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Abstract—Grant-free non-orthogonal multiple access (GF-
NOMA) is a potential technique to support massive Ultra-
Reliable and Low-Latency Communication (mURLLC) service.
However, the dynamic resource configuration in GF-NOMA
systems is challenging due to the random traffics and collisions,
which are unknown at the base station (BS). Meanwhile, joint
consideration of the latency and reliability requirements makes
the resource configuration of GF-NOMA more complex. To
address this problem, we develop a general learning framework
for signature-based GF-NOMA in mURLLC service taking into
account the multiple access signature collision, the user (UE)
detection, as well as the data decoding procedures for the K-
repetition GF-NOMA. The goal of our learning framework is to
maximize the long-term average number of successfully served
UEs under the latency constraint. We propose a Cooperative
Multi-Agent Deep Neural Network based Q-learning (CMA-
DQN) approach to optimize the configuration of both the
repetition values and the contention-transmission unit (CTU)
numbers. Our results show the superior performance of CMA-
DQN over the LE-URC in heavy traffic and demonstrate its
capability in dynamically configuring in long term for mURLLC
service.

Index Terms—mURLLC, NOMA, grant-free, deep reinforce-
ment learning, resource configuration.

I. INTRODUCTION

As a new and dominating service class in 6th Generation
(6G) networks, massive Ultra-Reliable and Low Latency
Communications (mURLLC) integrates URLLC with mas-
sive access to support massive short-packet data communi-
cations in time-sensitive wireless networks with high relia-
bility and low access latency [1]. This requires a reliability-
latency-scalability trade-off and mandates a principled and
scalable framework accounting for the delay, reliability, and
decision-making under uncertainty [2]. Concretely speaking,
the Third Generation Partnership Project (3GPP) standard
[3] has defined a general URLLC requirement: 1 − 10−5

reliability within 1ms user plane latency for 32 bytes. It
is also anticipated that the device density may grow to
hundred(s) of devices per cubic meter in the 6G networks.

Current cellular network can hardly fulfill the joint massive
connectivity, ultra reliability, and low latency requirements in
mURLLC service. To achieve low latency, grant-free (GF)
access has been proposed [4] as an alternative for traditional
grant-based (GB) access. Different from GB access, GF
access allows a User Equipment (UE) to transmit its data to

the Base Station (BS) in an arrive-and-go manner, without
sending a scheduling request and obtaining a resource grant
from the network [4]. To achieve high reliability, the K-
repetition GF scheme has been proposed, where a pre-defined
number (K) of consecutive replicas of the same packet
are transmitted [4]. To achieve massive connectivity, non-
orthogonal multiple access (NOMA) has been proposed to
synergize with GF in order to deal with the multiple access
(MA) physical resource collision in contention-based GF
access on orthogonal multi-access (OMA) physical resources,
when two or more UEs transmit data using the same MA
physical resource [5]. Here, we focus on the signature-based
GF-NOMA, where the NOMA technique allows multiple
UEs to transmit over the same MA physical resource by
employing user-specific signature patterns (e.g, codebook,
pilot sequence, interleaver/mapping pattern, demodulation
reference signal, power, etc.) [6]. However, when two or more
UEs transmit data using the same MA physical resource and
the same MA signature, the MA signature collision occurs,
and the BS cannot differentiate among different UEs and
therefore cannot decode the data [6].

The main challenges of the dynamic resource configuration
optimization of GF-NOMA include: 1) the set of active
UEs and their respective channel conditions are unknown
to the BS, which prohibits the pre-configuration and the pre-
assignment of resources, including pilots/preambles, power,
codebooks, repetition values, and etc; 2) simultaneously
satisfy the reliability and latency requirements under ran-
dom traffics, the optimal parameter configurations vary over
different time slots, which is hard to be described by a
tractable mathematical model; 3) the MA signature collision
detection and the blind UE activity detection, as well as
the data decoding, need to be considered, which largely
impacts the resource configuration in each time slot; 4) a
general optimization framework for GF-NOMA systems have
never been established for various signature-based NOMA
schemes.

The above challenges can hardly be solved via traditional
convex optimization methods, due to the complex commu-
nication environment with the lack of tractable mathemat-
ical formulations. Reinforcement Learning (RL), can be a
promising tool to deal with this complex Partially Observable



Markov Decision Process (POMDP) problem of GF-NOMA
resource configuration optimization, which solely relies on
the self-learning of the environment interaction without de-
riving explicit optimization solutions based on a complex
mathematical model.

In this paper, we aim to develop a general learning
framework for GF-NOMA systems for mURLLC service.
Our contributions can be summarized as follows:

• In this framework, we practically simulate the random
traffics, the resource configuration, the transmission
latency check, the collision detection, the data decoding,
and the Hybrid Automatic Repeat reQuest (HARQ)
retransmission procedures. We use this generated simu-
lation environment to train the RL agents.

• We develop a Cooperative Multi-Agent Deep Q-
Network (CMA-DQN) to dynamically optimize both the
repetition parameters and MA resources, which breaks
down the selection in high-dimensional parameters into
multiple parallel sub-tasks with a number of DQN
agents cooperatively being trained to produce each pa-
rameter.

• Our results show the superior performance of CMA-
DQN for mURLLC service, especially in heavy traffic
scenarios. Our general learning framework can be ex-
tended to optimize other resource configuration prob-
lems in GF-NOMA schemes.

The rest of the paper is organized as follows. Section
II illustrates the system model. Section III illustrates the
conventional approach. Section IV presents the CMA-DQN
approach. Section V elaborates the numerical results. Section
VI summarizes the conclusion.

II. SYSTEM MODEL

We consider a BS located at the center and a set of N
UEs randomly located in an area of the plane R2, where the
UEs are in-synchronized and unaware of the status of each
other. Once deployed, the UEs remain spatially static. The
time is divided into short transmission time intervals (TTIs)1,
and the small packets for each UE are generated according
to random inter-arrival processes over the short-TTIs, which
are Markovian as defined in [8] and unknown to BS.

A. GF-NOMA Network Model

To capture the effects of the physical radio, we consider
the standard power-law path-loss model with the path-loss
attenuation r−η , where r is the Euclidean distance between
the UE and the BS and η is the path-loss attenuation factor.
We consider a Rayleigh flat-fading environment, where the
channel power gains h are exponentially distributed (i.i.d.)
random variables with unit mean. The GF-NOMA procedure
following the 3GPP standard [9] are explained in the follow-
ing subsections.

1The simulation parameters used for this study are in line with the main
guidelines for 3GPP NR performance evaluations presented in [7] with mini-
slots of 7 OFDM symbols for transmissions in short TTI (0.125ms) using
60 kHz sub-carrier spacing (SCS)

1) Resources and Parameters Configuration: The MA
resources, repetition values, and HARQ related parameters,
etc, are configured at the BS by radio resource control (RRC)
signaling and L1 signaling prior to the GF access (as Type
2 GF [4]).

a) Repetition values: We consider the K-repetition scheme
as shown in Fig. 1, where the UEs are configured at the
beginning of each round trip time (RTT) to autonomously
transmit (T) the same packet for Kt repetitions in consecutive
TTIs. The BS decodes (D) each repetition independently and
the transmission in one RTT is successful when at least one
repetition succeeds. After processing all the received KT

repetitions, the BS transmits the ACK/NACK feedback (F)
to the UE.

Fig. 1: K-repetition GF transmission

Considering the small packets of mURLLC traffic, we set
the packet transmission time as one TTI. The BS feedback
time and the BS (UE) processing time are also assumed to
be one TTI as [10]. Once the repetition value is configured,
the duration of one RTT is known to the UEs and the BS,
which is given as

T t
RTT = (Kt + 3)TTIs. (1)

b) MA resources: A contention-transmission unit (CTU)
as shown in Fig. 2 is defined as the basic MA resource, where
each CTU may comprise of a MA physical resource and a
MA signature [6]. The MA physical resources represent a set

Fig. 2: GF-NOMA resource

of time-frequency resource blocks (RBs). The MA signatures
represent a set of pilot sequences for channel estimation
and/or UE activity detection, and a set of codebooks for
robust data transmission and interference whitening, etc.



Without loss of generality, in one TTI, we consider F
orthogonal RBs and each RB is overlaid with L unique
codebook-pilot2 pairs [5]. Thus, at the beginning of each
RTT, the BS configures a resource pool of Ct = F × L
unique CTUs, and each UE randomly choose one CTU from
the pool to transmit in this RTT.

2) Latency Check: The HARQ index HHARQ is included
in the pilot sequence and can be detected by the BS.
At the beginning of each RTT, the HARQ index and the
transmission latency Tlate will be updated. For example,
for the initial RTT with initial K1, HHARQ = 1 and
Tlate = RTTHHARQ=1, where RTTHHARQ

is calculated by
using (1). After this round time trip transmission, the BS
optimizes a K2 based on the observation of the reception
and configures it to the UE for the next RTT. Then the
UE updates its HHARQ = 2 and calculated RTTHHARQ=2

with K2, and consequently, the transmission latency Tlate is
updated as Tlate = RTTHHARQ=1 + RTTHHARQ=2. When
Tlate > Tcons (Tcons is latency constraint), the UE fails to be
served and the packets will be dropped.

3) Collision Detection: At each RTT, each active UE
transmits its packets to the BS by randomly choosing a CTU.
The BS can detect the UEs that have chosen different CTUs.
However, if multiple UEs choose the same CTU, the BS

Fig. 3: Detection and Decoding case with L=2 RBs, C = 6 CTUs and N = 8 UEs.

cannot differentiate these UEs and therefore cannot decode
the data. We categorize the CTUs into three types: an idle
CTU is a CTU which has not been chosen by any UE; a
singleton CTU is a CTU chosen by only one UE; and a
collision CTU is a CTU chosen by two or more UEs [5].
One example is illustrated in Fig. 3. The UE 1 and UE 5
have chosen the unique CTU 6 and CTU 5, respectively,
thus, the CTUs 6 and 5 are singleton CTUs. The CTU 3 is
an idle CTU. The UE 4 and UE 7 have chosen the CTU 1,

2A one-to-one mapping or a many-to-one mapping between the pilot
sequences and codebooks can be predefined. Since it has been verified in
[11] that the performance loss due to codebook collision is negligible for
a real system, we focus on the pilot sequence collision and consider the
one-to-one mapping as [5].

the UE 2 and UE 3 have chosen the CTU 2, and the UE
6 and UE 8 have chosen the CTU 4, thus, CTUs 1, 2 and
4 are the collision CTUs. After collision detection, the BS
observes the set of singleton CTUs Ctsc, the set of idle CTUs
Ctic, and the set of collision CTUs Ctcc as shown in orange,
blue and green color, respectively, in Fig. 3

4) Data Decoding: After detecting UEs that have chosen
the singleton CTUs (e.g., UE 1 and 5 shown as triangle in
Fig. 3), the BS applies successive interference cancellation
(SIC) technique to decode the data of these UEs. During
the decoding, the UEs transmitting in different RBs do not
interfere with each other due to the orthogonality, and only
UEs transmitting in the same RB cause interference, i.e., as
shown in Fig. 3, the interference UE set in RB 1 is {2, 3, 4, 7}
shown in color grey and the interference UE set in RB 2 is
{1, 5, 6, 8} shown in color yellow. In each iterative stage of
SIC decoding, the CTU with the strongest received power
is decoded by treating the received powers of other CTUs
over the same RB as the interference. Each iterative stage of
SIC decoding is successful when the signal-to-interference-
plus-noise ratio (SINR) in that stage is larger than the SINR
threshold γth. If the received signal is decoded successfully,
the decoded signal is subtracted from the received signal3.
Thus, in the kth repetition of the tth RTT, the sth stage of
SIC decoding is successful if

SINRt
f,s(k) =

Phs,krs
−η

Nt
f,sc(k)∑

m=s+1
Pmhm,kr

−η
m +

∑
n′∈N t

f,cc(k)

Pn′hn′,kr
−η
n′ + σ2

≥ γth,

(2)

where P is the transmission power, N t
f,sc is the set of devices

that have chosen the singleton CTUs over the f th RB, N t
f,cc

is the set of devices that have chosen the collision CTUs over
the f th RB, σ2 is the noise power.

5) HARQ Retransmissions: We take into account the GF-
NOMA HARQ retransmissions to achieve high reliability.
However, due to the latency constraint Tcons, the HARQ
retransmission times are limited. The UE determines a re-
transmission or not based on the following two different
scenarios.

i) when the UE receives an ACK from the BS, it means that
the BS successfully detected the UE (i.e., the UE choosing
the singleton CTUs) and decoded the UE’s data (i.e., SIC
succeeds), no further re-transmission is needed;

ii) when the UE receives a NACK from the BS, it means
that the BS successfully detected the UE but failed to decode
the UE’s data (i.e., SIC fails). Otherwise, when the UE does
not receive any feedback at the pre-defined timing after the
UE sent the packet (e.g., at the end of one RTT), it means
the BS failed to identify the UE, the UE determines whether
to retransmit or not based on the transmission latency check.

3We assume perfect SIC the same as [5], with no error propagation
between iterations.



B. Problem Formulation

We focus the uplink contention-based GF-NOMA proce-
dure over a set of preconfigured MA resources for UEs with
latency constraint Tcons under the K-repetition GF scheme.
Once actived in a given RTT t, a UE executes the GF-
NOMA procedure, where the UE randomly chooses one of
the preconfigured Ct CTUs to transmit its packets for Kt

times. During this RTT, the GF-NOMA fails if: (i) a CTU
collision occurs when two or more UEs choose the same
CTU (i.e., UE detection fails); or (ii) the SIC decoding fails
(i.e., data decoding fails). Once failed, UEs decides whether
to retransmit in the following RTT or not based on the
transmission latency check. When Tlate > Tcons, the UE
fails to be served and its packets will be dropped.

It is necessary to tackle the problem of optimizing the GF-
NOMA configuration defined by parameters4 At = {Kt, Ct}
for each RTT t, where Kt is the repetition value and Ct is
the number of CTUs. At the beginning of each RTT t, the
decision is made by the BS according to the transmission
receptions U t′ for all prior RTTs t′ = 1, ..., t− 1, consisting
of the following variables: the number of the collision CTUs
V t′

cc , the number of the idle CTUs V t′

ic , the number of the
singleton CTUs V t′

sc , the number of UEs that have been
successfully detected and decoded under the latency con-
straint V t′

sd , and the number of UEs that have been success-
fully detected but not successfully decoded V t′

ud. We denote
Ht = {O1, O2, ..., Ot−1} with Ot−1 = {U t−1, At−1} as the
observation in each RTT t including histories of all such
measurements and past actions.

At each RTT t, the BS aims at maximizing a long-term
objective Rt (reward) related to the average number of UEs
that have successfully send data under the latency constraint
V t′

sd with respect to the stochastic policy π that maps the
current observation history Ot to the probabilities of selecting
each possible parameters in At. This optimization problem
(P1) can be formulated as:

(P1 :) max
π(At|Ot)

∞∑
k=t

γk−tEπ[V
k
sd] (3)

s.t. Tlate ≤ Tcons, (4)

where γ ∈ [0, 1) is the discount factor for the performance
accrued in the future RTTs, and γ = 0 means that the agent
just concerns the immediate reward.

III. CONVENTIONAL SOLUTIONS

To simplify, we propose a load estimation-based uplink
resource configuration (LE-URC) approach to dynamically
configure the CTUs number Ct with the fixed repetition
value Kt in each RTT to maximize the successfully served

4According to the UE detection and data decoding procedure described
in Section II.A, for the same CTU number Ct, a large RB number F t

leads to fewer UEs in each RB, which increases the data decoding success
probability. That is to say, the larger RB number, the better. Thus, we fix
the RB number F = 4 in this work to optimize the CTU number.

UEs without latency check and SIC procedure5 described in
Section II, which is expressed as

(P2 :) max
π(Ct|Ot)

Eπ[V
t
sc], (5)

At the RTT t − 1, we consider that Dt−1
UE = n UEs ran-

domly choose one of Ct−1 CTUs with an equal probability.
The probability that no UE chooses a CTU c is

P(Dc = 0|Dt−1
UE = n) = (1− 1/Ct−1)n. (6)

The expected number of idle CTUs is given by

E[V t−1
ic |Dt−1

UE = n] = Ct−1(1− 1/Ct−1)n. (7)

Due to that the actual number of idle CTUs V t−1
ic can be

observed at the BS, the number of active UEs in the (t−1)th
RTT is estimated as

D̃t−1
UE = f−1(E[V t−1

ic |Dt−1
UE = n])

= log(1−1/Ct−1)(V
t−1
ic /Ct−1). (8)

We use δt to represent the difference between the estimated
numbers of UEs in the (t − 1)th and the tth RTTs. That is
δt = D̃t

UE−D̃
t−1
UE and δt ≈ δt−1 [12]. Therefore, the number

of UEs in RTT t is estimated as

D̃t
UE = max{2V t−1

cc , D̃t−1
UE + δt−1}, (9)

where 2V t−1
cc represents that there are at least 2V t−1

cc number
of UEs colliding in the last RTT.

Based on the estimated number of active UEs in the tth
RTT D̃t

UE, the expected number of the successfully served
UEs in the tth RTT is given as

V t
suss(C

t) = E[V t
sc|D̃t

UE = n] = n(1− 1/Ct)n−1. (10)

The maximal expected number of the successfully served
UEs is obtained by choosing the number of CTUs as

Ct∗ = argmax
Ct∈NCTU

V t
suss(C

t). (11)

IV. COOPERATIVE MULTI-AGENT DQN APPROACH

In this section, we propose a Cooperative Multi-Agent
Deep Neural Network (DNN) based Q-learning (CMA-DQN)
approach to optimize the configuration of both repetition
value Kt and CTU numbers Ct simultaneously, which breaks
down the selection in high-dimensional action space into
multiple parallel sub-tasks.

Each DQN agent controls their own action variable,
namely Kt or Ct, and receives a common reward to
guarantee the objective in P1 cooperatively. We define
At

x as the action selected by the xth agent. Each xth
agent is responsible to update the value Q(St, At

x) of
action At

x in state St, where the state variable St =
[At−1, U t−1, At−2, U t−2, ..., At−Mo , U t−Mo ] only includes
information about the last Mo RTTs. All agents receive the
same reward Rt+1 = V t

sd at the end of each RTT, where V t
sd

5The UE is successfully transmitted if there is no CTU collision occurs.
Thus, the optimization objective is V t

sc.



is the observed number of successfully served UEs under the
latency constraint Tcons.

The DQN agents are trained in parallel. Each agent
x parameterizes the action-state value function Q(St, At

x)
by using a function Q(St, At

x,θx), where θx represents
the weights matrix of a multiple layers DNN with fully-
connected layers. The variables in the state St is fed in to
the DNN as the input; the Rectifier Linear Units (ReLUs)
are adopted as intermediate hidden layers; while the output
layer is consisted of linear units, which are in one-to-one
correspondence with all available actions in A. The online
update of weights matrix θx is carried out along each training
episode by using double deep Q-learning (DDQN). Accord-
ingly, learning takes place over multiple training episodes,
where each episode consists of several RTT periods. In
each RTT, the parameters θx of the Q-function approximator
Q(St, At

x,θx) are updated using RMSProp optimizer [13] as

θt+1
x = θt

x − λRMS∇LDDQN
x (θt

x) (12)

where λRMS ∈ (0, 1] is RMSProp learning rate,
∇LDDQN

x (θt
x) is the gradient of the loss function

LDDQN
x (θt

x) used to train the state-action value function. The
gradient of the loss function is defined as

∇LDDQN
x (θt

x) = ESi,Ai
x,R

i+1,Si+1 [(Ri+1 + γmax
a∈A

Q(Si+1,

Ai
x, θ̄

t
x)−Q(Si, Ai

x,θ
t
x))∇θxQ(Si, Ai

x,θ
t
x)], (13)

where the expectation is taken over the minibatch,
which are randomly selected from previous samples
(Si, Aix, Si+1, Ri+1) for i ∈ {t−Mr, ..., t} with Mr being
the replay memory size [14]. When t − Mr is negative,
it represents to include samples from the previous episode.
Furthermore, θ̄t is the target Q-network in DDQN that is used
to estimate the future value of the Q-function in the update
rule, and θ̄t is periodically copied from the current value θt

and kept unchanged for several episodes. The detailed DQN
algorithm is presented in Algorithm 1.

V. SIMULATION RESULTS

We examine the effectiveness of our proposed GF-NOMA
scheme with CMA-DQN algorithm via simulation. We adopt
the standard network parameters listed in Table I following
[7], and hyperparameters for the DQN learning algorithm are
listed in Table II. All testing performance results are obtained
by averaging over 1000 episodes. The DQN is set with two
hidden layers, each with 128 ReLU units. Throughout epoch,
each UE has a periodical a bursty traffic profile (i.e., the
time limited Beta profile defined in [15, Section 6.1.1] with
parameters (2, 4) that has a peak around the 4000th TTI.

Fig. 4 (a) shows the system convergence process of the
proposed CMA-DQN by plotting the average reward. It
can be intuitively seen that the proposed framework has a
fast convergence speed and the episode required for system
convergence is very small, even for heavy traffic scenarios
(massive access).

Algorithm 1 CMA-DQN Based GF-NOMA Uplink Re-
source Configuration

Input: : Action space A and Operation Iteration I.
1 Algorithm hyperparameters: learning rate λRMS ∈ (0, 1],

discount rate γ ∈ [0, 1), ϵ-greedy rate ϵ ∈ (0, 1], target
network update frequency J ;

2 Initialization of replay memory M to capacity D, the state-
action value function Q(S,A,θ), the parameters of primary
Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action A0

x;
5 for t ← 1 to T do
6 if pϵ < ϵ Then select a random action At

x from Ax

7 else select At
x = argmax

a∈Ax

Q(St, At
x,θx). The BS

broadcasts At
x and backlogged UEs attempt com-

munication in the tth RTT;
8 The BS observes state St+1, and calculate the related

reward Rt+1;
9 Store transition (St, At

x, R
t+1, St+1) in replay mem-

ory Mx;
10 Sample random minibatch of transitions

(St, At
x, R

t+1, St+1) from replay memory Mx

11 Perform a gradient descent step and update parame-
ters θx for Q(St, At

x,θx) using (13);
12 Update the parameter θ̄ = θ of the target Q-network

every J steps.
13 end
14 end

TABLE I: Simulation Parameters

Parameters Value Parameters Value
Path-loss
exponent η

4 Noise power σ2 -132 dBm

Transmission
power P

23 dBm The received
SINR threshold
γth

-10 dB

Duration of traf-
fic T

2000 ms The set of the
repetition value

{1, 2, 4, 6, 8}

The set of the
CTU number

{12, 24, 36, 48} Latency
constraint

2 ms

Bursty traffic
parameter
Beta(α,β)

(2, 4) The number of
bursty UEs N

10000 (light) /
30000 (heavy)

Cell radius 10 km Duration of one
TTI

0.125 ms

TABLE II: Learning Hyperparameters

Hyperparameters Value Hyperparameters Value
Learning rate λRMS 0.0001 Minimum exploration

rate ϵ
0.1

Discount rate γ 0.5 Minibatch size 32
Replay Memory 10000 Target Q-network up-

date frequency
1000
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Fig. 4: (a) Average received reward (b) Average number of successfully served UEs for light traffic (c) Average number of successfully served UEs for heavy traffic

Fig. 4 (b) and (c) plot the average number of successful
served UEs by comparing the learning framework with the
LE-URC approach. We first observe that since the LE-URC
approach is not aware of the latency constraint and SIC
procedure, the results are large at first, but still smaller than
the number of non-collision UEs of CMA-DQN in heavy
traffic scenarios. However, with increasing TTIs (above 700),
the cumulated traffic increases due to unsuccessful trans-
missions and retransmissions, the LE-URC method becomes
worse and achieve lower number of successful UEs than
that of CMA-DQN due to its ignorance in latency constraint
during its optimization for one time instance. The superior
performance of CMA-DQN in heavy traffic scenarios also
demonstrate its capability in dynamically configure lower
repetition values and CTU numbers to alleviate the traffic
congestion to obtain a long-term reward.

VI. CONCLUSIONS

In this paper, we developed a general learning framework
for dynamic resource configuration optimization in signature-
based GF-NOMA systems for mURLLC service under the
K-repetition GF scheme. We designed a Cooperative Multi-
Agent Deep Neural Network based Q-learning (CMA-DQN)
approach to optimize the number of successfully served UEs
under the latency constraint via adaptively configuring the
repetition values and the contention-transmission unit (CTU)
numbers. Our results have shown that: 1) the number of
successfully served UEs under the same latency constraint
in our proposed learning framework is up to three times
more than that in the conventional load estimation-based
approach (LE-URC); 2) the proposed CMA-DQN is superior
to LE-URC in its capability in dynamically configuring for
mURLLC in heavy traffic scenarios in long term; and 3)
the proposed learning framework can be used to optimize
the other resource configuration problems in GF-NOMA
schemes, such as retransmission times, starting offset of the
grant, and etc.

REFERENCES

[1] X. Zhang, J. Wang, and H. V. Poor. Statistical delay and error-
rate bounded QoS provisioning for mURLLC over 6G CF M-MIMO
mobile networks in the finite blocklength regime. IEEE J. Sel. Areas
Commun., pages 1–1, Sep. 2020.

[2] W. Saad, M. Bennis, and M. Chen. A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems. IEEE
Network, 34(3):134–142, May. 2020.

[3] Study on scenarios and requirements for next generation access tech-
nologies. 3GPP, TR 38.913 v16.0.0, Jul. 2020.

[4] Study on physical layer enhancements for NR ultra-reliable and low
latency case (URLLC). 3GPP, TR 38.824 v16.0.0, Mar. 2019.

[5] R. Abbas, M. Shirvanimoghaddam, Y. Li, and B. Vucetic. A novel
analytical framework for massive grant-free NOMA. IEEE Trans.
Commun., 67(3):2436–2449, Mar. 2019.

[6] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson.
Grant-free non-orthogonal multiple access for IoT: A survey. IEEE
Commun. Surveys Tutorials, pages 1–1, May. 2020.

[7] Study on new radio access technology-physical layer aspects. 3GPP,
TR 38.802 v14.0.0, Mar. 2017.

[8] Cellular system support for ultra-low complexity and low throughput
Internet of Things (CIoT). 3GPP, Sophia Antipolis, France, TR 45.820
V13.1.0,, Nov. 2015.

[9] On MA resource and MA signature configurations. R1-1609227, 3GPP
TSG-RAN WG1 #86, Oct. 2016.

[10] Y. Liu, Y. Deng, M. Elkashlan, A. Nallanathan, and G. K. Karagian-
nidis. Analyzing grant-free access for URLLC service. IEEE J. Sel.
Areas Commun., pages 1–1, Aug. 2020.

[11] J. Zhang, L. Lu, Y. Sun, Y. Chen, J. Liang, J. Liu, H. Yang, S. Xing,
Y. Wu, J. Ma, I. B. F. Murias, and F. J. L. Hernando. PoC of SCMA-
based uplink grant-free transmission in UCNC for 5G. IEEE J. Sel.
Areas Commun., 35(6):1353–1362, Jun. 2017.

[12] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. S. Wong. D-ACB:
Adaptive congestion control algorithm for bursty M2M traffic in LTE
networks. IEEE Trans. Veh. Technol., Dec. 2016.

[13] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURS-
ERA: Neural Netw. Mach. Learn., 4(2):26–31, Oct. 2012.

[14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[15] Study on RAN improvements for machine-type communications.
3GPP, TR 37.868 v11.0.0, Sep. 2011.


