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Essentials 

• Platelet function is directed by the expression of specialised surface markers 

• Circulating platelet sub-populations are incompletely characterised 

• Multi-parameter spectral flow cytometry allows robust and comprehensive 

phenotyping of platelets 

• Coupling with machine learning offers a powerful method to determine platelet sub-

populations  
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Abstract 

Background: Platelet function is driven by the expression of specialised surface markers. 

The concept of distinct circulating sub-populations of platelets has emerged in recent 

years, but their exact nature remains debatable.  

Objective: To design a spectral flow cytometry-based phenotyping workflow to provide a 

more comprehensive characterisation, at a global and individual level, of surface markers 

in resting and activated healthy platelets. Secondly, to apply this workflow to investigate 

how responses differ according to platelet age. 

Methods: A 14-marker flow cytometry panel was developed and applied to vehicle- or 

agonist-stimulated platelet-rich plasma and whole blood samples obtained from healthy 

volunteers, or to platelets sorted according to SYTO-13 staining intensity as an indicator 

of platelet age. Data were analysed using both user-led and independent approaches 

incorporating novel machine learning-based algorithms. 

Results: The assay detected differences in marker expression in healthy platelets, at rest 

and on agonist activation, in both platelet rich plasma and whole blood samples, that are 

consistent with the literature. Machine learning identified stimulated populations of 

platelets with high accuracy (>80%). Similarly, machine learning differentiation between 

young and old platelet populations achieved 76% accuracy, primarily weighted by FSC-

A, CD41, SSC-A, GPVI, CD61, and CD42b expression patterns.  

Conclusions: Our approach provides a powerful phenotypic assay coupled with robust 

bioinformatic and machine learning workflows for deep analysis of platelet sub-

populations. Cleave-able receptors, GPVI and CD42b, contribute to defining shared and 



  Page 4 

unique sub-populations. This adoptable, low-volume approach will be valuable in deep 

characterisation of platelets in disease. (244 words) 

 

Key words: computational biology; flow cytometry; haemostasis; thrombosis, machine 

learning 
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Introduction 

Haemostasis is a carefully orchestrated process in which platelets are primary players. 

These metabolically-active cell fragments circulate for approximately 7-10 days in healthy 

individuals before being degraded by the spleen or liver[1–3]. Platelet function is mediated 

through the expression of specialised surface markers, with resting and activated 

platelets showing different expression profiles consistent with response heterogeneity in 

thrombus formation[4,5]. These variations in surface marker expression are thought to be 

conferred during production from megakaryocytes, activation history, and ageing in the 

circulation[6,7], and may describe dynamically discrete and specialised platelet sub-

populations[8,9]. 

As platelets age in the circulation, they lose messenger ribonucleic acids (mRNA) 

remaining from their progenitor megakaryocytes[10–12]. Platelets have minimal capacity 

to make new mRNA, and thus these residual mRNAs can be used as a surrogate 

measure for age[13–15]. Newly-formed or ‘young’ platelets (also termed reticulated 

platelets or the immature platelet fraction) have the highest levels of mRNA, while ‘old’ 

platelets have the lowest[14,16,17]. Young platelets are hyper-reactive and have an 

elevated thrombotic potential[18–20]. This is apparent in several pathological states, such 

as diabetes mellitus[21] and major trauma[18], in which there are relative increases in 

young platelets resulting from altered platelet turnover and lifespan associated with 

increased incidences of thromboembolic events[22–25] and decreased efficacy of anti-

platelet therapies[26–29].  
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Flow cytometry with the inclusion of fluorescently-tagged antibodies is frequently used to 

investigate platelet protein expression and function as it requires only small volumes of 

blood and a relatively low number of platelets, making it ideal for analysis of clinical 

samples. However, the number of parameters that can be measured concurrently using 

this method is limited by overlap of fluorescent emission spectra, resulting in antibody 

panels that typically determine, at most, three to four markers in any one sample [30,31]. 

Spectral flow cytometry is a next-generation technique that allows the simultaneous 

measurement and discrimination of multiple fluorophores by evaluation of full emission 

spectral signatures. Accounting for steric hindrance, this platform can therefore be used 

for analysis of 10-15 markers on platelets. Previous work from Blair et al.[8] has used 

mass cytometry to develop a panel to study platelet function, but spectral flow cytometry 

offers several considerable advantages including cost of reagents, availability of 

equipment, and simplicity of technique.  

With this in mind, we sought to develop a 14-marker spectral flow cytometry panel based 

upon the panel of Blair et al. (noting in this report that Blair et al. have subsequently 

published reports utilizing spectral flow cytometry[30,32]) to provide a more 

comprehensive characterisation of platelets, at a global and individual-platelet level. In 

our studies we subjected our data to a powerful computational analytical approach 

employing machine learning to explore the potential existence of platelet sub-populations 

in the human circulation with a particular focus on young and old platelets.  
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Materials and Methods 

Ethical statement: human studies 

All studies were conducted according to the principles of the Declaration of Helsinki and 

were approved by St. Thomas’ Hospital Research Ethics Committee (Ref.: 07/Q0702/24). 

Healthy volunteers were aged 23-40, screened prior to entering the study (non-smokers; 

had not taken non-steroidal anti-inflammatory drugs <10 days prior to donating blood; no 

health problems contraindicating study involvement) and gave written informed consent. 

 

Collection of blood and preparation of platelet-rich plasma 

Blood was drawn from volunteers by venepuncture into trisodium citrate vacutainers 

(3.2%; BD Biosciences), and platelet-rich plasma (PRP) was isolated as previously 

published[24]. 

 

Flow cytometric measurement of activation markers 

PRP, or whole blood (WB), was diluted 1:40 with 2mM Ca2+-buffered, filtered PBS, and 

added to a 96-well plate with wells containing vehicle (phosphate-buffered saline, PBS) 

or agonist: 0.3-30μM adenosine diphosphate (ADP; Labmedics); 0.3-30μM thrombin-

receptor activating peptide 6 (TRAP-6; Cambridge Biosciences); 0.3-30μM U46619 (Enzo 

Life Sciences); 3-100μM protease-activated receptor 4 agonist (PAR-4; Cambridge 

Biosciences); 0.03-3μM collagen-related peptide (CRP-XL; University of Cambridge). In 

initial experiments, an antibody mix comprising anti-CD42b-BV421 (1:70; clone HIP1; 
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BioLegend), PAC-1-FITC (1:10; BD Biosciences), and anti-CD62P-APC (1:100; clone 

AK4; BioLegend) was added to each well. Alternatively, an antibody master mix 

(Supplementary table 1 and Supplementary figure 1) and staining buffer (Brilliant Stain 

Buffer, BD Biosciences) were used. The plate was then mixed (200rpm; 37°C) for 20 

minutes in the dark (BioShake iQ, Quantifoil Instruments GmbH). Samples were fixed 

with 1% formalin and run on the Cytek Aurora 5-laser flow cytometer (Cytek Biosciences). 

Platelets were gated on SSC-A/CD42b-A, and 10,000 CD42b+ events were collected 

(Supplementary figure 2). 

Flow cytometric sorting of young and old platelets 

Adapting our previously published approach[33], PRP was stained with SYTO-13 (750nM; 

Thermo-Fisher Scientific) prior to sorting. 10 million platelets per condition were sorted 

using a BD FACS Aria IIIu Fusion Cell Sorter (70μM nozzle, 70Ps, ≤10,000 events/second; 

BD Biosciences) with the top 20% SYTO-13 fluorescence being taken as ‘young’ and the 

bottom 30% SYTO-13 as ‘old’. Platelets were pelleted in the presence of prostacyclin 

(Epoprostanol; 2μmol/L; Tocris Biosciences) at x1000g for 10 minutes and re-suspended 

in calcium chloride (CaCl2; 2mmol/L; Sigma-Aldrich) -buffered MTH buffer. Panel markers 

were then measured as described above using the Cytek Aurora. 

 

Statistical, bioinformatics, and machine learning analysis 

d 

Using the Caret v6.0-93 (Classification And REgression Training) R package[37], we 

developed a machine learning model to predict whether platelets were treated with 



  Page 9 

vehicle or agonist. Platelet data were loaded and processed as already detailed, with 

10,000 platelets per healthy donor per treatment being loaded, unless otherwise stated. 

Balanced in number for each condition, from 16 donors, a Random Forest model was 

given a training dataset made up of 80% of the total data to learn from. The remaining 

20% of the total data was used for preliminary validation. The remaining 5 donors were 

used as an “unseen” validation data set to test the model. A feature importance 

comparison was then run to determine which markers were most important in the 

classification. The model was trained using a 10-fold cross-validation using 3 repeats. 

This means that the training data is first randomly shuffled and split into 10 “folds”, then, 

in turn, each fold is excluded from the training data whilst the remaining 9 folds are used 

to train a model; the excluded fold is used to assess the accuracy of the trained model. 

This process was then repeated a total of 3 times; each time the data was shuffled 

randomly, producing new folds. The metric used to assess the quality of the model was 

the Receiver Operating Characteristic (ROC); overall accuracy was also reported. 

Using the Caret v6.0-93 (Classification And REgression Training) R package[37] we 

developed Random Forest machine learning models to predict whether platelets were 

young or old in the presence of vehicle or individual agonists. Platelet data were loaded 

and processed as already detailed, with 9,000 platelets per young and per old sample 

from each donor being loaded, outlier events/platelets were removed, and the 

measurements for PAC-1 excluded. In total there were 8 donors, each with a young and 

old sample. 6 of the 8 donors were used to create a training and preliminary validation 

dataset; 80% of the data from the 6 donors was used for training whilst 20% was used for 

preliminary validation to assess the accuracy of the model. Data from the remaining 2 
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donors was kept aside to use as an “unseen” validation dataset. As previously, a feature 

importance comparison was then run to determine which markers were most important in 

the classification. The model was trained using a 10-fold cross-validation using 3 repeats, 

and ROC used to assess the quality of the model, as already detailed. 

 

Results 

Assay capable of detecting significant changes in marker expression on activation 

in healthy platelets 

To select optimum concentrations of agonists for use in subsequent experiments, flow 

cytometry was used to assess changes in PAC-1 binding and CD62P expression in 

response to increasing concentrations of TRAP-6, PAR-4, CRP-XL, ADP, and U46619 

(Supplementary figure 3). The following concentrations were selected for their ability to 

induce a robust response: 10µM TRAP-6, 100µM PAR-4, 3µM CRP-XL, 30µM ADP, and 

10µM U46619. 

The chosen concentrations of agonists were then tested using the extended phenotyping 

panel of markers as well as forward scatter (FSC-A) and side scatter (SSC-A). All agonists 

tested caused significant increases in the expression of CD62P, PAC-1, CD63, CD107a, 

CD61, CD29, and CD9, and decreases in CD42b; none of the agonists caused any 

changes in CLEC-2 (Figure 1). TRAP-6 was the only agonist to decrease CD31 

(4336±233 vs. 3973±223, p=0.03), and CRP-XL was the only agonist to decrease GPVI 

(5735±512 vs. 4030±600, p=0.006). CD42a expression was decreased by all agonists 
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except CRP-XL. Across all conditions, the physical characteristics FSC-A and SSC-A 

demonstrated the least inter-individual variation (Supplementary figure 4). 

 

High-dimensionality analysis allows visualisation and in-depth interrogation of 

marker changes in response to activation 

Unsupervised dimensionality reduction and visualisation of the entire data sets using 

tSNE revealed the same shifts in receptor patterns. Namely, agonist stimulation caused 

visible increases in the expression of PAC-1, CD62P, CD63, CD107a, CD61, and CD9, 

decreases in CD42b, CD42a, GPVI, CLEC-2, and CD31; CD29 remained unchanged 

(Figure 2). The same visualisation approach also confirmed that the detected marker 

expression patterns were shared across donors and not driven by donor or batch effect 

(Supplementary figure 5). Auto-clustering analysis produced 5 clusters in vehicle-treated 

platelets and between 9 and 11 clusters in agonist-treated platelets. Each formed cluster 

was not dominated by individual donors but rather reflected the gradation in difference of 

expression (Supplementary figure 6). However, hierarchical dendrograms within the 

clustering indicated that interlinked relationships between the expression of each marker 

differed by agonist stimulation (Supplementary figure 6). 

 

Machine learning reveals the most important markers in distinguishing effects of 

agonists 

Machine learning (ML) was used to further analyse the data at the single platelet level in 

an unbiased fashion. Following training, the accuracy of differentiation of vehicle-treated 
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from agonist-treated platelets was determined. Accuracy rates for unseen datasets were 

highest for TRAP-6, PAR-4, and CRP of 0.92, 0.91, and 0.88, respectively. Comparatively, 

rates for ADP and U46619 were 0.80 and 0.77, respectively (Table 1), with the greatest 

fall between the training and unseen sets also occurring with these agonists.  

Rankings of distinguishing markers within each prediction model was examined with 

those with a weighting of greater than 20 considered important (Figure 3). For 

identification of TRAP-6-, PAR-4-, and CRP-XL-stimulated platelets, CD62P was 

considered the most important, followed by PAC-1, CD42b, and CD107a (Figure 3A). 

Identification of ADP-treated platelets was based predominantly on the expression 

patterns of PAC-1, CD62P, and CD42b (Figure 3B-D). This was similar to platelets 

activated with U46619, for which CD62P, CD42b, and PAC-1 were highest (Figure 3E). 

 

CD41/CD61, FSC-A, SSC-A, GPVI, CLEC-2, and CD61 are the primary markers used 

by machine learning to differentiate between young and old platelets 

Next, we undertook phenotypic analysis of young and old platelets, as determined by 

SYTO-13 RNA staining, following vehicle or agonist stimulation. We first analysed the 

data on a traditional by-population basis by looking at raw MFI values and changes in MFI 

(Supplementary figure 7), before applying machine learning. Predictive capability within 

each training set ranged from 0.86 to 0.90 and maintained high level of accuracy in the 

unseen datasets (range 0.74 to 0.78; Table 2).  

Markers rated greater than an importance of 20 within vehicle-treated platelets identified 

FSC-A, CD41, SSC-A, GPVI, and CD61 as most important (Figure 4). FSC-A, SSC-A, 
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and CD41 were the top three discriminators for all agonists tested, with CD61, CD42b, 

and GPVI being also seen at above 20 in all. CLEC-2 was seen in TRAP-6, and CD61 in 

CRP-XL. 

Subsequently we applied the markers rated greater than an importance of 20 from our 

separated young and old platelet populations to the mixed healthy platelet data presented 

previously. This analysis indicated an increased probability of young platelets being 

present in clusters with higher markers of activation, both in control conditions (i.e. 

vehicle-treated) and following exposure to platelet agonists (Figure 5).  

 

Assay detects comparable alterations in marker expression following stimulation 

and labelling of whole blood 

We next wished to test the suitability of this assay for use with whole blood, rather than 

PRP. Agonist stimulation elicited significant increases in the expression of CD62P, PAC-

1, CD63, CD107a, CD61, CD29, and CD9, and decreases in CD31 andCD42b; none of 

the agonists caused any changes in CLEC-2 (Supplementary figure 8). This pattern of 

altered marker expression was consistent with those observed in PRP samples, but with 

a significantly greater loss of CD31 (Supplementary figure 9).  

 

High-dimensionality analysis of stimulated whole blood samples reveals three 

common sub-populations of activated platelets. 
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tSNE based dimensionality reduction and visualisation confirmed that the detected 

alterations in marker expression (i.e.: omitting vehicle treated samples) in whole blood 

was again not driven by donor or batch effect (Figure 6A). Auto-clustering analysis of the 

agonist-stimulated only data set, produced 5 clusters (Figure 6B), with 3 clusters (1,2 and 

3) accounting for more than 90% of total events. Each formed cluster was not dominated 

by individual agonists indicating a commonality to these resulting phenotypes. 

Comparative expression heatmaps with hierarchical dendrograms within the clustering 

indicated that cluster 2 was characterised by lower expression of CD31, CD63 and CLEC-

2, whilst platelets in cluster 3 had lower FSC values, lower levels of GPVI and higher 

CD107a expression. (Figure 6D). 

 

Discussion 

The levels of individual platelet surface receptors, basally and following activation, have 

been well-characterised. However, improvements in flow cytometry and mass cytometry 

technology now permit much larger antibody panels for simultaneous measurement of 

receptors on individual platelets. Through greater immunophenotyping of platelets in 

health and in disease it is increasingly possible to address the question of whether, and 

what, platelet sub-populations exist. Here we report a 16-parameter phenotypic approach 

utilising spectral flow cytometry with computational analysis, including machine learning, 

to phenotype platelets.  

Our selection of surface proteins was based on the phenotypic panel used by Blair et al.[8] 

for mass cytometry. First, we set out to measure the effect of different activation pathways 
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of platelet activation on the expression of surface markers. A spectral cytometry-based 

approach, compared to mass cytometry in terms of antibody costs, machine running costs 

and processing time, permits an expansion in experimental conditions that can be 

performed in each run. Moreover, we established this assay could be applied to either 

PRP or whole blood samples. Across the range of conditions tested (agonists, sample 

type) there were significant increases in PAC-1, CD62P, CD63, CD107a, CD61, and 

CD29 expression, decreases in CD42b expression, and no changes in CLEC-2 

expression. These patterns of surface protein changes were consistent with the current 

understanding of the field and echo those presented by Blair et al.[8] and Hindle et al.[38].  

These types of initial analyses rely on median fluorescence scores derived from 

measurements of 10,000 platelets per subject, and comparative variation determined 

across donors. Dimensionality reduction (tSNE) and clustering provides for greater 

analytical weight for each individual platelet across all replicates. It also allows for the 

visualisation of the contribution of each individual subject to the interpreted expression 

patterns[39]. This approach validated that these observed patterns are shared across 

donors, confirming these effects were driven by functional responses and not by potential 

batch variation. Whilst sex has recently been associated with some increased platelet 

reactivity[40], this shared pattern indicates that there were no obvious sex-based 

differences in our small group of younger, healthy individuals.  

Unlike previous reports[38], based on P-selectin expression and PAC-1-binding, k-means 

clustering silhouette analysis within our dataset did not support the presence of 4 (or more) 

distinct sub-populations. We did observe that across all agonists, on activation the cluster 

of platelets that had the largest drop in GPVI or CD42a/b were not always the same 
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cluster of platelets that had the highest increase in classic activation markers 

(CD62P/PAC-1). In our whole blood stimulation experiments, the three common clusters 

that emerged across all agonists had comparable levels of CD62P expression and PAC-

1 binding but differed due to loss of GPVI or CD31. This implies that susceptibility to 

activation-induced ‘shedding’ may be a constituent factor to pre-destined sub-populations. 

However, further characterisation of these potential sub-populations would be required to 

determine their composition pre-activation.  

We next turned to machine learning to construct unbiased algorithms to uncover potential 

classifications at an individual platelet level and to compare predictive capacities between 

vehicle- and agonist-treated datasets. Consistent with platelet biology and our traditional 

user-led population analysis, CD62P expression and PAC-1 binding were consistently 

identified with agonist stimulation, as was loss of CD42b expression. Interestingly, the 

weighted importance of CD107a, lysosomal-associated membrane protein 1 (LAMP-1), 

was only high for PAR-1 activation using TRAP-6. Using the computed weightings, 

machine learning correctly identified over 89% of platelets within the training data set. 

When applied to an unseen data set, correct identification was predictably lower but 

maintained greater than 77% accuracy, rising to 91-92% for PAR-stimulated platelets. 

The difference in predictive capabilities is likely due to U46619 and ADP being 

comparatively weaker secondary agonists and therefore producing a less uniform pattern 

of response[41–44]. 

We next applied the same machine learning approach to differentiate between young and 

old platelets within mRNA stain-based, flow-sorted platelet samples which were 

subsequently vehicle- or agonist-stimulated. Strikingly, there is remarkable consistency 
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in the highly-weighted parameters across the unstimulated and stimulated samples with 

FSC-A, CD41, SSC-A, GPVI, CD61, and CD42b featuring prominently.  

A significant change in CD41 with platelet age is consistent with previous work from our 

group looking at the proteomics and transcriptomics of young and old platelets[33], and 

from others looking at their thrombotic potential[19]. Similarly, an association between 

GPVI levels and young platelets have been recently reported by Veninga et al.[45] in 

human platelets and by us using a temporal labelling approach in mice[12]. 

Interestingly, FSC-A, which is considered an approximate indicator of size in flow 

cytometry, is also highly important in our machine learning algorithm when distinguishing 

between young and old platelets. One point of contention concerning the field of platelet 

ageing is whether platelet size changes with age. Although there is some evidence linking 

mean platelet volume to thrombotic risk[46,47], there is also contradictory data suggesting 

that the two variables are independent of one another[12,48,49]. The hypothesis that 

young platelets are larger was originally proposed in the 1960s[50,51], however by the 

mid-1980s several studies were published reporting no correlation between platelet age 

and size[49]. Regardless, a caveat of using SYTO-13 dye as a surrogate marker of 

platelet age is that larger platelets may have more mRNA, and subsequently take up more 

dye and appear brighter, skewing sorting and subsequent analysis[52]. However, 

previous work from our group using a similar mRNA dye noted variations in 

megakaryocyte-derived mRNAs such that young and old platelets would have to vary 32-

64-fold in size for such a relationship to hold.[33] Similarly, it is also notable that SSC-A, 

generally taken as an indicator of internal complexity (i.e. granularity) of a cell, is a highly 

important discriminator of young versus old platelets. This finding is directly in line with 
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our observations that platelets lose approximately 50% of their total protein content and 

mitochondria as they age in the circulation[33]. Similarly, in turn this parameter may also 

reflect the potential density of a platelet, a measure that studies have suggested is an 

accurate indicator of platelet age[53–55].  

For unseen samples, machine learning-based identification of young and old platelets 

was 76% accurate in vehicle control samples. This accuracy was maintained in platelets 

treated with PAR-4 or U46619 but decreased to 67% in platelets treated with ADP. 

Notably, identification of ADP-stimulated platelets was primarily determined by 4 

parameters, whilst for all other conditions 6-7 parameters were used, indicating that 

perhaps the composition of this panel could be altered for improved accuracy. Conversely, 

predictive accuracy was higher in samples treated with TRAP-6 or CRP-XL, at 83% and 

84%, respectively. In addition, CD62P was more highly-weighted as an additional 

discriminatory parameter in these samples, which reflects the well-described greater 

thrombotic potential of young platelets and their higher CD62P degranulation[12,56]. 

Finally, we applied our machine learning-based identification of young and old platelets 

back to our healthy platelet populations. This analysis demonstrated that young platelets, 

as defined by machine learning in each condition, were consistently associated with 

platelet clusters carrying higher levels of activation markers, in accordance with our earlier 

reports[12,33]. This suggests that machine learning algorithms employing FSC-A and 

SSC-A, in addition to surface markers, can be used to further discriminate platelet sub-

populations in healthy individuals based on circulatory age.  

Existing flow cytometry technology is starting to be replaced by machines incorporating 

full spectrum measures and algorithm-based unmixing of contributing fluorophores. This 
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will make larger multi-parameter measurements of samples increasingly accessible to 

researchers. However, a key question will be the relevance and feasibility for clinical use 

as multi-parametric measurements of platelets or aggregates potentially offer the 

capability of more accurate diagnoses or monitoring of platelet disorders and thrombotic 

risk. As we demonstrate here, this phenotypic approach is suitable for staining and 

analysing very low volumes of whole blood which we believe are important advantages 

to overcome the logistical and economical hurdles to more routine clinical use. An 

alternative approach to achieve this goal is the development of label-free analysis of 

samples, often based on image analysis[57]. Both approaches offer the capability to 

identify and differentiate subtle features. Indeed, with companies already developing 

spectral based imaging flow cytometers it will most likely become possible to apply the 

two approaches simultaneously to analyse samples. At the heart of each approach is the 

application of machine learning, which is most powerful when informed by large numbers 

of samples to account for natural physiological variation. To achieve this will require 

acquisition of samples across multiple sites which will also necessitate the development 

of standardised protocols.  

In conclusion, we present a 16-parameter, flow cytometry-based assay coupled to 

powerful bioinformatic approaches to undertake unparalleled, deep phenotyping of 

platelets and their functionality. The incorporation of machine learning into this workflow 

provides impartial analysis and predictive capability at a by-platelet and by-individual level. 

We posit that this approach combining surface and physical markers will be highly 

valuable in phenotyping platelet sub-populations and studying platelet populations in 

disease or pathological states.  
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Tables 

Table 1: Predictive efficacy of machine learning of stimulated platelets. 

 ADP TRAP-6 U46619 PAR-4 CRP-XL 
Training set 

accuracy 0.92 0.94 0.89 0.95 0.95 

Unseen set 
accuracy 0.80 0.90 0.78 0.87 0.89 

 

 

Table 2: Predictive efficacy of machine learning of young and older platelets. 

 Vehicle TRAP-6 PAR-4 CRP-XL ADP U46619 
Training set 

accuracy 0.86 0.87 0.86 0.86 0.90 0.86 

Unseen set 
accuracy 0.76 0.78 0.77 0.76 0.76 0.74 
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Figure legends 
Figure 1: Changes in individual surface marker expression in resting and activated 
platelets. Platelets were incubated with vehicle (PBS), ADP (30µM), TRAP-6 (10µM), 
U46619 (10µM), PAR-4 (100µM) or CRP-XL (3µM) for 20 minutes at 37oC. Results 
expressed as: (A) raw MFI ±SEM were analysed using a one-way ANOVA with a Dunnett 
test to correct for multiple comparisons; (B) a heatmap based on MFI values; and (C) a 
heatmap based on MFI log fold-changes. All data obtained from n=20-21 volunteers. 

Figure 2: T-distributed Stochastic Neighbour Embedding (tSNE) visualisation of 
concatenated samples. Plots calculated for combined datasets (n=20-21) of platelets 
incubated with (columns) vehicle (PBS), ADP (30µM), TRAP-6 (10µM), U46619 (10µM), 
PAR-4 (100µM) or CRP-XL (3µM) for 20 minutes at 37oC. Each plot individually coloured 
to reflect intensity (low=blue, high=red) for each of the measured 16 parameters.  

Figure 3: Marker weighting from machine learning predications to distinguish between 
platelets incubated with vehicle and agonists. (A) ADP (30µM), (B) TRAP-6 (10µM), (C) 
U46619 (10µM), (D) PAR-4 (100µM), and (E) CRP-XL (3µM). (Left) Visual comparison of 
logicle transformed expression data and (right) marker weighting listed in order of 
importance with gradient overlay representing most important=red, least important=white. 
(N=20-21 for all). 

Figure 4: Marker weighting from machine learning predications to differentiate between 
“young” and “old” platelets incubated (20 minutes at 37oC) with (A) vehicle (PBS), (B) 
ADP (30µM), (C) TRAP-6 (10µM), (D) U46619 (10µM), (E) PAR-4 (100µM), and (F) CRP-
XL (3µM). (Left) Visual comparison of logicle transformed expression data and (right) 
marker weighting listed in order of importance with gradient overlay representing most 
important=red, least important=white. (N=8 for all). 

Figure 5: Interrogation of machine learning predicted ‘young’ and ‘old’ platelets within 
PRP samples incubated with vehicle or agonists. Platelets incubated (20 minutes at 37oC) 
with (A) vehicle (PBS), (B) ADP (30µM), (C) TRAP-6 (10µM), (D) U46619 (10µM), (E) 
PAR-4 (100µM), and (F) CRP-XL (3µM). (Left) tSNE division of concatenated datasets 
coloured with predicted ‘young’ (teal) or ‘old’ (red). (Middle panel) Violin plot of probability 
value for each event divided in clusters per condition, as identified by markers weighted 
by machine learning at above importance. (Right) Heatmap breakdown of relative marker 
expression within each cluster (low=white, high=purple). (N=20-21 for all). 

Figure 6: Identification of common sub-populations within whole blood incubated with 
agonists (20 minutes at 37oC) whole blood. tSNE visualisation of concatenated data 
coloured by (A) donor or (B) identified cluster. (C) Relative proportion of clusters and 
contribution by agonist (red: ADP; olive: CRP-XL; green: PAR-4; blue: TRAP-6; purple: 
U46619). (D) Comparative expression heatmaps with hierarchical dendrograms of 
identified clusters. (N=6 for all). 


