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Contributors and beneficiaries of data-intensive research have become increasingly concerned

about social and ethical risks from data science and machine learning applications [1–6].

Instances of unethical use of technology and harms caused to vulnerable communities have

made it even more urgent for researchers to broaden the considerations of ethics and societal

impact in their research. There has been a proliferation of ethical guidelines [7–10], checklists

for responsible research [11,12], and teaching materials [13] encouraging the application of

good research practices in all areas of data science research, including machine learning (ML),

artificial intelligence (AI), and natural language processing (NLP). While encouraging, there is

also a risk that ethical considerations from guidelines and checklists may be added to a project

as an afterthought unless such considerations are incorporated into the research process from

the onset so that data science can be performed responsibly by design (in a similar vein as

advocated for by Open Science by Design [14]). To help enable this goal of incorporating eth-

ics through the entire research process, we outline 10 simple rules of a responsible data science

workflow.

A responsible data science workflow scaffolds practices and processes of ethical research,

defined by the European Commission as “an approach that anticipates and assesses potential

implications and societal expectations with regard to research and innovation, with the aim to

foster the design of inclusive and sustainable research and innovation” [15]. We stress that this

approach should be considered at each stage of the data science lifecycle [6,16,17]—ranging

from team assembling and research design to data collection and evaluation, model building,

model evaluation, and reporting. Data science projects often involve multiple teams and con-

tributor groups, and hence, it is our ethical responsibility to embed practices for inclusive and

collaborative research as well. A responsible data science workflow identifies and invites differ-

ent stakeholders, possibly with different interests, expertise and access to resources [18], to

participate in the workflow and provide feedback, especially those who are affected by data sci-

ence research, including research subjects, collaborators, community members, and those

from marginalized groups (see Fig 1).

Historically, questions and considerations around research ethics have primarily focused

on the issues of privacy, confidentiality, and rights of research participants (or data subjects)

[19]. More recently, attention has also been placed on fairness and bias of prediction models

and modelers’ responsibility towards users and members from minorities and underrepre-

sented groups as well as regulations concerning data use and privacy as well as explainability

of outputs to those affected [4]. The movement towards openness and research transparency
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have emphasized the relevance to the current scientific ethos of the Mertonian norm of “com-

munality”—that scientific objects such as data, methods, and findings are common property

to the scientific community and that advancements in science depends on open communica-

tion and sharing [20–24].

Responsibilities are myriad, but there are a few key ones that span a data-intensive project.

Maintaining transparency of research objects through documentation for fellow researchers

and funding bodies means that the plan for the analysis is written down, shared, and followed,

and the approach used to collect, clean, and preprocess data can be followed by someone out-

side of the research team [20]. Working towards model interpretability is also an important

responsibility, related to transparency, because those affected by the model or governing bod-

ies who rely on the model need to have a full understanding to make informed decisions.

There is a responsibility to ensure diversity, inclusion, and fair recognition of all contributors

and collaborators on a project such that team members contribute a variety of experiences to

the project, feel welcome and supported by their teammates, and get recognition for their con-

tributions when results are shared. A responsible data science workflow should embed ethical

and social considerations across the data science lifecycle and across the practice of collabora-

tive research, while acknowledging that one or another consideration may be more pertinent

to a particular setting.

Research workflows need not to be narrowly centered on the process of data analysis and

software tool-building alone. They can and should integrate data analysis holistically with

broader considerations of good collaborative and computational practices. These practices

include the use of FAIR (Findable, Accessible, Interoperable and Reusable) research objects

including data and tools, supported by initiatives like the European Open Science Cloud [25]

that aim to streamline data sharing for re-use of data, Free and Open-Source Software (FOSS),

inclusive approaches, clear communication, and an attention to ethics and the social impact of

the research (as broadly defined in The Turing Way) [15,26,27]. In the context of Indigenous

data, the CARE (Collective benefit, Authority to control, Responsibility, and Ethics) principles

should be applied to complement FAIR practices ensuring the “use of data aligns with Indige-

nous rights, is as open as determined by Indigenous communities, is purposeful, and enhances

the wellbeing of Indigenous Peoples” [28]. Reproducibility is certainly something to aspire to,

Fig 1. Components in a responsible data science workflow. For each stage in the data science life cycle, we identify

associated practices of research ethics, risks, and responsibilities towards key stakeholders. This figure is inspired by

[6,16].

https://doi.org/10.1371/journal.pcbi.1012232.g001
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but a workflow can push further towards responsibility by considering both the technical and

social aspects of the project.

Further, responsible research workflows not only apply reproducible practices while engag-

ing with ethical approaches throughout the whole process but can also adapt as the need

emerges. Many discussions about reproducible and responsible workflows are about how to

set up the “right” workflow, while acknowledging that the “right” workflow today might not be

“right” tomorrow. Throughout the rules presented, we discuss how researchers can navigate

the process of changing research workflows given new contexts and constraints.

In these 10 simple rules for building and maintaining responsible data science workflows,

we walk through the lifecycle of a project and consider how a research team can responsibly

manage both the technical and social aspects of the project, adapting when necessary. These 10

rules are by no means prescriptive as we recognize the complexities surrounding responsible

research and the heterogeneity of data science applications across research communities and

fields. In addition, the iterative nature of exploration and refinement within a project can lead

to nonlinearity in the workflow that can make data and computationally intensive research

challenging. Nevertheless, we hope the rules can help interested researchers build and main-

tain a responsible workflow and collaborations.

Rule 1: Explicitly consider ways in which your research findings

could be used to do harm

The beginning of a research project is often full of energy and promise. At this stage, it can be

hard to properly assess the ethical implications of a research project before a team has collabo-

ratively set the overarching goals and decided on its next steps. Issues like the input data not

being as representative as a team initially thought, or others, like overgeneralizing the findings

such that they make inadvisable recommendations to a vulnerable population, could start to

appear. Therefore, it is important to embed checkpoints in the early planning stage for the

research teams to seriously reflect on the unintended consequences of their work.

Early reflection can happen while the research team conducts a literature review as part of

their preliminary work to learn about the current state of the art and consider how to place

their new idea. As the team reads about other projects that have approached a similar problem

to the one they are interested in solving, they could be prompted to categorize past projects in

terms of types of negative impacts they have the potential to impose. For example, are there

any privacy concerns that arise from an effort to make input data openly available, or is there

performance bias of a predictive algorithm applied to human decisions that could lead to

unfair outcomes for different people?

Beyond the academic literature, what disaster stories have been heard related to the type of

data or approach the team is considering, perhaps in the news or collected in books like Algo-
rithms of Oppression: How Search Engines Reinforce Racism [29], Race After Technology [30],

and Weapons of Math Destruction [4]? Could the described incidents reappear in the proposed

project? Research teams can even learn from the entertainment that its members consume.

What dystopian future could result from the work? Experts in data-related and technology

fields have even started to bridge the gap between traditional dystopian worlds and specialized

scenarios that are informed by the work they do (e.g., [30–32]).

As Skirpan and Yeh warn: “with the blinding light of promise glistening, we must be careful

not to miss that there are consequences and dangers” [33]. They advocate for a speculative

analysis of the field, mixing ideas from formal risk analysis with those of speculative fiction.

Similarly, Gaskins advocates for taking inspiration from Afrofuturism creatives and specula-

tive designers to question algorithms [34]. If the algorithm is designed for use by an “average”
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user, how do atypical users fare? Are predictive algorithms just as accurate for data points rep-

resenting all demographics? This idea of constant questioning, even from the beginning, is

emphasized in Marshall’s book, Data Conscience: Algorithmic Siege on our Humanity, which

connects the principles of data, technology, and human ethics and outlines key motivating

questions to consider [2].

Disasters aren’t the only thing to think about; seemingly innocuous decisions can have

biases baked in and lead to unintended consequences. For example, suppose you are in charge

of collecting data to inform a policy change about the maximum building height allowed in a

neighborhood. You may look at the heights of buildings that are listed in prior permits over

time, keep track of how limits in the legislation have changed, and release a survey about pref-

erences for people who live in the neighborhood. So far, this scenario might seem pretty

straightforward and low risk for ethical complications.

However, let’s dig in a bit more. What about the people who cannot afford to live in the

neighborhood but commute there for work? The commute may take up considerable free time

and so they like to take advantage of the green space nearby their office building to eat their

lunch and get some fresh air. Higher buildings might block the sun and make that space inhos-

pitable for plants, wildlife, and lunch eaters alike. You won’t know about these people’s prefer-

ences though because you only surveyed people who live in the area.

Let’s also consider who the policy makers have been in this area. Are their demographics

and stances reflective of the population? Who has been pushed out of this neighborhood by

previous changes in policy, and how might that affect what you see in the building height data?

By making your decision solely based on information that you have access to in the historical

record, you may be perpetuating historical biases.

Going through expansive reading, reflection, and questioning process, in scenarios big and

small, not only helps avoid unintended consequences in the future but can also make the

intended audience or user base that the team is responsible to more concrete early on.

Rule 2: Question your inputs: What is the data provenance and

what privacy concerns or biases might be at play?

Questioning your data inputs—how data was designed and for what purposes and uses—

should be an integral part of a responsible data science workflow. Data science research has

historically prioritized model performance but many recent concerns about bias and fairness

could be traced back not only to the models but also to the data used to train the models

[5,6,35,36]. Because data is central for the development, evaluation, and validation of data sci-

ence and ML models, the impact of deviations from originally intended use and data quality

on model outputs may be considerable.

Data science research operates in a specific data governance regime of how data is gener-

ated, collected, and shared. Data science research typically uses “readymade” data [19] which

was designed, generated, and collected by governments, public sector organizations, and com-

panies for purposes that were different from the specific research question being pursued. In

contrast to “custom made” data, where researchers have clearly stated intentions and control

in the process of data production, many properties of readymade data may be unspecified or

unclear for the researchers using the data, introducing possible social and ethical harms from

models trained on the data. Both types of datasets require further scrutiny when used as data

inputs. It is important that open data frameworks along with FAIR and CARE principles are

applied to enable purposeful use and reuse of data that promote equitable access and sharing

of benefits [28].
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When you examine potential data for your research, you may first evaluate for data trans-

parency and provenance: Who funded and collected the data, how is the data distributed, and

for what purposes and what intended uses? A useful starting point is provided in “Datasheets

for Datasets” [35] that outlines a standardized template for documenting data, including moti-

vation, composition, collection process, recommended uses, distribution, and maintenance of

the data. Datasheets for Datasets can facilitate responsible (re)use of data. Questions like “For

what purpose was the dataset created?”, “Was there a specific task in mind?”, and “If consent

was obtained, were the consenting individuals provided with a mechanism to revoke their con-

sent in the future or for certain uses?” highlight the need to carefully consider the implications

and potential ethical quandaries that can arise when using data in a new context. If you are

planning to use a dataset, a good starting point will be to check for an available Datasheet doc-

umenting data provenance, characteristics, and potential risks. If a dataset does not have a

datasheet, as would be the case with many datasets, especially earlier ones, a possible solution

would be to contact data creators regarding data characteristics. Data hubs can also provide an

entry point to search datasets and to standardized data documentation. Marshall’s book also

provides a list of questions to go through during the data sourcing process to help navigate the

use of preexisting data, the need to collect data, the rights of use, and the logistical structures of

use (Table 5.1 in [2]).

Dataset documentation may not anticipate all potential biases in your particular applica-

tion. An important part of your responsible workflow is to evaluate for potential data-associ-

ated biases [5,6]. This includes representation or sampling bias arising when the data used to

train a data science model underrepresents some parts of the population. As a result, the

trained model may fail to generalize for an underrepresented population. A related, historical

bias, occurs when, even in the absence of sampling bias, some population groups are underrep-

resented in the data due to structural disparities or inequalities in the past. A third family of

biases refers to measurement bias that arises due to inaccuracies in how variables, features, or

labels are measured or classified. In big data research, measurement bias often occurs when

readymade measures are used for proxies of unavailable true values. For example, a model that

uses health costs as a proxy for health needs was found to discriminate against black patients

[3]. Because black patients incur lower health care costs due to unequal access to treatment, for

patients with otherwise the same levels of health needs, the algorithm would falsely conclude

that black patients are healthier than white patients, thereby prioritizing white patients for

treatment while underestimating the health needs of black patients [3].

Another ethical consideration is not a bias per-se but has to do with informed consent. Par-

ticipants may have consented to have their data used to answer a particular research question,

but may not feel comfortable extending that consent to future research questions. Just because

data exists, doesn’t mean it should be used. For example, patients in a new drug trial may con-

sent to having their data be shared for other future medical studies but may not want their

data passed along to insurance companies for risk analysis studies.

Data biases should be identified and mitigated at the early stages of the data science life-

cycle. However, this is often not the case. A recent survey of the ML literature indicates that

mitigation efforts are overwhelmingly focused on the modeling stage, even though problems

and biases are often identified and measured at earlier stages of problem formulation and data

collection and processing [16].

There is no “one size fits all” data bias mitigation strategy. The effectiveness of data bias mit-

igation strategies would depend on the sources of bias and on the application [6]. For example,

in the presence of representation bias, data augmentation through the collection of additional

data samples of underrepresented groups could be an effective bias mitigation strategy. How-

ever, in the presence of historical biases, the collection of additional data would be an
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insufficient mitigation strategy. To mitigate historical biases, systematically under- or over-

sampling may be part of a solution but you would typically also need fairness approaches (see

Rule 3) that can deal with biases in observational data. One such approach, informed by the lit-

erature on causal inference [37], is counterfactual fairness, which considers a model outcome

to be fair to an individual if it is the same in reality as it would be in a counterfactual world in

which the individual is part of a different sociodemographic group [38,39]. For example, for

the task of predicting success in law schools, a model would be counterfactually fair if the pre-

dictions for applicants with observed race and sex are comparable to the predictions given

applicants’ counterfactual race and sex categories [39].

However you decide to assess bias in your input data, including the outputs of your bias

checks as well as bias mitigation strategies in the materials you share can help others learn

from your approach, and the transparency can help build trust within communities you are

responsible to.

Rule 3: Evaluate progress with respect to goals and with a process

for detecting bias, unfairness, and gaming of metrics

There have been concerns about the bias and fairness of data science and machine applications

in high-stake domains ranging from healthcare to the justice system [1,3]. Business or research

goals may be in conflict with bias and fairness goals, so it is important to consider them

together rather than one at a time. For example, Marshall discusses a hiring tool built by Ama-

zon in the mid 2010s (Chapter 3 in [2]). The tool was motivated by the vast scale of resumés

coming in and the business need to sift through them more efficiently. However, unintended

consequences were revealed when the tool downweighted resumés of those from minority

groups—diversity was not explicitly a goal of the algorithm.

Many metrics have been proposed to evaluate fairness and bias in data science models [38].

Yet, in comparison to the set of metrics used to evaluate the performance of ML models, there

is no agreed-upon set of metrics used to evaluate for fairness that researchers can use. This is

understandable given that fairness criteria have been found to be incompatible and no method

or metric can satisfy desirable fairness criteria simultaneously [40–42]. The incompatibility

between fairness criteria implies that fairness metrics cannot be easily plugged into a model

pipeline. Instead, researchers need to check for bias and fairness in their models in the context

of the communities they are responsible to, their policy goals and social values, and the ethics

relevant to the application in question. If you evaluate biases in your research design and data,

the next step is to evaluate and potentially fix your model.

In recognition of the limitations of any particular fairness metric, frameworks have been

recently developed to audit models and potentially mitigate social and ethical biases through

model transparency, interpretability, explainability, and fairness. Open-source tools for detect-

ing biases and unfairness have been proposed, including Aequitas [43], Fairlearn [44], and AI

Fairness 360 [45]. A particular advantage of such tools is that instead of focusing on a particu-

lar stage of the ML process or a particular bias, they allow a systematic examination of models

for various biases throughout the model development and application lifecycle. However, you

need not limit your responsible workflow to such tools. In many contexts, tools and metrics

may not be the appropriate approach to address model interpretability and fairness. More

effective solutions could be found, for example, in the way organizations and teams are

formed. Involving diverse people in problem definition, data collection, and model evaluation

may provide a more sustainable solution.

The flexibility of such tools poses some risks as well. There are a plethora of methods and

measures for model debiasing and fairness. While such diversity is helpful, the very choice of
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fairness criteria and potential trade-offs between fairness and accuracy as well as numerous

fairness metrics increase researcher degrees of freedom and flexibility. As a consequence,

unless preregistered in consultation with stakeholders, the application of an arbitrary fairness

metric may ensure neither fairness nor reproducibility but rather opportunities for gaming the

fairness metrics (see Goodhart’s law) [46]. Issues of fairness evaluations can be exacerbated in

the context of related reproducibility issues in data and ML-based sciences such as model mul-

tiplicity (when for the same prediction task, there are multiple models that have equal accuracy

but differ in their individual predictions and fairness properties) [47] and data leakage (when

information related to the target variable in the test data is “leaked” to the training data) [48].

This emphasizes the importance of good research and software practices that we discuss in

Rule 6 below. The same caution applies to model interpretability and explainability. One

would need to ask the question: Interpretable to whom? Researchers, policy-makers, or end

users? In some settings, current hopes for interpretable and explainable AI may be unrealistic,

and a rigorous internal and external validation of models may better achieve the goals of

interpretability and fairness in a responsible data science workflow [49,50]. All of these consid-

erations highlight the fact that model evaluation and bias mitigation cannot be automated in a

pipeline but require continuous integration of policy and social goals, domain knowledge, and

model specifications.

Rule 4: Embrace iteration: Goals and the metrics for measuring

progress should be reevaluated and bias mitigation strategies

improved as necessary

A lot can change in a data science project: the data can change (e.g., differential privacy

approaches to data sharing are adopted by the United States Census), the context can change

(e.g., new laws like the European Union’s General Data Protection Regulation impose new

constraints), the impact can change (e.g., a tool built for one purpose like a “fun” face swap fil-

ter on Instagram, is used for something else like malicious deep fakes) [2,51,52]. If the input

data experiences data shift, when the distribution of the data that a workflow is built with is dif-

ferent than the distribution of the data that the workflow is currently being used with, the

validity of the outputs may be in jeopardy [53]. It may be necessary to not only change inputs,

or an analysis approach, but also how outputs are evaluated to ensure continued accuracy and

to mitigate differential impact of any future degradation. Beyond your assessment metrics, be

open to this change more generally! Even welcome it by scheduling reflective assessments peri-

odically. For ideas on what this process can look like, see Rule 8 which further discusses

reflection.

Going a step further beyond bias mitigation strategies, ideas of algorithmic reparations

remind us that sometimes the solution is not to debias but to rather use the bias to improve

equity [54]. Davis and colleagues [54] use the Correctional Offender Management Profiling

for Alternative Sanctions (COMPAS) tool as an example. COMPAS makes predictions about

whether a defendant is likely to commit another crime, and this prediction is used to help

make decisions about sentencing. A first metric of success may be to minimize false positives

across the whole dataset. However, with an eye towards equity, the team might worry about

the distribution of false positives across racial groups being uneven and update its metric of

success to be equal false positive rates across groups. Going even further, even algorithms that

result in “fair” errors, ones that are evenly distributed across demographics, may seem well

intentioned, but this metric of success does not consider that the effect of an error may differ

by demographics. As the team iterates on their goals, refining them based on their responsibil-

ity to those impacted by their decisions, they may consider that the impact of more severe
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sentencing may differ across racial groups and further refine their metrics of success. For

example, Davis and colleagues [54] discuss the virtues of a reparative algorithm that would be

proactive about this and “protect” groups that face “disproportionate risk.” One approach to

algorithmic reparations is to work more closely with communities that you are responsible to

so that the products are understandable and share a sense of trust through co-creation.

Rule 5: Confirm the functionality and fairness of the overall

workflow each time an element changes

Although a responsible workflow should be open to change by being iterative and adaptive,

the logistics of navigating this change must also be considered. Best practices from software

engineering, like those outlined in [55], can be adopted to make it easy to check that changes

will not break other components of the project and help avoid pain points. If different mem-

bers of a team are working on different components, this is especially important.

As different parts change, potentially at the same time, “gut checks” can help avoid disaster.

Errors can occur in many types of project components, some involving the technical process

like coding and data analysis errors and others involving the more informal workflow of col-

laborations including miscommunications between team members. For technical processes,

“gut checks” could be formal unit tests [56,57] like those used in software engineering-style

workflows or investigations of unexpected outcomes [58,59]; for non-technical processes, “gut

checks” could be a conversation between all members of a team involved in the downstream

processes of a proposed change before moving forward.

Once changes are ready to be formally included, the transition between the old and new

versions should be organized such that if something goes wrong, there is a fail-safe, working

approach that is defaulted to. A software engineering practice of continuous integration,

where small changes are contributed frequently to a shared code base and run against tests to

ensure continued functioning, can help avoid inducing errors and incompatibilities across

multiple contributions to a system [60,61]. If a team anticipates making “breaking” changes,

members need to consider the downstream effects of their user community, and act accord-

ingly [62–64].

Consider a simple example where a project continually adds to a spreadsheet that it shares,

along with the processing code, on GitHub. As the project starts out, the spreadsheet doesn’t

have many rows, but as the project progresses, the file gets larger and larger. Eventually, it will

hit the file size limit for a file (100 MiB) [65]. Having a back-up plan for data sharing when this

happens and a process for navigating the transition in a transparent way without gaps in access

to the data ensures continual functionality. Teams may do this by changing reference URLs to

the data and ensuring that code further on in the pipeline references the most up-to-date stor-

age location.

Often, as changes are being made, there should be a working prototype available in the

meantime. However, there may be cases where service should be discontinued until changes

are officially made. For example, if harm is currently being done, such as with a privacy

breach or some other unintended consequence, having nothing might be better than having

something, despite “losing face” in the short term (e.g., [66]). Building off of the earlier

example, if each row is a de-identified record, data privacy may be upheld at the beginning

of the project. However, as the records get continually updated, there may be more and

more information tied to an anonymous user id that might make them more likely to be

identifiable. Continually checking for adequate anonymity before updating the dataset pub-

lically is required to make sure the workflow does not break down in its promise to maintain

participants’ privacy.
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Rule 6: Follow best practices for transparency, reproducibility, and

documentation and follow FAIR principles

The first 5 rules have focused on the addition of a social responsibility layer to a technical

workflow, but a responsible workflow also pairs a reproducible workflow with an ethical

framework. Both computational transparency and reproducibility are critical for data-

informed computational research [15,20,67–73]. Taking care with technical specifications can

actually make the work more ethical in general, by increasing access and building trust

through transparency and reliability.

At the phase when you design your research study, a good practice is to preregister your

study. Preregistration is the practice of documenting your research plan (including research

questions, hypotheses, and statistical analysis) and storing it in a public repository before

observing your research outcomes [74,75]. By separating exploration from testing of predic-

tions, preregistration brings researcher degrees of freedom to light [76] and helps protect

researchers from biases that are otherwise hard to avoid [76,77], including possible selective

reporting and overreporting of false positive results [74,75]. Preregistration strengthens model

validation techniques such as train-test split and cross-validation which are widely used in

data science and ML research to separate the phase of model exploration and fine-tuning from

the testing phase as a way of avoiding overfitting [68]. Preregistration is also an opportunity to

engage stakeholders early on in the project when the research team can still adapt the plan

based on feedback before any formal testing takes place.

Computational reproducibility refers to the verification of results using “the same input

data, computational steps, methods, and conditions of analysis” [71]. Transparency of compu-

tational workflow, code, data, and materials documenting the research process enables repro-

ducibility but also has an added layer of accountability to the groups that the project is

responsible to. Then, at any point in the research process, those impacted by the work can

check in and see how the project is going, weigh in on decisions, and give feedback on next

steps.

At the stage of research analysis, you can improve research transparency and reproducibil-

ity by avoiding or transitioning from point-and-click workflows and adopting coding scripts

or computational notebooks such as Jupyter Notebook [78] and Quarto [79]. Computational

notebooks are open-source web applications that allow you to create and share documents

that contain code, equations, visualizations, and text. Most notebooks support various widely

used open-source programming languages, including Python, R, and Julia. While a popular

tool for data exploration [80], notebooks can also support your reproducible research work-

flow by integrating executable code, data inputs, results, and documentation within a single

document [80–83]. Computational notebooks support reproducibility, but the tool itself is not

sufficient for reproducible data analysis. You also need a reproducible research workflow

[69,83], code documentation [84], and code review [85], all of which would help us transition

from a “nonlinear, interactive, trial-and-error style of exploration to a more linear and repro-

ducible analysis based on organized, packaged, and tested code” [86].

A data analysis may be reproducible but still contain errors or bugs that question the verac-

ity of the research findings. One such issue is data leakage. In simple terms, data leakage arises

when information related to the target variable in the test data is “leaked” to the training data.

Kapoor and Narayanan [48] identified various sources of data leakage, including very simple

errors like using the same dataset for both training and testing or incorrect preprocessing (e.g.,

the imputation of missing values is performed on the entire dataset instead of on the training

data and the test data separately). As with computational reproducibility, to mitigate the risk

of such errors and code, transparency of research code and data is essential.
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At the phase of disseminating your research study, it is a good practice to make your

research outputs—data, software, and associated metadata—“FAIR” such that they are more

Findable, Accessible, Interoperable and Reusable [27,87]. This makes the work more inclusive

by allowing anyone to discover your work, access its components, and reuse it to further their

own research, not just those with particular resources at their disposal. When you are ready to

share your project as a publication submission, preprint, or another public form of dissemina-

tion, you can use a guide [88] to make your dataset and its associated metadata available for

others via archiving services such as Dryad, Zenodo, Open Science Framework (OSF), and Fig-

share. For private, sensitive, individual-participant data (IPD), you can use Trusted Research

Environments (TRE) [89] and safe and secure storage platforms, such as Vivli for clinical trial

data [90]. Many TRE platforms provide secure and transparent access to large healthcare and

other potentially sensitive observational data, such as the National Health Service (NHS) Digi-

tal’s Trusted Research Environment [91] and OpenSAFELY [92].

You can also integrate your computational notebooks with version-control software such as

Git, GitHub, and GitLab [72,83] so that others can access your code and its history, and possi-

bly collaborate and/or reproduce your research. To enable others to execute your computa-

tional notebook interactively, you can package your notebook and underlying computational

environment using various tools for containerization [93] and cloud-computing service (for

example, Binder creates an executable Jupyter notebook in Julia, Python, or R). Making your

computational workflow executable, interactive, and reproducible across platforms removes

the need for an interested user to spend time and money downloading particular software and

setting up their computing environment in a very specific way [78].

Tackling the full scope of reproducibility best practices is beyond the scope of this paper,

but we point you to the many resources available to help you learn about best practices for

reproducibility [15,20,72,81,82,94] and scientific computing [84]. For example, the Turing

Way is an open, community-driven project “dedicated to making collaborative, reusable and

transparent research ‘too easy not to do’” [15]. The R user community, including groups such

as rOpenSci, have developed packages specifically to enable open and reproducible research,

such as rrtools, workflowr, and usethis [82,95–97]. More recently, the BigScience Workshop

[98] has brought researchers together to build and then evaluate large computational language

models. You can also improve the transparency and reproducibility of your data science

research by consulting reporting guidelines, such as the TRIPOD-AI (Transparent Reporting

of a multivariable prediction model of Individual Prognosis Or Diagnosis-Artificial Intelli-

gence), reproducibility checklists, such as “The Machine Learning Reproducibility Checklist”

[99], “Model info sheets for detecting and preventing leakage” [48], and the “NLP Reproduc-

ibility Checklist,” and/or take part in the ML reproducibility challenges, such as the ML Repro-

ducibility Challenge 2022 [100], aiming to reproduce work submitted to major machine

learning conferences, including Neural Information Processing Systems (NeurIPS), Interna-

tional Conference on Machine Learning (ICML), International Conference on Learning Rep-

resentations (ICLR), Annual Meeting of the Association for Computational Linguistics (ACL),

and Association for Computing Machinery Conference on Fairness, Accountability, and

Transparency (ACM FAccT).

Rule 7: Apply fairness and inclusivity principles to your

collaborators as well as your research topic

A responsible data science workflow practices what it preaches; turning inward when assessing

use of inclusive practices as well as considering the outward impact of the work. Effective col-

laborations are as much about the social dynamics as they are about the technical aspects of
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the work. Fostering an inclusive environment for the entire team takes intentional effort across

multiple stages of a research project from onboarding new teammates, to retaining them and

providing support for growth [101].

Collaborative work requires division of labor as well as fair distribution of power and recog-

nition. Making a plan and clearly communicating expectations for all contributors to ensure

both of these aspects are equitable, or at least commensurate with one another, can promote

fairness [102]. Norms around what constitutes “enough” of a contribution to become an

author differ by field. Similarly norms about the relationship between author order and the

prestige or community recognition of the work, either explicitly or implicitly, vary greatly by

field [103]. It is important to have conversations early on in the process about expected contri-

butions and authorship to make sure there are no mismatches in expectations and outcomes.

A study of author contribution statements in the journal PLOS ONE revealed different pat-

terns in the division of labor in research teams [104]. One of the team’s findings showed that

interdisciplinary projects tend to have less division of labor; instead, every part of the team

works on multiple parts of the process. The authors propose one possible explanation for this:

members “integrate these different perspectives by collaborating more closely on the same

activities.” Data-intensive research teams often bring together people from a variety of back-

grounds and with heterogeneous expertise. To avoid teammates being “siloed” into only the

roles for which they have the comparative advantage, including multiple people in each step of

the workflow can both ensure multiple perspectives are weighing in on each step but also give

team members an opportunity to expand their skill sets.

Logistics constraints can make responsible collaboration challenging as teams understand-

ably are pressured to do more with less (time and/or money). For example, Eitzel [105] docu-

ments how a member of an interdisciplinary working group decided to stop attending group

meetings because of a mix of logistical burdens (heavy teaching load and a conference dead-

line) and personal burdens (always being called upon to teach the group about the basics of

their discipline while simultaneously having the discipline being undervalued by the group

members from another discipline). Eitzel [105] perceived this group member’s missing contri-

butions to the discussions after leaving to be a huge loss for the group’s overall understanding

and progress. Valuing the group member’s expertise both in attitude and compensation would

have been helpful in maintaining their contributions to the overall group.

Team diversity, decentralization, and inclusion are important for ethical as well as epistemic

reasons. Research findings from decentralized and non-repeat collaborations were found to be

more likely to be replicated in subsequent research as they have been tested across different meth-

ods and conditions [106]. Gender-diverse teams have been found to generate more novel and cre-

ative ideas [107], particularly when diversity is considered together with inclusion [108]. Yet,

women are underrepresented in fields related to data-intensive research, including computer sci-

ence and software development [109], and are more likely to leave compared to men [110].

Rule 8: Prioritize continual learning and reflection to embed ethical

considerations throughout the entire research process rather than

just at the beginning and end

Responsible workflows require an iterative approach and constant questioning about conse-

quences and discussion of all relevant stakeholders, not just the obvious ones. However, a team

decides to implement continual learning and reflection, conversations about ethics should be

ongoing throughout a project. Zook and colleagues also highlight responsibility in data work.

In their rules for responsible big data research, they identify ethical action items throughout a

research project, highlighting the constant responsibility necessary in data work [111].
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For an example early on in the research process, the Stanford Institute for Human-Centered

Artificial Intelligence piloted an “ethics and society review board” that required consideration

of risks towards broader society in addition to the human subject that is more typical of the

IRB process for health-related research, in order to apply to grant funding. In addition, this

review process also included iterative feedback for applicants to further reflect and revise their

plans [112].

Finding a framework for prompting reflection that works for a team can be challenging. Eit-

zel [105,113] presents one such framework for autoethnographic assessment of best practices.

Eitzel [105,113] provides an example of working through the process herself on her own

modeling best practices that includes social science considerations as well as more traditional

modeling practices. This process helped Eitzel not only grapple with issues of technical repro-

ducibility (by transparently providing errata to a previously published paper when a mistake

was found in the analysis) but also helped improve her modeling practices by working to

engage with community stakeholders. This occurred by interviewing researchers at a field sta-

tion about oak tree data collection procedures and creating a data biography that helped when

synthesizing multiple datasets into one conservation analysis.

Rule 9: Make sure your responsible data science workflow is

sustainable. This includes aligning incentives and giving people

credit for responsible research

Once you build your responsible data science workflow, it becomes a research object on its

own and it needs to be maintained and updated like other FAIR research objects [114].

Responsible data science workflows are composite workflows consisting of heterogeneous

research objects, computational infrastructure, and socio-technical tools. Many of these

objects are not typically considered as part of a workflow (for example, data ethics, team for-

mation, authorship allocation). Once your workflow involves heterogeneous processes, you

need to keep these processes together by documenting them. You can use GitHub, Open Sci-

ence Framework, or another repository to document your workflow and link the various

objects from team formation, through research design and data analysis, to dissemination of

results.

Compared to automated computational workflows, which are precise descriptions of proce-

dures [114–116], a responsible data science workflow is a broader notion, incorporating prin-

ciples of fairness and equity applied to data subjects, research collaborations, and model

outputs. Consequently, in comparison to automated computational workflows, many pro-

cesses of responsible workflows may be less crystalised in current data science research and

may also be less codifiable, recordable, accessible, interoperable, and reusable. Nevertheless,

some processes are in the process of getting codified.

For example, fair recognition of individual contributions to a research output can be very

difficult in interdisciplinary data science projects, especially for Early Career Researchers

(ECR), yet tools such as the CRediT (Contributor Roles Taxonomy) taxonomy allow authors

to provide a precise description of their contributions to the published work, enabling a fair

allocation of research credit. Relatedly, one of the authors (BM) outlines principles of

Authorship Ethics on their personal website, synthesizing from a variety of resources [117–

119].

The maintenance of a responsible data science workflow requires effort and resources.

However, incentives in the current reward system of scientific research and of competitive

industries are often misaligned with responsible data science and ML applications, favoring

novel positive findings at the expense of model transparency, reproducibility, or bias
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evaluation [21,23,24,120]. Performance assessment of researchers for hiring, promotion, and

tenure often considers metrics such as the number of published papers, citations, and Journal

Impact Factor (JIF) [121]. When extra time is put into the quality of the work, i.e., making

work ethical and reproducible, this can come at the expense of quantity. This reality should be

accounted for in performance reviews of people who do this work, such that responsible data-

intensive research is rewarded instead of penalized. In industry settings, incentives can be dif-

ferent and may include recognition for unsung work in the form of promotion and monetary

raises. However, the same tension between quality and quantity remains and should be consid-

ered when making decisions about a researcher’s progress. Recently, the realization of mis-

aligned incentives also led to new research reforms, scientific communities, and regulations

aiming at responsible data-intensive research. Many journals and conferences encourage and

promote the availability of code and data. Further, in 2023, the National Institutes of Health

(NIH) introduced a Data Management and Sharing Policy that mandates the sharing of scien-

tific data. As regulations and institutional reforms are only in early stages, incentives for doing

ethical and reproducible work come mostly from the research communities. Therefore, it is

important to give people credit for following the rules of a responsible workflow when review-

ing their work in our own communities and spheres of influence.

Rule 10: Communicate your workflow along with your research

outputs to a wide audience, including the communities you are

responsible to

Part of the maintenance of a project includes documenting the entire process. Sharing that process

frequently, to stakeholders and colleagues alike, rather than only through a written document or

oral presentation at the end of the project, can help others learn about both your findings and

your workflow. Some may benefit more from hearing about the team’s workflow itself so that

they can repurpose the approach for another research aim. Being transparent about the behind-

the-scenes work, from what worked to what did not, can help others streamline their workflows

and avoid the same pain points and build trust within the communities affected by the work.

Communicating about the work throughout the process rather than just at the end can also

benefit the research team by keeping them accountable for keeping materials organized and

transparent [122]. This communication does not always have to occur in formal venues. For

example, various data-related organizations have a blog where members of the group explain

the processes behind their work for a wider audience (e.g., [123–125]). Other venues celebrate

the process behind the work rather than only the outputs themselves (e.g., [126,127]) or give

researchers a chance to make their formal work more accessible to a general audience (e.g.,

[128,129]). Valuing nontraditional communication venues and mediums within a team can

encourage creative contributions that showcase the work of the team while also helping to

reach communities who might not otherwise engage with the work. These informal mediums

can help make the work more accessible, increasing its impact, and bring more people into the

conversation about the choices made in the project.

Conclusions

A responsible data science workflow combines technical and social considerations throughout

the whole lifecycle of a project. By recognizing that we as researchers are responsible to many

different stakeholders, with potentially competing interests and who are differentially

impacted by the work, in an ever-changing context and data environment, we can make better

choices about the technical side of the project. We need to act ethically and be adaptable to

ensure we remain ethical as new information arises.
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Our goal with these 10 rules is not to provide a whole new workflow to switch to but rather

to combine much of the “best practices wisdom” into one workflow that also acknowledges the

human component of both the work and the impact of data-intensive research.
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entific Ecosystem Through Meta-Research. Annu Rev Stat Its Appl. 2020; 7:11–37. https://doi.org/10.

1146/annurev-statistics-031219-041104

22. Merton RK. The Sociology of Science: Theoretical and Empirical Investigations. University of Chicago

Press; 1973.

23. Miguel E, Camerer C, Casey K, Cohen J, Esterling KM, Gerber A, et al. Promoting Transparency in

Social Science Research. Science. 2014; 343:30–31. https://doi.org/10.1126/science.1245317 PMID:

24385620

24. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, et al. Promoting an open

research culture. Science. 2015; 348:1422–1425. https://doi.org/10.1126/science.aab2374 PMID:

26113702

25. EOSC. In: European Open Science Cloud [Internet]. 2024 [cited 2024 Feb 21]. Available from: https://

eosc-portal.eu/about/eosc.

26. Gonzalez-Barahona JM. A brief history of free, open source software and its communities. Computer.

2021; 54:75–79.

27. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018. https://doi.org/

10.1038/sdata.2016.18 PMID: 26978244

28. Carroll SR, Herczog E, Hudson M, Russell K, Stall S. Operationalizing the CARE and FAIR Principles

for Indigenous data futures. Sci Data. 2021; 8:108. https://doi.org/10.1038/s41597-021-00892-0

PMID: 33863927

29. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. New York:

New York University Press; 2018. Available from: https://nyupress.org/9781479837243/algorithms-of-

oppression.

30. Benjamin R. Race After Technology: Abolitionist Tools for the New Jim Code. John Wiley & Sons;

2019.

31. Jeschke R. Affordances: Science Fiction About Algorithmic Bias and Technological Resistance. In:

Electronic Frontier Foundation [Internet]. 2019 Nov 4 [cited 2024 Jun 13]. Available from: https://www.

eff.org/deeplinks/2019/11/affordances-science-fiction-about-algorithmic-bias-and-technological-

resistance.

32. Tashea J. 40 Futures: v1.00 Read_Me. 2022 May 5 [cited 2024 Jun 13]. Available from: https://www.

justicetech.download/p/b7802967-77df-43de-b8fb-9af7f79abb4b.

33. Skirpan M, Yeh T. Designing a Moral Compass for the Future of Computer Vision Using Speculative

Analysis. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

Honolulu, HI, USA: IEEE; 2017. p. 1368–1377. https://doi.org/10.1109/CVPRW.2017.179

34. Gaskins N. Interrogating Algorithmic Bias: From Speculative Fiction to Liberatory Design. TechTrends.

2022. https://doi.org/10.1007/s11528-022-00783-0 PMID: 36160677

35. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Daumé H III, et al. Datasheets for
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