
Biomimetic Intelligence and Robotics 2 (2022) 100036

A
o
Y
a

b

c

A

K
B
3
D
C
S
P

1

2
d
f
i
c
c
s
i
t
o
d
i
c
a

c

h
R
A
2
(

Contents lists available at ScienceDirect

Biomimetic Intelligence and Robotics

journal homepage: www.elsevier.com/locate/birob

uto-generating of 2D tessellated crease patterns of 3D biomimetic spring
rigami structure
u Xing Teo a, Catherine Jiayi Cai a, Bok Seng Yeow a, Zion Tsz Ho Tse b, Hongliang Ren c,a,∗,1

Biomedical Engineering Department, National University of Singapore, Singapore, 117575, Singapore
Department of Electronic Engineering, University of York, York YO10 5DD, UK
Department of Electronic Engineering, Chinese University of Hong Kong, China

R T I C L E I N F O

eywords:
iomimetic soft robotics
D origami design
esign automation
omputer-aided design
tructural optimization
arametric design

A B S T R A C T

Computational simulations can accelerate the design and modelling of origami robots and mechanisms. This
paper presents a computational method using algorithms developed in Python to generate different tessellated
origami crease patterns simultaneously. This paper aims to automate this process by introducing a system that
automatically generates origami crease patterns in Scalable Vector Graphics format. By introducing different
parameters, variations of the same underlying tessellated crease pattern can be obtained. The user interface
consists of an input file where the user can input the desired parameters, which are then processed by an
algorithm written in Python to generate the respective origami 2D crease patterns. These origami crease
patterns can serve as inputs to current origami design software and algorithms to generate origami design
models for faster and easier visual comparison. This paper utilizes a basic biomimetic inspiration origami
pattern to demonstrate the functionality by varying underlying crease pattern parameters that give rise to
symmetric and asymmetric spring origami 3D structures. Furthermore, this paper conducts a qualitative
analysis of the origami design outputs of an origami simulator from the input crease patterns and the respective
manual folding of the origami structure.
. Introduction

Origami techniques can create 3D structures and mechanisms from
D planar sheets. The forms and functions of 3D origami products are
etermined by their underlying creases and are thus created using dif-
erent folding patterns. However, given that traditional origami design
nvolves considerable inefficient trial-and-error, the origami design of
omplex models can be tedious, laborious and time-consuming, espe-
ially for curved crease origami such as hyperbolic origami [1]. Hence,
everal computational design techniques have been developed and
ncorporated into origami design and modelling to develop algorithms
hat support the systematic and efficient designing and fabrication
f origami robots and mechanisms [2,3]. In computational origami
esigns, the inputs to an origami simulator are an origami sheet and
ts crease patterns [4,5]. Different mathematical theories are used to
ompute and solve the origami folding patterns depending on the
lgorithm.

Current computational origami design software and applications
an be largely categorized depending on their output. 2D generator

∗ Corresponding author.
E-mail address: hlren@ieee.org (H. Ren).

1 ASME Member.

software includes E-origami system (Eos) and Treemaker, and 3D gen-
erator software includes Origamizer, Freeform Origami and Amanda
Ghassei Simulator (AGS). Eos [1,6] is a system that constructs origami
on a computer and visualizes the properties of the origami. Ref. [7]
shows the author introducing basic mathematical folding notions which
build up the Eos model. Treemaker [8,9] is a program for designing
origami bases that implements algorithms and mathematical theories to
construct an origami structure with constraints set by the user [10,11].
Origamizer and Freeform Origami are systems developed by Tomohiro
Tachi. Origamizer can alter the crease patterns of the origami structure
while the user changes the 3D folding pattern of the origami [12–15].
Freeform Origami uses computational methods to design rigidly fold-
able origami [16–18]. AGS presents an explicit method for simulating
a 3D origami structure from its corresponding 2D crease patterns in
vector graphics format [5]. Different line opacities indicate each cor-
responding crease pattern for the final fold angle and different colours
code for different crease types, including mountain (red), valley (blue),
border (black) and cut (green).
ttps://doi.org/10.1016/j.birob.2022.100036
eceived 13 October 2021; Received in revised form 28 December 2021; Accepted
vailable online 21 January 2022
667-3797/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Shandon
http://creativecommons.org/licenses/by-nc-nd/4.0/).
14 January 2022

g University. This is an open access article under the CC BY-NC-ND license

https://doi.org/10.1016/j.birob.2022.100036
http://www.elsevier.com/locate/birob
http://www.elsevier.com/locate/birob
http://crossmark.crossref.org/dialog/?doi=10.1016/j.birob.2022.100036&domain=pdf
mailto:hlren@ieee.org
https://doi.org/10.1016/j.birob.2022.100036
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

s
o
m
i
i
p
F
c
s
t
c

c
i
a
l
a
b
t
H
o
a
i
b
p

g
s
o
i
i
c
V
t
b
U
s
A
e
a
w
t

o

c
p
w
o
s

g
a
f
p
f
o

2

F
t
s

While the aforementioned available computational origami design
oftware and applications are useful for the modelling and visualization
f origami outputs, most do not contain tools to automate the design of
ultiple origami systems [4,19]. The underlying crease patterns of var-

ous origami structures have specified parameters and values that can
nfluence the folding of the origami structure [20,21]. Modifying these
arameters can give rise to different structures with unique behaviours.
or example, changing the parameters of the origami spring design
an give rise to different forms and mechanics of the folded origami
tructure [22]. Hence, an external algorithm or software automating
he design of multiple origami sheets and their multiple crease patterns
an be useful.

The computational design for biomimetic soft robotics can solve
omplex problems. Recent researchers study biomimetic inspiration
deas such as worms, amoeba and octopuses to develop deployable
nd functional soft origami robots [23–27]. Leech has folded annu-
ar structures, which provide ductility and mechanical load-bearing
bility. Recent studies demonstrated biomimetic actuators that use
asic origami patterns inspired by a leech, with the structures’ mo-
ion trajectory depending on different geometrical parameters [28,29].
owever, recent studies in the biomimetic robotics field rarely focused
n geometrical parameter analysis. Thus, this study demonstrates an
utomated computational method that utilizes a basic origami pattern
nspired by leech to obtain various deployable, rotatable and load-
earing biomimetic soft robots after changing different geometrical
arameters.

This paper introduces a computer-aided method that automatically
enerates multiple origami 2D crease patterns. This auto-generating
ystem allows the user to variate different parameters, including crease
pacity, angles, aspect ratios and size. Users introduce the parameters
nto the system through a datasheet, and a Python script extracts the
nput parameters from the sheet to generate the corresponding origami
rease pattern, which is subsequently saved as a file in the Scalable
ector Graphics (SVG) format or equivalents. This process allows for

he forms (and potential functions) of different origami structures to
e compared and increases the speed of origami development [30].
sing an origami spring crease pattern [22], we demonstrate how the

ystem works. The output of the algorithm is then used as the input to
GS [5,31]. AGS is selected due to its input/output compatibility and
ase of visualization and usage compared to other existing software and
pplications. By giving AGS multiple inputs of different crease patterns,
e can output multiple origami structures in the same file, enabling us

o visualize and compare multiple these structures simultaneously.
The main contributions of this paper are as follows:
(1) Development of an automated pipeline for generating spring

rigami crease patterns
(2) We demonstrated our purpose based on the origami spring

rease pattern by varying the parameters of the underlying crease
attern to give rise to the different origami structures and features. This
as followed by a qualitative comparison between the origami design
utputs of the origami simulator and the manual folding of the origami
tructure.

The paper is organized as follows: Section 2 introduces the auto-
enerating system in detail. We first describe a spring origami structure
nd its respective parameters of interest and introduce the user inter-
ace and python script. Section 3 compares computational folding and
hysical folding qualitatively and quantitatively. We also discuss the
easibility of the system and the choice of platform and strain analysis
f the spring origami structure.

. Method

The overall workflow of the auto-generating system is presented in
ig. 1. First, based on the desired origami structure, users will identify
he parameters of the underlying crease patterns mandatory for the

tructure to exist and additional parameters of interest that they would f

2

like to vary. These parameters and specified values are then taken
as inputs into the auto-generating system. The auto-generating system
consists of a user interface where users can input their desired values of
various parameters and a Python script that automatically generates an
SVG file based on the user input. As a demonstration of how the auto-
generating system can be used, this paper first focuses on generating
an origami structure based on the origami spring pattern (Fig. 2(C)).
Hence, the parameters used in the user interface reflect the parameters
of interest identified from the origami spring crease pattern. The input
parameters are customizable according to the origami crease patterns.
We used a biomimetic spring origami structure in this paper as an
example.

2.1. Design cylindrical and asymmetric spiralling annelids-inspired origami

This section discusses the basic origami patterns and the basic
geometrical parameters of the standard annelids-inspired origami. We
discuss two representatives of the basic annelids-inspired origami in
this section, namely the leech-inspired origami [32] and caterpillar-
inspired origami [21]. While there appear to be no well-defined origami
patterns for annelids biomimetic origami, most of the studies are based
on modifying the basic Yoshimura-origami patterns [21,32–43]. Studies
defined the Yoshimura pattern as consisting of identical isosceles trian-
gles arranged symmetrically in each row, producing two triangles that
form a diamond [44] (Fig. 2(A)). Previous research shows that leech-
inspired origami [32] (Fig. 2(B)) and caterpillar-inspired origami [21]
(Fig. 2(C)) are similar to Yoshimura-origami patterns and can obtain a
flat-foldable cylindrical structure [33]. Our paper introduces a cylindri-
cal spiralling annelids-inspired actuator inspired by the leech origami
pattern [32] and the caterpillar-inspired origami pattern [21,33].

Both the leech and caterpillar origami show several similarities to
Yoshimura-origami. According to the leech origami study [32], the
difference between their leech origami structure and the traditional
Yoshimura pattern is the replacement of the isosceles triangle of the
Yoshimura pattern with other scalene triangles (Fig. 2(B)), resulting
in an asymmetrical Yoshimura pattern, causing directional bending
motion [32]. On the other hand, the caterpillar-inspired origami pat-
tern [21] consists of identical isosceles triangles, symmetrically con-
nected in each row with all the triangles facing up (Fig. 2(C)) instead
of forming a diamond shape. Each leg of the triangle is a valley fold,
while the base and height of the triangle are mountain folds. Addition-
ally, the caterpillar-inspired origami study shows that the locomotion
mechanism of the origami resembles that of a real caterpillar [21] and
can generate a flat-foldable cylindrical structure.

To produce a cylindrical asymmetric spiralling annelids-inspired
origami, we combined inspirations derived from the leech origami
(asymmetric) [32] and the caterpillar inspired origami (cylindrical
structure) [21]. We modified the previous caterpillar-inspired origami
pattern [21] to provide an asymmetric feature by replacing the ‘‘isosce-
les triangles’’ in the caterpillar-inspired origami with ‘‘multiple types
of triangle’’, including isosceles triangles, equilateral triangles and sca-
lene triangles. After the modification, we generated an asymmetric
origami structure by using scalene triangles (Fig. 2(D)) instead of
isosceles triangles. The asymmetric origami structure was able to ob-
tained several asymmetric features (Figs. 6–8), including spiralling
behaviour during the deployed stage. The folding difference between
our annelids-inspired origami (Fig. 2(D)) and the caterpillar-inspired
origami (Fig. 2(C)) [21] will be discussed in further detail in the results
section.

After the modifications, we found that our origami structure appears
to contain similar geometrical parameters used in common annelids-
inspired origami, specifically the height to base ratio and apex angle of
the triangle [21,32–43]. For example, in the leech origami study [32],
the major geometrical parameters are the apex angles of the triangle
(denote as 𝛽1 and 𝛽2) between the mountain fold crease and the valley

old crease of the unit cell [32] (Fig. 2(B)). By controlling the apex

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036
Fig. 1. Overall workflow of the auto-generating system. (A) The user first inputs the values of the parameters into the Excel user interface. The dropdown function is used in
some parameters to standardize the user inputs. Detailed instructions are provided using Excel pop up notes. (B) The Python script extracts the user inputs and constructs the 2D
origami crease patterns. (C) The origami crease patterns are stored in an output file (in SVG format). (D) The output file can be used as an input for AGS to visualize the folded
origami structure based on the crease pattern.
angles, 𝛽1 and 𝛽2 (Fig. 2(B)), the leech origami structure can produce
directional bending motion [32].

On the other hand, the study on the caterpillar-inspired origami
structure [21] claimed that the height to base ratio is the major
geometric parameter of their origami pattern, denoted as a/b ratio
(Fig. 2(C)) [21]. Parameter a/b is defined as the ratio of the height
(denoted as a) to half of the base length (denoted as b) of the triangle. In
this paper, to replace the ‘‘isosceles triangles’’ in the caterpillar-inspired
origami [21] with ‘‘scalene triangle’’, the major geometric parameter
a/b ratio needs to be replaced with the H/R and H/L ratios (mentioned
in the following section), or interpreted as 𝛼 and 𝛽 angles (Fig. 2(D)).
After this modification, our asymmetric spring origami pattern will
produce spiralling behaviour, which we will discuss in the next section.

2.2. Spring origami pattern and geometrical parameters

Our origami spring crease pattern consists of repeated units defined
as a rectangular block divided into two parts (left and right), as shown
in Fig. 3(A). Each part would comprise of two scalene triangles after
replacing the isosceles triangles with scalene triangles.

In this paper, the following four parameters of interest in each unit
were identified: (i) spring origami angle ratio, (ii) horizontal length
ratio, (iii) number of repeats and (iv) number of rows. Both the spring
origami angle ratio and horizontal length ratio are parameters that

determine whether the final folded origami structure will be symmetric

3

or asymmetric. The row parameter yields a closed or open origami
square structure based on the given origami angle ratio (Fig. 3(B)–
(C)). Modifying the repeat parameter can yield different lengths of the
final origami spring structure. Modifying the four identified parameters
of the crease patterns can give rise to different spring origami struc-
tures with potentially unique behaviours and properties. The following
section will explain each parameter included in the spring origami
structure generator.

Spring origami ratio and angle
As mentioned previously, each unit of the crease pattern can be

divided into two parts (left and right). Each part can be characterized
by its half-angle (alpha for left, beta for right) or the ratio of its height
(H) to its horizontal base length (L for left, R for right). By using
different ratios and angles, different spring origami structures can be
generated. In symmetrical spring origami crease patterns, the left and
right parts of each unit are identical. Fig. 4(A) shows an example of
a symmetric spring origami crease pattern where H/𝐿 = 𝐻/R = 3/4
on both sides of the unit. Asymmetric spring origami crease patterns
consist of unequal ratios or angles within each unit. Fig. 4(B) shows
an example of an asymmetric spring origami crease pattern where H/L
= 4/3 and H/R = 3/4. Unlike symmetric crease patterns that give rise
to straight and linear origami spring structures (Fig. 4(A)), asymmetric
crease patterns can give rise to twisted origami structures (Fig. 4(B)).
A larger difference between H/L and H/R will result in more intense
twisting. Thus, in this paper, 𝐻∕𝑅 plays an important role in the origami
𝐻∕𝐿

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

M
(

S

o
a
e
s
c
t
u
S
n
t
s
c
o
o

2

U

E
o
f
t
a
(

Fig. 2. Basic origami patterns and common geometrical parameters in annelids-inspired origami studies. Red lines indicate mountain folds and blue lines indicate valley folds. (A)
Common Yoshimura-origami pattern consists of identical isosceles triangles, symmetrically connected in each row so that two triangles form a diamond shape. (B) Origami pattern
and geometrical parameters 𝛽1 and 𝛽2 of the leech origami. (C) The crease pattern of caterpillar-inspired origami. It shows the geometrical parameter a/b of the caterpillar-inspired
origami structure. (D) The origami patterns and geometrical parameters of our annelids-inspired spring origami.
p
t
c
i
i
i
y
r
t
a
i
f
d

s
e
i
g
t

P

c
e
e
t
r
a
d
h
d
E

twisting feature, which we will show in the following section. Since H
is identical in each origami structure, 𝐻∕𝑅

𝐻∕𝐿 can be expressed as L/R.
ore details of the twisting feature will be discussed in the results

Section 3(A)).

pring origami repeats and rows
The spring origami crease pattern comprises repeated spring

rigami units in rows (𝑀𝑟) and columns/repeats (𝑁𝑟). Rows are defined
s the number of units in each repeat. Depending on the angle/ratio of
ach unit, the number of rows will determine if the consequent folded
tructure is closed or open. For example, the crease pattern in Fig. 3(B)
onsists of four rows with a symmetrical angle (or height to base ratio)
o yield a closed square structure. Repeats are defined as the number of
nits in each row and will determine the final length of the structure.
imilar to how the elasticity of a physical spring increases with the
umber of coils, the elasticity of the spring origami also increases with
he number of repeats. This will intensify several properties, such as
tretchability and compressibility. The dimension of the spring origami
rease pattern can be short-handed to 𝑀𝑟 × 𝑁𝑟. Fig. 3(B) shows an
rigami spring crease pattern with 4 × 5 origami spring units, consisting
f four rows and five repeats.

.3. Overview of the auto-generating system

ser interface
As a preliminary demonstration, the user interface consists of an

xcel sheet (Fig. 1(A)) where users can choose to input their parameters
f interest in the first column and their desired values or features in the
ollowing columns depending on how many structures they would like
o generate concurrently in a single SVG file (Fig. 1(C)). To provide

more user-friendly experience, we used the drop-down list option
Fig. 1(A)) to provide a more standardized input. The user interface also
 p

4

rovides detailed step-by-step pop out instructions (Fig. 1(A)) when
he user intends to input the values. In addition, we used different
olours to label those parameters, where the details of each parameter
s described in the Excel user interface template (Fig. 1(A)). As shown
n the first column of Fig. 1(A), two categories of parameters are
dentified for the origami spring crease pattern. Parameters labelled in
ellow (line width, number of blocks, input type, left unit ratio/angle,
ight unit ratio/angle, rows and repeats) are mandatory parameters
o generate the structure. The parameters labelled in other colours
re optional parameters and features that may result in different fold-
ng mechanisms that yield structures with various characteristics and
unctionalities. Most of the mandatory parameters have already been
iscussed in the previous sub-section.

Based on the inputs and parameters specified by the user, a Python
cript is written and executed to automatically and concurrently gen-
rate the different structures in a single SVG file (Fig. 1(B)). This file
s saved in the file name specified by the user. Users can find the
enerated file through the correct file pathway and use the SVG file
o interact with the AGS (Fig. 1(C)) or print it on paper.

ython script
The script preset constraints to fulfil the spring origami units and

rease patterns (Fig. 5). In the first part (Fig. 5(A)), the Python script
xtracts the input parameters from the Excel sheet and uses the param-
ters to modify the spring origami unit and/or the crease pattern under
he preset constraints. The parameters include the ratio (angle), rows,
epeats, twist, facet angle and crease opacity level. The Python script
lso takes a second Excel sheet consisting of hexadecimal colour code
ata, including the opacity level (in percentage) with the respective
exadecimal colour code of opacity as an input. The script extracts the
esired parameter value from the first Excel sheet and uses the second
xcel sheet to convert hexadecimal colour code and opacity level in a

ercentage format.

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

i
u
t
s

f
t
n

i
t
m
s
T

Fig. 3. Parameters of spring origami structures. (A) Single origami spring unit. The origami spring angle ratio is determined as the ratio of 𝛼 to 𝛽, and the horizontal length ratio
s determined as the ratio of the left base length (L) to the right base length (R). (B) Example of a standard closed surface origami structure consisting of four rows and five repeat
nits with a symmetrical angle to yield a closed square structure (C) Example of standard origami structure consisting of three rows and five repeat units with a symmetrical angle
o yield an open square structure. (D) and (E) The front view (top) and the side view (bottom) of the AGS folded origami structures which correspond to the origami structures
hown in (B) and (C) respectively.
In the second part (Fig. 5(B)), the script uses one of three different
unctions, namely Normal function, Specific function and Iterative func-
ion. In this paper, we will use the Normal function. Other functions are
ot the focus in this paper.

The third part of the script (Fig. 5(C)) uses the parameters retrieved
n the first part to generate the respective spring origami crease pat-
erns. In this part, there are three modules (M1, M2 and M3). The first
odule (M1) generates the left part of the spring origami unit, and the

econd module (M2) generates the right part of the spring origami unit.
he third module (M3) generates the spring origami crease pattern by

repeatedly calling M1 and M2. The final output file is generated in
SVG format. Alternatively, the file can be converted into a different
format to interact with other online computational folding platforms,
like Freeform Origami or Origamizer.

Apart from the major parameters we introduced, our
Auto-Generating System can also provide additional functions that
allow users to modify specific origami creases with user desired crease
opacity. Crease opacity is a percentage in the range of [0,100]. An
origami crease with 0% crease opacity represents a transparent crease
generated by our system. In contrast, a crease with 100% crease opacity
5

indicates an opaque crease generated by the system. In AGS, creases
with different opacity indicate different maximum fold percentages [5].
For instance, the higher crease opacity will have a higher folding
percentage in the AGS folding (Supplementary S1).

In our system, the user can modify the crease opacity in two
different manners: (i) Specific function and (ii) Iterating function.

The Specific function allows the user to input the specific ‘‘seat num-
ber’’ of the crease in the origami structure that needs to be modified,
followed by the specific crease opacity (Supplementary S1). Users can
input multiple pairs of ‘‘seat number’’ and crease opacity for one spring
origami structure. For instance, the user may input the 1st and 2nd
crease, with crease opacity 5% and 40%. The system will generate a
normal spring origami with 5% crease opacity for the 1st crease and
40% crease opacity for the 2nd crease (Supplementary S1). In addition,
the system also allows users to generate multiple modified origami at
the same time (Supplementary S1).

On the other hand, the Iterative function creates N derivative
structures from a normal spring origami with N creases. The iteration
function can generate structures that can each have different modified

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036
Fig. 4. Comparison of symmetric and asymmetric folding of spring origami. (A) 2D symmetric origami crease pattern where H/𝐿 = 𝐻/R = 3/4 and L/𝑅 = 1 followed by
the corresponding folded origami structure in AGS. (B) A 2D asymmetric spring origami structure with left (L) ratio 4/3, right (R) ratio 3/4 and L/R = 9/16 followed by the
corresponding folded origami structure in AGS.
Fig. 5. Flowchart of the Python script algorithm. Python script is introduced in three parts: extract data, different functions, similar modules and output. (A) The user inputs
desired values of the parameters into the Excel sheet (in CSV format), and the Python script extracts the desired values of the parameters from the CSV file. The Python script
uses the user input to construct the origami structure. (B) The Python script has three functions, namely Normal function, Specific function and Iterative function. (C) Different
functions share similar modules to construct the basic spring origami units and integrate the basic units into desired origami structures. Multiple desired origami structures are
stored in an output file (in SVG format).
creases. For instance, the user may choose a 0% crease opacity to gen-
erate an origami structure consisting of three rows and two repeat units
(36 creases) using the iterating function. The system will then generate
36 derivative structures in a single output file, with each structure
having one crease with 0% crease opacity. None of the 36 derivative
structures generated by the system will have the same transparent
crease (Supplementary S2). The single output file can be subjected to
AGS, allowing all the derivative structures to be folded simultaneously
(Supplementary S2). This function enables simultaneous comparison
of the folded derivative origami structure with the different modified
creases. While the Specific function requires the user to specify the
crease that needs to be modified, the Iteration function will automati-
cally generate multiple origami structures with all possible creases that
can be modified.

This paper focuses on the major parameters and the Normal func-
tion. The details of other additional functions can be found in our
GitHub (Repository name: Auto-Generating System-Biomimetic-Spring-
Origami). The Excel user interface template and our Auto-Generating
System Python Script (published as a python library) are also accessible
on GitHub under MIT license. More details and user guidance for the
Excel interface can be found in the user interface template in GitHub.

3. Results and analysis

The auto-generating system developed in this paper can be benefi-

cial in the design process of origami crease patterns. To demonstrate

6

the benefits of computational origami simulation in the design and
prototyping of multiple origami structures, the features observed from
the simulation of the folded origami crease structures generated by the
AGS using the SVG files developed by the proposed system as input
(computation outputs) are compared with the features observed from
the physical folding of the structures. The findings are then classified
based on the generated origami spring structures into three categories:
(i) qualitative analysis of the system (twisting), (ii) quantitative analysis
of the system (closing angle), (iii) feasibility of the system and the
choice of the platform and (iv) the strain analysis of spring origami
structure.

3.1. Twisting — Qualitative analysis of the system

Cylindrical twisting is an inherent property of every asymmetric
spring origami and generates block rotation of the structure (Fig. 6).
As mentioned earlier, the direction and magnitude of twisting are
proportional to the difference between the left ratio (H/L) and the right
ratio (H/R).

• When H/L < H/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R > 1, the structure features a

counter-clockwise (CCW) twist, where the magnitude of twist is
proportional to 𝐻∕𝑅

𝐻∕𝐿 .

• When H/L > H/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R < 1, the structure features

a clockwise (CW) twist, where the magnitude of twist is propor-
tional to 𝐻∕𝑅 .
𝐻∕𝐿

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

g
a

Fig. 6. Comparison of physical folding with computational folding in terms of twisting. Spring origami structure with L/R less than, equal to or greater than one. When L/R is
reater than one, it will have a counter-clockwise block rotation. When L/R is less than one, it will have a clockwise block rotation. When L/R is equal to one, no rotation occurs
nd the spring origami structure shows curvature due to surface tension.
T
w

r
p
f
f

𝑅

• When H/𝐿 = 𝐻/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/𝑅 = 1, the structure features no

twist (symmetric structure), so the magnitude of twist is zero.

From Fig. 6, the twisting of the asymmetrical origami spring struc-
ture can be observed in both computational output and physical fold-
ing.

3.2. Quantitative comparison between physical folding and AGS folding

To demonstrate the similarity between AGS folding and physical
folding in different perspectives, we conducted four independent ex-
periments which would allow us to compare the two types of foldings.
In this paper, our focus is to analyse the asymmetric behaviour of
our spring origami, more specifically, the spiralling feature of our
annelids-inspired actuators. The major parameter, the L/R ratio, which
causes the asymmetric features, was studied in this validation section.
The experiments are classified as single base folding validation and
structure folding validation. Single base folding validation includes
validation of the single base folding and closing angle of the single
base. The normalized radius of the twisted spring origami and the
azimuthal angle of the asymmetric twisted origami are classified as
folding structure validation.

In this validation, our focus is on comparing the behaviour of single
base physical folding and AGS folding within different fold percentages.
Single bases with different L/R ratios were used in this validation to
demonstrate the L/R ratio as one of the variables in single base folding.
The position difference between the two hinges during different fold
percentages was measured and it is defined as
𝑌𝑂𝐴
𝑌𝑂𝐵

(1)

𝑌𝑂𝐴 = 𝑦𝐴 − 𝑦𝑂 (2)

𝑌𝑂𝐵 = 𝑦𝐵 − 𝑦𝑂 (3)

where 𝑌𝑂𝐴 denotes the difference of the 𝑦-axis coordinate between the
origin (point O in Fig. 7(A)) and the right hinge (point A in Fig. 7(A)),
and 𝑌𝑂𝐵 denotes the difference of the 𝑦-axis coordinate between the
origin and the left hinge (point B in Fig. 7(A)). The 𝑦-axis coordinate of
point A, point B and point origin are denoted as 𝑦𝐴, 𝑦𝐵 , 𝑦𝑂 respectively.

The experiments are run in triplicates and the coordinates of each
fold percentage were measured by Tracker (open source software) [45].
The validation results show AGS and physical folding are similar among
different fold percentages and different L/R ratios (Fig. 7(A)). The 𝑌𝑂𝐴

𝑌𝑂𝐵

values of physical folding are ±2.12% (in average) compared to the 𝑌𝑂𝐴
𝑌𝑂𝐵

values in AGS folding among different L/R ratios (Table 1). In addition,
less asymmetric origami and symmetric origami tend to have 𝑌𝑂𝐴

𝑌𝑂𝐵
ratios

closer and equal to one, respectively. This hence concludes that the L/R
ratio is one of the major variables in single base folding.
7

Using the asymmetric spring origami structure as the base, hook
structures capable of gripping via compressing and extending the spring
structure can be formed. At rest, the spring origami structure behaves
like a spring, folding into a hook-like structure with the self-locking
property upon compression. This section of the paper focuses on il-
lustrating one of the asymmetric hook structure’s features, the closing
angle. The closing angle in this experiment is defined as the angle
between the horizontal edge and the free flap edge (Fig. 7(B)). The
closing angle is related to the horizontal length ratio of the single spring
origami unit. Experiments are conducted in triplicates, and the results
are shown in Fig. 7(B).

The simulation conducted under the same conditions (triplicates
with identical mandatory parameters) as in the experiment is in agree-
ment with the experimental results (Fig. 7(B)), validating the use
of model-based simulation to guide the design of tessellated origami
crease patterns with the proposed auto-generating system. Symmetrical
behaviour is observed in the AGS folding. However, it is not observable
in physical folding because, while varying the ratio, the physical folding
data points have great variation relative to the second-order trend line
(R2 = 0.9543) compared to the AGS folding data points (R2 = 0.9161).

he closing angle in physical folding is ±4.00% (in average) compared
ith the closing angle in AGS folding among different L/R.

In structure folding validation, we focus on investigating the spi-
alling properties of our annelids-inspired origami. Firstly, we com-
ared the normalized radius of the physical and AGS folded origami
ollowed by the azimuthal angle of the asymmetric physical and AGS
olded origami.

The normalized radius of the spiralling origami is calculated by

𝑟 =
𝑟1

(𝑟2 − 𝑟1)
(4)

where normalize radius is denoted as 𝑅𝑟, the inner and outer radius of
the spiralling origami (Fig. 8(C)) are denoted as 𝑟1 and 𝑟2 respectively.
The intuition behind the normalized radius can be exemplified in the
difference in how a snake of a given diameter would coil differently
around a thick tree trunk as compared to a thin tree branch.

The radius of each spiralling origami was measured (triplicates)
using ImageJ [46]. According to the validation results in Fig. 8(C),
annelids-inspired origami structures show that both physical and AGS
folding have a similar trend among different L/R ratios. Statistical anal-
ysis shows a ±2.50% (in average) difference of the 𝑅𝑟 values between
physical folding and AGS simulated folding among different L/R ratios
(Table 1). Additionally, an increase in the 𝑅𝑟 value is seen when the L/R
value is closer to one, with the spring origami experiencing a greater
𝑅𝑟 value increment when the L/R ratio is closer to one (Fig. 8(C)).

Azimuthal angle is a basic geometrical parameter to analyse the
helix properties (such as twining angle) of twisted origami [47]. The
azimuthal angle (𝜗) is defined as the direction change (i.e. the angle

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036
Fig. 7. Physical folding shows similar folding compared with AGS folding in certain perspectives. (A) Comparison between AGS and physical folding in terms of the folding of
single spring origami base. We conducted the folding for a single origami base with different L/R ratios. The differences of the Y coordination between point O with A and point
O with B are denoted as 𝑌𝑂𝐴 and 𝑌𝑂𝐵 respectively. The 𝑌𝑂𝐴∕𝑌𝑂𝐵 ratios at different fold percentages are calculated and the results are compared between AGS and physical folding.
Results show AGS and physical folding are similar among different fold percentages and different L/R ratios. In addition, less asymmetric origami and symmetric origami tend to
have 𝑌𝑂𝐴∕𝑌𝑂𝐵 ratios closer and equal to one, respectively. (B) Comparison of physical folding with computational folding in terms of closing angle. Spring origami structures with
different L/R values will have different closing angles. The closing angle is defined as the acute angle between the free flap edge and the horizontal edge. The closing angles of
both physical folding and computational folding were measured. Second-order polynomial fitting was used for both foldings.
between two vectors) between the two vectors OP0’ and OP1’ on the x–
y plane. The vector, OP0’, is the vector connecting the origin (point O in
Fig. 8(D)) with the orthogonal projection (point P0’ in Fig. 8(D)) of the
top end of the spiralling spring origami (point P0 in Fig. 8(D)) [47]. The
vector, P1’O, is the vector connecting the origin with the orthogonal
projection (point P1’ in Fig. 8(D)) of the bottom end of the spiralling
spring origami (point P1 in Fig. 8(D)). The azimuthal angle is the total
direction change between two vectors before and after the actuation of
the asymmetric origami that can be larger than 360◦ as indicated in
blue in Fig. 8(D).

We observed that the azimuthal angle of our annelid-inspired
origami is dependent on the number of repeats in each row of the
spring origami (denoted as 𝑁𝑟 in the previous section). Spring origami
structures with the same L/R ratio and different 𝑁𝑟 were folded in
both physical and AGS methods. The azimuthal angle of each folded
origami structure was measured (triplicates) using ImageJ [46] and
the results showed that both folding methods have similar azimuthal
angle among different 𝑁𝑟 (Fig. 8(F)). The azimuthal angle in physical
folding is ±2.73% (in average) compared with the azimuthal angle in
AGS folding among different 𝑁𝑟 (Table 1). Furthermore, the results
demonstrated a positive correlation between the azimuthal angle and
𝑁𝑟.

From these quantitative analyses, we observed a similarity between
the behaviour of the system-generated origami and the origami gener-
ated via physical folding in different perspectives, including single-base
folding (Fig. 7(A)), closing angle (Fig. 7(B)), the normalized radius of
the spiralling origami (Fig. 8(C)) and azimuthal angle of the asymmetric
origami (Fig. 8(F)). In addition, each quantitative analysis consistently
showed less than ±4% percentage difference between physical and
AGS folding (Table 1). This proves that the proposed system (the
combination of our Auto-generating system and AGS) can generate
similar folding behaviour in certain perspectives.

Table 1 summarizes that the average percentage difference of each
quantitative analysis is equal or smaller than 4%. The percentage dif-

ference is defined as the percentage of the absolute difference between

8

Table 1
The percentage difference between physical and AGS folding among different
quantitative analyses.

Experiment Single base
folding

Closing
angle

Normalize radius
of spiral (𝑅𝑟)

Azimuthal
angle (𝜗)

Average
percentage diff

±2.12% ±4.00% ±2.50% ±2.73%

physical folding value and AGS folding value which is normalized by
AGS folding value.

3.3. Using auto-generating system to design and optimize biomimetic spring
origami structure

Previous research designed a worm-like pneumatic spiral soft robot
which is able to operate in a confined environment [47]. This section
aims to design a spiral soft robot with similar design requirements
provided in [47] (with some modifications). The task of such soft spiral
robots would be to wrap about a given object within a predefined spa-
tial constraint, and thus, we define the origami design requirements to
be (i) 540◦ azimuthal angle, (ii) an ability to spiral around a cylindrical
tube with a 1.9 cm radius 𝑟1 and (iii) increasing the overall radius 𝑟2
to 4.3 cm (Fig. 8(A)). The width of the spring origami is thus 2.4 cm
(equal to the space between the outer radius (𝑟2) and inner radius (𝑟1),
i.e. 𝑟2−𝑟1). Since the inner radius 𝑟1 is 1.9 cm and the outer radius 𝑟2 is
4.3 cm, according to Eq. (4), the targeted 𝑅𝑟 for the origami is 0.792.
Subsequently, we can identify the geometrical parameters that achieve
the targeted azimuthal angle and the targeted 𝑅𝑟. Referencing the ex-
periments in the validation section, we found that the azimuthal angle
depends on the number of repeats (𝑁𝑟) while the 𝑅𝑟 is dependent on the
L/R ratio. 𝑁𝑟 and L/R are geometric parameters that can be optimized.
This approach to geometrical parameters can be extended beyond
our origami pattern to other variations of origami worm structures

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

𝐿

s

Fig. 8. Design Optimization using Auto-generating System. There are three steps in the design optimization experiments, namely identifying geometrical parameters which need
to be optimized (in blue), parameters optimization (in orange) and reconstructing the biomimetic origami with optimized parameter values (in green). (A) The target origami
design requirements including azimuthal angle 540◦ (from P0 to P1) and the origami twines in a cylindrical tube which has an inner radius of 1.9 cm and outer radius of 4.3 cm
(These requirements were used in the designing process of Mei Yang et al. soft robotics study). Geometrical parameters which correspond to those requirements were identified.
For instance, the L/R ratio and number of repeats (𝑁𝑟) are the parameters for generating spring origami with different twisting radius and different azimuthal angles. For multiple
parameters optimization, one parameter is chosen first for optimization before moving on to the others. Since the distance between the inner and outer ratio is 2.4 cm, we fixed the
width of the target origami at 2.4 cm, giving a target 𝑅𝑟 of 0.792 (calculated using Eq. (4)). (B) The normalized radius of twisted spring origami is first optimized by generating
spring origami within L/R 1/2.25 to 1/1.0. Results show that the spring origami with L/R equating to 2/3 has the closest 𝑅𝑟 ratio to the target value (0.792). (C) AGS-folding and
manual-folding with certain L/R ratios were conducted in triplicates. It shows that the physical folding results are similar to AGS folding. Optimized L/R was identified and used
in azimuthal angle optimization. (D) The illustration of azimuthal angle which is the total direction change of spring origami before and after actuation, i.e. the angle difference
between vector OP0’ and OP1’, the azimuthal angle in subfigure D is larger than 360◦, indicated as 𝜗. (E) Optimization of azimuthal angle was conducted using the spring origami
with optimized L/R ratio and width. The azimuthal angle was optimized by varying the number of repeats (from 3 to 18 with an increment of 3). (F) We selected and manually
folded some candidates of the optimization experiment and found they have similar azimuthal angles compared with AGS folding. The results show that the asymmetric spring
origami with 10 bases has the closest azimuthal angle to 540◦. (G-H) The front view and the top view of the manually folded asymmetric spring origami with the optimized
parameter values L/R and 𝑁𝑟. Both G and H show that the optimized spring origami meets the design requirements shown in subfigure A.
r
v

r

𝑁

G
t
t

or design requirements. To summarize, parameter optimizations are
conducted to find the optimal geometrical parameters (𝑁𝑟 and L/R)
to generate an origami structure that meets the design requirements,
i.e. spring origami structure with targeted 𝑅𝑟 and azimuthal angle.

In this study, we chose a simplified Coordinate Descent with the
Gauss–Seidel model [48,49] approach to enable the workflow but
finding the best optimization approach is not the focus of this work.
The optimization method introduces in this work employs the following
equations (Eqs. (5)–(10)).

𝑅𝑟 = 𝑎 (𝐿∕𝑅) (5)

where function a takes L/R as input variable and returns the 𝑅𝑟 value.
The L/R is the independent variable for 𝑅𝑟. The definition of 𝑅𝑟 is
shown in Eq. (4).

𝑔 (𝐿∕𝑅) = |

𝑎 (𝐿∕𝑅) − 𝑅𝑟

𝑅𝑟

| (6)

The target value of 𝑅𝑟 (0.792 in our optimization example) is denoted
as 𝑅𝑟. The function g takes in a specific L/R value and calculates
the normalized absolute value between the resulting 𝑅𝑟 (with specific
L/R) and targeted 𝑅𝑟 (𝑅𝑟). Function g is a cost function that maps
alternative L/R values and returns some ‘‘cost’’ (normalized absolute
value) associated with the L/R values.

∕𝑅∗ = argmin
𝐿∕𝑅

𝑔 (𝐿∕𝑅) (7)

The argmin function assigns alternative L/R values (with uniform step
ize) into function g. The argmin function returns the specific L/R value,
 v

9

esulting in the smallest ‘‘cost’’ (i.e. minimizes the normalized absolute
alue calculated by function g) compared with other alternative L/R

values. The specific L/R value is called as the optimized value of L/R
(denoted as L/R*).

After optimizing the L/R value, azimuthal angle (𝜗) is optimized
by following equations (Eqs. (8)–(10)). Similar to how Eqs. (5)–(7)
optimized the values for L/R to L/R*, Eqs. (8)–(10) performs the
optimization for 𝑁𝑟.

𝜗 = 𝑏
(

𝑁𝑟|𝐿∕𝑅∗) (8)

Both 𝑁𝑟 and L/R are the independent variables for 𝜗. Since L/R is
optimized. The function b takes in 𝑁𝑟 as the input variable and returns
the 𝜗 value, where the L/R variable has been previously optimized thus
𝜗 is dependent only on 𝑁𝑟.

𝑓
(

𝑁𝑟|𝐿∕𝑅∗) = |

𝑏
(

𝑁𝑟|𝐿∕𝑅∗) − 𝜗̃

𝜗̃
| (9)

The target value of 𝜗 (540◦ in our optimization example) is denoted as
𝜗̃. Given the optimized L/R (L/R*), the function f takes in a specific
𝑁𝑟 value and calculates the normalized absolute value between the
esulting 𝜗 (with specific 𝑁𝑟) and targeted 𝜗 (𝜗̃).
∗
𝑟 = argmin

𝑁𝑟
𝑓 (𝑁𝑟|𝐿∕𝑅∗) (10)

iven the optimized L/R (L/R*), the argmin function takes in the func-
ion f and returns the optimized 𝑁𝑟 value, which minimizes the func-
ion f (i.e. minimizes the normalized absolute value). The optimized

∗
alue of 𝑁𝑟 is denoted as 𝑁𝑟 .

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

b
(

L

s
m
s
c
N
t
a
𝜗
v
t
c
o

c
a
f
p
b
c
s
b
w
r
j
t
t
b
a

m
l
o
g
t
c
s
u
w
m
F
a
o

3

e
t
i
v
b
I
t
o
a
c
(
a
o
A

I
t
w
s
s
a
d

In this method, the L/R of the geometrical parameters was chosen to
e optimized first (Eqs. (5)–(7)). Once the L/R parameter is optimized
denotes as L/R*), the optimization moves to the next parameter, 𝑁𝑟,

and the previous parameter L/R will be fixed at the optimized value
/R* (Eqs. (8)–(10)). Each parameter is optimized by one or several

iterations. During each iteration, parameter values (L/R and 𝑁𝑟) are
elected with a specific step size within a specific range until the opti-
al parameter value (L/R* and 𝑁𝑟

∗) is found. Iteration with a smaller
pecific step size and a more specific range than the previous iteration
an be conducted until the normalized absolute value (𝜀) is satisfied.
ormalized absolute value is defined as the absolute difference between

he target value (𝑅𝑟 and 𝜗̃) and optimized value (L/R* and 𝑁𝑟
∗). The

bsolute difference is then normalized by the target value (𝑅𝑟 and
̃). The parameter values are optimized when the normalized absolute
alues fall within the tolerance factor of 0.02 (𝜀 < 0.02). Since finding
he best optimization process is not in our focus, the specific step size is
hosen after testing a set of arbitrary step sizes. The simulation consists
f two stages, where the results for the initial optimization of the L/R

ratio is shown in (Fig. 8(B) and (C)) followed by the optimization of
𝑁𝑟 (Fig. 8(E) and (F)).

Firstly, we generated origami structures with different L/R values
(Fig. 8(B) and (C)). The L/R values are selected from the range of [1,
1/2.25], with a step size of +0.25 being applied to the denominator.
The 𝑅𝑟 of each folded origami was measured using ImageJ, and we
found that the targeted 𝑅𝑟 (0.792) fell between L/R [1/1.50, 1/1.75]
(Fig. 8(C)). Since the normalized absolute difference (𝜀) between the
AGS simulated 𝑅𝑟 (0.801) when 1/1.50 and targeted 𝑅𝑟 (0.792) is
smaller than 0.02, the stopping rule was satisfied (Fig. 8(C)). Thus, L/R
1/1.50 is identified as the optimal parameter value and was used in the
following optimization process.

Optimization of 𝑅𝑟 was followed by the optimization of the az-
imuthal angle (Fig. 8(E) and (F)). A similar procedure was conducted
by generating different 𝑁𝑟 selected from the range of [3,18] with a
step size of +3. The targeted azimuthal angle (𝜗 = 540◦) fell between
𝑁𝑟 [9,12]. Neither 𝑁𝑟 = 9 (𝜗 = 482.028◦) nor 𝑁𝑟 = 12 (𝜗 = 665.075◦)
satisfied the stopping rule (Fig. 8(F)). Hence, we conducted another
round of optimization that is specific to the range of [9,12], with a step
size of +1. The optimization process ended after the second iteration,
since 𝑁𝑟 = 10, the normalized absolute difference between the desired
azimuthal angle (𝜗 = 540◦) and the system-generated azimuthal angle
((𝜗 = 541.726◦) is smaller than 0.02 (satisfying the stopping rule).

Both optimal parameter values (L/R = 1/1.50, 𝑁𝑟 = 10) are used to
physically reconstruct the optimal spring origami structure. The system-
optimized origami was physically folded and was physically tested in
a cylindrical tube with a 1.9 cm inner radius 𝑟1 and 4.3 cm outer
radius 𝑟2. The folded origami was able to twine with 1.925 cm inner
radius 𝑟1, 4.356 cm outer radius 𝑟2 and 562.087◦ azimuthal angle in
the preset cylindrical tube (Fig. 8(G) and (H)). The normalized absolute
differences of the 𝑅𝑟 and the azimuthal angle between physical folded
prototype and the targeted origami requirements are both smaller than
4%. Further optimization studies can be conducted using other methods
such as the Gradient Descent optimization method to provide a better
optimization result [50].

To further capitalize on the advantages of our system design op-
timization, further studies can integrate an automated measurement
system to fully automate the optimization process. Reinforcement ma-
chine learning can be incorporated with the automated optimization
process to generate a fully automated spring origami designing pipeline
that can generate spring origami with the desired requirements without
any help provided by the user [51].

3.4. A time-saving origami design system

We illustrate our system as a time-saving procedure by comparing
the total time needed to achieve the optimal design requirements

shown in the previous section. We used the same optimization method,

10
Table 2
Average time spent for different steps and optimization methods.

Physical Auto-generating
system

Generating step 6 min/origami <30 s/origami
Folding step 10 s/crease <30 s/batch
Total optimization time
(exclude measurements)

649.5 min 15 min

which provides similar attempts to achieve the same optimal design
requirements with the same stopping rule. Similar L/R and 𝑁𝑟 are
hosen followed by the measurements of the 𝑅𝑟 values and azimuthal
ngles (Fig. 8(C) and (F) labelled in blue). After the optimizations
or both parameters, physical optimization showed identical optimal
arameter values as system optimization (Fig. 8(C) and (F) labelled in
lue), i.e. L/R = 1/1.50, 𝑁𝑟 = 10. Since both optimization methods
an provide identical optimal parameter values and our validation
tudies show that system folding can simulate similar physical folding
ehaviours in some perspectives (refer back to the validation section),
e suggest replacing physical optimization with system optimization to

esolve the time-consuming issue during design optimization. The ma-
or time-consuming steps are generating the 2D origami structure and
he physical folding of the origami structure. A study was conducted
o show the average time spent generating and folding the origami in
oth validation methods (Table 2). The time spent for both methods
re shown below.

Table 2 shows the average time spent, taken from three independent
easurements. Results show that physical optimization is 43.3 times

onger than Auto-generating System optimization. In addition, system
ptimization provides a convenient approach that enables the user to
enerate multiple origami structures and fold multiple origami struc-
ures simultaneously (Supplementary S1 and Supplementary S2). In
ontrast, physical optimization can only generate and fold one origami
tructure at any one point. In addition, manual-folding of origami
sually requires pre-creasing with the folding occurring sequentially,
hereas the simulation does all folds simultaneously. Currently, the
easurement step of both optimization processes is done manually.

urther studies can develop an automated measurement step to fully
utomate the system optimization process (generating origami, folding
rigami and taking measurements).

.5. Feasibility of the system and the choice of platform

Asymmetrical origami spring structures can also withstand a load
xerted on them in a certain direction (Fig. 9). As shown in Fig. 10,
here are similar behaviours for symmetrical origami spring structures
n both the computational output and the physical folding. Obser-
ations suggest the AGS simulated-symmetrical origami structure to
e flat foldable, agreeing with the physical prototype (Fig. 10(A)).
n contrast, the physical asymmetrical origami structure is observed
o give rise to a structure that is not flat foldable and is capable
f directionally withstanding force (Fig. 10(B)). However, due to its
lgorithm, AGS is not able to detect the collisions and hence will fully
ompress the origami structure with collision (Figs. 10(B) and 11(A)–
D)). On the other hand, fully compressed origami with collision is not
chievable in physical folding. This illustrates that some AGS simulated
utput may not be feasible in physical folding due to the inability of
GS to detect the collision during folding.

The symmetrical origami structure is observed to be flat foldable.
n contrast, the asymmetrical origami structure is observed to give rise
o a structure that is not flat-foldable and is capable of directionally
ithstanding force (Fig. 9). However, due to the algorithm in AGS, the

imulated origami structure demonstrates collision within the folded
tructure to achieve flat-foldability (Fig. 10(B)), which is not achiev-
ble in physical folding. This limitation can be mitigated by using
ifferent origami folding platforms to avoid collisions. As shown in

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

l
f
s

Fig. 9. Comparison of symmetrical and asymmetrical origami spring structures when withstanding a load of 70 g (denote as W1) exerted on it from a certain direction (either
eft side or right side). Asymmetric origami spring structures can only withstand the load from one direction and collapse in the other, and the direction which can withstand the
orce depends on the L/R ratio. (A) The force is applied from the left, and both the symmetric and asymmetric origami spring structures can withstand the load. (B) Unloaded
tate of the symmetric and asymmetric structure. (C) The force is applied from the right, the symmetric structure can withstand the force, but the asymmetric structure collapses.
Fig. 10. Comparison of manual and physical folding with computational folding for both symmetric and asymmetric structures. 2D origami spring structure (upper), physical
folding (bottom left) and computational folding (bottom right) are displayed. (A) Symmetric origami spring structure: The simulation of symmetric spring origami agrees with
the physical prototype because both types of folding can fully compress. (B) Asymmetric origami spring structure: The simulation of asymmetric origami is different from the
asymmetric physical prototype because physical folding cannot fully compress, while computational folding can fully compress with collision. However, fully compressing with
collision is not feasible in reality. This illustrates that some AGS simulated output may not be feasible in physical folding.
(Fig. 11(C)–(E)), when using an identical structure (identical output file
with different file types), collisions are observed in AGS (Fig. 11(C)–
(D)). However, collisions are avoided in Freeform Origami folding
(Fig. 11E).

The output of the proposed system is an output file that consists
of single/multiple origami structures. Different computational fold-
ing platforms (such as AGS and Freeform Origami) have different
limitations. Thus, interchanging between different platforms not only
provides a feasible way to overcome limitations, it can also be suited to
different research purposes. Interchanging between different platforms
can be done by converting the output file type (SVG file type) to the
input file type required by the desired platform.

3.6. Strain analysis of spring origami structure

AGS allowed the comparison between symmetric and asymmetric
spring origami structures in terms of origami strain. Furthermore, AGS
can display different strain visualization by changing the maximum
number of strains of the simulator. For instance, the simulator trans-
lates the strain into a RGB colour on the spectrum of blue (no strain)
to red (maximum strain) and applies it to the 3D model for visual-
ization [5]. This can be seen in Fig. 12(A). Strain visualization was
11
generated by specified folding parameters. These parameters included
maximum strain level, fold stiffness, axial stiffness, face stiffness, facet
crease stiffness and damping ratio.

Strain analysis of twisting (Section 3(A)) and closing angle (Sec-
tion 3(B)) origami structures were conducted under the same fold per-
centage (60%) with the maximum strains of 2.3% and 5%, respectively.
The results are shown in Fig. 12(B) and (C), respectively. The results re-
veal symmetrical and asymmetrical strain distribution on symmetrical
and asymmetrical origami structures, respectively (Fig. 12).

Results for twisting origami structure shows (Fig. 12(B)):

• When H/L < H/R i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R > 1, the magnitude of strain

level is proportional to 𝐻∕𝑅
𝐻∕𝐿 .

• When H/L > H/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R < 1, the magnitude of strain

level is proportional to 𝐻∕𝐿
𝐻∕𝑅 .

• When H/𝐿 = 𝐻/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/𝑅 = 1, the magnitude of strain

level is the least.

From Fig. 12(C), we can observe the strain level of the closing angle
shows:

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

i
f

S

w
t
v

Fig. 11. Collision in AGS (A–D) and collision-free in Freeform Origami (E). (A)(C) Side view of the collision folding structure shows that the creases overlay, which is not feasible
n reality. (B)(D) Front view of the collision folding structure (viewer’s view from the direction of the arrow) shows that the creases intersect, which is not feasible in physical
olding. (E) Identical origami structure used in (C) folding in Freeform Origami platform with collision avoiding function.
Fig. 12. Strain analysis result of twisting and closing angle of spring origami structures. Strain levels and strain distribution profiles vary directly as the L/R values of the spring
origami structures. (A) Strain visualization of the side view of the spring origami structure with different maximum strain percentages. Maximum strain specified at 5% and 10%,
respectively. (B) Shows the strain visualization of the twisting spring origami structures with 2.3% maximum strain, L/R values closer to one, the lower the strain levels are. (C)
hows the strain visualization of the closing angle spring origami structures with 5% maximum strain. Closer the L/R values to one, lower the strain levels and more centred

strain distribution profiles.
• When H/L < H/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R > 1, the strain distribution

is shifted to the right. The strain level and the magnitude of the
shift are proportional to 𝐻∕𝑅

𝐻∕𝐿 .

• When H/L > H/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/R < 1, the strain distribution is

shifted to the left. The strain level and the magnitude of the shift
are proportional to 𝐻∕𝐿

𝐻∕𝑅 .

• When H/𝐿 = 𝐻/R, i.e., 𝐻∕𝑅
𝐻∕𝐿 = L/𝑅 = 1, the strain distribution

profile is symmetrical and centred. The strain level is the least.

Quantitative analysis of the strain level can be achieved by AGS
ebsite debugging to retrieve the specific numerical strain levels of

he interested regions, which the AGS uses to generate the strain
isualization.
12
4. Discussion and conclusion

Origami robotics can integrate computational design practices to
speed up the research and development process using parametric
dependencies [52,53]. Computational design can discover different
origami patterns and useful folding mechanisms quickly. This study
developed an auto-generating system that can be used with available
computational software for a more efficient design process. The sys-
tem’s performance is demonstrated by taking a spring origami crease
pattern as an example, and varying different parameters of the pattern,
such as ratio, rows, repeats and opacity, and comparing the outputs.
Different parameters and values can be introduced to generate different
crease patterns. The output crease patterns can then serve as inputs for
currently available computational origami software (AGS in this case)

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

D

c
i

A

d
o

(
S

A

to filter and extract the useful folding patterns, which can be used
in real-life applications. After filtering the possibilities to obtain the
few that seem to have promising results, the researcher can conduct
physical folding experiments on the useful folding patterns to ensure
the feasibility of the patterns in real-life applications.

According to the experiments conducted in this study, a small
difference in parameters (especially the horizontal length ratios) will
lead to very different spring origami folding mechanisms. Asymmetric-
ity causes asymmetric features such as twisting, closing angle and
directional load-bearing in spring origami units. In particular, similar
origami features (e.g., twisting and closing angle) can be observed in
both computational origami and physical folding. Additionally, when
compared against physical folding, computational folding produced
similar trends (e.g., magnitude of twisting and closing angle). However,
as AGS cannot prevent collisions, it will lead to unfeasible simulated
folding of spring origami structures which cannot be performed in real
life. This problem often occurs in folding experiments for asymmetric
structures [5], as the AGS can only fold uniform crease patterns.
Localized and varying degrees of folding of different areas cannot be
performed using the AGS. As such, the consequent features (e.g., direc-
tional load-bearing) will not be observable computationally. However,
the online computational folding platform can serve as a reference to
the overall folding profile. Comparison between physical folding and
AGS can ensure that the prediction of the folding mechanism is correct.

Through the simultaneous input and output of the system, this
system can be a part of push-button design automation, enabling close
human–robot interaction robots to adapt and respond to environmental
changes [54] simultaneously. The system potentially automates the
entire process from design to manufacturing and collapses the two
into one [54,55]. This design can be implemented in the tessellated
crease pattern synthesis used in origami-guided and shelled soft robots.
Using specific parameters, desired kinematics (such as twisting direc-
tion and closing angle) can be specified for origami-guided and shelled
soft robots [55–57]. Future studies can utilize the inverse kinematics
method to decompose desired Cartesian coordinates and transform
them into specific origami guided/shell robotic joint angles to achieve
desired folding patterns via our system [4,58,59] and multiple sensing
modalities [60].
13
Abbreviation

Eos E-origami system
AGS Amanda Ghassei Simulator
SVG Scalable Vector Graphics
H Height of the spring origami unit
L Horizontal base length for left part of spring origami

unit
R Horizontal base length for right part of spring origami

unit
𝑀𝑟 Number of rows in the spring origami structure
𝑁𝑟 Number of repeats in the spring origami structure
𝑌𝑂𝐴 The difference of 𝑦-axis coordinate between the origin

and the right hinge of the single origami base
𝑌𝑂𝐵 The difference of 𝑦-axis coordinate between the origin

and the left hinge of the single origami base
𝑅𝑟 The normalized radius of the spiralling origami
𝑟1 Inner radius of the cylindrical tube
𝑟2 Outer radius of the cylindrical tube
𝜗 Azimuthal angle
𝜀 Normalized absolute value

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgements

We thank Xin Yi Than for the help with the origami folding and
ata collection; Ryan Lee Ting Zhern for his advice and help in the
ptimization experiments.

This work was supported by the Chinese University of Hong Kong
CUHK) Direct Grant (4055139) for a research project on Multiphysics
tudy of Magnetically Deployable Robotic Collapsible Structures.

ppendix A. Supplementary data
Fig. S1. Illustration of Specific Function. (A) User input for generating a modified origami structure. The vertical mountain crease (crease ID = 1, labelled as ‘‘1st’’ crease in
subfigure B) was modified with 5% crease opacity and the diagonal valley crease (crease ID = 2, labelled as ‘‘2nd’’ crease in subfigure B) was modified with 40% crease opacity.
(B) The corresponding 2D origami structure and the 3D AGS folding in 60 fold percentage. (C) User generates five origami structures with Specific Function. The vertical mountain
crease (crease ID = 1) in each origami structure contains different crease opacities (0%, 25%, 50%, 75% and 100%). (D) Each column (dotted square in (C)) is respected to
one origami structure in (D). The system generates five origami structures with respective crease opacity and the corresponding structures were folded in AGS with a 60 fold
percentage. As mentioned, different crease opacity can have a different folding magnitude in the AGS. The ‘‘seat number’’ is called ‘‘crease ID’’ in the user interface. The details
of the ‘‘seat number’’ assignment are mentioned in the Excel template.

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036

t
t
p

R

Fig. S2. Illustration of Iteration Function. (A) User chooses 0% crease opacity to generate an origami structure consisting of three rows and two repeat units (36 creases) using
he iterating function. (B) The system generates 36 derivative structures in a single output file. Each structure has one crease with 0% crease opacity, with none of them having
he same transparent crease. (C) The unfolded derivative structures were subjected to AGS. (D) All the derivative structures were folded simultaneously in AGS with a 60 fold
ercentage. This function enables the mass comparison of the actuated derivative origami structure with the different modified creases.
eferences

[1] R.J. Lang, A computational algorithm for origami design, in: Proc. 12th Annual
ACM Symp. on Computational Geometry, 1996, pp. 98–105, http://dx.doi.org/
10.1145/237218.237249.

[2] R.J. Lang, Origami 4, A K Peters/CRC Press, New York, 2009.
[3] L. Hardesty, New Algorithm Generates Practical Paper-Folding Patterns to

Produce Any 3-D Structure, MIT News Office, 2017.
[4] D. Rus, T.M. Tolley, Design, fabrication and control of origami robots, Nat. Rev.

Mater 3 (6) (2018) 101–112, http://dx.doi.org/10.1038/s41578-018-0009-8.
[5] A. Ghassaei, Fast, interactive origami simulation using GPU computation, 2018.
[6] A. Kasem, T. Ida, H. Takahashi, M. Marin, F. Ghourabi, Eorigami system Eos, in:

Proceedings of the Annual Symposium of Japan Society for Software Science and
Technology (JSSST, Tokyo, Japan), 2006, http://dx.doi.org/10.1201/b10653-29.

[7] T. Ida, H. Takahashi, M. Marin, F. Ghourabi, Modeling origami for computational
construction and beyond, in: O. Gervasi, M.L. Gavrilova (Eds.), Computational
Science and its Applications – ICCSA 2007. ICCSA 2007, in: Lecture Notes
in Computer Science, vol. 4706, 2007, http://dx.doi.org/10.1007/978-3-540-
74477-1_60.

[8] R.J. Lang, Treemaker 4.0: A program for origami design, 1998, https://
langorigami.com/article/treemaker/ (accessed 20 May 2021).

[9] R.J. Lang, Origami Design Secrets, second ed., 2011.
[10] K. Kuribayashi, T. Kiochi, Z. You, T. Dacian, U. Minoru, I. Takahiro, S. Masahiro,

Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi
shape memory alloy foil, Mater. Sci. Eng. 419 (1–2) (2006) 131–137, http:
//dx.doi.org/10.1016/j.msea.2005.12.016.

[11] T. Tachi, Freeform origami, 2020, http://www.tsg.ne.jp/TT/software/ (Accessed
Dec 10, 2020) June 16.

[12] T. Tachi, Generalization of rigid-foldable QuadrilateralMesh origami, J.
Int, Assoc. Shell Spat. Struct. (IASS) 50 (3) (2009) 173–179, ISBN:
978-84-8363-461-5.

[13] T. Tachi, Freeform Variations of Origami, in: Proceedings of the 14th In-
ternational Conference on Geometry and Graphics (ICGG 2010) 2010, pp.
273-274.

[14] T. Tachi, Freeform rigid-foldable structure using bidirectionally flat-foldable
planar quadrilateral mesh, Adv. Archit. Geom. (2010) 87–102, http://dx.doi.org/
10.1007/978-3-7091-0309-8_6.

[15] T. Tachi, Origamizer, 2020, http://www.tsg.ne.jp/TT/software/ (Accessed Dec
10, 2020) June 16.

[16] T. Tachi, Origamizing polyhedral surfaces, IEEE Trans. Vis. Comput. Graphics 16
(2) (2010) 298–311, http://dx.doi.org/10.1109/TVCG.2009.67.

[17] T. Tachi, 3D Origami Design Based on Tucking Molecule, Vol. 4, Origami, 2009,
pp. 259–272.
14
[18] E. Hawkers, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus,
R.J. Wood, Programmable matter by folding, Proc. Natl. Acad. Sci. 107 (28)
(2010) 12441–12445, http://dx.doi.org/10.1073/pnas.0914069107.

[19] Y.L. Cheng, J.H. Scott, Computational design of tissue engineering scaffolds,
Comput. Methods Appl. Mech. Engrg. 196 (31–32) (2007) 2991–2998.

[20] Caio C. Lucarelli, Joyce, Parametric modeling simulation for an origami shaped
canopy, Front. Archit. Res. (2019) http://dx.doi.org/10.1016/j.cma.2006.09.023.

[21] C.J. Cai, et al., Diversified and untethered motion generation via crease pattern-
ing from magnetically actuated caterpillar-inspired origami robot, IEEE/ASME
Trans. Mechatronics (2020) http://dx.doi.org/10.1109/TMECH.2020.3028746.

[22] N. Wonoto, B. Daniel, G. Russell, S. Matthew, Parametric design and structural
analysis of deployable origami tessellation, Comput.-Aided Des. Appl. 10 (6)
(2013) 939–951, http://dx.doi.org/10.3722/cadaps.2013.939-951.

[23] R.K. Katzschmann, A.D. Marchese, D. Rus, Autonomous object manipulation
using a soft planar, Soft Robot. 2 (2015) 4, http://dx.doi.org/10.1089/soro.2015.
0013.

[24] A.D. Marchese, R.K. Katzschmann, D. Rus, A recipe for soft fluidic elastomer
robots, Soft Robot. 2 (2015) 1, http://dx.doi.org/10.1089/soro.2014.0022.

[25] C.D. Onal, R.J. Wood, D. Rus, An origami-inspired approach to worm
robots, IEEE/ASME Trans. Mechatronics 18 (2013) 2, http://dx.doi.org/10.1109/
TMECH.2012.2210239.

[26] S. Ornes, Inner workings: Medical microrobots have potential in surgery, ther-
apy, imaging, and diagnostics, Proc. Natl. Acad. Sci. USA 114 (47) (2017)
12356–12358, http://dx.doi.org/10.1073/pnas.1716034114.

[27] B. Zhang, et al., Worm-like soft robot for complicated tubular environments, Soft
Robot. 3 (2019) 6, http://dx.doi.org/10.1089/soro.2018.0088.

[28] B. Chen, et al., Soft origami gripper with variable effective length, Adv. Intell.
Syst. (2021) http://dx.doi.org/10.1002/aisy.202000251.

[29] A. Kanada, et al., Reachability improvement of a climbing robot based on
large deformations induced by tri-tube soft actuators, Soft Robot. 6 (2019) 4,
http://dx.doi.org/10.1089/soro.2018.0115.

[30] S. Chandra, A. Körner, A. Koronaki, R. Spiteri, R. Amin, S. Kowli, M. Weinstock,
Computing curved-folded tessellations through straight folding approximation,
in: Proc. Symposium on Simulation for Architecture & Urban Design, 2015,
http://dl.acm.org/citation.cfm?id=2873042.

[31] M. Achim, A. Sean, Computational Design Thinking, AD Reader, ISBN:
978-0-470-66570-1, 2011.

[32] C. Bohan, Soft origami gripper with variable effective length, Adv. Intell. Syst.
(2021) 3, http://dx.doi.org/10.1002/aisy.202000251.

[33] C. Ai, Current development on origami/kirigami-inspired structure of creased
patterns toward robotics, Adv. Energy Mater. 23 (10) (2021) http://dx.doi.org/
10.1002/adem.202100473.

http://dx.doi.org/10.1145/237218.237249
http://dx.doi.org/10.1145/237218.237249
http://dx.doi.org/10.1145/237218.237249
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb2
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb3
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb3
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb3
http://dx.doi.org/10.1038/s41578-018-0009-8
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb5
http://dx.doi.org/10.1201/b10653-29
http://dx.doi.org/10.1007/978-3-540-74477-1_60
http://dx.doi.org/10.1007/978-3-540-74477-1_60
http://dx.doi.org/10.1007/978-3-540-74477-1_60
https://langorigami.com/article/treemaker/
https://langorigami.com/article/treemaker/
https://langorigami.com/article/treemaker/
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb9
http://dx.doi.org/10.1016/j.msea.2005.12.016
http://dx.doi.org/10.1016/j.msea.2005.12.016
http://dx.doi.org/10.1016/j.msea.2005.12.016
http://www.tsg.ne.jp/TT/software/
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb12
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb12
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb12
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb12
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb12
http://dx.doi.org/10.1007/978-3-7091-0309-8_6
http://dx.doi.org/10.1007/978-3-7091-0309-8_6
http://dx.doi.org/10.1007/978-3-7091-0309-8_6
http://www.tsg.ne.jp/TT/software/
http://dx.doi.org/10.1109/TVCG.2009.67
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb17
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb17
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb17
http://dx.doi.org/10.1073/pnas.0914069107
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb19
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb19
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb19
http://dx.doi.org/10.1016/j.cma.2006.09.023
http://dx.doi.org/10.1109/TMECH.2020.3028746
http://dx.doi.org/10.3722/cadaps.2013.939-951
http://dx.doi.org/10.1089/soro.2015.0013
http://dx.doi.org/10.1089/soro.2015.0013
http://dx.doi.org/10.1089/soro.2015.0013
http://dx.doi.org/10.1089/soro.2014.0022
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1073/pnas.1716034114
http://dx.doi.org/10.1089/soro.2018.0088
http://dx.doi.org/10.1002/aisy.202000251
http://dx.doi.org/10.1089/soro.2018.0115
http://dl.acm.org/citation.cfm?id=2873042
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb31
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb31
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb31
http://dx.doi.org/10.1002/aisy.202000251
http://dx.doi.org/10.1002/adem.202100473
http://dx.doi.org/10.1002/adem.202100473
http://dx.doi.org/10.1002/adem.202100473

Y.X. Teo, C.J. Cai, B.S. Yeow et al. Biomimetic Intelligence and Robotics 2 (2022) 100036
[34] H. Fang, Y. Zhang, K.-W. Wang, Origami-Based Earthworm-Like Locomotion
Robots, IOPscience, 2017, http://dx.doi.org/10.1088/1748-3190/aa8448.

[35] M. Sivaperuman Kalairaj, C.J. Cai, S. Pavitra, H. Ren, Untethered origami
worm robot with diverse multi-leg attachments and responsive motions under
magnetic actuation, Robotics 2021 10 (118) (2021) http://dx.doi.org/10.3390/
robotics10040118.

[36] J.-E. Suh, T.-H. Kim, J.-H. Han, New approach to folding a thin-walled yoshimura
patterned cylinder, J. Spacecr. Rockets 58 (2021) 2, http://dx.doi.org/10.2514/
1.A34784.

[37] J.S. Koh, K.J. Cho, Omegabot: Biomimetic inchworm robot using SMA coil
actuator and smart composite microstructures (SCM), in: IEEE Int. Conf. Robot.
Biomimetics, ROBIO 2009, 2009, pp. 1154–1159, http://dx.doi.org/10.1109/
ROBIO.2009.5420752.

[38] H. Fang, Y. Zhang, K.W. Wang, Origami-based earthworm-like locomotion robots,
Bioinspir. Biomim. 12 (6) (2017) 65003, http://dx.doi.org/10.1088/1748-3190/
aa8448.

[39] H. Fang, Y. Zhang, K.W. Wang, An earthworm like robot using origami-ball
structures, in: Active and Passive Smart Structures and Integrated Systems 2017,
Vol. 10164, 2017, p. 1016414, http://dx.doi.org/10.1117/12.2258703.

[40] C.D. Onal, R.J. Wood, D. Rus, An origami inspired approach to worm robots,
IEEE/ASME Trans. Mechatronics 18 (2) (2013) 430–438, http://dx.doi.org/10.
1109/TMECH.2012.2210239.

[41] Q. Zhang, H. Fang, J. Xu, Yoshimura-origami based earthworm-like robot with
3-dimensional locomotion capability, Front. Robot. AI 8 (2021) 738214, http:
//dx.doi.org/10.3389/frobt.2021.738214.

[42] M. Luo, R. Yan, Z. Wan, Y. Qin, J. Santoso, E.H. Skorina, C.D. Onal, Orisnake:
Design, fabrication and experimental analysis of a 3-D origami snake robot, IEEE
Robot. Autom. Lett. (1993) http://dx.doi.org/10.1109/LRA.2018.2800112.

[43] A. Pagano, B. Leung, B. Chien, T. Yan, A. Wissa, S. Tawfick, Multi-Stable
Origami Structure for Crawling Locomotion, American Society Of Mechanical
Engineers, Stowe, Vermont, USA, 2016, V002T06A005, http://dx.doi.org/10.
1115/SMASIS2016-9071.

[44] G. Curletto, Rigid foldable origami structures: parametric modelling with
grasshopper, in: Geometric and Structural Issues, Lisbon, Portugal, s.n, 2016.

[45] B. Douglas, J.C. Anne, Innovative uses of video analysis, Phys. Teach. 47 (2009)
145–150, http://dx.doi.org/10.1119/1.3081296.

[46] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to imagej: 25 years
of image analysis, Nature Methods 9 (7) (2012) 671–675, http://dx.doi.org/10.
1038/nmeth.2089.
15
[47] M. Yang, et al., Twining plant inspired pneumatic soft robotic spiral gripper
with a fiber optic twisting sensor, Opt. Express 28 (2020) 35158–35167, http:
//dx.doi.org/10.1364/OE.408910.

[48] S.J. Wright, Coordinate descent algorithms, Math. Program. 151 (1) (2015) 3–34,
http://dx.doi.org/10.1007/s10107-015-0892-3.

[49] W. Kahan, Gauss–Seidel Methods of Solving Large Systems of Linear
Equations (Ph.D. thesis), University of Toronto, Toronto, Canada, 1958.

[50] C. Lemaréchal, Cauchy and the Gradient Method, Doc Math Extra, 2012, pp.
251–254.

[51] P. Rajak, B. Wang, Nomura. Ki, et al., Autonomous reinforcement learning agent
for stretchable kirigami design of 2D materials, Npj Comput. Mater. 7 (2021)
102, http://dx.doi.org/10.1038/s41524-021-00572-y.

[52] S. Carta, Machine learning and computational design, 2020, http://dx.doi.org/
10.1145/3401842.

[53] M. Johnson, C. Yue, H. Sierra, X. Sheng, W. Bradford, R. Hongliang, T. Junichi,
T.H.T. Zion, Fabricating biomedical origami: a state-of-the-art review, Int. J.
Comput. Assist. Radiol. Surg. 12 (2017) 2023–2032, http://dx.doi.org/10.1007/
s11548-017-1545-1.

[54] J. Paik, Soft robot design methodology for ‘push-button’ manufacturing, Nat.
Rev. Mater. 3 (2018) 81–83, http://dx.doi.org/10.1038/s41578-018-0014-y.

[55] L. Paez, A. Gunjan, P. Jamie, Design and analysis of a soft pneumatic actuator
with origami shell reinforcement, Soft Robot. 3 (3) (2016) 109–119, http:
//dx.doi.org/10.1089/soro.2016.0023.

[56] W. Kim, B. Junghwan, K. Jae-Kyeong, C. Woo-Young, J. Kirsten, J. Joachim, L.
Dae-Young, C. Kyu-Jin, Bioinspired dual-morphing stretchable origami, Science
Robotics 4 (36) (2021) http://dx.doi.org/10.1126/scirobotics.aay3493.

[57] L. Wang, S. Wei-Li, F. Daining, Twistable origami and kirigami: from structure-
guided smartness to mechanical energy storage, ACS Appl. Mater. Interfaces 11
(3) (2019) 3450–3458, http://dx.doi.org/10.1021/acsami.8b17776.

[58] T. Tachi, Geometric considerations for the design of rigid origami structures,
in: International Association for Shell and Spatial Structures (IASS) Symposium,
Shanghai, 2010.

[59] E.R. Leal, S.D. Jian, From origami to a new class of centralized 3-DOF parallel,
in: ASME 2007 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, Vol. 8, 2007, pp. 1183–1193,
http://dx.doi.org/10.1115/DETC2(Curletto,2016)007-35516.

[60] H. Ren, P. Kazanzides, Investigation of attitude tracking using an integrated
inertial and magnetic navigation system for hand-held surgical instruments,
IEEE/ASME Trans. Mechatron. 17 (2) (2012) 210–217, http://dx.doi.org/10.
1109/TMECH.2010.2095504.

http://dx.doi.org/10.1088/1748-3190/aa8448
http://dx.doi.org/10.3390/robotics10040118
http://dx.doi.org/10.3390/robotics10040118
http://dx.doi.org/10.3390/robotics10040118
http://dx.doi.org/10.2514/1. A34784
http://dx.doi.org/10.2514/1. A34784
http://dx.doi.org/10.2514/1. A34784
http://dx.doi.org/10.1109/ROBIO.2009.5420752
http://dx.doi.org/10.1109/ROBIO.2009.5420752
http://dx.doi.org/10.1109/ROBIO.2009.5420752
http://dx.doi.org/10.1088/1748-3190/aa8448
http://dx.doi.org/10.1088/1748-3190/aa8448
http://dx.doi.org/10.1088/1748-3190/aa8448
http://dx.doi.org/10.1117/12.2258703
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.3389/frobt.2021.738214
http://dx.doi.org/10.3389/frobt.2021.738214
http://dx.doi.org/10.3389/frobt.2021.738214
http://dx.doi.org/10.1109/LRA.2018.2800112
http://dx.doi.org/10.1115/SMASIS2016-9071
http://dx.doi.org/10.1115/SMASIS2016-9071
http://dx.doi.org/10.1115/SMASIS2016-9071
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb44
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb44
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb44
http://dx.doi.org/10.1119/1.3081296
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1364/OE.408910
http://dx.doi.org/10.1364/OE.408910
http://dx.doi.org/10.1364/OE.408910
http://dx.doi.org/10.1007/s10107-015-0892-3
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb49
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb49
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb49
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb50
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb50
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb50
http://dx.doi.org/10.1038/s41524-021-00572-y
http://dx.doi.org/10.1145/3401842
http://dx.doi.org/10.1145/3401842
http://dx.doi.org/10.1145/3401842
http://dx.doi.org/10.1007/s11548-017-1545-1
http://dx.doi.org/10.1007/s11548-017-1545-1
http://dx.doi.org/10.1007/s11548-017-1545-1
http://dx.doi.org/10.1038/s41578-018-0014-y
http://dx.doi.org/10.1089/soro.2016.0023
http://dx.doi.org/10.1089/soro.2016.0023
http://dx.doi.org/10.1089/soro.2016.0023
http://dx.doi.org/10.1126/scirobotics.aay3493
http://dx.doi.org/10.1021/acsami.8b17776
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb58
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb58
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb58
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb58
http://refhub.elsevier.com/S2667-3797(22)00002-X/sb58
http://dx.doi.org/10.1115/DETC2(Curletto,2016)007-35516
http://dx.doi.org/10.1109/TMECH.2010.2095504
http://dx.doi.org/10.1109/TMECH.2010.2095504
http://dx.doi.org/10.1109/TMECH.2010.2095504

	Auto-generating of 2D tessellated crease patterns of 3D biomimetic spring origami structure
	Introduction
	Method
	Design cylindrical and asymmetric spiralling annelids-inspired origami
	Spring origami pattern and geometrical parameters
	Overview of the auto-generating system

	Results and analysis
	Twisting — Qualitative analysis of the system
	Quantitative comparison between physical folding and AGS folding
	Using auto-generating system to design and optimize biomimetic spring origami structure
	A time-saving origami design system
	Feasibility of the system and the choice of platform
	Strain analysis of spring origami structure

	Discussion and conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References

