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Summary
Background Broad-capture proteomic technologies have the potential to improve disease prediction, enabling targeted 
prevention and management, but studies have so far been limited to very few selected diseases and have not evaluated 
predictive performance across multiple conditions. We aimed to evaluate the potential of serum proteins to improve risk 
prediction over and above health-derived information and polygenic risk scores across a diverse set of 24 outcomes.

Methods We designed multiple case-cohorts nested in the EPIC-Norfolk prospective study, from participants with 
available serum samples and genome-wide genotype data, with more than 32 974 person-years of follow-up. 
Participants were middle-aged individuals (aged 40–79 years at baseline) of European ancestry who were recruited 
from the general population of Norfolk, England, between March, 1993 and December, 1997. We selected participants 
who developed one of ten less common diseases within 10 years of follow-up; we also subsampled a randomly drawn 
control subcohort, which also served to investigate 14 more common outcomes (n>70), including all-cause premature 
mortality (death before the age of 75 years; case numbers 71–437; controls 608–1556). Individuals were excluded from 
the current study owing to failed genotyping or proteomic quality control, relatedness, or missing information on age, 
sex, BMI, or smoking status. We used a machine learning framework to derive sparse predictive protein models for 
the onset of the the 23 individual diseases and all-cause premature mortality, and to derive a single common sparse 
multimorbidity signature that was predictive across multiple diseases from 2923 serum proteins.

Findings Participants who developed one of ten less common diseases within 10 years of follow-up included 
482 women and 507 men, with a mean age at baseline of 64·56 years (8·08). The random subcohort included 
990 women and 769 men, with a mean age of 58·79 years (9·31). As few as five proteins alone outperformed 
polygenic risk scores for 17 of 23 outcomes (median dfference in concordance index [C-index] 0·13 [0·10–0·17]) and 
improved predictive performance when added over basic patient-derived information models for seven outcomes, 
achieving a median C-index of 0·82 (IQR 0·77–0·82). This included diseases with poor prognosis such as lung 
cancer (C-index 0·85 [+/− cross-validation error 0·83–0·87]), for which we identified unreported biomarkers such as 
C-X-C motif chemokine ligand 17. A sparse multimorbidity signature of ten proteins improved prediction across 
seven outcomes over patient-derived information models, achieving performances (median C-index 0·81 
[IQR 0·80–0·82]) similar to those of disease-specific signatures.

Interpretation We show the value of broad-capture proteomic biomarker discovery studies across multiple diseases of 
diverse causes, pointing to those that might benefit the most from proteomic approaches, and the potential to derive 
common sparse biomarker panels for prediction of multiple diseases at once. This framework could enable follow-up 
studies to explore the generalisability of proteomic models and to benchmark these against clinical assays, which are 
required to understand the translational potential of these findings.
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Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
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Introduction
Blood-based omics have the potential to improve our 
ability to predict the onset and course of diseases,1 but 
systematic and rigorous testing at scale is often lacking. 
Multiple efforts have successfully developed and 
validated genetic and polygenic predictors for multiple 
diseases,2 but translation for clinical use has been 
challenging, partly because of gaps in knowledge related 

to the potential improvement in prediction over and 
above easily measured clinical parameters.3 In contrast to 
our inherited genome, our proteome, which is the central 
layer of information transfer, changes in response to 
early disease mechanisms. Characteristics of circulating 
proteins—such as the wide dynamic range, longer half-
life, and mostly endogenous origin compared with other 
blood-based biomarkers such as metabolites—and easy 
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accessibility make them attractive for the prediction, 
diagnosis, and prognosis of different diseases, with many 
examples established and in clinical use.4 However, even 
for diseases with well-established biomarkers in clinical 
use, these proteins were derived from targeted studies, 
and systematic comparisons against or in combination 
with other omics biomarkers identified through broad-
capture and hypothesis-free studies are lacking.

Affinity-based technologies can now capture thousands 
of proteins in a single experiment across the entire range 
of abundance in blood. Although they are expensive 
compared with mass spectrometry-based technologies 
that capture fewer proteins of higher abundance,5 a large 
proportion of disease-relevant proteins, such as those 
involved in signalling or reflecting tissue damage, are 
expected to be found in the lower end of the spectrum of 
abundance.6 Deep mass spectrometry-based workflows 
are only now emerging,7,8 but are still challenging to 
implement at population scale.

Machine learning approaches have enabled systematic, 
data-driven investigation of broad-coverage proteomic 
platforms to identify novel biomarkers,1 introducing the 
possibility to assess specificity or sharedness across 
diseases. Despite the large potential of these new 
proteomic technologies to improve prediction and pro-
gnosis of non-communicable and infectious diseases,1,9 
the absence of prospective studies investi gating different 
diseases with linkage to electronic health records has so 
far limited progress in testing and translating the utility 
of these technologies.

Here, we integrate serum proteomic data with genomic 
data, hospital admission records, and cancer registry data 
to systematically and prospectively evaluate the potential 

of serum proteins to improve risk prediction over and 
above health-derived information and polygenic risk 
scores (PRSs) across a diverse set of 23 non-communicable 
diseases and all-cause premature mortality.

Methods
Study design and participants
The European Prospective Investigation into Cancer-
Norfolk (EPIC-Norfolk) is a cohort study of 25 639 middle-
aged individuals (40–79 years at baseline) recruited from 
the general population of Norfolk, a county in the east of 
England, between March, 1993, and December, 1997.10 
The study was approved by the Norfolk Research Ethics 
Committee (reference 05/Q0101/191) and all participants 
provided written informed consent. We designed 
multiple case-cohort studies, all nested within the EPIC-
Norfolk study, among participants with available serum 
samples and genome-wide genotype data. Participants 
were of European ancestry. Individuals were excluded 
owing to failed genotyping or proteomic quality control, 
related ness, or missing information on age, sex, BMI, or 
smoking status.

Outcomes
We studied the onset of 24 outcomes (appendix pp 13–15) 
from diverse clinical specialties. To enable prospective 
investigation of both less and more frequently occurring 
non-communicable diseases, we selected participants 
(n=989) who developed one of ten less common diseases 
within 10 years of follow-up: lung cancer, haemorrhagic 
stroke, Parkinson’s disease, colon cancer, breast cancer, 
venous thrombosis, type 2 diabetes, vascular dementia, 
Alzheimer’s disease, and acute pancreatitis. We 

Research in context

Evidence before this study
We searched PubMed for omics prediction studies across 
multiple diseases from inception up to March 20, 2024, using 
the search terms ”proteomic prediction”,”protein risk 
scores”,”incident diseases”, “pan-disease”, “multimorbidity”, 
and “diverse diseases”. Studies have been limited to prediction 
of selected individual diseases, mostly by the use of polygenic 
risk scores, and only a few studies have shown protein 
signatures that improve prediction of onset for individual 
(mostly cardiovascular) diseases. A few pioneer studies have 
explored prediction across multiple prevalent indicators of 
health, or across incident diseases leveraging metabolomic and 
proteomic profiles, but these have relied on complex omics 
signatures including hundreds of biomarkers, reducing the 
translational potential of the findings.

Added value of this study
Our study takes a comprehensive approach, integrating 
proteomic data, genomic data, and data from electronic 
health records to systematically derive sparse protein 

signatures for prediction across 23 diverse incident diseases 
and all-cause mortality. Our results show that as few as 
five proteins outperformed polygenic risk scores for the 
majority of outcomes, and improved the prediction of 
seven outcomes over common risk factors. We further 
developed a sparse multimorbidity signature of ten proteins, 
which improved the prediction of individual diseases over 
common risk factors.

Implications of all the available evidence
The increasing availability of a high-throughput proteomics 
platform promises to improve biomarker discovery and 
prediction strategies; however, evaluation across different 
diseases has not been done systematically. Our study highlights 
the potential of broad-capture proteomics for the development 
of sparse signatures to improve prediction strategies, including 
common panels of biomarkers for the prediction of multiple 
diseases, and provides a guide for future studies on disease 
causes that might benefit the most from proteomic, genomic, 
or combined approaches.

See Online for appendix
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subsampled a randomly drawn control subcohort 
(n=1759), which also facilitated the investigation of 14 
more common outcomes that occurred frequently (n>70) 
within this subcohort: renal disease, atrial fibrillation, 
heart failure, ischaemic heart disease, cerebral stroke, 
peripheral arterial disease, asthma, chronic obstructive 
pulmonary disease (COPD), non-melanoma skin cancer, 
prostate cancer, fractures, cataracts, glaucoma, and all-
cause premature mortality (death before the age of 
75 years; appendix pp 7, 13–16; figure 1). For each disease 
analysed, we excluded individuals who reported the 
disease at baseline or in whom the disease occurred 
within the first 6 months of follow-up. All other 

individuals from the randomly drawn subcohort who did 
not develop the disease of interest (including those 
individuals with other prevalent diseases) were defined 
as non-incident cases for analyses.

Exposures
Serum samples from the baseline assessment (1993–97) 
that had been stored in liquid nitrogen were used for 
proteomic profiling in two separate batches (nset 1=1040, 
nset 2=1708) using the Olink Explore 1536 and Olink 
Explore Expansion panels, targeting 2923 unique proteins 
by 2941 assays (appendix p 7). Assay details are described 
in the appendix (pp 2–3) and have been described in 

Figure 1: Study design
(A) Participants. We selected a random subcohort (n=1759) from the EPIC-Norfolk prospective cohort study to investigate the incidence of 13 common diseases and 
all-cause mortality. For ten less common diseases among the general population, we selected incident cases within 10 years of follow-up. Proteomic profiling was 
done in samples from the baseline visit that had been stored in liquid nitrogen. (B) General machine learning framework. We did feature selection by LASSO 
regression over bootstrap resampling or subsampling of the feature selection set to assign a selection score to each of the proteins. We took the top five predictor 
proteins for optimisation by five-fold cross-validation in a separate optimisation set, and we report average cross-validation performance metrics (C-index) over 
100 iterations. Figure created with BioRender.com.
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detail elsewhere.11 After exclusions owing to quality 
control, each batch consisted of a randomly selected 
control subcohort (ncontrol_1=749, ncontrol_2=1010) and multiple 
case cohorts (ncases_1=291, ncases_2=698) to enrich for less 
common diseases (appendix pp 3, 16). Owing to the lack 
of bridge normalisation between batches, and the high 
concordance of participant characteristics between 
batches (appendix p 17), we excluded protein assays for 
which the difference in coefficients of variation between 
each batch in the control subcohort was greater than 0·5. 
These differences probably indicate protein targets with 
high measurement variation (appendix p 18), leaving a 
total of 2319 protein assays for downstream analyses.

Genome-wide genotyping was done by use of the 
Affymetrix UK Biobank Axiom Array (Thermo Fisher 
Scientific, Santa Clara, CA, USA), with imputation to the 
Haplotype Reference Consortium r1.0 reference panel and 
the combined UK10K plus 1000 Genomes phase 3 
reference panel. We computed weighted genetic risk 
scores using genome-wide significant variants, as well as 
genome-wide PRSs using LDpred212 for diseases with 
publicly available summary statistics (appendix pp 40–41). 
Further details are provided in the appendix (pp 3–4). We 
compared the predictive performance of the genome-wide 
significant genetic risk score versus the genome-wide PRS 
and kept the best-performing score for all subsequent 
analysis (appendix p 8). For practical reasons, we refer 
to the best-performing score as PRS throughout the text.

Statistical analysis
We adapted a machine learning framework that we had 
previously developed to identify a sparse set of predictor 
proteins13 for each of the 24 incident outcomes. This 
included a feature selection step, and model testing by 
cross-validation. We aimed to use the technical separation 
of our study into proteomic batch 1 and batch 2 to design 
independent feature selection and validation sets when-
ever possible (15 of the outcomes under study that were 
available in both batches). For the remaining nine 
diseases (all designed as case-cohorts and available in 
only one of the batches), we split the entire set into two 
separate feature selection (70%, n=452–821) and 
validation (30%, n=194–352) subsets (appendix p 9). We 
did feature selection using least absolute shrinkage and 
selection operator regression over 200 subsamples 
(appendix pp 4–5).

The five proteins with the highest final selection scores 
(appendix pp 4–5) were taken forward for validation, 
which was done in either batch 2 or in the remaining, 
independent 30% validation set from batch 1 or 
batch 2 for nine of the case-cohorts. We did regularised 
Cox regression by five-fold cross-validation over 
100 iterations. The cross-validation concordance index 
(C-index)—ie, from the held-out folds—along with the 
lower and upper bounds (the cross-validation error) were 
averaged over the 100 iterations (appendix p 9). For the 
ten incident diseases, which we analysed in a case-cohort 

design, we used Prentice weighted regularised Cox 
models (appendix p 5).

We further evaluated the following: (1) a patient-derived 
information model that included age, sex (except for the 
sex-specific outcomes of ovarian, breast, endometrial, 
and prostate cancer), BMI, and smoking status; (2) a 
patient-derived information model plus the top five 
proteins; (3) a patient-derived information model plus 
the disease PRS; and (4) a patient-derived information 
model plus the top five proteins plus the disease PRS. We 
also evaluated the performance of a patient-derived 
information model plus all 2319 proteins using ridge 
regression. The performance of PRS-only models was 
tested by use of simple Cox proportional hazards models, 
with an analogous bootstrapping framework. The 
category-free risk difference-based net reclassification 
improvements from the addition of five proteins, disease 
PRSs, or five proteins plus disease PRSs to the patient-
derived information-only model were estimated in the 
validation subset by use of the R package nricens 
(version 1.6),14 with a 0·15 cutoff in risk difference to 
provide more conservative estimates. Similarly, we 
estimated inte grated Brier scores in the validation set, 
using the R package pec.15

We further derived a binary outcome for multimorbidity, 
defined as at least two conditions out of the 14 incident 
outcomes studied in the control subcohort (appendix 
pp 13–15). Using batch 1, we did feature selection for this 
multi morbidity binary outcome by least absolute 
shrinkage and selection operator regression over 
200 subsamples, excluding participants with a prevalent 
status for any of these 14 outcomes. We took forward the 
top ten proteins with the highest feature selection score 
for individual disease validation by five-fold cross-
validation over 100 iterations using regularised Cox 
regression in batch 2. We adhered to TRIPOD guidelines,16 
and provide a completed checklist (appendix pp 42–43).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Characteristics of participants included in the current 
study, including those in the randomly drawn subcohort 
(n=1759) and those who developed one of ten less 
common diseases within 10 years of follow-up (n=989), 
are provided in the appendix (pp 16–17). Participants in 
the random subcohort had a mean age at baseline of 
58·79 years (SD 9·31); 990 (56·28%) of the 1759 participants 
were women and 769 (43·72%) were men. Participants 
who developed one of ten less common diseases had a 
mean age of 64·56 years (8·08); 482 (48·74%) of 989 were 
women and 507 (51·26%) were men.

We derived sparse protein models for 24 different 
outcomes (appendix pp 44–191), including as few as 
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Figure 2: Cross-validated predictive performance of protein biomarkers for 23 diseases and all-cause premature mortality
The concordance index (C-index) of the top five predictor proteins for each disease was compared with those of basic patient-derived information models that used 
age, sex, BMI, and smoking status or disease polygenic risk scores. The C-indices achieved by adding the top five proteins or top five proteins plus disease PRSs onto 
the patient information models are also shown. The dark grey area represents the change in the average cross-validation C-index provided by adding the top five 
proteins on top of the patient information model. Diseases are ordered according to the improvement in C-index provided by the five proteins on top of the patient 
information model. For diseases that were significantly improved by proteins, annotated numbers represent the category-free net reclassification improvement of 
the model that included five proteins on top of the patient information model. COPD=chronic obstructive pulmonary disease. PRS=polygenic risk score.
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five proteins, which achieved a median C-index of 
0·67 (IQR 0·62–0·75; figure 2). The top five proteins did 
better than models trained using all 2319 proteins for 
most diseases, achieving a median C-index that was 
0·04 higher (IQR 0·01–0·06; appendix p 192). For eleven 
of the outcomes under study, protein-only models 
(median C-index 0·74 [IQR 0·66–0·80]) did as well as or 
outperformed basic patient-derived information models 
that included risk factors (median C-index 0·71 
[0·65–0·75]; figure 2). Proteins alone further out-
performed PRSs containing up to 722 108 genetic variants 
for 17 diseases. The median difference in C-index 
between the five-protein and PRS models was 0·13 
(IQR 0·10–0·17). Most of the selected predictor proteins 
were positively associated with disease risk, with few 
examples of inverse associations (appendix p 10). We 
note that for some diseases that were poorly predicted, 
there was substantial effect heterogeneity between the 
two proteomic batches (eg, for N-terminal pro-B-type 
natriuretic peptide and atrial fibrillation), indicating 
further potential to improve assay performance and 
generalisability (appendix p 10).

Adding the top five proteins to these patient-derived 
information models improved the predictive performance 
for seven outcomes: type 2 diabetes, prostate cancer, all-
cause premature mortality, COPD, lung cancer, renal 
disease, and heart failure (range of C-index improvements 
0·02–0·11; figure 2). The largest improvements were 
seen for type 2 diabetes (C-index improvement 0·11 [+/−
cross-validation error 0·08–0·13]), prostate cancer (0·10 
[0·06–0·13]), and all-cause premature mortality 
(0·08 [0·05–0·11]; appendix pp 193–202). Proteins also 
improved the performance of models with already strong 
baseline predictors, such as smoking status for 
respiratory diseases such as COPD (0·06 [0·04–0·09]) 
and lung cancer (0·05 [0·02–0·07]). Across these seven 
outcomes, the median C-index was 0·82 (IQR 0·77–0·82). 
The median net reclassification improvement (NRI) was 
0·28 (IQR 0·19–0·37), mostly attributable to correct 
reclassi fication of cases (median P[Up|Case]; i.e. the 
probability of correct reclassification of cases 0·30 
[IQR 0·24–0·39]; P[Down|Control]; ie, the probability of 
correct reclassifi cation of controls 0·01 [IQR 0·002–0·02]; 
appendix pp 203–05). PRSs improved prediction over 
patient-derived information models for five diseases 
(range of C-index improvements 0·02–0·27), including 
breast cancer, type 2 diabetes, glaucoma, heart failure, 
and ischaemic heart disease (appendix pp 193–94). The 
median NRI was 0·19 (IQR 0·17–0·26), with a greater 
contribution from correct reclassification of controls 
(median P[Up|Case] 0·22 [0·18–0·35]; P[Down|Control] 
0·04 [0·01–0·08]) compared with proteomic prediction 
(appendix pp 203–05). Synergistic improvements from 
adding disease PRSs plus five proteins on top of the 
patient information models were only achieved for 
type 2 diabetes (improvement in C-index compared with 
the patient information model 0·14 [+/− cross-validation 

error 0·11–0·16]; figure 2). Integrated Brier scores 
showed superior calibration for most models that 
included proteins or PRSs compared with patient 
information models (appendix p 206).

We next sought to establish whether we could derive a 
single common sparse proteomic signature for prediction 
of multiple diseases at once, which would provide a cost-
effective strategy with improved potential for clinical 
translation. The top ten multimorbidity proteins achieved 
a median C-index of 0·72 (IQR 0·64–0·76) across 
21 individual incident diseases. This was higher, on 
average, than the performance of the disease-specific 
protein signatures, which might point to shared disease 
mechanisms. These ten proteins improved the predictive 
performance for six diseases and all-cause premature 
mortality over the patient information model (range of 
change in C-index 0·02–0·06; median C-index 0·81 
[IQR 0·80–0·82]; figure 3; appendix pp 193–94). Notably, 
type 2 diabetes and vascular dementia were not included 
in the definition of the composite multimorbidity 
outcome, but their prediction was still improved by the 
ten-protein signature. The median NRI across these 
seven diseases was 0·28 (IQR 0·18–0·31). As with single-
disease predictive signatures, this was mainly attributable 
to correct reclassification of cases (median P[Up|Case] 
0·30 [IQR 0·23–0·34]; P[Down|Control] 0·01 [0·006–0·02]; 
appendix pp 207–08).

For most disease-specific protein signatures that 
provided an improvement over patient information 
models, there were a few strong candidates, beyond 
which there was a marked decrease in selection scores, 
suggesting potentially little value in generating more 
comprehensive proteomic signatures (figure 4). We note 
that allowing selection of a variable number of proteins 
as predictors on the basis of normalised selection scores 
above a fixed threshold (ranging from one to 16 proteins; 
appendix p 209) resulted in C-indices similar to those for 
the selection of five proteins only (Pearson’s r=0·99).

Among the top predictors were established clinical 
biomarkers, but also strongly predictive proteins that 
have been rarely reported in the literature so far, 
including C-X-C motif chemokine ligand 17 (CXCL17) for 
lung cancer and COPD, and leiomodin 1 (LMOD1) for 
renal disease (appendix p 210).

We did not observe an enrichment of proteins in any of 
the 384-plex pre-grouped and commercially available 
specific panels (ie, cardiometabolic, inflammatory, onco-
logy, or neurology) for a specific group of related diseases 
among the selected predictor proteins (appendix p 12). 
This is an important consideration for the design of 
explorative studies.

Overall, across the top 20 proteins from disease-specific 
signatures that performed at least as well as or improved 
on patient information models, 26 proteins were shared 
between two or more diseases (figure 4). Although these 
results indicate less overlap compared with other omics 
layers, such as metabolomics,17 they highlight that some 
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proteins might indicate mechan isms shared by multiple 
diseases and hence provide markers for clusters of 
multimorbidity. This possibility was highlighted by the 
good predictive performance, on average, of the ten 
multimorbidity protein signatures across individual 
diseases tested. This signature included shared markers 
from single-disease models such as growth-differen-
tiation factor 15, CUB domain containing protein 1, 
ectodysplasin A2 receptor, neurofascin, or matrix 
metalloproteinase 12 (figure 4).

We systematically tested whether any of the selected 
predictive proteins might be causally involved in the 
pathogenesis of the associated disease or related entities, 

but found no matching evidence from a comprehensive 
genetic colocalisation study.18

Discussion
Here, we provide proof-of-concept that machine learning-
guided proteomic biomarker discovery studies have the 
potential to improve prediction models for selected 
diseases. We showed that a single common sparse 
multimorbidity signature, including as few as ten 
proteins out of almost 3000 targets tested, improved the 
predictive performance over patient-derived risk factors 
for six diseases spanning different clinical specialties and 
all-cause premature mortality. Furthermore, we showed 

Figure 3: Cross-validated predictive performance of ten multimorbidity proteins for 20 diseases and all-cause premature mortality
The concordance index (C-index) achieved by the top ten multimorbidity proteins for each disease was compared with those of basic patient-derived information 
models that used age, sex, BMI, and smoking status. The C-indices achieved by adding the top ten multimorbidity proteins onto the patient information models are 
also shown. The dark grey area represents the change in the average cross-validation C-index provided by adding the top ten proteins on top of the patient 
information model. Diseases are ordered according to the improvement in C-index provided by the ten proteins on top of the patient-information model. 
COPD=chronic obstructive pulmonary disease.
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that as few as five disease-specific proteins achieved 
similar predictive performances or improved patient-
derived information models for selected diseases, 
including lung cancer and COPD as prominent examples.

Predicting the risk of future disease development could 
enable early intervention and targeting of preventive 
strategies to high-risk groups and individuals. Much 
effort over the past few years has focused on genetic and 

Figure 4: Normalised feature selection scores for the top 20 proteins for the diseases in which proteins at least equalled or improved the performance of the 
patient information model
Selection scores are shown for the top 20 proteins, normalised to the protein with the highest selection for interpretability. The links in the inner track represent 
proteins that were selected among the top 20 predictors for more than one disease (orange points and labels). Blue points and labels represent predictors that were 
disease specific (ie, not selected among the top 20 for any other of these 11 outcomes). ADIPOQ=adiponectin. BCAT2=branched-chain-amino-acid aminotransferase, 
mitochondrial. CCN5=CCN family member 5. CDCP1=CUB domain containing protein 1. CDON=cell adhesion molecule-related/down-regulated by oncogenes. 
CELSR2=cadherin EGF LAG seven-pass G-type receptor 2. CLSPN=claspin. CLSTN1=calsyntenin-1. CPM=carboxypeptidase M. CTAG1A_CTAG1B=cancer/testis antigen 1. 
CXCL17=C-X-C motif chemokine ligand 17. DBN1=drebrin. DDC=aromatic-L-amino-acid decarboxylase. EDA2R=ectodysplasin A2 receptor. FCRL2=Fc receptor-like 
protein 2. GABRA4=GABA receptor subunit alpha-4. GBP4=guanylate-binding protein 4. GDF15=growth-differentiation factor 15. HAVCR1=hepatitis A virus cellular 
receptor 1. HPGDS=haematopoietic prostaglandin D synthase. HSPB6=heat shock protein beta-6. IGSF9=protein turtle homolog A. IL22=interleukin-22. 
IL31=interleukin-31. KLK3=prostate specific antigen. LAMP3=lysosome-associated membrane glycoprotein 3. LMOD1=leiomodin 1. LRIG3=leucine-rich repeats and 
immunoglobulin-like domains protein 3. MAMDC4=apical endosomal glycoprotein. MMP12=matrix metalloproteinase 12. MZB1=marginal zone B- and B1-cell-
specific protein. NEFL=neurofilament light polypeptide. NFASC=neurofascin. NTproBNP=N-terminal pro-B-type natriuretic peptide. PLXNB2=plexin-B2. 
PNPT1=polyribonucleotide nucleotidyltransferase 1, mitochondrial. PODXL2=podocalyxin-like protein 2. PRSS8=prostasin. PSPN=persephin. PTPRS=receptor-type 
tyrosine-protein phosphatase S. RNASE4=ribonuclease 4. SERPINI1=neuroserpin. TNC=tenascin. TPBGL=trophoblast glycoprotein-like. UK3BL1=uroplakin-3b-like 
protein 1. VEGFA=vascular endothelial growth factor A. ZPR1=zinc finger protein ZPR1. 
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polygenic prediction2,3—an appealing concept, since it 
could represent a single, inexpensive test across many 
diseases done at any stage of life. We showed that 
proteomic models often have superior performance over 
static germline-based models. This might reflect the 
potential of circulating proteins to capture current health 
status1,19 and act as early disease detectors, which might 
be sensitive to pathological processes even before the 
development of overt symptoms (albeit not in a tissue-
specific manner). In contrast, PRSs are static and do not 
capture stages of disease processes in response to 
environmental and lifestyle risk factors. This might 
explain why even very sparse protein-only models 
outperformed PRSs for most of the diseases in this study.

Our systematic investigation enabled the identification 
of diseases for which proteins, PRSs, or a combination 
provided added predictive utility over basic patient-
derived risk factors. To the best of our knowledge, this 
comparison has not been previously done systematically. 
We provide early insights suggesting the potential to 
identify groups of diseases for which genetic or proteomic 
screening might be better suited, guiding future avenues 
of research.

We provide proof-of-concept of the potential to identify 
a sparse core set of proteins that might improve the 
prediction of multiple diseases at once. This approach 
could represent a cost-effective strategy to improve, 
conceptually, the utility of proteomic-based models in 
clinical settings (although we acknowledge the practical 
challenges). Among these proteins were known markers 
of mortality and morbidity such as growth-
differentiation factor 15 (a strong correlate of age), but 
also biomarkers shared across diseases at different 
anatomical sites. For example, matrix metalloproteinase 
12, a predictor of lung cancer and heart failure, and 
included in the multimorbidity signature, is involved in 
extracellular matrix breakdown and remodelling and has 
been previously associated with lung function.20 Matrix 
metalloproteinase 12 might therefore point to the 
molecular mechanisms linking poor lung function and 
an increased risk of heart failure.21 Conversely, neuro-
filament light chain (forming intermediate filaments for 
neurons) and neurofascin (involved in neurite outgrowth 
and stabilisation of axon initial segments), which were 
also predictors for all-cause premature mortality, might 
represent circulating markers of neuronal or glial ageing 
or damage. However, the underlying mechanisms that 
link these proteins to the onset of multiple diseases, and 
whether a wider range of diverse diseases would benefit 
from this cost-effective strategy, need to be established in 
future research.

Although we did not observe evidence that predictive 
proteins are causally linked to outcomes, some might 
convey information on early disease processes. For 
example, CXCL17, selected for lung cancer and COPD, is 
expressed in the epithelium of the lung airways and 
involved in innate immunity by attracting lung 

macrophages.22 CXCL17 has been implicated in various 
cancers, including non-small-cell lung cancer,23 without a 
clearly emerging mechanism of action,24 as well as in 
idiopathic pulmonary fibrosis and influenza A (H1N1).25 
Altogether, this suggests that CXCL17 might be a general 
marker of lung inflammation, which possibly contributes 
to a tumorigenic environment in a chronic scenario. We 
further identified candidates that have been proposed as 
prognostic markers, or that have been shown to be 
associated with disease incidence, such as hepatitis A 
virus cellular receptor 1 for kidney injury.26 Here, we 
show their added predictive value over clinical risk factors 
and the value of systematic feature selection strategies to 
recapitulate known and novel predictive biomarkers.

We extended the scope of earlier studies that explored 
signatures including hundreds of proteins for the 
prediction of selected diseases1,19 to 24 diverse incident 
outcomes, and by deriving extremely sparse prediction 
models. This framework could, more feasibly, enable 
follow-up validation studies with standardised immuno-
assays to explore transferability of proteomic models 
across different ethnicities, sex differences, and in 
different time intervals before disease development. 
These aspects of disease prediction remain largely 
unexplored and are required to understand the potential 
for clinical translation.

Although our case-cohort design is an efficient approach 
to derive biomarkers for diseases of interest, the sample 
sizes for some outcomes are comparatively small and 
represent a limitation of our study. Larger studies might 
explore the predictive utility of protein signatures for 
more clinically useful timeframes (eg, 1-year or 
5-year incidence) and estimate improve ments by the use 
of clinically meaningful performance metrics, such as 
detection rates or predictive values, more accurately. 
Although emerging findings already provide independent 
support for selected diseases, including lung cancer,27 our 
results require external validation in independent studies 
with gold-standard case ascertainment, and additional 
bench marking against blood tests already used in clinical 
practice. Given that our study included only participants 
of European descent from the east of England, 
generalisability to other ethnically diverse populations 
must be assessed in future work. Furthermore, we did 
proteomic measure ments in two batches owing to various 
practical restrictions, in a cohort with historical samples, 
which probably introduced unwanted technical variation. 
Although this might have masked true biological variation 
preceding disease onset, it reflects a more realistic 
scenario for model development, and for independent 
validation and potential application in different studies. 
Our findings might, therefore, point to only the more 
generalisable models for diseases with early strong effects 
on circulating candidate protein biomarkers that can be 
targeted more robustly, and highlight the need for further 
assay development to ensure reliable model transferability. 
Finally, proteomic technologies able to capture 



Articles

e479 www.thelancet.com/digital-health   Vol 6   July 2024

post-translational modification might expand the 
biomarker discovery space.

We show the value of broad-capture proteomic plat-
forms to enable systematic and hypothesis-free bio-
marker discovery strategies. Our study provides timely 
insights into the way in which improvements in disease 
prediction, over and above the use of common risk 
factors for selected diseases, can be achieved through the 
integration of proteomics, health record linkage, and 
machine learning, providing a guide for further advances 
in the context of an ever-increasing number of large-scale 
cohorts with proteomic profiling.
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