
Bayesian Nested Neural Networks for
Uncertainty Calibration and Adaptive Compression

Yufei Cui Ziquan Liu Qiao Li Yu Mao Antoni B. Chan Chun Jason Xue

Abstract

Nested networks or slimmable networks are neural net-
works whose architectures can be adjusted instantly dur-
ing testing time, e.g., based on computational constraints.
Recent studies have focused on a “nested dropout” layer,
which is able to order the nodes of a layer by impor-
tance during training, thus generating a nested set of sub-
networks that are optimal for different configurations of re-
sources. However, the dropout rate is fixed as a hyper-
parameter over different layers during the whole training
process. Therefore, when nodes are removed, the perfor-
mance decays in a human-specified trajectory rather than
in a trajectory learned from data. Another drawback is the
generated sub-networks are deterministic networks without
well-calibrated uncertainty. To address these two prob-
lems, we develop a Bayesian approach to nested neural net-
works. We propose a variational ordering unit that draws
samples for nested dropout at a low cost, from a proposed
Downhill distribution, which provides useful gradients to
the parameters of nested dropout. Based on this approach,
we design a Bayesian nested neural network that learns
the order knowledge of the node distributions. In exper-
iments, we show that the proposed approach outperforms
the nested network in terms of accuracy, calibration, and
out-of-domain detection in classification tasks. It also out-
performs the related approach on uncertainty-critical tasks
in computer vision.

1. Introduction

Modern deep neural networks (DNNs) have achieved
great success in fields of computer vision and related ar-
eas. In the meantime, they are experiencing rapid growth
in model size and computation cost, which makes it dif-
ficult to deploy on diverse hardware platforms. Recent
works study how to develop a network with flexible size
during test time [20, 50, 49, 4, 6, 47], to reduce the cost
in designing [44], training [21], compressing [13] and de-
ploying [36] a DNN on various platforms. As these net-

Department of Computer Science, City University of Hong Kong.
Correspondence to: Yufei Cui. Email: yufeicui92@gmail.com.

works are often composed of a nested set of smaller sub-
networks, we refer to them as nested nets in this paper.
As many problems are safety-critical, such as object recog-
nition [9, 12], medical-image segmentation [24, 18] and
crowd counting [33, 45], the adopted DNNs are required to
provide well-calibrated uncertainty in addition to high pre-
diction performance, as erroneous predictions could result
in disastrous consequences. However, the measure of un-
certainty was not considered in previous designs of nested
nets, which leads to over- or under-confident predictions.

One basis for creating nested nets is to order the network
components (e.g., convolution channels) such that less im-
portant components can be removed first when creating the
sub-network. A unit for neural networks, nested dropout,
was developed to order the latent feature representation for
the encoder-decoder models [37, 1]. Specifically, a discrete
distribution is assigned over the indices of the representa-
tions, and the operation of nested dropout samples an index
then drops the representations with larger indices. Recent
studies show that the nested dropout is able to order the
network components during training such that nested nets
can be obtained [6, 7]. The ordering layout is applicable to
different granularity levels of network components: single
weights, groups of weights, convolutional channels, resid-
ual blocks, network layers, and even quantization bits. We
refer to the partitions of the network components as nodes
in this paper. However, the probability that an index is sam-
pled is specified by hand as a hyperparameter, and does not
change during training. Thus, the importance of a node is
pre-determined by hand rather than learned from data.

To enhance predictive uncertainty and to allow the
dropout rate to be learned, in this paper, we propose a fully
Bayesian treatment for constructing nested nets. We pro-
pose a new nested dropout, based on a chain of interdepen-
dent Bernoulli variables. The chain simulates the Bernoulli
trials and can be understood as a special case of a two-state
Markov chain, which intuitively generates order informa-
tion. To save the time cost for sampling during training,
we propose a variational ordering unit that approximates
the chain, and an approximate posterior based on a novel
Downhill distribution built on Gumbel Softmax [17, 29].
This allows efficient sampling of the multivariate ordered

1

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

Density

𝑤!!| 𝑧! 𝑤!"| 𝑧" 𝑤!#| 𝑧# 𝑤!$| 𝑧$

Ordered	mask
𝒛

Sampling

Sampling

𝑯

𝑭

𝑓(()

𝑞(𝒛|𝜷)

𝜕𝑭
𝜕𝜷

Figure 1: Sampling process in a layer for calculating the data log-
likelihood (Eq. 8). A fully connected layer f(·) takes H as an input and
outputs F. The variational ordering unit q(z|β) generates ordered mask
z = [zj]j . Nodes wij ’s with the same color share an element zj . The gra-
dient through stochastic nodes ∂F

∂β
can be estimated efficiently, to update

the importance β.

mask, and provides useful gradients to update the impor-
tance of the nodes.

Based on the proposed ordering units, a Bayesian nested
neural network is constructed, where the independent dis-
tributions of nodes are interconnected with the ordering
units. A mixture model prior is placed over each node,
while the model selection is determined by the ordering
units (Fig. 1). A variational inference problem is formulated
and resolved, and we propose several methods to simplify
the sampling and calculation of the regularization term. Ex-
periments show that our model outperforms the determin-
istic nested models in any sub-network, in terms of classi-
fication accuracy, calibration and out-of-domain detection.
It also outperforms other uncertainty calibration methods on
uncertainty-critical vision tasks, e.g., probabilistic U-Net on
medical segmentation with noisy labels.

In summary, the contributions of this paper are:

• We propose a variational nested dropout unit with a
novel pair of prior and posterior distributions.

• We propose a novel Bayesian nested neural network
that can generate large sets of uncertainty-calibrated
sub-networks. The formulation can be viewed as a
generalization of ordered ℓ0 regularization over the
sub-networks.

• To our knowledge, this is the first work that considers
uncertainty calibration and learned the importance of
network components in nested neural networks.

2. Variational Nested Dropout

We first review nested dropout, and then propose our
Bayesian ordering unit and variational approximation.

1 13 25
0.00

0.08

0.16

Pr
ob

ab
ilit

y

Rippel et al.

1 13 25

Cui et al.

1 13 25

VND example #1

1 13 25

VND example #2

Index of weight groups
Figure 2: The probability of tail index being sampled in different nested
dropout realizations. Rippel et al. [37] and Cui et al. [6] adopt Geo-
metric and Categorical distributions, which are static over different layers
and the learning process. The proposed variational nested dropout (VND)
learns the importances of nodes from data. The two examples are from two
different layers in a Bayesian nested neural network.

2.1. A review of nested dropout

The previous works [37] that order the representations
use either Geometric or Categorical distributions to sample
the last index of the kept units, then drop the neurons with
indices greater than it. Specifically, the distribution pB(·)
is assigned over the representation indices 1, . . . ,K. The
nested/ordered dropout operation proceeds as follows:

1. Tail sampling: A tail index is sampled b ∼ pB(·) that
represents the last element be kept.

2. Ordered dropping: The elements with indices
b+ 1, . . . ,K are dropped.

We also refer to this operation as an ordering unit as the
representations are sorted in order.

In [37], which focuses on learning ordered representa-
tions, this operation is proved to exactly recover PCA with
a one-layer neural network. Cui et al. [6] shows this op-
eration, when applied to groups of neural network weights
or quantization bits, generates nested sub-networks that are
optimal for different computation resources. They fur-
ther prove that increasing from a smaller sub-network to
a larger one maximizes the incremental information gain.
A large network only needs to be trained once with or-
dered dropout, yielding a set of networks with varying sizes
for deployment. However, the above methods treat the or-
dered dropout rate as a hyper-parameter, and hand-tuning
the dropout rate is tedious and may lead to suboptimal per-
formance of the sub-networks, as compared to learning this
hyperparameter from the data. As illustrated in Fig. 2, the
previous works use hand-specified parameters for nested
dropout, which freezes the importance of the network com-
ponents over different layers during training.

A common practice for regular Bernoulli dropout is to
treat the dropout rate as a variational parameter in Bayesian
neural networks [8]. To find the optimal dropout rate, grid-
search is first adopted [9], whose complexity grows expo-
nentially with the number of dropout units. To alleviate the
cost of searching, a continuous relaxation of the discrete
dropout is proposed by which the dropout rate can be op-
timized directly [10], improving accuracy and uncertainty,
while keeping a low training time. However, for nested
dropout, two aspects are unclear: 1) how to take a full

2

Bayesian treatment with nested dropout units; 2) how the
relaxation can be done for these units or how the gradients
can be back-propagated to the parameters of pB(·).
2.2. Bayesian Ordering Unit

The conventional nested dropout uses a Geometric dis-
tribution to sample the tail b, pB(b = i) = (1 − π)iπ, for
i ∈ {1, . . . ,K}. By definition, the Geometric distribution
models the probability that the i-th trial is the first “success”
in a sequence of independent Bernoulli trials. In the context
of slimming neural networks, a “failure” of a Bernoulli trial
indicates that node is kept, while a “success” indicates the
tail index, where this node is kept and all subsequent nodes
are dropped. Thus, π is the conditional probability of a node
being a tail index, given the previous node is kept.

Sampling from the Geometric only generates the tail in-
dex of the nodes to be kept. A hard selection operation of
ordered dropping is required to drop the following nodes.
The ordered dropping can be implemented using a set of or-
dered mask vectors V = {v1, · · · ,vK}, where vj consists
of j ones followed by K−j zeros, vj = [1, . . . , 1︸ ︷︷ ︸

j

, 0, . . . , 0︸ ︷︷ ︸
K−j

].

Given the sampled tail index b ∼ pB(·), the appropriate
mask vb is selected and applied to the nodes (e.g., multi-
plying the weights). However, as the masking is a non-
differentiable transformation and does not provide a well-
defined probability distribution, the nested dropout param-
eters cannot be learned using this formulation.

To find a more natural prior for the nodes, we propose
to use a chain of Bernoulli variables to directly model the
distribution of the ordered masks. Let the set of binary
variables z = [z1, . . . , zK] represent the random ordered
mask. Specifically, we model the conditional distributions
with Bernoulli variables,

p(z1 = 1) = π1, p(z1 = 0) = 1− π1, (1)
p(zi = 1|zi−1 = 1) = πi, p(zi = 0|zi−1 = 1) = 1− πi,

p(zi = 1|zi−1 = 0) = 0, p(zi = 0|zi−1 = 0) = 1,

where πi is the conditional probability of keeping the node
given the previous node is kept, and π1 = 1 (the first node is
always kept). Note that we also allow different probabilities
πi for each zi. The marginal distribution of zi is

p(zi = 1) =

i∏
k=1

πk, p(zi = 0) = 1−
i∏

k=1

πk. (2)

A property of this chain is that if 0 occurs at the i-th
position, the remaining elements with indices i+ 1, . . . ,K
become 0. That is, sampling from this chain generates an
ordered mask, which can be directly multiplied on the nodes
to realize ordered dropping. Another benefit is that applying
a continuous relaxation [10] of the Bernoulli variables in the
chain allows its parameters π to be optimized.

However, the sampling of z requires stepping through
each element zi, which has complexity O(K), and is thus
not scalable in modern DNNs where K is large. Thus we
apply the variational inference framework, while treating
p(z) as the prior of the ordered mask in our Bayesian treat-
ment. One challenge is to find a tractable variational dis-
tribution q(z) that approximates the true posterior and is
easy to compute. Another challenge is to define a q(z) that
allows efficient re-parameterization, so that the gradient of
the parameter of q(z) can be estimated with low variance.

2.3. Variational Ordering Unit
We propose a novel Downhill distribution based on

Gumbel Softmax distribution [17, 29] that generates the or-
dered mask z.

Definition 1 Downhill Random Variables (r.v.). Let the
temperature parameter τ ∈ (0,∞). An r.v. z has a Down-
hill distribution z ∼ Downhill(β, τ), if its density is:

q(z1, . . . , zK) (3)

=Γ(K)τK−1

[
K∑
i=1

βi

(zi−1 − zi)τ

]−K K∏
i=1

βi

(zi−1 − zi)τ+1
,

where β = [β1, . . . , βK] are the probabilities for each di-
mension.

Two important properties of Downhill distributions are:
• Property 1. If c ∼ Gumbel softmax(τ, β, ϵz)

1, then
zi = 1 − cumsum′

i(c), where e is a K-dimensional
vector of ones, and cumsum′

i(c) =
∑i−1

j=0 cj . c0 := 1.
ϵz is a standard uniform variable.

• Property 2. When τ → 0, sampling from the Down-
hill distribution reduces to discrete sampling, where
the sample space is the set of ordered mask vectors V .
The approximation of the Downhill distribution to the
Bernoulli chain can be calculated in closed-form.

Property 1 shows the sampling process of the Downhill dis-
tribution. We visualize the Downhill samples in Fig. 3. As
each multivariate sample has a shape of a long descent from
left to right, we name it Downhill distribution. The tempera-
ture variable τ controls the sharpness of the downhill or the
smoothness of the step at the tail index. When τ is large, the
slope is gentle in which case no nodes are dropped, but the
less important nodes are multiplied with a factor less than
1. When τ → 0, the shape of the sample becomes a cliff
which is similar to the prior p(z) on ordered masks, where
the less important nodes are dropped (i.e., multiplied by 0).
Property 1 further implies the gradient ∂

∂βEz∼qβ(z)[ζ(z)]

1For Gumbel-softmax sampling, we first draw g1 . . . gK from
Gumbel(0, 1), then calculate ci = softmax(

log(βi)+gi
τ

). The samples
of Gumbel(0, 1) can be obtained by first drawing ϵz ∼ Uniform(0, 1)
then computing g = − log(− log(ϵz)).

3

0 5 10
0.0

0.5

1.0

Sa
m

pl
e

0

0 5 10

= 0.1

0 5 10

= 1

0 5 10

= 10

Dimension

Figure 3: The multivariate Downhill samples under different temperatures
τ . When τ → 0, a clear cliff is observed as the dimension increases,
which is beneficial for differentiating important or unimportant nodes. As
τ increases, the shape becomes a slope where the gaps between impor-
tant/unimportant nodes are smoother, which is beneficial for training.

can be estimated with low variance, for a cost function
ζ(z). Because the samples of z are replaced by a dif-
ferentiable function t(β, ϵz), then ∂

∂βEz∼qβ(z)[ζ(z)] =
∂
∂βEϵz∼Uniform(0,1)[

∂ζ
∂t

∂t
∂β], where t(·, ·) represents the

whole transformation process in Prop. 1.
Recall that our objective is to approximate the chain of

Bernoulli variables p(z) with qβ(z). Property 2 shows why
the proposed distribution is consistent with the chain of
Bernoullis in essence, and provides an easy way to derive
the evidence lower bound for variational inference. The
proof for the two properties is in Appx. 1.1. This simple
transformation of Gumbel softmax samples allows fast sam-
pling of an ordered unit. Compared with p(z), the complex-
ity decreases from O(K) to O(1), as the sequential sam-
pling of the Bernoulli chain is no longer necessary.

3. Bayesian Nested Neural Network
In this section, we present the Bayesian nested neural

network based on the fundamental units proposed in Sec. 2.

3.1. Bayesian Inference and SGVB
Consider a dataset D constructed from N pairs of in-

stances {(xi,yi)}Ni=1. Our objective is to estimate the pa-
rameters u of a neural network p(y|x,u) that predicts y
given input x and parameters u. In Bayesian learning, a
prior p(u) is placed over the parameters u. After data D is
observed, the prior distribution is transformed into a poste-
rior distribution p(u|D).

For neural networks, computing the posterior distribu-
tion using the Bayes rule requires computing intractable
integrals over u. Thus, approximation techniques are re-
quired. One family of techniques is variational inference,
with which the posterior p(u|D) is approximated by a
parametric distribution qϕ(u), where ϕ are the variational
parameters. qϕ(u) is approximated by minimizing the
Kullback-Leibler (KL) divergence with the true posterior,
KL[qϕ(u)||p(u|D)], which is equivalent to maximizing the
evidence lower bound (ELBO):

Lϕ = LD(ϕ)−KL[qϕ(u)||p(u)], (4)
where the expected data log-likelihood is

LD(ϕ) =

N∑
i=1

Eqϕ(u)[log p(yi|xi,u)]. (5)

The integration LD is not tractable for neural networks.
An efficient method for gradient-based optimization of the
variational bound is stochastic gradient variational Bayes
(SGVB) [23, 22]. SGVB parameterizes the random param-
eters u ∼ qϕ(u) as u = t(ϵ,ϕ) where t(·) is a differen-
tiable function and ϵ ∼ p(ϵ) is a noise variable with fixed
parameters. With this parameterization, an unbiased dif-
ferentiable minibatch-based Monte Carlo estimator of the
expected data log-likelihood is obtained:

LD(ϕ) ≃ LSGVB
D (ϕ) =

N

M

M∑
i=1

log p(yi|xi,u = t(ϵ,ϕ)), (6)

where {(xi,yi)}Mi=1 is a minibatch of data with M random
instances (xi,yi) ∼ D, and ϵ ∼ p(ϵ).

3.2. Bayesian Nested Neural Network
In our model, the parameter u = (W, z) consists of two

parts: weight matrix W and ordering units z. The ordering
units order the network weights and generate sub-models
that minimize the residual loss of a larger sub-model [37, 6].
We define the corresponding variational parameters ϕ =
(θ,β), where θ and β are the variational parameters for the
weights and ordering units respectively. We then have the
following optimization objective,

LSGVB
θ,β ≃ LSGVB

D (θ,β)−KL[qθ,β(W, z)||p(W, z)], (7)

LSGVB
D (θ,β) =

N

M

M∑
i=1

log p(yi|xi,W = tw(ϵw,θ), z = tz(ϵz,β)),
(8)

where ϵz and ϵw are the random noise, and tw(·) and tz(·)
are the differentiable functions that transform the noises to
the probabilistic weights and ordered masks.

Next, we focus on an example of a fully-connected (FC)
layer. Assume the FC layer in neural network takes in acti-
vations H ∈ RM×d as the input, and outputs F = f(H) =
HW, where the weight matrix W ∈ Rd×D, d and D are
the input and output size, and M is the batch size. The el-
ements are indexed as hmi, fmj and wij respectively. We
omit the bias for simplicity, and our formulation can easily
be extended to include the bias term. We have the ordering
unit z ∈ RD with each element zj applied on the column of
W, by which the columns of W are given different levels
of importance. Note that z is flexible, and can be applied to
W row-wise or element-wise as well.

The prior for W assumes each weight is independent,
p(W) =

∏
ij p(wij), where i ∈ {1, . . . , d} and j ∈

{1, . . . , D}. We choose to place a mixture of two univari-
ate variables as the prior over each element of the weight
matrix wij . For example, if we use the univariate normal
distribution, then each wij is a Gaussian mixture, where the
2 components are:

p(wij |zj = 0) = N (wij |µ0
ij , σ

0
ij

2
), (9)

p(wij |zj = 1) = N (wij |µ1
ij , σ

1
ij

2
), (10)

4

where (µ0
ij , σ

0
ij) and (µ1

ij , σ
1
ij) are the means and standard

deviations for the two components. We fix µ0
ij = 0 and

σ0
ij to be a small value, resulting in a spike at zero for

the component when zj = 0. The variable zj follows the
chain of Bernoulli distributions proposed in (32). Using
(2), the marginal distribution of wij is then p(wij) = (1 −∏i

k=1 πk)N (wij |µ0
ij , σ

0
ij

2
)+ (

∏i
k=1 πk)N (wij |µ1

ij , σ
1
ij

2
).

To calculate the expected data log-likelihood, our Down-
hill distribution allows efficient sampling and differentiable
transformation for the ordering units (Sec. 2.3). The repa-
rameterization of weight distributions has been widely stud-
ied [22, 27, 23] to provide gradient estimate with low vari-
ance. Our framework is compatible with these techniques,
which will be discussed in Sec. 3.4. An overview of sam-
pling is shown in Fig. 1.

3.3. Posterior Approximation
Next, we introduce the computation of the KL diver-

gence. We assume the posterior qθ(W) takes the same form
as the prior, while qβ(z) takes the Downhill distribution
z ∼ Downhill(β, τ). We consider the case that τ → 0 for
simplicity, while τ can be adjusted in the training process
as annealing. For this layer, the KL divergence in (7) is
KL[qβ,θ(W, z)||p(W, z)] (11)

= Eqβ(z)[log
qβ(z)

p(z)
]︸ ︷︷ ︸

Φ1

+Eqβ(z)Eqθ(W|z)[log
qθ(W|z)
p(W|z)

]︸ ︷︷ ︸
Φ2

.

Term Φ1 of (11) is

Φ1 =
∑
z∈V

qβ(z) log
qβ(z)

p(z)
=

D∑
j=1

KL[qβ(vi)||p(vi)],

where V = {v1, . . . ,vD} is the set of ordered masks. The
number of components in the z space is reduced from D2

to D, because there are only D possible ordered masks. By
definition, the probabilities are

qβ(vj) = βj , p(vj) = (1− πj+1)

j∏
k=1

πk, (12)

where we define πD+1 = 0. The derivation of p(vj) is
included in the Appx. 1.2.

Define wj = [w1j , . . . , wDj] as the j-th column of W,
and qθ(wj |zj = k) = qθ(wj |zkj) where k ∈ {0, 1}. The
term Φ2 of (11) is

Φ2 =
∑
z∈V

qβ(z)
∑
j

∫
wj

qθ(wj |zkj) log
qθ(wj |zkj)
p(wj |zkj)

=
∑
z∈V

qβ(z)
∑
i

∑
j

∫
wij

qθ(wij |zkj) log
qθ(wij |zkj)
p(wij |zkj)

=
∑
z∈V

qβ(z)
∑
i,j

KL[qθ(wij |zkj)||p(wij |zkj)]. (13)

Note that the term inside the integration over wij is the KL

divergence between the univariate conditional density in the
prior and the posterior, with zj = 0 or zj = 1. Define
Kk

ij(θ) as the KL of wij for component k ∈ {0, 1}. The
term Φ2 can then be re-organized as

Φ2 = q(z = v1)(
∑
i

K1
i1(θ) +

D∑
j=2

∑
i

K0
ij(θ))

+ q(z = v2)(

2∑
j=1

∑
i

K1
ij(θ) +

D∑
j=3

∑
i

K0
ij(θ))

+ . . . (14)
There are totally D2d terms, which causes a large compu-
tation cost in every epoch. Consider the matrices K0

θ =
[K0

ij(θ)]ij ∈ Rd×D and K1
θ = [K1

ij(θ)]ij ∈ Rd×D, which
are easily computed by applying the KL function element-
wise. The term Φ2 is then expressed as

Φ2 = eTK0
θ(J− JL)

Tβ + eTK1
θJ

T
Lβ, (15)

where e is a vector of 1s, J is a matrix of 1s and JL is a
lower triangular matrix with each element being 1. Then
the calculation in (15) can be easily parallelize with modern
computation library.

Ordered ℓ0-Regularization. We show that, if given the
spike-and-slab priors, our KL term in (11) has a nice inter-
pretation as a generalization of an ordered ℓ0 regularization
over the sub-networks. The corresponding reduced objec-
tive for deterministic networks is

min
θ,β

Eq(z|β)LD(θ,β) + λ

D∑
j

jβj (16)

Note that larger sub-networks have greater penalization.
The proof and more interpretations are in the Appx. 1.3.

3.4. Implementation
For efficient sampling of the weight distributions, we put

multiplicative Gaussian noise ηij ∼ N (1, α) on the weight
wij , similar to [22, 31, 26]. We take wij for zj = 1 as an
example.

wij = θijηij = θij(1 +
√
αijϵw), ϵw ∼ N (0, 1), (17)

wij ∼ N (wij |θij , αijθ
2
ij). (18)

We also assume a log-uniform prior [22, 31, 26]. (10) be-
comes p(log |wij | | zj = 1) = const. With this prior, the
negative KL term in (13) does not depend on the variational
parameter θ1ij [22], when the parameter αij is fixed,

−KL[q(wij |θ1ij , αij , zj = 1)||p(|wij | |zj = 1)]

=
1

2
logαij − Eϵw∼N (1,αij) log |ϵw|+ C, (19)

where C is a constant.
As the second term in (19) cannot be computed ana-

lytically and should be estimated by sampling, Kingma et
al. [22] propose to sample first and design a function to ap-
proximate it, but their approximation of K1

ij(θ) does not

5

4 3 2 1 0 1 2 3 4
log

2

1

0

1

2
D

KL
Ground-truth
Kingma et al
Molchanov et al
Ours

Figure 4: Approximation to (19). Our approximation allows α > 1 (c.f.,
[22]) and does not push α → 0 to generate a collapsed model (c.f., [31]).

encourage αij > 1 as the optimization is difficult. An
αij ≤ 1 corresponds to a small variance, which is not flex-
ible. Molchanov et al. [31] use a different parameterization
that pushes αij → ∞, which means this wij can be dis-
carded, as illustrated in Fig. 4. In our model, we want the
order or sparsity of weights to be explicitly controlled by
the ordering unit z, otherwise the network would collapse
to a single model rather than generate a nested set of sub-
models. Thus, we propose another approximation to (19),
−KL[q(wij |θ1ij , αij , zj = 1)||p(|wij | |zj = 1)] (20)

≈ a1e
−ea4 ·(a2+a3∗logαij)

2

− 0.5 log(1 + α−1
ij) + C,

where a1 = 0.7294, a2 = −0.2041, a3 = 0.3492 and
a4 = 0.5387. We obtained these parameters by sampling
from ϵw to estimate (19) as the ground-truth and fit these
parameters for 105 epochs. For fitting the curves, the input
range is limited to logα ∈ [−5, 0.5]. As shown in Fig. 4,
our parameterization allows α > 1 and maximizing −KL
does not push α to infinity (c.f. [22] and [31]), providing
more flexible choices for the weight variance.

As the prior of the zero-component wij is assumed
a spike at zero with a small constant variance, we let
q(wij |zj = 0) be the same spike as (9) to save compu-
tation. Also, to speed up the sampling process in Fig. 1,
we directly multiply the sampled mask with the output fea-
tures of the layer. This saves the cost for sampling from
wij |zj = 0 and simplifies (15) to eTK1

θJ
T
Lβ. Using the

notation in Sec. 3.2, the output of a fully connected layer is
fmj = bmjzj , bmj ∼ N (γmj , δmj), (21)

γmj =

d∑
i=1

hmiθij , δmj =

d∑
i=1

h2
miαijθ

2
ij . (22)

The sampling process is similar to that of [22, 31, 26].
The Bayesian nested neural network can be easily ex-

tended to convolutional layers with the ordering applied to
filter channels (see Appx. 2.1 for details).

4. Related work
In this section, we reviewed the deep nets with ℓ0 reg-

ularization and nested nets, while the comparisons with

Bayesian neural network are elaborated in Sec. 3.4.
ℓ0 regularization. The Bernoulli-Gaussian linear model

with independent Bernoulli variables is shown to be equiv-
alent to ℓ0 regularization [32]. Recent works [28, 48] inves-
tigate ℓ0 norm for regularizing deep neural networks. [28]
presents a general formulation of a ℓ0-regularized learning
objective for a single deterministic neural network,

min
θ̃,π̃

Eq(z̃|π̃)[LD(θ̃)] + λ

|θ̃|∑
j=1

π̃j (23)

where the variable z̃ is a binary gate with parameter π̃j for
each network node θ̃j , and LD is the loss. It was shown that
ℓ0 regularization over the weights is a special case of an
ELBO over parameters with spike-and-slab priors. These
works present the uniform ℓ0 regularization as the coeffi-
cient λ is a constant over the weights. It is interesting that
our ELBO (7) can be viewed as a generalization of a new
training objective of deterministic networks, which includes
a weighted penalization over the choices of sub-networks,
interpretable as an ordered ℓ0 regularization (16).

Nested neural networks. Nested nets have been ex-
plored in recent years, for its portability in neural network
(NN) deployment on different platforms. [20] proposes a
network-in-network structure for a nested net. which con-
sists of internal networks from the core level to the full level.
[50, 49] propose slimmable NN that trains a network that
samples multiple sub-networks of different channel num-
bers (widths) simultaneously, where the weights are shared
among different widths. The network needs to switch be-
tween different batch normalization parameters that corre-
spond to different widths. To alleviate the interference in
optimizing channels in slimmable NN, [4] proposes a once-
for-all network that is elastic in kernel size, network depth
and width, by shrinking the network progressively during
training. [6] proposes using nested dropout to train a fully
nested neural network, which generates more sub-networks
in nodes, including weights, channels, paths, and layers.
However, none of the previous works consider learned im-
portance over the nodes and the predictive uncertainty. Our
work provides a well-calibrated uncertainty and the learned
importance, with a full Bayesian treatment of nested nets.

5. Experiments
We next present experiments using our Bayesian nested

neural network. The experiments include two main tasks:
image classification and semantic segmentation.

5.1. Image Classification
Datasets and setup. The image classification experi-

ments are conducted on Cifar10 and Tiny Imagenet (see
Appx. 3.4 for results on Cifar100). The tested NN models
are VGG11 with batch normalization layers [41], ResNeXt-
Cifar model from [46], and MobileNetV2 [40]. To train

6

(a)

(b)

(c)

Figure 5: Results on Cifar10 for (a) VGG11, (b) MobileNetv2, and (c) ResNeXt-Cifar. Each curve plots performance versus the network width. The solid
line indicate the mean and the shaded area indicates two standard deviations.

(a)

(b)

(c)

Figure 6: Results on Tiny ImageNet for (a) VGG11, (b) MobileNetv2, (c) ResNeXt-Cifar.

the proposed Bayesian nested neural network (denoted as
BN3), we use the cross-entropy loss for the expected log-
likelihood in (8). The computation of the KL term fol-
lows Sec. 3.4. For ordering the nodes, in every layer,
we assign each dimension of the prior (Bernoulli chain)
and posterior (Downhill variable) of the ordering unit to a
group of weights. Thus, the layer width is controlled by
the ordering unit. We set the number of groups to 32 for
VGG11 and ResNext-Cifar, and to 16 for MobileNetV2.
We compare our BN3 with the fully nested neural network
(FN3) [6], since it can be seen as an extension of slimmable
NN [50, 49] to fine-grained nodes. We also compare with
the Bayesian NN with variational Gaussian dropout [22],
where we train a set of independent Bayesian NNs (IBNN)
for different fixed widths. Conceptually, the performance
of IBNN, which trains separate sub-networks, is the ideal
target for BN3, which uses nested sub-networks.

During testing time, we generate fixed width masks for

BN3 and FN3 as in [6]. For fairness, we do not perform
local search of optimal width like in FN3, but directly trun-
cating the widths. We re-scale the node output by the proba-
bility that a node is kept (see Appx. 2.2). The batch normal-
ization statistics are then re-collected for 1 epoch with the
training data (using fewer data is also feasible as shown in
Appx. 3.2). The number of samples used in testing BN3and
IBNN is 6. The detailed hyper-parameter settings for train-
ing and testing are in Appx. 3.1.

Evaluation metrics. For the evaluation, we test accu-
racy, uncertainty calibration, and out-of-domain (OOD) de-
tection. Calibration performance is measured with the ex-
pected calibration error [12] (ECE), which is the expected
difference between the average confidence and accuracy.
OOD performance is measured with the area under the
precision-recall curve (AUPR) [3, 15, 25] (see Appx. 3.3
for AUROC curves). If we take the OOD class as pos-
itive, precision is the fraction of detected OOD data that

7

E-UNet
D-UNet
P-UNet

Width ���
18.75
32.29
45.83
59.38
79.91
86.46
100.0

BN3

<latexit sha1_base64="ijSh235O2FAfhU3Rw2pcVGH+3AI=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoQd2VunElFewD2rFk0kwbmmTGJFMoQ7/DjQtF3Pox7vwbM20XWj0QOJxzL/fkBDFn2rjul5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0XXmt8ZUaRbJezOJqS/wQLKQEWys5HcFNkMl0trt9OG8Vyy5ZXcG9Jd4C1KCBeq94me3H5FEUGkIx1p3PDc2foqVYYTTaaGbaBpjMsID2rFUYkG1n85CT9GJVfoojJR90qCZ+nMjxULriQjsZBZSL3uZ+J/XSUx46adMxomhkswPhQlHJkJZA6jPFCWGTyzBRDGbFZEhVpgY21PBluAtf/kvaZ6VvUr56q5SqtYWdeThCI7hFDy4gCrcQB0aQOARnuAFXp2x8+y8Oe/z0Zyz2DmEX3A+vgGgZpIG</latexit>

Figure 7: Evaluation on semantic segmentation using generalized energy distance (↓) with different numbers of posterior samples. Each box-plot shows the
GED of all data of BN3 for one network width (%). The black horizontal line in the box plot represents the mean. The bold horizontal lines represent the
averaged results for comparison methods, which use the full-width network.

are true OOD, while recall is the fraction of true OOD data
that are successfully detected. Note that a better model will
have higher accuracy and OOD AUPR, and lower calibra-
tion ECE. As the sampling and collection of batch-norm
statistics are stochastic, we repeat each trial 3 times and re-
port the average results.

Results. The results are presented in Figs. 5 and 6.
First, looking at performance versus width, BN3 exhibits
the well-behaved property of sub-networks, where the per-
formance increases (accuracy and AUPR increase, ECE de-
creases) or is stable as the width increases. This demon-
strates that the variational ordering unit successfully orders
the information in each layer.

Despite learning nested sub-networks, in general, BN3

has similar performance as IBNN (which separately learns
sub-networks) for all models and datasets, with the follow-
ing exceptions. For MobileNetV2 on both datasets, BN3

outperforms IBNN in all metrics, as IBNN fails to perform
well in prediction and uncertainty (outperformed by FN3

too). For VGG11 on both datasets, IBNN tends to have
lower ECE with smaller widths, showing its advantage in
providing uncertainty for small and simple models. How-
ever, IBNN has larger ECE when the model size is large,
e.g., BN3 has lower ECE than IBNN with the ResNeXt
model. Finally, BN3 outperforms IBNN by a large mar-
gin for ResNeXt on Tiny ImageNet, which we attribute to
its ability to prune the complex architecture via learning or-
dered structures (Sec. 2.3) and the ordered ℓ-0 regulariza-
tion effect (Sec. 3.3), which are absent in IBNN.

Comparing the two nested models, BN3 outperforms
FN3 in all metrics, which shows the advantage of learning
the nested dropout rate for each node.

5.2. Lung Abnormalities Segmentation

Dataset and Setup. The semantic segmentation experi-
ments are conducted on the LIDC-IDRI [5] dataset, which
contains 1,018 CT scans from 1,010 lung patients with man-
ual lesion segmentation from four experts. This dataset is
uncertainty-critical as it contains typical ambiguities in la-
bels that appear in medical applications. We follow [24]

to process the data, resulting in 12,870 images in total. We
adopt the generalized energy distance (GED) [2, 39, 43, 24]
as the evaluation metric, with δ(·, ·) = 1 − IoU(·, ·) as the
distance function. GED measures the distance between the
output distributions rather than single deterministic predic-
tions. For BN3, it measure the probabilistic distances be-
tween the induced distribution from model posterior given
a fixed width, and the noisy labels from four experts. We use
a standard U-Net [38] for BN3 and the number of groups is
32. We compare with Probabilistic U-Net (P-UNet) [24], a
deep ensemble of U-Net (E-UNet), and Dropout U-Net (D-
UNet) [18]. Their results are the average results from [24]
with the full U-Net.

Results. The results are presented in Fig. 7. We ob-
serve that BN3 outperforms the existing methods in most
of the cases, with the difference more obvious when there
are fewer posterior samples. The performance of BN3 sta-
bilizes after width of 32.29%. This indicates BN3 learns a
compact and effective structure compared with other meth-
ods, in terms of capturing ambiguities in the labels.

When there are more posterior samples (8 and 16),
probabilistic U-Net has better performance than the BN3

with the smallest width (6
32 channels are preserved). This

means with more posterior samples, the probabilistic U-Net
can depict the latent structure better, but uses a full-width
model. Increasing the width to 32.29%, BN3 then achieves
better performance.

6. Conclusion
In this paper, we propose a Bayesian nested neural net-

work, which is based on a novel variational ordering unit
that explicitly models the weight importance via the Down-
hill random variable. From our model, the weight impor-
tance can be learned from data, rather than hand-tuned as
with previous methods. Experiments show that this frame-
work can improve both accuracy and calibrated predictive
uncertainty. Future work will study the variational order-
ing unit in language modeling, sequential data, or genera-
tive models where the order is important, e.g., [35]. The
Downhill random variable is a well-suited hidden variable
for such applications.

8

References
[1] Artur Bekasov and Iain Murray. Ordering dimensions

with nested dropout normalizing flows. arXiv preprint
arXiv:2006.08777, 2020. 1

[2] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mo-
hamed, Balaji Lakshminarayanan, Stephan Hoyer, and Rémi
Munos. The cramer distance as a solution to biased wasser-
stein gradients. arXiv preprint arXiv:1705.10743, 2017. 8

[3] Kendrick Boyd, Kevin H Eng, and C David Page. Area under
the precision-recall curve: point estimates and confidence
intervals. In Joint European conference on machine learn-
ing and knowledge discovery in databases, pages 451–466.
Springer, 2013. 7

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 6

[5] Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann,
Justin Kirby, Paul Koppel, Stephen Moore, Stanley Phillips,
David Maffitt, Michael Pringle, et al. The cancer imag-
ing archive (tcia): maintaining and operating a public infor-
mation repository. Journal of digital imaging, 26(6):1045–
1057, 2013. 8

[6] Yufei Cui, Ziquan Liu, Wuguannan Yao, Qiao Li, Antoni B.
Chan, Tei-wei Kuo, and Chun Jason Xue. Fully nested neu-
ral network for adaptive compression and quantization. In
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, pages 2080–2087.
International Joint Conferences on Artificial Intelligence Or-
ganization, 7 2020. 1, 2, 4, 6, 7

[7] Chelsea Finn, Lisa Anne Hendricks, and Trevor Darrell.
Learning compact convolutional neural networks with nested
dropout. arXiv preprint arXiv:1412.7155, 2014. 1

[8] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, Uni-
versity of Cambridge, 2016. 2

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050–1059, 2016. 1, 2

[10] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout.
In Advances in neural information processing systems, pages
3581–3590, 2017. 2, 3

[11] Emil Julius Gumbel. Statistical theory of extreme values and
some practical applications: a series of lectures, volume 33.
US Government Printing Office, 1948. 11

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. arXiv preprint
arXiv:1706.04599, 2017. 1, 7

[13] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[14] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. 14

[15] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016. 7

[16] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. 2016. 14

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 1, 3, 11

[18] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla.
Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680, 2015. 1, 8

[19] Mohammad Emtiyaz Khan and Didrik Nielsen. Fast yet sim-
ple natural-gradient descent for variational inference in com-
plex models. In 2018 International Symposium on Informa-
tion Theory and Its Applications (ISITA), pages 31–35. IEEE,
2018. 14

[20] Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet:
Learning nested sparse structures in deep neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8669–8678, 2018. 1, 6

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[22] Durk P Kingma, Tim Salimans, and Max Welling. Vari-
ational dropout and the local reparameterization trick. In
Advances in neural information processing systems, pages
2575–2583, 2015. 4, 5, 6, 7, 13

[23] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 4, 5

[24] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer,
Jeffrey De Fauw, Joseph R Ledsam, Klaus Maier-Hein, SM
Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger.
A probabilistic u-net for segmentation of ambiguous im-
ages. Advances in neural information processing systems,
31:6965–6975, 2018. 1, 8

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In Advances in neural infor-
mation processing systems, pages 6402–6413, 2017. 7

[26] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian
compression for deep learning. In Advances in neural infor-
mation processing systems, pages 3288–3298, 2017. 5, 6

[27] Christos Louizos and Max Welling. Multiplicative normal-
izing flows for variational bayesian neural networks. arXiv
preprint arXiv:1703.01961, 2017. 5

[28] Christos Louizos, Max Welling, and Diederik P Kingma.
Learning sparse neural networks through l 0 regularization.
In International Conference on Learning Representations,
2018. 6, 12

[29] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. arXiv preprint arXiv:1611.00712, 2016.
1, 3, 11

9

[30] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sam-
pling. In Advances in Neural Information Processing Sys-
tems, pages 3086–3094, 2014. 11

[31] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. arXiv
preprint arXiv:1701.05369, 2017. 5, 6, 13

[32] Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. 2012. 6

[33] Min-hwan Oh, Peder A Olsen, and Karthikeyan Natesan Ra-
mamurthy. Crowd counting with decomposed uncertainty.
arXiv preprint arXiv:1903.07427, 2019. 1

[34] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Par-
allel training of dnns with natural gradient and parameter av-
eraging. arXiv preprint arXiv:1410.7455, 2014. 14

[35] Piyush Rai, Changwei Hu, Ricardo Henao, and Lawrence
Carin. Large-scale bayesian multi-label learning via topic-
based label embeddings. In Advances in Neural Information
Processing Systems, pages 3222–3230, 2015. 8

[36] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu,
Xuehai Qian, Xue Lin, and Yanzhi Wang. Admm-nn: An
algorithm-hardware co-design framework of dnns using al-
ternating direction methods of multipliers. In Proceedings
of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 925–938, 2019. 1

[37] Oren Rippel, Michael Gelbart, and Ryan Adams. Learning
ordered representations with nested dropout. In International
Conference on Machine Learning, pages 1746–1754, 2014.
1, 2, 4

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 8

[39] Tim Salimans, Han Zhang, Alec Radford, and Dimitris
Metaxas. Improving gans using optimal transport. arXiv
preprint arXiv:1803.05573, 2018. 8

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 6

[41] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 13

[43] Gábor J Székely and Maria L Rizzo. Energy statistics: A
class of statistics based on distances. Journal of statistical
planning and inference, 143(8):1249–1272, 2013. 8

[44] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 1

[45] Jia Wan and Antoni Chan. Modeling noisy annotations for
crowd counting. In Advances in Neural Information Process-
ing Systems, 2020. 1

[46] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 6

[47] Shichao Xu, Yixuan Wang, Yanzhi Wang, Zheng O’Neill,
and Qi Zhu. One for many: Transfer learning for building
hvac control. arXiv preprint arXiv:2008.03625, 2020. 1

[48] Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learn-
ing sparser neural network with differentiable scale-invariant
sparsity measures. arXiv preprint arXiv:1908.09979, 2019.
6

[49] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1803–1811, 2019. 1, 6, 7

[50] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 1, 6, 7

10

7. Appendix - Derivation and Proofs
7.1. Derivation of Properties

Property 1. If c ∼ Gumbel softmax(τ, β, ϵz)
2, then zi = 1 − cumsum′

i(c), where e is a K-dimensional vector of ones,
and cumsum′

i(c) =
∑i−1

j=0 cj . c0 := 1. ϵz is a standard uniform variable.
We show that using the sampling process in Property 1 recovers produce the Downhill random variable. We assume c

follows a Gumbel softmax distribution [11, 30] which has the following form.
p(c1, . . . , cK) (25)

=Γ(K)τK−1(

K∑
i=1

πi/c
τ)−K

K∏
i=1

(πi/c
τ+1)

We apply the transformation Ti(·) = ei − cumsum′
i(·) to the variable c. z = T (c) = e− cumsum′

i(c)
To obtain the distribution of p(z), we apply the change of variables formula on c.

p(z) = p(T−1(z))|det(∂ T
−1(z)

∂z
)| (26)

p(z1:K) = p(T−1(z1:K))|det(∂T
−1(z1:K)

∂z1:K
)| (27)

From the definition of T (·), we can obtain T−1
i (z) = zi−1 − zi. The Jacobian

∂T−1(z1:K)

∂z1:K
=


−1 0 . . . 0 0
1 −1 . . . 0 0
0 1 . . . 0 0
...

...
0 0 . . . 1 −1

 (28)

Thus, |det(∂T
−1(z1:K)
∂z1:K

)| = 1.

p(z1:K) = p(T−1
1:K(z)) (29)

=Γ(K)τK−1(

K∑
i=1

πi

(zi−1 − zi)τ
)−K

K∏
i=1

(
πi

(zi−1 − zi)τ+1
)

Property 2. When τ → 0, sampling from the Downhill distribution reduces to discrete sampling, where the sample space
is the set of ordered mask vectors V . The approximation of the Downhill distribution to the Bernoulli chain can be calculated
in closed-form.

As shown in [29, 17], when τ → 0, the Gumbel softmax transformation corresponds to an argmax operation that generates
an one-hot variable:

c = one hot(argmaxi(gi + log βi)), (30)
where the relative order is preserved.

Say a sample c∗ ∼ Gumbel softmax(β, τ → 0), with b-th entry being one and the rest entries being 0. The defined
transformation generates cumsum′(c∗) = [0, . . . , 0︸ ︷︷ ︸

b

1, . . . , 1︸ ︷︷ ︸
K−b

]. Thus, z∗ = e− cumsum′(c∗) = [1, . . . , 1︸ ︷︷ ︸
b

0, . . . , 0︸ ︷︷ ︸
K−b

]. It is easy

to see the transformation t′(·) is surjective function that t′ : {one hot(i)}Ki=1 → V, t′(c) = e − cumsum′(c). V is exactly
the set of ordered mask defined in Sec. 2.2.

Thus, we can calculate the approximation of Downhill variable to the Bernoulli chain,

KL[q(z)||p(z)] =
K∑
j=1

q(vj) log
q(vj)

p(vj)
, (31)

where q(vj) = βj , p(vj) = (1 − πj+1)
∏j

k=1 πk (See Appx 1.2). The KL divergence in (31) minimized to 0 when βj =

(1− πj+1)
∏j

k=1,∀j ∈ [1, . . . ,K].

2For Gumbel-softmax sampling, we first draw g1 . . . gK from Gumbel(0, 1), then calculate ci = softmax(
log(βi)+gi

τ
). The samples of

Gumbel(0, 1) can be obtained by first drawing ϵz ∼ Uniform(0, 1) then computing g = − log(− log(ϵz)).

11

7.2. Probability of ordered masks

Recall the formulation of Bernoulli chain:
p(z1 = 1) = π1, p(z1 = 0) = 1− π1, (32)
p(zi = 1|zi−1 = 1) = πi, p(zi = 0|zi−1 = 1) = 1− πi,

p(zi = 1|zi−1 = 0) = 0, p(zi = 0|zi−1 = 0) = 1,

It is observed, there is a chance zi = 1 only when zi−1 = 1, and z>i = 0 if zi = 0. Thus,

p(z = vj) = (1− πj+1)

j∏
k=1

πk, (33)

where j + 1 is the index of first zero. And we define πK+1 = 0 as p(z = vK) =
∑K

k=1 πk, which means all nodes are
remained.

7.3. ℓ-0 regularization

We consider the case when prior over each weight is a spike-and-slap distribution, i.e., p(wij |zj = 0) = δ(wij) and
p(wij |zj = 1) = N (wij |0, 1), using the notation in Sec. 3.3. The posterior is also in this form. The derivations of KL term
in (11-15) remain unchanged as it make nothing but mean-field assumption on the weight prior. With Φ1 and Φ2 (15), the
objective (7) can be re-organized as

LSGVB
θ,β

≃LSGVB
D (θ,β)−

D∑
j=1

KL[qβ(vi)||p(vi)]

− eTK0
θ(J− JL)

Tβ − eTK1
θJ

T
Lβ

=LSGVB
D (θ,β)−

D∑
j=1

KL[qβ(vi)||p(vi)]

− eTK1
θJ

T
Lβ, (34)

as KL[q(wij |zj = 0)||p(wij |zj = 0)] = 0. We assume KL[q(wij |zj = 1)||p(wij |zj = 1)] = χ as in [28]. It means
transforming p(wij |zj = 1) to q(wij |zj = 1) requires χ nats. Thus, K1

θ = [χ]d×D. The last term is then simplified to

−χd

D∑
j=1

jβj (35)

Then,
LSGVB
θ,β

=LSGVB
D (θ,β)−

D∑
j=1

KL[qβ(vi)||p(vi)]− χd

D∑
j=1

jβj , (36)

≤LSGVB
D (θ,β)− χd

D∑
j=1

jβj (37)

where the line 2-3 is because KL is positive. Let λ = χd. Then, maximizing the evidence lower bound presents the same
objective in (16). This objective assigns greater penalization to the larger sub-networks with more redundant nodes. To
compare with (23) [28] that uses have a constant coefficient over the probabilities, our reduced formulation provides an
ordered ℓ-0 regularization instead of a uniform ℓ-0 regularization.

Note that (36) ignores the weight uncertainty compared with (7). (37) further ignores the uncertainty over the ordered
mask, reduced to a deterministic formulation for a nested neural network with learned weight importance. The network used
in this paper is (7) with weight uncertainty considered, where the detailed discussion for weight distributions.

12

8. Appendix - Implementation

8.1. Extension to Convolutional Layer

We consider a convolutional layer takes in a single tensor HH×W×C
m as input, where m is the index of the batch, H , W

and C are the dimensions of feature map. The layer has D filters aggregated as wD×H′×W ′×C and outputs a matrix FH̄×W̄
mj .

In the paper, we consider the ordered masks applied over the output channels and each filter corresponds to a dimension in z.
As shown in [22, 31], the local reparameterization trick can be applied, due to the linearity of the convolutional layer.

fmj = bmjz
∗
j , vec(bmj) ∼ N (γmj , δmj) (38)

γmj = vec(Hm ∗w), δmj = diag(vec(H2
m ∗ σ2

j))

where z∗j is the j-th dimension of the sampled ordered mask z∗ = v∗ ∼ qβ(z).
To calculate the KL term (11), the only modification is to let the first summation be over the height, width and input

channels in (13).

Φ2 =
∑
z∈V

qβ(z)

H′×W ′×C∑
i

D∑
j

∫
wij

qθ(wij |zkj) log
qθ(wij |zkj)
p(wij |zkj)

(39)

8.2. Re-scale weights for testing

During training, the network drops nodes with the variational nested dropout. In training, the network fixes width of each
layer and no dropout operation is adopted. To make the expectation consistent over training and testing [42], we re-scale the
weights according to the probability to keep a node.

Ez∼qβ(z),x∼Dtr
[F|x, z] ≈ Ex∼Dte

[F|x, z = v̄], (40)
where Dtr and Dte are the splits of training set and testing set, and v̄ is the user-specified width according to the real demand
during testing time.

We take the fully-connected layer as an example. For simplicity, we treat wij as deterministic here.
Ez∼qβ(z)[fmj]

=Ez∼qβ(z)[zj

d∑
i=1

hmiθij]

=Ez∼qβ(z)[zj]

d∑
i=1

hmiθij (41)

Note that, different from the probability qβ(vj) = βj , Ez∼qβ(z)[zj] is the probability that the j-th node being kept.
With a well-trained layer in Bayesian nested neural network, we have the learned importance β = [βj]j . Assume that the

β is also generated by a chain of hidden Bernoulli variables follows (1) with the parameters µ = [µj]j , with µ1 := 1 and
µj = q(zj = 1|zj−1 = 1). We are interested in the marginal distribution p(zj = 1) =

∏j
k=1 µk but we only have βj’s.

β1 = (1− µ2)µ1 = 1− µ2 (42)
β2 = (1− µ3)µ2µ1

. . .

Solving each equation sequentially, we obtain
p(z1 = 1) = 1,

p(z2 = 1) = 1− β1,

p(z3 = 1) = 1− β1 − β2,

. . . (43)
(41) becomes

(1−
j−1∑
k=1

βk)

d∑
i=1

hmiθij , (44)

where we can define β0 = 0. Then, the scaling factor is 1−
∑j−1

k=1 βk for each wij .
Another way is to optimize the conditional probabilities [µj]j instead of βj , with βj in previous derivation replaced

13

by (1 − µj+1)µj
3. The scaling factor is then

∏j
k=1 µk for each wij . Also, for simplicity, one can optimize µ̄k where

µk = sigmoid(µ̄k).

9. Appendix - Experiments

9.1. Experimental setups

We implement FN3, individual Bayesian neural networks (IBNN) and the proposed Bayesian Nested Neural Network
(BN3) with PyTorch framework. We use the cross-entropy loss for negative expected log-likelihood. For balancing the
regularization and likelihood, we add a scaling factor κ for the KL term, which is a common trick in Bayesian learning [16].

Cifar10/Cifar100. For data augmentation, we use random cropping with padding beforehand, and random flipping the
image horizontally.

VGG11: We train BN3-VGG11 with natural gradient descent4 (NGD) [34], as it was shown to make the Bayesian neural
network converge faster [19]. The network is trained for 600 epochs with an initial learning rate 0.1 and momentum 0.9. The
learning rate is scaled by a factor 0.1 every 150 epochs. κ is set to 10−5. For training the network, we use VGG11 with
1.5× number of channels and truncate the 2/3 part with higher importance for testing. We add one dense layer after the
stack of convolutional layers. The first feature extraction layer and the last two dense layers for classification are variational
Bayes layer without nested dropout, with our parameterization proposed in Sec. 3.4. For the convolutional layer, we divide
the convolutional filters into 32 groups for group sparsity. 30 groups are applied nested dropout while the rest 2 groups are
for extracting the basic features. The logαij is initialized to -8 for the first layer and -1 for the rest layers. The [µ̄j]j are all
initialized to 3. We train IBNN-VGG11 with NGD for 240 epochs, with an initial learning rate 0.1 and scaled by 0.3 every
40 epochs. Every individual Bayes NN is fixed at some width between the fraction 0 and 1. We train FN3-VGG11 with SGD
and momentum 0.9, as SGD performs better in training FN3-VGG11. Other setups are similar to BN3-VGG11.

MobileNetV2: We train BN3-MobileNetV2 with a similar setup as BN3-VGG11, except the followings. For inverted
residual block, we apply nested dropout to the middle depth-wise convolutional layer. Because it already sparsifies the con-
volution filters in the previous point-wise convolution layer, and channels in the following point-wise convolution layer [14].
Introducing more nested dropout units would cause extra and irregular sparsification which deteriorates the performance. We
use a normal-size MobileNetV2 and divide the weights into 16 groups. One group is fixed for base feature extraction. The
experimental setups for IBNN-MobileNetV2 and FN3-MobileNetV2 follow that on VGG11.

ResNeXt-Cifar: The setups for ResNeXt-Cifar are similar to that of MobileNetV2, while the number of groups is 32.

Tiny-ImageNet. For data augmentation, we use random cropping with padding beforehand, random rotation of 20 degree
and random flipping the image horizontally. All images are finally cropped to 64 × 64 and all networks are trained from
scratch.

VGG11: To increase the capacity, we take VGG11 with 1.5× number of channels as the base network. The network is
trained with NGD for 300 epochs with an initial learning rate 0.1. The learning rate is scaled by 0.3 every 25 epochs. κ is set
to 10−6. The weights are divided into 32 groups and 8 groups are fixed for base feature extraction. MobileNetV2: We train a
MobileNetV2 with 1.5× number of channels, and take the 2/3 part with higher importance as the base network for testing.
The network is trained with NGD for 300 epochs with an initial learning rate 0.1. The learning rate is scaled by 0.3 every 40
epochs. The weights are divided into 16 groups and 1 groups are fixed for base feature extraction. ResNeXt-Cifar: We train a
ResNeXt-Cifar with normal size. The weights are divided into 32 groups and 8 groups are fixed for base feature extraction.
The network is trained with SGD for 300 epochs with an initial learning rate 0.1. The learning rate is scaled by 0.3 every 30
epochs.

The rest setups are similar to that on Cifar10/Cifar100.

Lung Abnormalities Segmentation. The network uses a U-Net shape architecture with layers 32-64-128-192 for the
encoder (two layers fewer than the standard U-Net). The optimizer is Adam with initial learning rate 10−4 decayed by 0.1
every 60 epochs. The channels are divided into 32 groups and 6 groups are fixed for base feature extraction.

3We use this parameterization in our implementation, while we use βj in most of our derivation for simplicity in writing.
4The PyTorch implementation is from https://github.com/YiwenShaoStephen/NGD-SGD.

14

0.2 0.4 0.6 0.8
width (%)

83

88

93
Accuracy ()

0.2 0.4 0.6 0.8
width (%)

0.04

0.08

0.12

Calibration ECE ()

0.2 0.4 0.6 0.8
width (%)

0.93
0.95
0.97
0.99

OOD AUPR ()
BN3

FN3

IBNN
BN3

Figure 8: Performance of VGG11 on Cifar10 with less data for BN statistics collection.

(a)

(b)

Figure 9: The AUROC of OOD on (a) Cifar10 (b) Tiny ImageNet datasets with VGG11, MobileNetV2 and ResNeXt-Cifar (left to right).

9.2. BN statistics

We show that collecting batch normalization statistics on a small training set present similar performance to using the
whole dataset In this example, we use VGG11 on Cifar10. The collection proceeds by forward the network by 2 iterations,
with a batch size 512. Thus, in total, 1024/50000 training data are used for statistics collection. The results are shown in
Figure 8 as BN3∗. We can observe that this results are similar to using all training data for statistics collection, with slightly
larger variance using a lower width.

9.3. OOD detection

For out-of-domain detection, we use the SVHN dataset as the OOD data 5. The OOD detection performance with AUROC
metric is shown in Figure 9. The performance is similar to that of AUPR in Figure 5.

9.4. Cifar100 results

The results on Cifar100 is shown in Figure 10. As the hyper-parameters are mostly from training on Cifar10, the results
may not be optimal. We do not show the comparisons for MobileNetV2 here, as it is observed that IBNN-MobileNetV2 fails
provide a decent performance on Cifar100, similar to Figure 5(b). The proposed BN3performs well steadily on every task.

5http://ufldl.stanford.edu/housenumbers/

15

http://ufldl.stanford.edu/housenumbers/

(a)

(b)

Figure 10: Results on Cifar100 for (a) VGG11, (b) ResNeXt-Cifar.

16

