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Abstract—An analytical framework for physical layer security
in simultaneous transmitting and reflecting reconfigurable intelli-
gent surface (STAR-RIS) assisted non-orthogonal multiple access
(NOMA) transmissions is proposed, where legitimate users and
eavesdroppers are randomly deployed. To characterize system
performance, the channel statistics are first provided, and the
Gamma approximation is adopted for general cascaded κ-µ
fading. Afterwards, the energy splitting (ES) protocol is considered
and closed-form expressions of average secrecy capacity are
derived. To obtain further insights, the asymptotic secrecy slope
is deduced. The theoretical results show that the secrecy slope
of the ES protocol is one. The numerical results demonstrate
that: 1) there is an optimal resource allocation ratio of STAR-
RIS to maximize the system performance; 2) the STAR-RIS-aided
NOMA significantly outperforms the STAR-RIS-aided orthogonal
multiple access.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have been re-
garded as a promising technique to support the smart ra-
dio environment and efficient secure transmissions in future
communication networks [1]. One typical RIS is a uniform
planer array with a large number of low-cost elements. By
equipping with advanced beamforming controllers, the phase
shifts of reflected signals on each RIS element can be changed
independently, which helps to adjust the propagation of signals
[2]. Benefiting from this feature, the RIS is able to improve the
communication quality of legitimate users (LUs) while limiting
eavesdropping by appropriate design on beamforming, thereby
enhancing physical layer security (PLS). The authors of [3] fo-
cused on the downlink RIS-assisted secure transmission, where
the design of beamforming is based on the global channel state
information (CSI) of the eavesdropper (Eve) and the LU. In [4],
the authors proposed a novel design on RIS beamforming to
eliminate the signals received by the Eve, and hence the global
CSI of the Eve is required. In [5], the secrecy outage probability
(SOP) was derived under the assumption that Eve’s CSI is
unknown. The above works investigated PLS in the presence
of fixed LUs and Eves. To capture the randomness property
in wireless communication networks, stochastic geometry is a
powerful tool and has been widely utilized to study the PLS in
traditional communication systems [6].

For the conventional reflecting-only RIS, PLS performance
within half of the space in front of the RIS can be controlled
while the LUs in the other side still suffer from eavesdropping.
To this end, the concept of simultaneous transmitting and
reflecting RIS (STAR-RIS) has been proposed for providing

full-space coverage [7], [8]. With three operation protocols, i.e.,
time switching (TS), energy splitting (ES), and mode switching
(MS), different beamforming approaches can be implemented
at both sides of the STAR-RIS, and hence the full-space PLS
enhancement is realized. Note that STAR-RISs serve LUs at
different sides by the same signal source, a multiple access
scheme is indispensable for splitting unicast reflected and
transmitted signals. Non-orthogonal multiple access (NOMA)
can be a competent candidate due to its high spectral efficiency
and user fairness. By employing the superposition coding at the
transmitter for power multiplexing and the successive interfer-
ence cancellation (SIC) at the receiver for detection, STAR-
RIS-aided NOMA protects multiple LUs within the same
time-frequency resource block [9]. In [10], residual hardware
impairments were considered and analytical expressions of the
SOP were provided for the paired NOMA LUs. In [11], the
authors aimed to maximize the minimum secrecy capacity
in STAR-RIS-aided uplink NOMA networks by joint secrecy
beamforming design. However, these initial works considered
simplified settings with fixed eavesdropping as the location of
the Eve is predefined.

As we have discussed above, STAR-RIS-aided NOMA has
the capability of providing security enhancement in the full
space. Due to the full-space coverage introduced by STAR-
RISs, the impact of full-space eavesdropping is valuable to
be investigated. The study on secure STAR-RIS-aided NOMA
transmissions with the consideration of randomly distributed
Eves is important but has not been investigated in related works
to the best of our knowledge. Motivated by this, we focus on
the security performance of the STAR-RIS-aided NOMA in the
presence of randomly distributed Eves in the full space in this
work1. The main contributions are summarized as follows:
• We propose an analytical framework for STAR-RIS-aided

NOMA with randomly deployed LUs and Eves in terms
of PLS. The beamforming of the STAR-RIS is designed to
enhance the channel gains of LUs. We employ a general
κ-µ distribution to characterize the small-scale fading.

• We derive the closed-form approximations of the average
secrecy capacity (ASC) for the pair of NOMA LUs. The
asymptotic ASC is also derived to obtain the secrecy slope.
The analytical results demonstrate that the secrecy slope
of the ES protocol is one.

• We use the numerical results to validate the analysis and

1In this work, we only consider the impact of external Eves.
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Fig. 1. System model for secure STAR-RIS-aided NOMA transmission.

to show that: 1) there is an optimal STAR-RIS resource
allocation ratio to maximize the ASC; 2) NOMA is able
to achieve a higher ASC than the OMA in the STAR-RIS-
assisted transmission.

Notation: (·)T denotes the transpose operation. |x| is
the amplitude of x. E[·] denotes the expectation operator.
Gamma(k, θ) is the Gamma distribution with shape k and
scale θ. Γ(x) =

∫∞
0
tx−1e−tdt is the Gamma function. γ(α, x)

is the lower incomplete Gamma function [12, eq. (8.350.1)].
pFq(ap; bq;x) denotes the generalized hypergeometric func-
tion [12, eq. (9.14.1)]. We denote [x]+ = max{x, 0}.

Gm,np,q

(
(·)

∣∣∣∣∣(ap)(bq)

)
is the Meijer G-function [12, eq. (9.301)].

For a cumulative distribution function (CDF) F (x), we denote
its complementary CDF as F̄ (x) = 1− F (x).

II. SYSTEM MODEL

Consider a secure downlink transmission scenario, where a
BS communicates with LUs assisted by a STAR-RIS in the
presence of Eves. As shown in Fig. 1, the STAR-RIS with a
random orientation is fixed at the origin of a two-dimensional
plane R2. We fix the BS at (−lBR, 0), while the locations of
LUs obey a homogeneous Poisson point process (HPPP) Φu

within a disc area with radius RU centered at the origin. The
locations of Eves obey another HPPP Φe with the density λe
in the considered plane R2. We consider that the BS, LUs,
and Eves are equipped with a single antenna. The STAR-RIS
consists of N elements, and these elements are capable of
simultaneously transmitting and reflecting signals.

The ES protocol is employed at the STAR-RIS. Accordingly,
the energy of the signal incident on each element is split into
two parts for transmitting and reflecting with energy splitting
ratios βT and βR, respectively, and we have βR + βT = 1
according to the law of energy conservation. We consider
the same βT on all elements of the STAR-RIS. Those LUs
located on the same side as the BS of the STAR-RIS are
the reflecting LUs; otherwise are the transmitting LUs. We
randomly select a reflecting LU UR and a transmitting LU UT

to form a typical LU pair. The NOMA transmission scheme is
invoked for the typical LU pair. All the Eves have powerful
detection capabilities and are able to overhear the messages of
all available resource blocks. The CSI of all Eves is available
at the STAR-RIS and the BS. In addition, since multiuser

detection techniques are adopted, the Eves can distinguish
signals of different LUs when applying the NOMA scheme.

A. Channel Model

We consider an urban environment for the secure STAR-
RIS-aided NOMA transmission, where direct transmission links
between the BS and LUs/Eves are blocked. For the STAR-RIS-
aided link, the channel model includes the path loss model and
small-scale fading. We use the subscript u = {T,R} to denote
the transmitting LU and the reflecting LU, respectively. For
the paired LUs, the path loss of the STAR-RIS-aided link is
related to the product of two distances, which can be expressed
as Lu = Cr (lBRdu)

−α, where du is the distance between the
STAR-RIS and LU, Cr is the reference distance based intercept,
and α refers to the path loss exponent. Similarly, the path loss
of the Eve i ∈ Φe is Le,i = Cr (lBRde)

−α.
As in previous works, all subchannels of the STAR-RIS-

aided transmission suffer cascaded small-scale fading. Specifi-
cally, we denote the small-scale fading vectors of the BS-RIS
link and the RIS-LU/Eve link as hr1 = [hr1,1, ..., hr1,N ]T and
hr2 = [hr2,1, ..., hr2,N ]T , respectively. For LUs, the power
of the overall small-scale fading for the STAR-RIS-aided

cascaded channel is given by |hε|2 =
∣∣∣hr2T Θ̃uhr1

∣∣∣2, where

Θ̃u = diag
(
ejθu,1 , ..., ejθu,N

)
is the normalized phase-shifting

matrix of the STAR-RIS, where j =
√
−1 and θu,n ∈ [0, 2π)

for n ∈ {1, ..., N}. The transmission- and reflection-coefficient
matrix for LU u is Θu =

√
βuΘ̃u. To maximize the received

signal power of the LUs, the STAR-RIS reconfigures the phase
shifts according to the CSI so that phases of all channels can
be aligned at the LUs, i.e., for u ∈ {R,T} we have

|hu|2 =

(
N∑
n=1

|hr1,n||hr2,n|

)2

. (1)

Different from the LUs, phases of different channels are
random and independent at the Eves. The overall small-scale
fading power is

|he|2 =

(
N∑
n=1

|hBR,n||he,n|ejθn
)2

, (2)

where θn is uniformly distributed in [0, 2π). In this work,
the small-scale fading is characterized by the κ-µ distribution
[13], which is a general model that includes some classical
distributions such as the Rayleigh, Nakagami-m, and Rice
as special cases. The transmission from the BS to the LUs
through the STAR-RIS element n is the double κ-µ distribution.
For i ∈ {1, 2}, the probability density function (PDF) of the
amplitude of hri,n is given by

f|hri,n|(x) =
2µi(1 + κi)

µi+1

2 xµie−µi(1+κi)x
2

κi
µi−1

2 eµiκi

Iµi−1

(
2µi
√
κi(1 + κi)x

)
, (3)

where κi and µi are fading parameters.



B. Signal Model

In STAR-RIS-NOMA, the SIC process is employed as in
conventional NOMA systems. Without loss of generality, the
SIC occurs at the LU with the better channel condition in the
typical LU pair to achieve high rate performance. Let Us and
Uw denote the strong LU and the weak LU in the typical LU
pair, respectively. The power allocation coefficient for Us is as
and that for Uw is aw, where as + aw = 1. For user fairness,
the higher power level is allocated to Uw, i.e., aw > as.

If the reflecting LU is the strong LU, i.e., UR = Us, UR

decodes the massage of UT fisrt. The signal-to-interference-
plus-noise ratio (SINR) of the SIC procedure is given by

γSIC =
awβRρbLR |hR|2

asβRρbLR |hR|2 + 1
, (4)

where ρb is the transmit SNR for LUs.
After the successful SIC, UR removes the messages of UT.

Then UR decodes its required messages with the following SNR

γR = asβRρbLR |hR|2 . (5)

Since UT decodes its message by treating the message of
UR as interference, the decoding SINR at UT is expressed as

γT =
awβTρbLT |hT|2

asβTρbLT |hT|2 + 1
. (6)

For the case that the transmitting LU is the strong LU, the
expressions can be obtained similarly, and we skip it here. Since
the SIC order depends on the order of channel gains, we focus
on the performance of the strong LU and the weak LU. Thus
we have the subscript u ∈ {s, w} in the rest of the paper.

We consider the worst-case of the security transmission, and
hence we focus on the most detrimental Eve which has the
highest detecting SNR of Uu. When the most detrimental Eve
is at the τ ∈ {R,T} side of the STAR-RIS, the instantaneous
SNR of detecting the information of Uu at the Eve can be
presented as

γEu = auβτρe max
i∈Φe

{
Le,i |he|2

}
, (7)

where ρe is the transmit SNR for the Eve.

III. SECRECY PERFORMANCE ANALYSIS

In this section, we first obtain new channel statistics for
STAR-RIS-aided links. Then we derive the theoretical ASC
expressions of the typical LU pair in the considered networks.
Finally, the asymptotic secrecy slope in the high SNR regime
is provided.

A. New Channel Statistics

The STAR-RIS assisted transmission introduces cascaded
small-scale fading. For the fading channel from the BS to

the LU/Eve through the STAR-RIS element n, we denote
∆n = |hr1,n||hr2,n|. The PDF of ∆n can be expressed as [13]

f∆n(x) =
2φ1φ2x

eµ1κ1+µ2κ2

×
∞∑
q=0

∞∑
t=0

ρq,tG
2,0
0,2

(
φ1φ2x

2 |q + µ1 − 1, t+ µ2 − 1
)
, (8)

where φi = µi(κi + 1) and ρq,t = (µ1κ1)q(µ2κ2)t

q!t!Γ(q+µ1)Γ(t+µ2) . The k-th
order moment of the product ∆n is given by

E[(∆n)k] =
(µ1) k

2
(µ2) k

2

eµ1κ1+µ2κ2φ1
k
2 φ2

k
2

× 1F1

(
k

2
+ µ1;µ1;κ1µ1

)
1F1

(
k

2
+ µ2;µ2;κ2µ2

)
, (9)

where (x)m = Γ(x+m)
Γ(x) is the pochhammer symbol.

Lemma 1. When the number of STAR-RIS elements is large
enough, the overall small-scale fading power for the unordered
LUs obeys a Gamma distribution

|h0|2 ∼ Gamma (k0, θ0) , (10)

where k0 = (mr
2N+σr

2)2

4mr2σr2N+2σr4
, θ0 = 4mr

2σr
2N2+2σr

4N
mr2N+σr2

, mr =

E[∆n] and σr2 = E[(∆n)2]−E[∆n]2. The overall small-scale
fading power for the Eves obeys

|he|2 ∼ Gamma
(
1, N(mr

2 + σr
2)
)
. (11)

Proof: Based on the results in our previous work [14], if
mu and σ2

u are the mean and the variance of ∆n, respectively,
the overall small-scale fading power |hu|2 can be approximately
fitted by a Gamma distribution Gamma

(
M0

2

V0
, V0

M0

)
, where

M0 = mr
2N2 + σr

2N and V0 = 4mr
2σr

2N3 + 2σr
4N2.

Moreover, the overall small-scale fading power for the Eves
obeys Gamma

(
1, N(mr

2 + σr
2)
)
. According to the property

of the cascaded κ-µ distribution, this lemma is proved.

Lemma 2. In the NOMA LU pair, CDFs of the channel
power for the strong LU and the weak LU can be respectively
expressed as

FUs(x) = [F̂H0
(x)]2, (12)

FUw(x) = 2F̂H0
(x)− [F̂H0

(x)]2, (13)

where F̂H0
(x) = δ

Γ(kr)G
1,2
2,3

(
RU

αx
ALθr

∣∣∣∣∣ 1− δ, 1
kr, 0,−δ

)
, δ = 2

α , AL =

CrlBR
−α, kr = (mr

2N+σr
2)2

4mr2σr2N+2σr4
, and θr = 4mr

2σr
2N2+2σr

4N
mr2N+σr2

.

Proof: See Appendix A.

B. Average Secrecy Capacity Analysis

Let CUu denote the channel capacity of the pair of LUs and
CEu represent the channel capacity of the most detrimental Eve
with the data of Uu, respectively. Then the secrecy capacity of
the NOMA LUs can be expressed as [CUu − CEu ]

+, which is
non-negative. The ASC is defined as the expectation value of



secrecy capacity over the fading channel and the spatial effect,
which is expressed as

Cu = E
(

[CUu − CEu ]
+
)
. (14)

Since the most detrimental Eve is either a reflecting Eve or
a transmitting Eve, we first provide the channel statistics of the
most detrimental reflecting/transmitting Eve.

Lemma 3. The CDF of the received SNR γEu,τ at the most
detrimental reflecting/transmitting Eve Eτ (τ ∈ {R,T}) in
terms of the message of Uu is given by

FγEu,τ (x) = exp

(
−mu

(
x

cτ

)−δ)
, (15)

where mu = 1
2πδλe(ρeauALWe)

δΓ(δ), δ = 2
α , and We =

N(mr
2 + σr

2).

Proof: The CDF of the channel gain for the most detri-
mental Eve can be calculated as follows

FγEu,τ (x) = EΦe

[∏
Φe

F|he|2

(
de
αx

ρeauALcτ

)]
. (16)

We apply the probability generating functional [15, eq. (4.3)]
and utilizing the property that Gamma(1,We) = WeExp(1).
The (16) can be rewitten as

FγEu,τ (x)

= exp

(
−πλe

∫ ∞
0

(
1− F|he|2

(
rαx

ρeauALcτWe

))
rdr

)
,

(17)

Then the lemma is proved by applying [12, eq. (3.326.10)].
When considering the ES protocol, the channel capacity of

the LUs is expressed as CUu = log2(1 + γu) and that for
the Eves is CEu = log2(1 + γEu). Similarly, we define the
equivalent received SNR in this case as follows.

Definition 1. For the ES protocol, we deploy an equivalent Eve
of Eτ located at the same side as the Uε, and the equivalent
received SNR is

γ̂Eτ→u =
βτ
βu
γEu . (18)

Lemma 4. For the ES protocol, the CDF of the equivalent
received SNR at the Uu side for the most detrimental Eve is
given by

FγEu (x) = e−mu(β̃u,sx)
−δ−mu(β̃u,wx)

−δ

, (19)

where β̃u,τ = βu
βτ

.

Proof: Based on Lemma 3, this lemma is straightfor-
wardly proved.

Theorem 1. For the ES protocol, the closed-form approxima-
tions of the ASC for the two NOMA LUs are given by

Cs ≈
1

ln 2

Ms∑
m=1

ξmF̄γUs

(
ξm
βs

)
FγEs

(
ξm
βs

)
/(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (20)

Cw ≈
1

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw

× F̄γUw

(
aw(ϕm + 1)

2asβw

)
FγEw

(
aw(ϕm + 1)

2asβw

)
, (21)

where ξm is the m-th root of Laguerre polynomial LMs
(x) and

ϕm = cos
(

2m−1
2Mw

π
)

. Ms and Mw are parameters to ensure a
complexity-accuracy trade-off.

Proof: See Appendix B.

Proposition 1. The ASC of the typical NOMA LU pair is given
by

C = Cs + Cw. (22)

C. Secrecy Slope Analysis

To gain insights into the ASC performance, the secrecy slope
in the high-SNR regime is considered, which is defined as

S = lim
ρb→∞

C∞
log2(ρb)

, (23)

where C∞ is the asymptotic ASC when ρb → ∞. The
asymptotic expressions for the pair of NOMA LUs are provided
in the following propositions.

Proposition 2. For the ES protocol, the asymptotic ASC in the
high-SNR regime can be expressed as

Cs,∞ = log2 (asβsρb) + σs

− 1

ln 2

Ms∑
m=1

ξmF̄γEs (ξm/βs) /(1 + ξm)

(Ms + 1)2[LMs+1(ξm)]2 exp(−ξm)
, (24)

Cw,∞ = log2

(
1 +

aw
as

)
− 1

ln 2

Mw∑
m=1

πaw
√

1− ϕm2

(awϕm + as + 1)Mw
F̄γEw

(
aw(ϕm + 1)

2asβw

)
.

(25)

Proof: When ρb → ∞, the term Cs,max in eq. (C.1)
and Cw,max in eq. (C.2) can be expressed as Cs,max ≈
E [log2(asβsρbHs)] = log2(asβsρb) + σs and Cs,max ≈
log2

(
1 + aw

as

)
, respectively.

Remark 1. In the STAR-RIS-aided NOMA transmission with
ES protocol, the secrecy slopes of the strong LU and weak LU
are Ss = 1 and Sw = 0. Therefore, the ASC is bounded in
the high SNR regime. Moreover, the secrecy slope of the paired
LUs is one.
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IV. NUMERICAL RESULTS

In this section, we present the numerical results to demon-
strate the secrecy performance of STAR-RIS-aided NOMA.
Our theoretical results are validated via Monte Carlo simula-
tions by averaging the obtained performance. Afterwards, some
interesting insights are provided. Unless otherwise stated, the
simulation parameters are defined as follows. For the small-
scale fading, we set κ1 = κ2 = 3 and µ1 = µ2 = 1, hence the
line-of sight (LoS) Rician channel is considered. The density
of Eves is λe = 10−4 m−2 and the SNR ρe = 50 dB. The
path loss exponent is α = 3. The number of elements on the
STAR-RIS is N = 25. The radius of the disc area is RU = 50
m. The power allocation coefficients for the NOMA LUs are
as = 0.3 and aw = 0.7.

Fig. 2 plots the CDF of the maximum received SNR of the
paired LUs, where the maximum received SNR is the product
of transmit SNR ρb and the channel power of LU u ∈ {s, w}.
Here we set ρb = 50 dB. The analytical results fit the simulation
curves quite well, and hence the derived channel statistics in
Lemma 1 and Lemma 2 are validated. In addition, the STAR-
RIS-aided channel model with a large number of elements has
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Fig. 4. ASC versus the STAR-RIS resource allocation ratio with ρb = 80 dB,
where “AP” represents the aligned phase scheme in our analysis and “RP” is
the random phase.

a higher channel power than the model with a few elements.
Therefore, the enhanced received SNR at LUs can be obtained
by deploying large-scale STAR-RISs.

Fig. 3 verifies the theoretical ASC expressions derived in
Theorem 1. The slope of the curves for the strong LU is
asymptotically constant in the high SNR regime. For the weak
LU, however, its ASC achieves an upper bound with the
increase of the transmit SNR ρb as discussed in Remark 1.
Furthermore, the weak LU with a small value of βs converges
to the ASC upper bound fast. Another observation is that when
adjusting the energy splitting coefficient βs, there is a tradeoff
between the secrecy performance of the strong LU and the
weak LU.

Fig. 4 compares the secrecy rate performance among differ-
ent STAR-RIS protocols and system setups. Here, the resource
allocation ratio represents the ratio of power, element, or time
resource allocated to the strong LU to the total resource for ES,
MS, and TS protocols, respectively. For example, the resource
allocation ratio in ES protocol is βs. We can observe that the
secrecy performance of the ES protocol outperforms the MS
and TS protocols. It can be explained that the ES protocol
exploits an extra degree of freedom in the space domain. When
the resource allocation ratio is zero or one, the performance
of the three protocols is the same. In this special case, a LU
on one side of STAR-RIS uses all power, element, and time
resources. Moreover, by adjusting the resource allocation ratio,
the highest ASC can be achieved. We also observe that the
ASC of NOMA obtains a significant improvement over OMA.
This illustrates the efficiency of adopting the NOMA scheme
in STAR-RIS-aided systems. By comparing with the random
phase setup, the results show that with appropriate design on
the beamforming, the STAR-RIS can improve the secrecy rate
performance remarkably.

V. CONCLUSION

In this paper, the PLS of the STAR-RIS-aided NOMA system
with randomly deployed LUs and Eves has been investigated,



where the stochastic geometry tool has been utilized to model
the locations of LUs and Eves. We have derived the analytical
expressions of the ASC when the SIC order of the NOMA
LUs is based on the channel gains. Then asymptotic secrecy
performance has been obtained. The numerical results have
provided design guidelines for the considered system: 1) the
optimal secrecy performance can be achieved by adjusting
the resource allocation ratio of the STAR-RIS; 2) the ES
protocol has a higher secrecy performance than the TS and
MS protocols.
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APPENDIX A: PROOF OF LEMMA 2
In this work, the overall channel power consists of path loss

and small-scale fading. We denote H0 = XY , where X =
|hu|2 and Y = ALd

−α represent the power of small scale
fading and path loss at the LU, respectively. According to (10),
the CDF of the small-scale fading X is

FX(x) =
γ (kr, x/θr)

Γ(kr)
. (A.1)

Noticed that the locations of LUs obey a HPPP in the disc
area, the PDF of the path loss Y is given by

fY (x) =

{
2AL

2/α

αRU 2 x−2/α−1, x > ALRU
−α

0, x ≤ ALRU−α.
(A.2)

For an arbitrary LU in Φu, we can formulate the CDF of
the channel power Hu as follows

F̂H0
(x) =

∫ ∞
0

FX(
x

y
)fY (y)dy

(a)
=

2

RU
2

∫ RU

0

γ
(
kr,

xrα

ALθr

)
Γ(kr)

rdr, (A.3)

where (a) is from the change of variable r = (y/AL)−1/α. By
employing the meijer G-function of lower incomplete Gamma
function, we rewrite F̂H0(x) as

F̂H0
(x) =

2

RU
2Γ(kr)

∫ RU

0

rG1,2
1,1

(
xrα

ALθr

∣∣∣∣∣ 1

kr, 0

)
dr

(b)
=

δ

Γ(kr)
G1,2

2,3

(
RU

αx

ALθr

∣∣∣∣∣ 1− δ, 1
kr, 0,−δ

)
, (A.4)

where (b) is obtained by utilizing [12, eq. (7.811.2)].
For the LU pair, according to order statistics theory, if total

of K LUs have the same statitical channel characteristic, the
ordered CDF of the channel power of the lth weakest LU is
given by

Fl(x) =

K∑
k=l

(
K

k

)
[F̂H0

(x)]k[1− F̂H0
(x)]K−k. (A.5)

By substuting (A.4) into (A.5), this lemma is proved.

APPENDIX B: PROOF OF THEOREM 1

Based on the definition in (14), the ASC for the strong LU
is expressed as

Cs(x) =

∫ ∞
0

∫ x

0

log2

(
1 + x

1 + y

)
fγUs (x/βs)fγEs (y/βs)dydx

=
1

ln 2

∫ ∞
0

F̄γUs (x/βs)FγEs (x/βs)

1 + x
dx. (B.1)

By applying the Gauss-Laguerre quadrature, the closed-form
approximation can be obtained.

For the weak LU, the ASC is zero when aw − γTS
Us
as ≤ 0.

Thus the ASC is given by

Cw(x) =
1

ln 2

∫ aw
as

0

F̄γUw (x/βw)FγEw (x/βw)

1 + x
dx. (B.2)

Then the closed-form approximation is obtained by the Cheby-
shev–Gauss quadrature. The proof is completed.
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