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Abstract—Recently, semantic communication has been widely
applied in wireless image transmission systems as it can pri-
oritize the preservation of meaningful semantic information in
images over the accuracy of transmitted symbols, leading to
improved communication efficiency. However, existing semantic
communication approaches still face limitations in achieving
considerable inference performance in downstream AI tasks
like image recognition, or balancing the inference performance
with the quality of the reconstructed image at the receiver.
Therefore, this paper proposes a contrastive learning (CL)-based
semantic communication approach to overcome these limitations.
Specifically, we regard the image corruption during transmission
as a form of data augmentation in CL and leverage CL to reduce
the semantic distance between the original and the corrupted
reconstruction while maintaining the semantic distance among
irrelevant images for better discrimination in downstream tasks.
Moreover, we design a two-stage training procedure and the
corresponding loss functions for jointly optimizing the seman-
tic encoder and decoder to achieve a good trade-off between
the performance of image recognition in the downstream task
and reconstructed quality. Simulations are finally conducted to
demonstrate the superiority of the proposed method over the
competitive approaches. In particular, the proposed method can
achieve up to 56% accuracy gain on the CIFAR10 dataset when
the bandwidth compression ratio is 1/48.

Index Terms—Semantic communication, image transmission,
contrastive learning, joint source-channel coding.

I. INTRODUCTION

Recently, semantic communication has emerged as a

promising approach for efficient image transmission in wire-

less network, and attracted increasing research interests from

academic. Compared with the conventional communication

paradigm based on Shannon’s theory, semantic communication

aims to prioritize to preserve meaningful semantic information

over focusing on the accuracy of transmitted symbols, which

can significantly reduce the amount of data to be transmitted

and improve the communication efficiency [1].

A major challenge in semantic communication for image

transmission is to effectively extract semantic information at

the transmitter while accurately reconstructing it at the re-

ceiver under limited communication conditions. To overcome
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this issue, deep learning (DL) has been applied in seman-

tic communication, due to its growing success in semantics

extraction and reconstruction. In this direction, the authors

in [2], [3] proposed a DL base joint source-channel coding

(DeepJSCC), where the encoder and decoder were designed

based on autoencoder and jointly optimized for semantic

information transmission to achieve a good image reconstruc-

tion quality. Moreover, a collaborative training framework for

semantic communication was proposed in [4], where users

could train their semantic encoder to improve the performance

of unknown downstream inference tasks. However, these ap-

proaches still suffer from limitations in achieving considerable

inference performance and making a good trade-off between it

and image reconstruction quality according to communication

conditions.

In essence, the semantic distance between two irrelevant

images is large due to different main semantic information,

while the distance is small enough between two nearly identi-

cal images sharing the same semantic information. Motivated

by this fact, we propose to integrate contrastive learning (CL)

with semantic communication and design a two-stage training

procedure. The key design in this framework is that we regard

the image corruption that occurs during transmission over a

limited channel as a form of data augmentation operation in

[5] and propose the semantic contrastive coding to reduce

the semantic distance (a.k.a semantic similarity) between the

original and reconstructed image while maintain the semantic

distance among irrelevant images for better discrimination.

Based on contrastive loss, we design the two-stage training

procedure and loss functions for jointly optimizing the encoder

and decoder, thereby achieving a good balance between the

inference performance in the downstream task and reconstruc-

tion quality. Simulations are finally conducted to demonstrate

the superiority of the proposed method over the competitive

approaches.

II. SYSTEM MODEL

This paper investigates a semantic communication system

for wireless image transmission, where a convoloutional neural

network (CNN) based semantic encoder and decoder are

deployed in the transmitter and receiver, respectively. The

semantic encoder is used to extract the semantic information

of input image x ∈ Rc×h×w and directly realize the non-linear

mapping from semantic information into the k-dim complex-

valued vector s̃ ∈ Ck, given by

s̃ = Eθ1(x), (1)

where Eθ1(·) represents the semantic encoding operation with

parameter θ1, and c, h, and w denote the number of channels,

http://arxiv.org/abs/2304.09438v1
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Fig. 1: Network architecture of the semantic encoder and

decoder.

height, and width of the image, respectively. To simplify, we

use n = c×h×w to stand for the dimension of x. Typically,

k < n should be satisfied to meet the bandwidth constraint,

and k/n is referred to as the bandwidth compression ratio.

In particular, a large bandwidth compression ratio indicates

a favorable communication condition, whereas a small one

denotes a limited usage of bandwidth. In addition, a power

normalization layer [2] is used at the end of the semantic

encoding network to satisfy the average power constraint
1
kE[s

∗s] ≤ P at the transmitter, which can be written as

s =
√
kP

s̃√
s̃∗s̃

, (2)

where s is the channel input signal that meets the power

constraint, and ∗ denotes the conjugate transpose. Next, s

will be transmitted over the additive white Gaussian (AWGN)

channel, given by

ŝ = s+ ǫ, (3)

where ŝ is the received signal, and ǫ ∈ Ck denotes the

independent and identically distributed (IID) channel noise

sample, which follows symmetric complex Gaussian distribu-

tion CN (0, σ2I) with zero mean and variance σ2.

The semantic decoder deployed at the receiver will recon-

struct the original image x̂ ∈ Rc×h×w from ŝ according to

x̂ = Dθ2(ŝ), (4)

where Dθ2(·) is the semantic decoding operation parameter-

ized by θ2. Subsequently, x̂ will be used to exert downstream

task and obtain the inference results through the following

process

fx = Fb
φ1
(x̂), (5)

where Fb
φ1
(·) characterized by parameter φ1 denotes the

feature extraction operation performed by the CNN backbone

of downstream task, and fx = {f (1),f (2), · · ·f (C)} is the

output feature map with C channels. The inference results ŷ

can be obtained by passed fx to the classifier Fcls
φ2

(·) with

parameter φ2, which can be expressed as

ŷ = Fcls
φ2

(fx). (6)
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Fig. 2: Illustration of the proposed semantic contrastive coding.

Since maintaining semantic information in the reconstructed

image is crucial for the inference performance, especially

when the channel bandwidth is limited. Therefore, it is of

vital importance to design the semantic encoder and decoder,

as well as the training procedure.

III. PROPOSED FRAMEWORK

In this section, we will introduce the proposed CL based

semantic communication framework. Specifically, we first

present the architecture of the semantic encoder and decoder,

and then we will provide the details of semantic contrastive

coding and the training procedure.

A. Architecture of Semantic Encoder and Decoder

The network architecture of the semantic encoder and

decoder plays a critical role in the extraction of semantic

information. Therefore, we do not utilize the straightforward

approach of stacked convolutional layers in [2], as this simple

architecture lacks this ability. The architecture of the proposed

semantic encoder and decoder are presented in Fig. 1. The

semantic encoder comprises a 5 × 5 head convolution, two

down-sampling modules, and a channel coding module. Each

down-sampling module includes a basic block in ResNet [6]

(we refer to as ResBolck) for capturing the spatial feature of

the image, and a 4 × 4 convolution with stride 2 for down-

sampling the image. The channel coding module is used to

mitigate channel corruption and output the k-dim complex-

valued channel input that satisfies the bandwidth and power

constraint.

Moreover, we adopt a symmetrical architecture in the

decoder, which consists of a 5 × 5 head convolution, two

up-sampling modules, and a re-coding module. In the up-

sampling module, ResBolcks are also used as in the encoder

and we adopt the Pixel-Shuffle technology [7] to up-sample the

image, as it can provide a more efficient computing paradigm

and better reconstruction performance compared to transposed

convolution used in [2]. The re-coding module consists of a

3×3 convolution followed by the Sigmoid activated function to

generate the reconstructed image. Notably, the batch normal-

ization and parametric rectified linear unit (PReLU) activated

function are followed with all convolutions, if not specified.
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B. Semantic Contrastive Coding

The key design of semantic contrastive coding is inspired by

the success of CL which employs data augmentation to gener-

ate samples with similar vision representation and minimizes

the distance among them to pretrain the backbone. We modify

the CL process to adapt it for the semantic communication

system. Specifically, we replace the data augmentation with the

process of wireless transmission, as the image corruption that

occurs during the transmission can be viewed as a form of data

augmentation, and the original image and reconstructed one

should keep a small semantic distance for an efficient semantic

communication system. Moreover, we utilize a pretrained

backbone to extract features and a learnable projection network

to map these features into the semantic space. In further,

by incorporating the contrastive loss in semantic space, we

jointly optimize the semantic encoder and decoder rather than

pretraining the backbone in CL.

The details of the proposed semantic contrastive coding are

shown in Fig. 2. The process begins with the semantic encod-

ing and decoding for a typical image x in a training batch

B, where we can obtain the reconstructed x̂. The backbone

network Fb
φ1
(·) is applied to x and x̂, which generates the

feature maps fx = Fb
φ1
(x) and fx̂ = Fb

φ1
(x̂), respectively.

Next, a fully connected projection network Pψ(·) with learn-

able parameter ψ followed by a normalization operation maps

the features into a semantic space defined as a hypersphere.

During the training stage, Pψ(·) can be updated to enhance

the understanding of features, thereby learning the mapping

from features to semantics. Specifically, the projected results

of fx and fx̂ can be represented as qx = Pψ(fx) and

v+ = Pψ(fx̂), respectively, where qx is referred to as the

anchor, and v+ is called the positive. We can use the cosine

similarity between anchor and positive to define the semantic

distance between x and x̂.

For the remaining samples m ∈ B/{x} within training

batch B, the same procedures will be followed. Specifically,

we can obtain the feature map fm = Fb(m) by feding m into

the backbone network, and then project fm into the semantic

space using vm = Pψ(fm), where we refer vm to as the neg-

ative. Similar, the semantic distance between x and m can be

defined as the cosine similarity between anchor and negative.

The objective of semantic contrastive coding is to minimize

the semantic distance between the original and reconstructed

image while maximizing the semantic distance among the

original image and the irreverent images. Therefore, we can

use the InfoNCE function [5] to define the semantic contrastive

loss for the training batch B, which can be expressed as

Lsem = Ex∈B

{

− log
exp(qx · v+/τ)

∑

m∈B/{x} exp(qx · vm/τ)

}

, (7)

where τ > 0 is the temperature coefficient used to smooth

the probability distribution. Next, we will introduce how to

take into account the semantic contrastive coding and seman-

tic contrastive loss to design the loss function and training

procedure.

C. Loss Function and Training Procedure

Based on the semantic contrastive coding, we design a two-

stage training strategy to optimize the semantic encoder and

decoder. The first stage is pre-training, where we employ the

semantic contrastive coding approach to train the weights of

encoder θ1, decoder θ2 and project network ψ simultaneously.

However, it is difficult to achieve a fast convergence speed

when we only optimize semantic contrastive loss. To tackle

this issue, we combine it with the reconstructed loss between

x and x̂, since reducing the reconstructed loss can help

improve the convergence speed in the early training rounds.

Specifically, we apply the mean square error (MSE) function

to evaluate the reconstruction loss for training batch B, which

can be expressed as

Lrec = Ex∈B

{

1

n
||x− x̂||22

}

. (8)

Therefore, the loss function in the first training stage can be

summarized as the linear combination, given by

L1 = α1Lrec + (1− α1)Lsem, (9)

where α1 ∈ [0, 1] is a hyper-parameter that controls the trade-

off between the two part loss functions. For instance, we can

set to α = k/n in the practical semantic communication

system. In this context, the system prioritizes the preserva-

tion of semantic information over the reconstructed quality

when the bandwidth compression is small. In contrast, as the

bandwidth compression increases, the system shifts its focus

towards maintaining the reconstructed quality.

In the second training stage, we aim to further optimize the

performance of the semantic communication system by jointly

fine-tuning the encoder, decoder, and classifier with a small

learning rate to achieve considerable inference performance

and reconstructed image quality. One reason of fine-tuning

the classifier is that the weights of the backbone and classifier

are typically trained without considering channel corruption,

which causes that the outputs of the backbone network may

undergo substantial changes when the reconstructed images are

inputted instead of the original images. This can result in a

performance degradation. Therefore, fine-tuning the classifier

with the semantic encoder and decoder can mitigate this issue

and help enhance the semantics transmission. The loss function

of this stage can be expressed as

L2 = α2Lrec + (1 − α2)LTask, (10)

where α2 ∈ [0, 1] is a hyper-parameter like α1 and LTask is

the loss function of the downstream task. Specifically, when

the downstream task is a classification problem, the cross-

entropy function can be employed to model the loss, given by

LTask = Ex∈B

{

− 1

Ncls

Ncls
∑

i=1

yi log(ŷi)

}

, (11)

where yi and ŷi represent the ground-truth and the predicted

probability of the i-th class, respectively. Notation Ncls de-

notes the number of classes in the dataset.
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Fig. 3: Performance on CIFAR-10 versus the bandwidth com-

pression ratio with SNR = 20dB.

IV. SIMULATIONS

In order to verify the effectiveness of the proposed frame-

work, we conduct experiments on CIFAR-10, which contains

60,000 32×32 color images divided into 10 classes. The train-

ing set comprises 50,000 images, while the test set contains

10,000 images. A pre-trained ResNet-56 [6] is used as the

backbone network and classifier for downstream inference,

while the structure of the semantic encoder and decoder is

shown in Fig. 1. The projection network adopts a two-layer

fully connected structure with an output dimension of 32. The

number of training epochs for the two stages is set to 200 and

100, respectively, with a batch size of 128. Besides, we use

the Adam optimizer with a learning rate of 0.01 for the first

pre-training stage and 0.0001 for the second fine-tuning stage.

These learning rates will be adjusted every 50 epochs with a

decay factor of 0.5. We compare the proposed method with

the following DL-based semantic communication methods,

• DeepJSCC [2]: DL-based source-channel joint coding

that maps the original input to the channel input through

the structure of an autoencoder.

• DeepJSCC-ft: an extension of DeepJSCC with the second

stage fine-tuning strategy of our proposed method, in

which the encoder, decoder and classifier are updated

with a small learning rate.

• DeepSC [4]: a DL-based semantic coding framework

that trains the semantic encoder and decoder with both

semantic and observation losses to achieve efficient se-

mantic information transmission. For a fair comparison,

we freeze its encoder and decoder after training and

retrained the classifier with a small learning rate.
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Fig. 4: Performance on CIFAR-10 versus the bandwidth com-

pression ratio with SNR = 5dB.

Fig. 3a compares the accuracy performance of the proposed

method, DeepJSCC, DeepJSCC-ft, and DeepSC, where SNR

is set to 20dB, and the bandwidth compression ratio k/n
varies from 1/48 to 1/2.5. From this figure, we can find that

the proposed method consistently outperforms or matches the

competitive methods in accuracy. Specifically, when the com-

pression ratio is 1/2.5, the proposed method, DeepJSCC, and

DeepJSCC-ft achieve the test accuracy of about 94%, whereas

DeepSC performs poorly with the accuracy of only 91%.

As the bandwidth compression ratio decreases, the proposed

method still maintains a comparable accuracy performance.

For instance, the proposed method can achieve accuracy of

90.14% and 87.65% at bandwidth compression ratios of 1/24

and 1/48, respectively, which outperforms DeepSC by about

2.5% and 1% at the corresponding bandwidth compression

ratios and also shows an accuracy gain of up to 56% over

DeepJSCC. These results indicate that the proposed frame-

work can effectively extract semantic information to meet the

requirements of downstream task and removes irrelevant re-

dundant information to ensure the semantic information can be

successfully transmitted, especially when channel bandwidth

is limited.

Fig. 3b presents the peak signal-to-ration (PSNR) of the

proposed and the three completing methods , where SNR is

set to 20dB and the bandwidth compression ratio varies from

1/48 to 1/2.5. As shown in the figure, we can find that as the

bandwidth compression ratio increases, the PSNRs of all meth-

ods get improved. Although the proposed method sacrifices

some image quality to prioritize semantic information when

the bandwidth compression ratio is low, it can quickly catch up
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Fig. 5: Visualization comparison of several methods on the Kodak dataset, where SNR = 20dB and bandwidth compression

ratio is 1/48.

with DeepJSCC’s PSNR at higher compression ratios. Specif-

ically, the proposed method achieves a PSNR of 38.75dB,

which is close to the 39.27dB of DeepJSCC, and outperforms

DeepSC with 36.91dB when the bandwidth compression ratio

is 1/2.5. These results indicate that the proposed method

can prioritize to transmit semantic information over irrelevant

background information to ensure the performance of down-

stream task in bandwidth-limited scenarios, and meanwhile

transmit enough background information to obtain good image

quality when the bandwidth is not a bottleneck. This further

demonstrates the effectiveness of the proposed method.

Fig. 4a and Fig. 4b present the performance comparison of

several methods under poor channel conditions in terms of

accuracy and PSNR, respectively. Specifically, both figures

consider a low SNR of 5dB, and the bandwidth compression

ratio varies from 1/48 to 1/2.5. From Fig. 4a, we can observe

that the proposed methods still shows the superiority in terms

of accuracy compared to the three competitive methods, indi-

cating its robustness in low SNR scenarios. From Fig. 4b, we

can find the proposed framework can adaptively sacrifice the

global information to obtain comparable semantic performance

when the bandwidth compression ratio is low, and meanwhile

obtain enough reconstructed quality in terms of PSNR as

bandwidth compression ratio decreased. These results in both

figures further verify the effectiveness and robustness of the

proposed method in low SNR scenarios.

We also provide the visualization comparison of several

methods on the Kodak dataset in Fig. 5, where the encoder

and decoder are trained on the STL10 dataset, SNR is set

to 20dB and the bandwidth compression ratio is 1/48. From

this figure, we can observe that the proposed can effectively

remove redundant background information and meanwhile

preserve the main semantic information, resulting in less image

corruption in semantic regions (e.g., macaws and rafters in

this figures) compared to the competitive methods. Moreover,

the proposed method achieves similar PSNR and multi-scale

structural similarity (MS-SSIM) performance with DeepJSCC

and DeepJSCC-ft, indicating the effectiveness of the proposed

method in reconstructing semantic information. These results

further demonstrate the superiority of the proposed method

in achieving leading accuracy in downstream tasks over the

compared methods.

V. CONCLUSION

In this paper, we proposed a CL-based semantic communi-

cation framework for wireless image transmission. The frame-

work incorporated semantic contrastive coding and a two-

stage training procedure to enhance the extraction of semantic

information, and in order toachieve a better trade-off between

reconstruction quality and the performance of downstream

task. We evaluated the effectiveness of the proposed methods

through simulations on CIFAR-10 and Kodak datasets, which

simulated results demonstrated the superiority of our approach

over existing methods.
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