The measure of permutation entropy was 
first proposed by Bandt and Pompe (75) to measure the complexity 
of 1D time-series. The approach was generalized to higher- 
dimensional data and an additional measure of complexity called 
López-Ruiz–Mancini–Calbet (LMC) complexity was proposed. The 
LMC complexity provides structural information that is not in
cluded in the entropy measure (76, 93). The permutation entropy 
is calculated based on the permutation of local partitions. 
Consider a 2D pattern that is represented by a matrix. We consider 
all local partitions of size (dx, dy), i.e., submatrices of size dx by dy, 
where dx and dy are called embedding dimensions (74). Let us con
sider a simple case where dx = dy = 2. Thus, each submatrix can be 
written as

A = a0 a1

a2 a3

􏼔 􏼕

. (3) 

Reshaping the submatrices to 1D vectors, we can categorize them 
into different ordinal patterns. For instance, pattern π1 = 
(0, 1, 2, 3) denotes all submatrices in which a0 < a1 < a2 < a3 and 
pattern π2 = (1, 0, 2, 3) denotes all submatrices in which 
a1 < a0 < a2 < a3. There are in total (dxdy)! = 24 ordinal patterns in 

this example. Thus, we can define the distribution of ordinal pat
terns with given embedding dimensions dx and dy. The probability 

P(π) of having an ordinal pattern π is calculated by

P(π) =
Number of submatrices that have pattern π
Total number of submatrices of size dx × dy

(4) 

and the permutation entropy S is defined as

S[P] = −
􏽘

π
p(π) ln p(π). (5) 

The measure H used above is the normalized permutation entropy 
defined as

H[P] =
S[P]
Smax

=
1

(dxdy)!
S[P]. (6) 

The permutation entropy quantifies the amount of “information” 
in the patterns. The statistical complexity C composites the meas
ure of information H and the measure of “disequilibrium” Q (93):

C[P] = Q[P, Pe]H[P]. (7) 

The disequilibrium Q[P, Pe] is defined as the extensive Jensen– 
Shannon divergence that quantifies the distance between the pat
tern distribution P(π) and the uniform distribution Pe (84);

Q[P, Pe] =
S[(P + Pe)/2] − S[P]/2 − S[Pe]/2

Q0
, (8) 

where Q0 is a normalization constant. Thus, the complexity C will 
reach zero at the extremes of the ordered pattern (H = 0) and com
pletely random pattern (Q = 0). Note that C is not a trivial function 
and H. For a given H, there exists a corresponding range of C that 
provides additional structural information (74, 85). To calculate 
the entropy and complexity of patterns formed by active nodes, 
we transformed the activity pattern with a 2D density distribution 
over an M × M grid, over which we measure the permutation en
tropy H and complexity C of this matrix (94).

Temporal analyses
The temporal dynamics of the emergent dynamics of triadic per
colation is quantified by means of the entropy rate Ĥ of the pattern 
time-series x(t) derived from the TDA classification. That is, x(t) is 
the categorical time series indicating the macroscopic state of the 
system as Cluster (C), Octopus (O), or Stripe (S). To measure the en
tropy rate of a time series, we consider motifs or words of increasing 
length L̂, and measure the relative count p̃i of each word i of such 
length. The entropy rate of L̂-words is defined as (87):

Ĥ(L̂) = −
1

L̂

􏽘

i

p̃i log2 p̃i. (9) 

The entropy rate Ĥ, is obtained in the limit of infinite word 
length, i.e.

Ĥ = lim
L̂→∞

Ĥ(L̂). (10) 

Here in order to estimate this limit, we take the usual approach of 

extrapolating the linear trend of Ĥ(L̂) vs. 1/L̂ for L̂ = 1, 2, 4, as de
tailed in the Supplementary Material (see Supplementary 
Material). Results shown in the main text are averaged over 10 
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time-series encoding the topology of 10 realizations of the triadic 
percolation dynamics.

At short-time scales, the dynamics is investigated by measuring 
the overlap between patterns at different time-steps, defined as

Oτ(t) =
􏽐

i si(t)si(t + τ)
􏽐

i si(t)
. (11) 

Oτ(t) ≃ 1 indicates that the states s(t) and s(t + τ) are similar, where
as values close to 0 indicate significantly different states. To dis
criminate whether two states are macroscopically equivalent, we 
have set an adaptive threshold α′ on Oτ, such that states t and t + 
τ are macroscopically equivalent if Oτ(t) > α′ with

α′ =
α
T

􏽘

t′
Oτ(t′), (12) 

where α = 0.8 is the baseline threshold. Here, α′ is given by the base
line threshold α rescaled by the average overlap Oτ of the time-series 
to account for the large fluctuations in the fraction of active nodes in 
the triadic percolation patterns. We thereby described each 

time-series by the binary variable Õτ(t) indicating whether the pat
terns at time t and time t + τ are macroscopically equivalent. Note 
that this analysis disregards the shape of the patterns. The variation 

of the overlap Õτ(t) in time is measured by the return probability Pr
τ 

(88, 95), that indicates the probability that the system returns at 

time t + τ to the same state it was at time t, namely Pr
τ =

􏽐
t Õτ(t)/T.
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57 Gămănuţ R, et al. 2018. The mouse cortical connectome, charac

terized by an ultra-dense cortical graph, maintains specificity by 

distinct connectivity profiles. Neuron. 97(3):698–715.
58 Ganti RK, Haenggi M. 2009. Spatial and temporal correlation of 

the interference in aloha ad hoc networks. IEEE Commun Lett. 

13(9):631–633.

59 Halu A, Mukherjee S, Bianconi G. 2014. Emergence of overlap in 

ensembles of spatial multiplexes and statistical mechanics of 

spatial interacting network ensembles. Phys Rev E. 89(1):012806.
60 Bullmore E, Sporns O. 2012. The economy of brain network or

ganization. Nat Rev Neurosci. 13(5):336–349.
61 Danziger MM, Barabási A-L. 2022. Recovery coupling in multi

layer networks. Nat Commun. 13(1):955.
62 Markov NT, et al. 2014. A weighted and directed interareal con

nectivity matrix for macaque cerebral cortex. Cereb Cortex. 

24(1):17–36.
63 Horvát S, et al. 2016. Spatial embedding and wiring cost constrain 

the functional layout of the cortical network of rodents and pri

mates. PLoS Biol. 14(7):e1002512.
64 Deco G, et al. 2021. Rare long-range cortical connections enhance 

human information processing. Curr Biol. 31(20):4436–4448.
65 Watts DJ, Dodds PS, Newman MEJ. 2002. Identity and search in 

social networks. Science. 296(5571):1302–1305.
66 Berezin Y, Bashan A, Danziger MM, Li D, Havlin S. 2015. Localized 

attacks on spatially embedded networks with dependencies. Sci 

Rep. 5(1):8934.
67 Fan J, et al. 2020. Universal gap scaling in percolation. Nat Phys. 

16(4):455–461.
68 Dong S, Mostafizi A, Wang H, Gao J, Li X. 2020. Measuring the 

topological robustness of transportation networks to 

disaster-induced failures: a percolation approach. J Infrastruct 

Syst. 26(2):04020009.
69 Gross B, Vaknin D, Danziger MM, Havlin S. 2017. Multi-universal

ity and localized attacks in spatially embedded networks. In: 

Proceedings of the Asia-Pacific Econophysics Conference 2016- 

Big Data Analysis and Modeling toward Super Smart Society- 

(APEC-SSS2016). The Physical Society of Japan. p. 011002.
70 Ghrist R. 2008. Barcodes: the persistent topology of data. Bull Am 

Math Soc. 45(1):61–75.
71 Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA. 2017. 

A roadmap for the computation of persistent homology. EPJ Data 

Sci. 6(1):1–38.

12 | PNAS Nexus, 2024, Vol. 3, No. 7

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/7/pgae270/7709778 by guest on 29 July 2024

https://doi.org/10.48550/arXiv.2211.00416
https://doi.org/10.48550/arXiv.2404.14997
https://doi.org/10.48550/arXiv.2404.14997


72 Vaccarino F, Fugacci U, Scaramuccia S. 2022. Persistent hom
ology: a topological tool for higher-interaction systems. In: 
Higher-order systems. Cham, Switzerland: Springer. p. 97–139.

73 Curto C. 2017. What can topology tell us about the neural code? 
Bull Am Math Soc. 54(1):63–78.

74 Sigaki HYD, Perc M, Ribeiro HV. 2018. History of art paintings 
through the lens of entropy and complexity. Proc Natl Acad Sci U 
S A. 115(37):E8585–E8594.

75 Bandt C, Pompe B. 2002. Permutation entropy: a natural com
plexity measure for time series. Phys Rev Lett. 88(17):174102.

76 Ribeiro HV, Zunino L, Lenzi EK, Santoro PA, Mendes RS. 2012. 
Complexity-entropy causality plane as a complexity measure 
for two-dimensional patterns. PLoS One. 7(8):1–9.

77 Suárez R, et al. 2023. Cortical activity emerges in region-specific 
patterns during early brain development. Proc Natl Acad Sci U S 
A. 120(22):e2208654120.

78 Omer DB, Fekete T, Ulchin Y, Hildesheim R, Grinvald A. 2018. 
Dynamic patterns of spontaneous ongoing activity in the visual 
cortex of anesthetized and awake monkeys are different. Cereb 
Cortex. 29(3):1291–1304.

79 Reichinnek S, Künsting T, Draguhn A, Both M. 2010. Field poten
tial signature of distinct multicellular activity patterns in the 
mouse hippocampus. J Neurosci. 30(46):15441–15449.

80 Bianconi G. 2018. Multilayer networks: structure and function. 
Oxford: Oxford University Press.

81 Waxman BM. 1988. Routing of multipoint connections. IEEE J Sel 
Areas Commun. 6(9):1617–1622.

82 Zomorodian A. 2012. Topological data analysis. Adv Appl Comput 
Topol. 70:1–39.

83 Centeno EGZ, Moreni G, Vriend C, Douw L, Santos F. 2022. A 

hands-on tutorial on network and topological neuroscience. 
Brain Struct Funct. 227(3):741–762.

84 Rosso OA, Larrondo HA, Martin MT, Plastino A, Fuentes MA. 2007. 

Distinguishing noise from chaos. Phys Rev Lett. 99(15):154102.
85 Martin MT, Plastino A, Rosso OA. 2003. Statistical complexity and 

disequilibrium. Phys Lett A. 311(2-3):126–132.
86 Martin MT, Plastino A, Rosso OA. 2006. Generalized statistical 

complexity measures: geometrical and analytical properties. 

Phys A Stat Mech Appl. 369(2):439–462.
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