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Abstract

Software-defined networking enables tight integration between packet-processing

hardware and centralized controllers, highlighting the importance of deep

network insight for informed decision-making. Modern network telemetry

aims to provide per-packet insights into networks, enabling significant opti-

mizations and security enhancements. However, the increasing gap between

network speeds and the stagnating performance of CPUs presents significant

challenges to these efforts. Attempts to circumvent this slowdown by deploy-

ing monitoring functionality directly into the data plane, which is capable of

line-rate processing, are hindered by the hardware’s resource limitations and

the data collection capacities of analysis servers.

This dissertation introduces a dual strategy to enhance centralized net-

work insights: Firstly, it improves probabilistic network monitoring data

structures, achieving fault-tolerant monitoring in heterogeneous environments

with significantly higher accuracy and reduced resource demands. Secondly, it

redesigns the interface between networking hardware and analysis servers to

substantially lower telemetry collection and aggregation costs, thus enabling

insights at unprecedented granularities. These advancements collectively

mark a significant stride towards realizing the full potential of fine-grained

network monitoring, offering a scalable and efficient solution to address the

challenges brought by the rapid evolution of network technologies.
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Chapter 1

Introduction

This introductory chapter sets the stage for the dissertation by providing an

overview of the research context and the primary focus areas of the work.

The chapter outlines the critical importance of network telemetry in modern

reactive networks and introduces the concept of the network control loop

as a foundational mechanism. The subsequent sections will present the

dissertation’s specific scope, the key research objectives, a summary of major

contributions, and the dissertation’s overall structure.

1.1 Research Focus

This dissertation focuses on network telemetry, a crucial element for the

effective operation and management of reactive networks.

Network telemetry is foundational to the behavior of reactive networks [18,

92,105,116,206,223,229,230]. This is characterized by the network control

loop [175], which is depicted in Figure 1.1. The loop enables networks to

dynamically adapt to changes and optimize their performance through a

continuous cycle of four core actions:

(1) Measure: Network devices, such as switches, are tasked with monitoring

traffic flow and their internal states [38, 116, 123]. This phase generates

the telemetry data upon which network reactivity is predicated. Data

1
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(1) Measure

(2) Collect

(3) Analyze

(4) Reconfigure

Figure 1.1: Network Control Loop

collected include metrics such as flow paths [18,116], queue depths [116],

and packet losses [195,230], providing a detailed snapshot of network ac-

tivity. Modern solutions can generate per-packet granular insights [103],

resulting in immense data generation rates [123,207].

(2) Collect: This phase involves transferring the telemetry data from net-

work devices (e.g., switches) to queryable storage at centralized servers,

establishing the foundation for a comprehensive network-wide view [36,

115, 149, 207]. Given the voluminous nature of the data produced by

modern techniques, this phase can incur significant costs [115,123,207].

(3) Analyze: In this phase, data is aggregated and processed to construct a

holistic view of the network’s current state [96,115,171]. This step is

crucial for identifying and understanding the root causes of detected

or predicted issues. Analytical methods can vary greatly, from simple

pre-defined rules [62] to advanced machine learning algorithms [96,187],

running either in real-time and/or on-demand [62].

(4) Reconfigure: The final step in the network control loop is reconfigura-

tion, where insights gained from the analysis phase are used to adjust

network configurations [134]. This may involve routine traffic engineer-

ing [134] to more advanced techniques such as altering packet processing

pipelines within the switching hardware [216].



Chapter 1. Introduction 3

This iterative cycle of measurement, collection, analysis, and reconfiguration

aims to continuously enhance the network’s performance [134], reliability [76],

and security [171]. By doing so, the network control loop ensures that

the network can respond effectively to evolving conditions and demands,

maintaining optimal operation at all times.

Making informed decisions requires deep insights into network operations,

which in turn necessitate fine-grained telemetry [116,231]. However, current

fine-grained measurement and collection techniques are often impractical,

both due to the high on-switch resource costs (step one) [92,154,227], and the

immense load placed on centralized collection systems (step two) [115,123,207].

Analysis (step three) is tangential to the field of network telemetry and heavily

relies on statistics and machine learning, fields that already possess a vast

volume of literature and ongoing research [146,157,187]. Reconfiguration (step

four) is triggered by telemetry-enabled applications, including appropriate

traffic engineering or security decisions, and falls outside the scope of this

dissertation.

My PhD research primarily focuses on the measure and collect stages of

the control loop, as these two stages are foundational for constructing the

data lake from which high-quality network insights are derived. The first two

research chapters (Chapters 3 & 4) present novel methods to probabilisti-

cally record network measurements within network switches, providing highly

resource-efficient techniques for higher-quality insights. The final research

chapter (Chapter 5) presents a revolutionary approach for telemetry collec-

tion, enabling unprecedented telemetry ingestion rates and a more complete

insight into the state of networks. Through this effort, I aim to enhance the

adaptability of fine-grained telemetry, thereby providing tools to improve

network security, performance, and reliability.
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1.2 Research Objectives

My dissertation focuses on advancing the field of network telemetry by

addressing key challenges in deployment, accuracy, and data collection. The

main objectives are:

1. Make Sketches Network-wide Deployable Sketches are probabilistic

data structures commonly used in network telemetry to estimate traffic

statistics [23,32,45,64,91,133,137,138,221,227]. However, they face practical

deployment challenges, including determining optimal in-network locations

and allocating sufficient resources for high-quality estimations [139,222].

This objective aims to develop sketch disaggregation techniques that fragment

these data structures and deploy them across all switches simultaneously.

By doing this, we can increase estimation accuracy by leveraging network-

wide resources and unlock additional benefits such as failure resilience. This

research objective is the main research focus in Chapter 3.

2. Improve the Cost vs Accuracy Tradeoff in Sketches The esti-

mation accuracy of sketches is directly affected by the amount of memory

allocated to the data structure [221]. High-speed network switches depend on

Static RAM (SRAM) to deliver statefulness, severely limiting the available

memory for on-switch functions and leading to less reliable network insights

due to inaccurate telemetry.

This objective aims to develop lightweight techniques to enhance the efficiency

of sketch-based monitoring by decoupling flow ID storage from the data plane

while maintaining a high and accurate coverage. This research objective is

the main research focus in Chapter 4.

3. Alleviate the Telemetry Collection Bottleneck Telemetry col-

lection is recognized as the primary bottleneck in fine-grained telemetry

systems [191,207], causing vendors to limit the amount of telemetry informa-

tion generated and thus reducing network insight.

This objective aims to design and implement innovative techniques to bypass
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current telemetry collection bottlenecks, significantly reducing operational

costs and enhancing the comprehensiveness of network monitoring by address-

ing the challenges of voluminous data generation inherent in modern network

monitoring systems. This research objective is the main research focus in

Chapter 5.

1.3 Major Contributions

Building on the research objectives, this dissertation makes several key contri-

butions to network telemetry, addressing challenges in deployment, accuracy,

and data collection, to advance the state-of-the-art in network monitoring.

To place the contributions in their proper context, I present the contributions

within the framework of the previously introduced research objectives.

1.3.1 Network-wide Sketch Deployability

Chapter 3 presents my research on network-wide deployable sketches through

novel disaggregation techniques. Key contributions include:

Introduced Spatiotemporal Disaggregation: I developed a method

called spatiotemporal disaggregation, enabling sketches to be fragmented and

deployed across multiple network switches in heterogeneous environments.

This technique improves estimation accuracy by leveraging network-wide

resources and offers benefits such as failure resilience.

Introduced DiSketch: I applied spatiotemporal disaggregation to a tra-

ditional Count Sketch (CS), creating DiSketch, a disaggregatable flow size

estimator. DiSketch significantly reduces estimation errors by almost an order

of magnitude compared to traditional aggregated sketches.

Evaluated in Data Center Networks: I demonstrated that spatiotempo-

ral disaggregation is particularly effective in data center network environments,

where resource constraints and traffic variability are common challenges.
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Validated Practical Deployability: I validated the real-world deployabil-

ity of DiSketch on hardware switches, ensuring that the proposed techniques

are feasible for implementation in current network infrastructures.

1.3.2 Accuracy vs Cost of Sketches

Chapter 4 presents collaborative research on resource-efficient sketching,

introducing novel sketch processing techniques to improve flow size estimation

and flow-ID extraction efficiencies. Key contributions include:

Introduced FlowLiDAR: I introduced FlowLiDAR, a solution capable of

tracking almost all network flows with modest data plane memory, independent

of the flowID size.

Efficient FlowID Extraction Techniques: I introduced innovations

such as lazy Bloom Filters (BFs) and differential flow detection, optimizing

memory utilization and minimizing false positives. These techniques allowed

FlowLiDAR to achieve higher accuracy and efficiency in flow monitoring

compared to existing methods.

Evaluated FlowLiDAR in Real-world Scenarios: I evaluated FlowLi-

DAR using real traffic traces from ISPs, showing it can track 98.7% of flows,

while other solutions only reconstructed up to 60% of flow statistics with the

same memory usage.

Validated Practical Deployability: I implemented FlowLiDAR on hard-

ware switches, validating its feasibility and practical deployability in current

network infrastructures. The implementation proved FlowLiDAR is com-

patible with the high-throughput Protocol Independent Switch Architecture

(PISA) and can be deployed in high-speed pipelined network switches.
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1.3.3 High-Speed Telemetry Collection

Chapter 5 presents my research on high-speed telemetry collection, overcoming

performance limitations of the data ingestion stack. Key contributions include:

Identified Underlying Collection Bottlenecks: I identified that the

primary bottlenecks in telemetry data collection systems are CPU limitations

and the rate of memory instructions. These constraints significantly hinder the

collector’s ability to process and store telemetry reports efficiently, inhibiting

large-scale collection of fine-grained telemetry data.

Developed In-network Collection Techniques: I developed in-network

telemetry interception techniques that bypass CPU involvement, utilizing

Remote Direct Memory Access (RDMA) to write telemetry data directly

from switches into collectors’ memory. This approach facilitates CPU-less

data ingestion and significantly reduces memory instruction rates.

Validated Practical Deployability: I implemented the proposed solution,

Direct Telemetry Access (DTA), using commodity RDMA Network Interface

Cards (NICs) and programmable switches, demonstrating its feasibility and

practicality for deployment in real-world network environments.

Demonstrated Performance Increase: Through in-depth evaluation, I

showed that DTA achieves orders-of-magnitude performance improvements,

significantly surpassing state-of-the-art solutions in telemetry data collection

rates.

Demonstrated Broad Support for Current Monitoring Systems: I

proposed methods for integrating DTA with well-known telemetry solutions

and demonstrated its integration with two prominent network telemetry

systems, showing DTA’s easy integration and adoptability within existing

network monitoring frameworks.
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1.4 Roadmap

The dissertation is structured as follows:

Chapter 2 provides a foundation in network telemetry, outlining current

methods and use cases, as well as the importance and challenges of

various techniques. It also presents related works within the context of

this dissertation’s research objectives.

Chapter 3 investigates sketch-based network monitoring and introduces spa-

tiotemporal disaggregation, a highly flexible sketch deployment technique

for disaggregated and heterogeneous sketching.

Chapter 4 introduces new techniques for highly accurate sketch-based mon-

itoring and flow ID extraction under severe resource constraints.

Chapter 5 rethinks the telemetry collection stack and introduces a novel

technique to overcome the current collection bottleneck, achieving im-

mense performance improvements.

Chapter 6 concludes this dissertation by summarizing and discussing the

research contributions and findings.



Chapter 2

Network Telemetry

In modern, reactive networks, the significance of network telemetry cannot

be overstated. These networks can dynamically act and reconfigure based on

the current state of the network, transforming it from a mere data forwarding

mechanism into an intelligible and analyzable fabric. This lays the founda-

tion for enhanced network transparency and control [194]. This evolution

is pivotal for moving away from traditional, static network configurations

towards dynamic, responsive infrastructures that swiftly adapt to changing

conditions [93].

Network telemetry involves two primary processes: monitoring and collec-

tion. Monitoring entails the continuous on-switch observation of performance

metrics and behaviors [116,189] to identify trends [194], anomalies [69,157],

and potential issues [76]. Collection refers to the aggregation of this data from

various sources across the network [115, 123, 223], enabling comprehensive

analysis and informed decision-making based on a network-wide view [96,187].

This insight serves as the backbone for critical functions in contemporary

network environments, such as real-time network control [134], security mon-

itoring [171, 187], compliance with Service Level Agreements (SLAs) [145],

and general troubleshooting [76].

This chapter provides an overview of modern network telemetry, setting

the stage for my dissertation.

9
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2.1 Monitoring Techniques

In this section on monitoring techniques, I will highlight various methods

used for observing and analyzing network traffic, ranging from traditional

legacy solutions to more advanced techniques employed in Software-Defined

Networks (SDNs), as overviewed in Table 2.1. I aim to provide a foundational

understanding of the field of network monitoring, as well as insight into the

drawbacks and challenges of the various techniques. While these categories

are widely understood in the field, they do not have clear definitions, and some

works may fall into multiple categories. However, these classifications allow

for an abstract discussion without exploring the specifics of every individual

work.

Category Description

Active Sends test traffic to measure network behavior (e.g., Ping and Traceroute)

Passive [38,173,211] Extracts flow statistics from mirrored traffic

Mirroring [60,174,231] Copies user packets for separate analysis

In-band [27,63,116,167] Embed measurements into user traffic

Sketching
[32,45,91,138,221]

Uses probabilistic structures for data summarization
[23,64,133,137,227]

Flow-based [92,155,230] Aggregates measurements around network flows

Query-based [77,79,158,159] Extracts data based on pre-defined queries

Event-based [155,230] Reports data around detected events (e.g., packet losses)

Table 2.1: Overview of Network Monitoring Solutions

Legacy solutions are foundational solutions from before the advent of SDN

and provide basic insights into the state of a network. For instance, traditional

network monitoring tools like Simple Network Management Protocol (SNMP)

and NetFlow were commonly used to gather and analyze network data.

These methods have evolved, reflecting a balance between resource utilization,

accuracy, and cost, with new solutions expanding the capabilities to track more

detailed and fine-grained network performance metrics Legacy monitoring

techniques are often categorized as either active or passive.

SDN centralized network control to controller servers, necessitating deeper

network insight and telemetry to enable more complex decision-making.

Following this development, programmable data planes [24] (see Section 2.4.1)
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enabled more telemetry use cases and accelerated the development of advanced

monitoring schemes. Modern SDN measurement systems can be categorized

as in-band, sketch-based, query-based, flow-based, event-based, and mirroring.

2.1.1 Monitoring Categories

In this section, I will provide a brief explanation of the various monitoring

categories presented in Table 2.1, delivering an overview of the state of network

monitoring. Traditionally, legacy monitoring has been classified into active

and passive categories. These classifications form the basis of our discussion,

followed by an elaboration on more modern techniques. It is important to note

that mirroring is a technique that spans both legacy and modern telemetry

and is intriguing enough to warrant its discussion.

Active

Active monitoring, also known as probing, involves injecting synthetic traffic

into the network to assess network behavior. The most common techniques

are ping [76] and traceroute [1]. While these solutions are light on network

resources, they have several drawbacks. Primarily, the forwarding path of

these probes may not align exactly with that of user traffic, and may not

accurately reflect the experience of actual user traffic. Additionally, the

techniques are quite limited in design, failing to extract detailed information

such as flow path tracing or stateful metrics.

Passive

Legacy passive monitoring systems analyze network traffic based on mirroring

and proxy reporting, exemplified by NetFlow [38], sFlow [211], and IPFIX [173].

These measurement systems are constrained by switch performance and

typically employ sampling techniques to reduce computational load, which in

turn reduces measurement accuracy [15].
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Mirroring

Mirroring is a technique often used for monitoring in both legacy and SDN

networks by cloning user traffic for analysis. The primary distinction between

legacy and SDN mirroring lies in the latter’s ability to intelligently select

which packets to analyze, enhancing efficiency and relevance [231] Mirroring

is typically implemented in one of two ways: either by copying packets from

the packet-forwarding Application Specific Integrated Circuit (ASIC) to the

operating system running on the switch’s CPU, or by forwarding a duplicate of

the packet to a dedicated packet-analyzing server. Switches’ packet-forwarding

ASICs can process billions of packets per second, far exceeding the packet

processing capabilities of CPUs, thus necessitating selective sampling and

filtering techniques in both scenarios to manage the load [174,231].

Despite its limitations in providing truly per-packet insights due to the

need for sampling, mirroring offers significant advantages. Access to raw

user traffic allows for complex and retrospective analysis based on future

requirements, such as examining encapsulation headers or packet payloads at

arbitrary packet depths. However, since these solutions are unable to monitor

all user traffic continuously, they risk missing transient phenomena affecting

only specific packets (see Section 2.3 for a detailed discussion on sampling).

Moreover, the efficiency of software-based raw packet analysis is inherently

lower compared to in-hardware analysis and aggregation techniques [210].

In-band

At the other extreme, in-band monitoring systems embed measurements

into the user packets themselves during transit, providing unprecedented

per-packet granular insight into the network state. The state-of-the-art in

in-band monitoring is In-band Network Telemetry (INT) [116], which is

further elaborated in Section 2.1.2. Numerous competing alternatives have

arisen [18,27,63,167]. However, these are accompanied by several challenges

and limitations, most notably the immense load they place on the underlying

collection systems [194,205] and a reduction of the Maximum Transmission

Unit (MTU) due to appending data into user packets [18, 194].
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Sketches

Sketches are probabilistic data structures that employ hashing techniques to

provide estimated statistics about data streams [78]. Known for their excellent

compatibility with hardware and typically O(1) insertion logic, sketches are

widely utilized in network monitoring [23, 32, 45, 64, 91, 133, 137, 138, 221,

227]. They can estimate a broad range of streaming data statistics without

modifying user packets1. However, the accuracy of these estimations is directly

influenced by the allocated memory for sketching, with the accuracy/cost

tradeoff being an active area of research [91,154,183]. Further elaboration on

sketches and a discussion of specific use cases are provided in Section 2.1.3.

Flow-based Monitoring

Flow-based monitoring aggregates measurements around the flow 5-tuple

directly on switches, significantly reducing data collection load by export-

ing only summarized per-flow statistics [92, 155, 230]. This approach offers

substantial efficiency gains, potentially lowering collection costs by orders of

magnitude [230]. However, it necessitates additional on-switch resources for

storing and processing these statistics [92, 230], leading to increased use of

switching resources and delays in reporting times. Such delays can impact

the system’s responsiveness, especially in scenarios requiring immediate data

analysis [134]. Moreover, by prioritizing aggregation, there is a risk of over-

looking transient phenomena or anomalies that affect only a minimal number

of packets, as the granularity of insight is diminished [231]. Thus, flow-based

monitoring represents a compromise, balancing between the comprehensive

visibility offered by per-packet monitoring [116] and the scalability of tra-

ditional flow-level sampling [211], albeit at the cost of increased on-switch

complexity.

1Sketches themselves do not modify user packets. However, there are sketch collection

techniques, most notably LightGuardian [227], that use in-band techniques to transfer

sketches to central collection using user packets.
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Query-based Monitoring

Query-based monitoring offers a tailored approach to network telemetry,

specifically designed to mitigate the overload on collection systems caused

by fine-grained monitoring [77, 158, 159]. By collecting only data pertinent

to predefined queries, such as the number of established TCP connections

per host for detecting TCP SYN flooding attacks [77], it ensures efficiency

and relevance in data collection. This method aligns closely with the needs

of modern network environments, enabling precise monitoring for specific

scenarios like security breaches or performance issues.

Despite its targeted effectiveness, query-based monitoring faces challenges

with scalability and retrospective analysis. The complexity of in-network

aggregators required to support an expanding array of queries grows in scale,

leading to increased in-ASIC resource consumption [77,159]. Moreover, its

inability to examine characteristics not specified by existing queries limits

its comprehensive insight into network behavior [86, 118, pg.54]. However,

recognizing its value in reducing telemetry collection load and its capability

in identifying critical pre-defined network events, I have ensured support for

query-based monitoring in my collection research in Chapter 5.

Event-based Monitoring

Event-based monitoring can sometimes be viewed as a sub-category of query-

based monitoring, in that it only reports information that is pre-defined as

being of interest [69,230]. In this approach, traffic statistics are maintained on

the switch, which is used to detect and report anomalous network behaviors,

such as packet losses or latency spikes. This reduced collection load has

similar trade-offs to the aforementioned query-based systems, including a

narrow and predefined view of the network, limited retrospective analysis

capabilities, and increased on-switch complexities and resource usage.
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2.1.2 In-band Network Telemetry (INT)

INT [74] is an in-band monitoring scheme that was jointly proposed by

Barefoot, Arista, Dell, Intel, and VMware in 2015. Since its introduction,

INT has emerged as the state of the art for fine-grained network telemetry,

offering unparalleled visibility into the network state. Several commodity fixed-

function switches now offer support for this monitoring technology [35,164,200].

INT operates in three distinct modes, each tailored to meet various monitoring

requirements and mitigate the trade-offs between the depth of metadata and

the impact on the network.

INT eMbed data (INT-MD): This mode, often referred to as the

“classic” mode, involves embedding both the INT instructions and measure-

ments directly into user packets. At each hop along the path, the instruction

header is read, and local measurements are inserted into the packet. At

the last hop, known as the INT sink, all instructions and measurements are

stripped from the packets before they are sent for central collection, while the

(now unmodified) user packet continues to its destination. While this mode

offers the most comprehensive telemetry data, it also imposes the greatest

modification on the packets, potentially reducing the available MTU.

INT eMbed instruct(X)ions (INT-MX): This mode embeds INT

instructions within packets but does not embed the per-hop measurements.

Instead, as the packet traverses the network, switches read the packet-carried

instructions and export their local measurements directly to centralized col-

lection systems. The INT sink then removes the instruction header before

forwarding the packet to its destination. This method limits packet mod-

ification to the instruction header only, preventing any additional increase

in packet size regardless of the number of nodes transited (aside from the

fixed-size instruction header).

INT eXport Data (INT-XD): Known as the postcard mode, this

method enables INT nodes to export metadata directly from their data plane

to the monitoring system, based on pre-configured INT instructions. This

mode requires no packet modification, ensuring minimal impact on the data

flow.
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Despite its various iterations, INT faces challenges, particularly in manag-

ing the high volume of telemetry data generated by per-packet measurements,

which may overwhelm collection systems [123,124]. This necessitates selective

monitoring or the integration of event detection systems to efficiently handle

the data [207,209]. Moreover, embedding telemetry data in packets can reduce

the available MTU [18], effectively limiting the system’s goodput and leading

to degraded network performance.

2.1.3 Sketching-based Monitoring

Sketches, as probabilistic data structures, have found a niche in network

telemetry for their space efficiency and capability to approximate streaming

data monitoring. Their ability to deliver highly useful traffic measurements

has significantly contributed to their popularity. By embedding sketches

directly within the network switches themselves, full-coverage, non-sampled

measurements of network traffic are realized. This approach ensures every

user packet is accounted for in time-window measurements, with only the

aggregated data periodically relayed to centralized collection systems.

The research community has recognized the value of sketches and has

proposed a variety of sketching techniques to estimate a broad set of streaming

data statistics. A significant portion of my PhD research has focused on

sketch-based monitoring, with a primary emphasis on a fundamental metric:

frequency estimation.

Frequency Estimation

Frequency estimation is a fundamental application of sketches in network

telemetry, achievable through various sketching techniques [32,45,139,154,

196,221,227]. A common use case involves counting the number of packets or

bytes in a network flow. As a foundational metric, frequency estimation is

instrumental across numerous operational contexts, including investigating

congestion issues [221], making informed offloading decisions [136], Distributed

Denial of Service (DDoS) detection [196,221], and even as a step in packet

loss detection [227].
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Frequency estimation provides a list of frequencies for all flows, termed

a frequency vector. The extracted frequency vector can be used to calculate

arbitrary frequency norms, which are useful in diverse statistical analyses. One

such use case is in entropy estimation, which aids various network measurement

applications including DDoS detection [156], load balancing [143], and traffic

classification [220].

2.2 Telemetry Collection

Telemetry Collection plays a pivotal role in network management by cen-

tralizing the vast array of measurements generated across the network [12,

34,77,93,105,115,163]. This process begins when network devices generate

measurements, compiling them into detailed telemetry reports. These reports

are then transmitted to centralized telemetry collectors, where the incoming

data undergoes aggregation and is meticulously organized into various data

structures. This structured organization is critical for ensuring the data

remains queryable with high efficiency.

Centralization of telemetry data serves as the backbone for comprehensive

network oversight, enabling a unified network-wide perspective. Such a central-

ized viewpoint is instrumental in guiding control strategies [5,85,134], making

informed decisions, and facilitating thorough troubleshooting [76, 105, 193].

Analysis typically supports both real-time operations and retrospective anal-

yses, allowing network operators to respond to immediate issues and review

historical data for long-term planning, troubleshooting, and optimization.

2.2.1 Report Transmission towards Collectors

Before discussing collection approaches, it is essential to understand how

telemetry data is transmitted to central collection servers.

Telemetry data transmission to central collection systems can adopt various

methodologies, each with its own performance characteristics and impacts on

the telemetry framework:
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In-band Transmission In this approach, telemetry data is embedded within

user packets [116,227]. End-hosts may undertake initial aggregation and

pre-processing tasks before dispatching this data to central collection

systems [92,227]. This method distributes the processing burden across

multiple servers, aiding scalability. Despite its efficiency, it necessitates

substantial infrastructure modifications, making it viable primarily

within data center networks where end-hosts reside under a unified

domain [92]. Further, the requisite pre-processing can introduce delays

in central system reactivity.

Pushing Approach Also known as streaming telemetry, this method in-

volves sending telemetry reports directly to the central collection upon

their generation in the data plane [74], facilitating rapid responses based

on streaming telemetry. While this approach ensures quick reactivity,

the continuous export of numerous small reports demands highly ca-

pable collection systems to manage the influx efficiently [123]. This

approach, coupled with sampling or selection techniques, is commonly

used in industry [34,163].

Polling Approach Contrary to automatic data push methods, polling in-

volves retaining telemetry data on the switches, allowing central collec-

tors to request this information as needed. This method is resource-light

on the collection side but can result in significant delays and reduced

system reactivity [114]. Additionally, there’s a risk of missing critical

real-time events due to the on-demand nature of data retrieval [114].

Moreover, on-switch storage imposes a load on internal switch buses

to move measurements into aggregation in the slower CPU-adjacent

RAM [230]. The industry is moving away from polling due to the poor

insight these techniques deliver [34, 163].

On-switch Aggregation In this approach, telemetry data is temporarily

stored and possibly pre-processed on the switches themselves before be-

ing sent to central collection [159,230]. Techniques such as deduplication

and event detection can be applied locally, reducing the data volume
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sent to the collection and thereby enhancing efficiency [230]. While this

method can significantly decrease the collection load, it may introduce

delays in central analysis and demand additional in-network resources,

including increased memory and processing load on switches [230].

2.2.2 Collection Stacks

Once reports have reached a collector, they will enter the collection stack.

Network telemetry collection consists of three main steps: receive, store, and

present [34], which together form a complete collection stack.

Receive forms the interface between the generated telemetry data and the

collection software. This step is responsible for ingesting incoming

reports, transforming, and filtering this data to make it more manageable

further down the collection stack.

Store takes the pre-processed telemetry data and stores it in queryable data

structures. Time-series databases are typically well-suited for streaming

telemetry collection and are commonly used [36,66].

Present analyzes and processes the aggregated measurements, delivering

actionable outputs including visualizations and alert generation.

A notable telemetry collection solution is the TIG stack, which is supported

by large industrial vendors including Cisco [34] and Huawei [95]. In this

setup, Telegraf [99] is used to receive telemetry data, which is then stored

in InfluxDB [98], and visualized or alerted upon using Grafana [121]. The

TIG stack is highly versatile and supports a wide range of incoming data

types, while performing basic data transformation and filtering to optimize

aggregation. Although TIG is common, competing solutions include the ELK

stack [57], Tetration [40], and NPM [188].

Unfortunately, all of these solutions are software-based and struggle to

scale alongside the increasing capacity of purpose-built ASICs [182], which

enable high-speed packet forwarding [39, 162]. As previously mentioned,

modern network telemetry can generate an immense amount of data by
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leveraging these ASICs, and operators need to weigh the level of insight

against the cost of deploying powerful collection clusters [115,123,207].

2.3 Telemetry Sampling

An underlying assumption of this dissertation is that offline processing of

telemetry data is too costly to be feasible; otherwise, we could simply route

every user packet through a CPU and perform any arbitrary analysis in

real-time. This approach is unfortunately not economically viable in large-

scale deployments due to the gap between network and CPU speeds. Legacy

solutions address this issue by sampling or selecting what to monitor based on

pre-defined rules. For example, a monitoring system might mirror every xth

packet to a CPU, which then extracts relevant information from the sampled

traffic, such as flow identifiers or packet latencies. The scalability issue of

collection might be similarly addressed, where telemetry reports contain only

sampled information to reduce the generated telemetry load to manageable

levels.

Telemetry data sampling can indeed be effective in certain cases, such

as when only approximated aggregate states are required. Examples include

determining the average data corruption rates in specific network sectors,

assessing the packet loss rates of particular switches, or generally inferring

statistical distributions about the aggregate network traffic.

However, data sampling fails to reliably answer more tailored queries that

are not solely focused on the aggregate network state. For example, queries

concerning individual network flows cannot be reliably addressed based on

randomly sampled measurements. These queries are crucial for enabling both

intricate automated control and more detailed manual insight.

Consider the straightforward scenario where two traffic endpoints experi-

ence poor communication performance. Troubleshooting these flows would

first require identifying the network path of this communication, likely fol-

lowed by more tailored queries such as queue mapping inside specific switches

or issues related to pipeline traversal and rule matching at the time the
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issue occurred. These queries rely on retrospection, which assumes that the

requested data has already been collected. However, sampling, by its very

nature, cannot guarantee the availability of this information at query time.

Recent research has tailored the sampling of on-switch measuring programs

to predefined queries [77,159]. However, query-based sampling necessitates

runtime reprogrammability, an area still under active research and currently

unfeasible in high-throughput PISA switches due to their compile-time al-

location of resources and computational logic [61, 218]. Additionally, non-

reprogrammable solutions impose a significant resource burden on the switch,

limiting the complexity of the queries [77]. Moreover, these query-based

measuring solutions fail to capture the necessary measurements post-fact if a

relevant query was not predefined; thus, sporadic issues could be challenging

to troubleshoot if one does not already know which traffic profiles should be

monitored. In short, queries about historical events are not easily answered

through these systems.

I would therefore argue that while sampling solutions play an important

role, they have not yet reached a state where they alone can realize the

potential of highly reactive networks envisioned by the networking community.

To achieve this, we need to either improve the efficiency of in-band monitoring

or enhance the performance of the collection and analysis stacks.

2.4 Switching Hardware

To understand the rationale behind advocating for in-network measuring,

preprocessing, and aggregation, it is essential to grasp the fundamentals of

switching hardware.

Modern high-speed network switches can process billions of packets per

second [198,202]. This exceptional throughput is achieved through the use

of ASICs, which perform basic operations often built around lookup tables

to maximize packet throughput [24, 147, 160, 202]. These ASICs are highly

specialized for packet processing, sacrificing general computability for speed

and efficiency.
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Per-packet statefulness and buffering typically rely on low-capacity Static

RAM (SRAM) due to its low latency, which significantly limits the available

memory in the forwarding plane [102,164,198,202]2.

This limitation in computational complexity and memory is partially

mitigated by integrating traditional RAM and a general CPU on the switching

board. These components handle control, basic telemetry, and various offline

functionalities that do not need to be triggered at line rates [39]. However,

the generic CPU is too slow to manage the rate of packet processing and

primarily serves as a support system, while the much faster ASIC focuses on

per-packet logic [39].

2.4.1 Programmable Switches

Recent advancements in network programmability have been primarily driven

by the development of programmable switching ASICs that allow for custom

packet forwarding logic [25,26,162].

This evolution can be traced back to OpenFlow [147], which marked a

substantial shift by enabling the control plane to dynamically update the

forwarding rules of network switches. Despite this innovation, OpenFlow’s

reliance on fixed-function forwarding logic embedded into the hardware by

manufacturers placed inherent limitations on network operators, confining

them to predefined protocols. Over time, the number of supported protocols

has grown, increasing hardware complexity while still not providing support

for custom protocols [24].

The constraints of OpenFlow drove the development of fully programmable

data planes, a revolution led by the introduction of Programming Protocol-

independent Packet Processors (P4) [24]. P4 empowers network operators

with unprecedented control, allowing for the creation of custom packet pro-

cessing logic and tailor-made protocols to suit specific network needs. This

newfound flexibility has paved the way for a plethora of advanced network

functions, from custom routing decisions [14,33,148] and sophisticated firewall

2The amount of memory available for forwarding logic, including in-ASIC telemetry

functionality, is often as low as O(10MB).
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implementations [53, 224] to in-network acceleration [186,204] and extremely

fine-grained network monitoring techniques [18,116].

Programmability Limitations

Despite these advances, programmable switches face intrinsic limitations in the

complexity and number of permissible per-packet operations to maintain high

packet throughput [44]. These constraints underscore the ongoing challenge

within network design: balancing the demand for advanced, customizable

network functions against the operational imperatives of maintaining speed

and efficiency in packet processing.

To give an overview, consider the case of P4-programmable switching

ASICs [162] where programmability is restricted by several factors:

No computational loops Switches operate as feed-forward pipelines and

do not support traditional computational loops.

Basic mathematical operations Mathematical operations are limited to

basic arithmetic (+, -), without support for more complex operators

such as arbitrary multiplication or division3.

No floating-point operations There is no support for floating-point op-

erations, forcing developers to design algorithms around pure integers

and bitstrings.

Limited length of logical dependency chains The number of dependent

steps, where each step relies on the output of a previous step, is limited4.

This severely limits the complexity of on-switch functions [17].

Limited memory access There are significant restrictions on how memory

can be accessed and processed, stemming from the feed-forward nature

of the switching architecture5.

3Multiplication and division by powers of two can sometimes be achieved through

bit-shifting.
4The exact length of a dependency chain is confidential.
5The exact memory access limitations are confidential.
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Navigating these limitations to design effective algorithms remains a

persistent challenge for networking researchers and developers [17, 48, 88, 109,

117].

All algorithms and techniques presented in this dissertation are developed

with these hardware restrictions in mind and are validated through hardware

prototypes.

2.5 Related Work

Building upon the background provided, this section places my dissertation’s

contributions within the broader context of existing literature. By examining

related works within my research objectives, we can better understand the

advancements made, identify the remaining gaps, and see how my research

addresses these gaps.

2.5.1 Network-wide Deployable Sketches

In Chapter 3, I design a novel solution for sketch disaggregation in heteroge-

neous environments. In this approach, fragments operate autonomously with

reasonable knowledge assumptions for participating switches. This section

explores works related to sketch disaggregation.

Traditionally, sketches have been deployed monolithically [32, 45, 139].

Recent interest, however, has shifted towards network-wide deployments to

enhance measurement flexibility [29,47,75,129,197,222,227]. For example,

LightGuardian [227], a sketch-based network-wide telemetry system published

in 2021, demonstrates these benefits. In their approach, each switch hosts

two SuMax sketches: one actively populated and one being collected. This

supports new sketch measurements, including latency jitter and packet loss

detection, using a probabilistic in-band collection method to reduce centralized

collection costs. Nonetheless, this system does not address heterogeneous

environments, incurs substantial resource costs, and employs monolithic (i.e.,

non-disaggregated) sketches on each switch.
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Sketch disaggregation has recently gained traction. DISCO [29] pioneered

this approach in 2020, advocating for sketch disaggregation to ease deploy-

ments in resource-scarce environments. It introduced a method for per-row

disaggregation of sketches to enhance flow size estimation and heavy hitter

detection accuracy. However, it did not explore applications in heteroge-

neous environments, hardware viability, or complex sketches beyond flow size

estimation.

Further research by Cornacchia et al. [47] highlighted the detrimental

effects of traffic patterns on per-row disaggregated sketches, notably increased

hash collisions and accuracy degradation due to load imbalances. They

proposed that sketch fragments sample a subset of traffic to process, but

their algorithm assumes full in-band knowledge of packet paths and fragment

dimensions, thus introducing considerable overheads and limiting deployment

flexibility.

In 2023, Gu et al. [75] proposed per-column disaggregation as an alternative

and discussed how to handle load imbalances. They proposed using per-flow

lookup tables to achieve proportional counter allocation between per-path

hops, which unfortunately imposes severe memory overheads. Further, as

discussed in Chapter 3, the per-column disaggregation approach is inefficient

in high-performance switching architectures like Protocol Independent Switch

Architecture (PISA) leading to high computational footprints.

Li et al.’s 2024 preprint [129] addresses the traffic imbalance issue by

proposing a deployment and incrementation strategy that ensures load bal-

ancing across sketch rows. Their method selectively deploys rows across the

network, supporting a variable number of rows per fragment. The ingress

switch determines the number of rows each hop should process per packet,

inserting this information as a new header for ingressing packets and allo-

cating traffic based on hop capacities. However, this places high burdens on

ingress switches, requiring extensive knowledge of network paths and fragment

dimensions, and reduces the MTU of the network through extended packet

headers, risking frame fragmentation and reduced goodput.

Chapter 3 introduces my solution, spatiotemporal disaggregation, which

is the first technique allowing fragments to function autonomously while
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mitigating the impact of heterogeneity on estimation accuracies.

2.5.2 Memory-efficient Sketching

In Chapter 4, I focus on memory-efficient sketching by decoupling flow identi-

fiers from the switching ASIC. My solution eliminates the need for on-switch

storage of identifiers and enables more efficient sketching by excluding short

flows from the counting mechanism while preserving their queryability. This

section examines works related to this solution

Achieving comprehensive flow coverage is a common goal in network

telemetry. Per-flow measurements must be aggregated within the packet-

forwarding data plane hardware to support high packet rates, employing

techniques such as sketches. However, retrieving and utilizing these measure-

ments also necessitates knowledge of the flow identifiers (e.g., 5-tuples) under

which the measurements are aggregated.

Current solutions such as FlowRadar [133], TurboFlow [190], FlowMap [213],

and Hashflow [228] employ in-switch storage of flow identifiers, which incurs

significant memory costs. This section examines these approaches and their

limitations

FlowRadar [133] utilizes a Bloom Filter (BF) to detect new flows and

stores flow identifiers and counters in an Invertible Bloom Lookup Table

(IBLT) [172]. The IBLT contents are periodically sent to the controller for

inversion to extract flows. However, FlowRadar requires approximately 20%

extra memory to ensure IBLT invertibility and maintain a low false positive

rate in the BF. Additionally, its memory requirements depend on the flowID

size, and its accuracy significantly declines if the number of flows exceeds the

IBLT’s invertibility threshold.

FlowMap [213] improves upon FlowRadar by replacing the IBLT with an

independent hash table for flow identifiers and a separate two-level hash table

for counters. The extraction process, implemented as a linear programming

problem, reduces memory overhead but is computationally expensive. To

mitigate this, counters are divided into groups, enabling faster extraction by

solving smaller linear programming problems. However, as with the others,
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FlowMap requires in-switch memory for flow identifier storage and lacks

demonstrated hardware compatibility for high-speed architectures.

TurboFlow [190] and HashFlow [228] similarly use hash tables to store flow

identifiers and associated counters. TurboFlow handles hash table collisions

by evicting flows to the controller, while HashFlow uses two tables, placing

colliding elements from the first table into the second. Collisions in the second

table result in the eviction of the flow with fewer packets.

There are a few works that decouple flowID storage from the data plane.

NZE sketch [91] and PR-sketch [183] are two such works, relocating flowID

storage to the control plane. NZE splits traffic into elephants, stored directly

in a hash table, and mice, with flowIDs stored in the control plane and

counters handled by a standard sketch. This method requires careful memory

allocation between the hash table and sketch, and its sensitivity to flowID

size limits the number of storable keys. PR-sketch, although it sends all

flowIDs to the control plane, still contains on-switch algorithm inefficiencies

that impact accuracy, along with a lengthy offline analysis.

Chapter 4 introduces Flow Lightweight Detection and Ranging (FlowLi-

DAR), a novel approach that continuously sends flowIDs to the control plane,

significantly reducing data plane memory requirements. This approach also

includes a powerful flow identification extraction algorithm that minimizes

the number of on-switch counters needed for frequency estimation.

2.5.3 Telemetry Collection Performance

In Chapter 5, I identify the current collection bottleneck and redesign the

collection stack to overcome this bottleneck using in-network indexing and

data structure population via Remote Direct Memory Access (RDMA). This

section explores works related to high-speed telemetry collection and in-

network RDMA generation.

Collection is recognized as the primary bottleneck in fine-grained network-

wide telemetry. Prior works have focused on enhancing the performance

of collectors’ stacks [115, 207] and reducing the load through offloaded pre-

processing [131] and in-network filtering [103,120,209,230].
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For instance, INTCollector [207] augments the on-server collection stack

by introducing a kernel-space filtering mechanism to lighten the load on the

indexing and storage units, resulting in minor performance enhancements.

However, this design still faces inherent performance limitations due to kernel-

space’s reliance on the CPU. Vestin et al. advanced this by shifting the

filtration process to the network card [209], further improving the collection

performance. Unfortunately, these methods depend on identifying statistical

outliers and events to prevent redundant data entries into the collector.

Consequently, they do not improve collection performance when all reported

data should be stored, as in cases where filtering is already implemented at

the telemetry reporters for event-based or query-based telemetry.

Confluo [115] offers an entirely new telemetry collection stack for high-

speed networks, introducing the Atomic MultiLog data structure for highly

concurrent operations and versatile monitoring and query capabilities. Al-

though Confluo significantly increases collection performance, it struggles

with fundamental performance limitations and scaling to collection rates

beyond 10Gbps due to its software nature.

Another strategy involves engaging end-hosts in network-wide teleme-

try [92, 193], i.e., hosts on both ends of monitored network flows, distributing

pre-processing costs across the network. However, this requires significant

investments, infrastructure changes, and assumes that end-hosts are willing

and able to assist in collection, which is not always guaranteed, such as in

Autonomous Systems (ASs).

Given the seemingly fundamental bottleneck of centralized collection, most

research has concentrated on reducing telemetry volume through event-based

telemetry, query-based telemetry, sketches, and sampling, as covered earlier

in Section 2.1.

Switch-to-Server RDMA

Recent works have demonstrated that switches can generate RDMA instruc-

tions to access server Dynamic RAM (DRAM) for expanded memory in

their stateful network functions [117, 178]. These works are interesting for
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specific scenarios but are unsuitable for the queryable aggregation required for

telemetry collection, which necessitates new in-network indexing algorithms

not supported by commodity RDMA.

Programmable Network Interface Cards (NICs) have been shown to ex-

pand upon RDMA with new and customized memory verbs [9], potentially

leading to new RDMA verbs capable of populating queryable structures suit-

able for telemetry. Field-Programmable Gate Array (FPGA) network cards,

in particular, show promise for high-speed custom RDMA verbs [144, 184]

However, these solutions have not been adopted by the industry, and proto-

types fail to deliver competitive performance. Nonetheless, the expansion of

RDMA capabilities on NICs remains a promising area for future research in

telemetry collection stacks.
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Chapter 3

Sketch Disaggregation

This chapter explores the deployment of sketching data structures and devel-

ops a functional solution for disaggregated, network-wide monitoring. This

investigation is a crucial step towards achieving the first research objective,

“Make Sketches Network-wide Deployable”, by introducing spatiotemporal

disaggregation. This technique enables the fragmentation and deployment of

sketches across multiple network switches, leveraging network-wide resources

to enhance estimation accuracy, provide failure resilience, and reduce sketch

extraction delays.

The chapter addresses the practical deployment challenges of sketch-based

monitoring in data center networks. By developing a method capable of

disaggregation in heterogeneous environments, the aim is to achieve high

levels of accuracy and efficiency, even in volatile real-world conditions. This

method ensures reliable measurements for effective reactive network operation.

Attributions This chapter exclusively contains my contributions.
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3.1 Introduction
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Figure 3.1: Overview of Sketch Disaggregation.

A fundamental challenge for on-switch network monitoring solutions is

that switches (programmable or otherwise) generally have little available

memory and limited computation abilities [25, 26, 162]. On top of that, there

are many different use cases for in-network computing, including security [140,

217,219], machine learning aggregation [125,130,177], storage for database

systems [128,136,204], and various network functionalities [84,134,148,168].

Unfortunately, these many use cases exacerbate the limitations of switches,

as the already minimal resources available need to be shared across multiple

functions, degrading the accuracy of deploying streaming analytics placed

alongside them.

This chapter focuses on the telemetry problem of tracking flow statistics

compactly. Many previous works use sketch data structures for this purpose,

focusing on minimizing the sketch size while optimizing the size-accuracy

tradeoff [32, 45, 139, 227]. However, as I show in Section 3.2, it remains

hard to fit sketches with the tight constraints of switches, especially when

multiple functionalities (e.g., security and machine learning) are enabled

at the same time. A key observation is that in networks, the same packet

usually traverses multiple nodes (e.g., switches) and we can leverage residual

resources across these nodes to improve the accuracy, despite having different

packets going through different switches and different switches having different

resources available. While I focus on network telemetry in this dissertation,

this approach presented in this chapter is applicable to similar settings that
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naturally appear in distributed databases, such as where the search for a key

traverses multiple nodes in a distributed index with different searches taking

different routes (e.g., a B-tree), and we can therefore harness resources along

the network path [3, 212].

This chapter describes a distributed sketching approach that disaggregates

the sketches into fragments over multiple nodes (Figure 3.1). Given a query

time interval, each node fragment can provide an estimate, and my methods

can produce a single accurate estimate from the ensemble of estimates from

the nodes along a flow’s path. While this sounds simple, note that there are

numerous challenges that we need to handle in terms of inequalities in sketch

accuracy due to heterogeneity: (1) different nodes have different resource

availabilities (2) different nodes see different amounts of traffic (3) different

flows have different path lengths (so flows have different numbers of fragments

to aggregate). Additionally, we must manage the fact that the switches

have very limited computation capabilities, where even operations such as

multiplication and division may not be supported, and due to the fast line

rates, minimal computation can be performed for each packet.

I designed new techniques for disaggregating sketches over multiple nodes

(Section 3.4). The main innovation of this approach is to make query windows

divisible, where sketch fragments on individual nodes consist of smaller

subepochs, which can be re-combined to answer queries over time intervals.

The division into smaller subepochs allows us to tailor epochs to different

node resources and traffic while allowing for them to be combined effectively

across time and space.

I apply this technique on Count Sketch to build Disaggregatable Sketch

(DiSketch): a disaggregated flow size estimator for heterogeneous environ-

ments, and then describe how to implement it on hardware switches (Sec-

tion 3.5). I compare DiSketch against traditional aggregated sketch de-

ployments, as well as versus SuMax - a recent sketch natively built for a

network-wide deployment (Section 3.6).
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The main contributions in this chapter are:

• I develop spatiotemporal disaggregation, which allows sketches to be

fragmented and deployed across multiple network switches in heteroge-

neous environments. This technique leverages network-wide resources

to improve estimation accuracy and provides additional benefits, such

as failure resilience.

• I apply spatiotemporal disaggregation to a traditional Count Sketch

(CS), creating DiSketch, a disaggregated flow size estimator. DiSketch

significantly reduces estimation errors by nearly an order of magnitude

compared to traditional aggregated sketches.

• I demonstrate the effectiveness of spatiotemporal disaggregation in data

center network environments through an evaluation and comparison

against traditional sketches.

• I validate the real-world deployability of DiSketch on hardware switches,

confirming that the proposed techniques are feasible for implementation

in current network infrastructures.



Chapter 3. Sketch Disaggregation 35

Application Examples Memory

Basic Packet Processing switch.p4 [152] 30%

Security Ripple [219], Jaqen [140], Bedrock [217] +10-50%

Machine Learning SwitchML [177], ATP [125], THC [130] +10-40%

Storage/Database DistCache [136], NETACCEL [128], Cheetah [204] +20-30%

Networking SilkRoad [148], HPCC [134], SwRL [84], Sailfish [168] +5-40%

Table 3.1: The on-switch memory cost of network functions.

3.2 Motivation

Recent advancements in streaming analytics have led to the development

of compact sketch-based solutions, as described in several works [89, 90,

91, 139, 154, 214, 227]. These studies have demonstrated the feasibility of

implementing these structures within the constraints of modern switches,

achieving minimal estimation errors [90,91,154,227]. However, sketches are

memory-intense data structures, and their accuracy directly depends on the

amount of memory dedicated to sketching. As I show later, deploying sketches

on switches alongside other functionality competing for limited memory results

in significant accuracy degradation.

My survey of recent literature on in-network functions, which encompasses

applications ranging from security to machine learning acceleration and

networking, reveals a significant demand for switch resources. For instance,

essential packet processing capabilities alone, such as L2/L3 forwarding,

consume approximately 30% of a switch’s memory, as shown in Table 3.1.

The inclusion of additional functionalities further reduces the available memory

for sketches.

To quantify the impact of this resource competition, I analyzed the Static

RAM (SRAM) requirements of both established (i.e., Count Sketch [32],

Count-Min Sketch [45]) and recently proposed sketches (i.e., UnivMon [139],

SuMax [227]) for heavy hitter detection over a 30-second window (similar to

previous works [139,214,222]), using real-world traffic traces from an Internet

backbone [31]. I conducted experiments across a wide range of memory
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Figure 3.2: On-switch memory cost to achieve an accuracy target while

monitoring 30s of real-world backbone traffic.

allocations for sketching to determine the required amount of memory to

achieve pre-set target accuracies of 90%, 99%, and 99.9% in heavy hitter

detection 1. My findings, depicted in Figure 3.2, show that to achieve a 99%

F1 score, the memory demand of sketches ranges from 20% to nearly 90% of

a switch’s SRAM, underscoring the challenge of maintaining high monitoring

accuracy while co-locating sketches with other functions. A high monitoring

accuracy is essential as the base of responsive diagnosis [132, 179], and a 99%

accuracy already indicates a significant amount of incorrect flow classification.

An improved classification accuracy requires even more memory and can

sometimes exceed the switch’s memory capacity, even in isolation.

Moreover, even if a sketch is not co-located with any other in-network

function, it’s important to note that the traffic volume observed by each switch

can vary significantly, even among switches with the same logical role (e.g.,

edge switches in a data center) [19,51,176]. For instance, Meta reports that

edge switches near caching racks handle approximately three times more traffic

than those near web servers, as well as five times more simultaneous heavy

hitter flows [176]. Consequently, deploying the measurement on a network

topology cut (e.g., all edge switches [81]) results in varying degrees of accuracy,

even when all switches have the same memory allocated for measurement.

1The exact dimensions of the sketches cannot be disclosed due to confidentiality regarding

the hardware capacities of the switch.
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A B C D

Figure 3.3: A Fat-Tree Topology. Packets traverse either 1 (A-B), 3 (A.C),

or 5 (A-D) switches.

Acknowledging these challenges, it becomes evident that deploying com-

plete sketches on a single switch is inefficient. Given these constraints,

disaggregating sketches across multiple switches emerges as a promising solu-

tion. However, these solutions must be resilient against traffic and memory

heterogeneities.

3.3 Sketch Disaggregation

Here I consider disaggregating sketches, which for this purpose can be viewed

as a matrix structure in which each cell is an identical copy of a simpler data

structure, usually a counter. I further assume that when an element (e.g., a

packet) is inserted into the data structure, its key (e.g., flow ID) is mapped

via uniform hashes into one or more cells in each row, and the cells are

updated as appropriate. Examples of such sketches include ones for frequency

estimation [32,46,58,91,227], set membership [23,59], sparse recovery [68,100],

frequency moments estimation [7, 139], entropy estimation [41, 82, 139], ℓp
samplers [42, 43], and many others.

Understanding the challenges of sketch disaggregation across multiple

nodes begins with a depiction of a data center network’s architecture. A

classic fat-tree topology, commonly referenced in literature and employed in

real-world deployments, is illustrated in Figure 3.3. This topology highlights
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Figure 3.4: Visualization of sketch disaggregation directions. Note that

fragments can have different amounts of cells.

the existence of numerous paths between any two end nodes, with the number

of hops varying based on the nodes’ locations. For example, flows between

(A) and (B) traverse just a single switch, while any path between (A) and (D)

contains five switches. Sketch disaggregation is then the process of dividing a

sketch across network paths, where each network node hosts a fragment of

the sketch. After central collection and re-aggregation, per-path fragments

can be queried together to answer queries similarly to traditional aggregated

sketches. With this in mind, there are two straightforward approaches to

disaggregating sketches: per-column and per-row disaggregation.

In per-column disaggregation (Figure 3.4a), each network hop hosts all
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sketch rows of the sketch matrix, but only a piece of each column. Keys

are still mapped to one cell in each row, which should be selected uniformly

at random by a hash function. Since each column is disaggregated across

multiple hops, it is necessary to know the number of upcoming switches

on the path and their respective configurations to build a “logical” column

in which an index can be computed uniformly. Knowing the path, as well

as the configuration of all switches, is a strong assumption for the data

plane. Previous work on sketch disaggregation attempts to solve this through

lookup tables in each fragment, containing entries for every network flow [75].

Requiring such a lookup table is incredibly costly, and defeats the purpose

of sketching. If we already allocate per-flow information, why not simply

allocate per-flow counters directly instead of using a probabilistic structure?

In per-row disaggregation (Figure 3.4b), each node holds specific sketch

rows in each fragment. Typically each fragment will hold one row, with

the row size determined by available memory. Note that, unlike standard

sketches, the differences in row sizes due to memory lead to an “irregular”

shaped matrix, and my work focuses on coping with the resulting variance

from estimates. As each fragment is equivalent to independent sketch rows,

they can function in isolation. and there is no need for a lookup table as with

per-column aggregation. Hardware overheads are further lowered in Protocol

Independent Switch Architecture (PISA) (which is the base of programmable

Tofino switches). This architecture dedicates resources to specific functions at

compile-time, and there is no need to host incrementing logic for more than a

single row.

To illustrate the disaggregation overheads, I implemented a standard, a

per-row (DISCO [29]), and a per-column (Distributed Sketch [75], lookup table

excluded2) disaggregated count sketch on a Tofino switch, each using the same

amount of memory for sketching. Given that the hardware pipeline, including

per-function and per-packet computational units, is statically configured at

compile-time, we can infer the exact computational footprint imposed by the

various structures. Figure 3.5 presents these resource overheads, comparing

2Exclusion of the lookup table cost from Distributed Sketch emphasizes the inherently

higher base footprint of per-column disaggregation, irrespective of indexing technique.
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switch, broken down per switch/fragment.

the total resources required along a path with those of a traditional aggregated

sketch. For example, we see that per-column disaggregation requires 5x as

many stateful ALU instructions as a per-row disaggregated sketch, which tends

to be one of the most limiting resources when developing packet processing

pipelines in switches.

Regardless of the choice of disaggregation direction, there are several key

challenges:

Challenge 1: Nodes across the network can have varying resources, a

result of deploying distinct in-network functions at different switches. Some

functions, such as security mechanisms, might be more suitably deployed

at switches near endpoints [177,204,217], while others fit better within the

network core [168].This diversity leads to a heterogeneous use of memory,

ruling out per-column disaggregation due to the high computational overhead

and substantial memory requirements for stateful per-flow counter allocation.

Per-row disaggregation in highly heterogeneous deployments can experience

accuracy degradation, where tiny fragments introduce significant errors to the

composite sketch. Alternatively, these fragments become essentially negligible

when assigned an importance proportional to their relatively high error.

Challenge 2: The volume of traffic can differ widely across nodes due to

the design of data center networks and their traffic patterns. For example,

the fat-tree topology facilitates massive multi-path routing [4], yet imbalances
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persist despite load-balancing efforts [6, 71,112,113,208]. These imbalances

occur at the granularity of epochs (i.e., on the order of seconds), and therefore

present a significant issue to disaggregated sketching. Studies have shown

that much traffic remains local, with only a fraction traversing the entire dat-

acenter [176]. Consequently, switches near end hosts experience higher traffic

volumes than those at the core, affecting the accuracy of sketch fragments

under heavy loads.

1 hop 3 hops5 hops
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Figure 3.6: Path-lengths’ im-

pact on per-row disaggregation.

Challenge 3: The path lengths of dif-

ferent flows vary, influenced by the data cen-

ter’s network topology and traffic distribu-

tion. While some traffic remains local, affect-

ing only a few nodes, other flows span across

the network. This variance means that some

traffic benefits from more extensive observa-

tion by multiple fragments, whereas others

do not. For flows traversing only a single

fragment, the accuracy degradation is akin

to using a one-row sketch, which can yield

significant inaccuracy. To demonstrate this

effect, I deploy DISCO, a per-row disaggre-

gated Count Sketch, in a fat tree topology using the same experimental

parameters as further down in Section 3.6.1. We show a breakdown of the

per-path-length’s impact on heavy hitter detection in Figure 3.6.

While per-row disaggregation generally offers better resource efficiency

than per-column, designing robust techniques for its deployment in heteroge-

neous environments presents a key challenge. In Section 3.4, I introduce a

general technique that can be used to deploy per-row disaggregated versions

of sketches. Following this, I provide a concrete example of for sketch dis-

aggregation by presenting DiSketch in Section 3.5, a disaggregated flow size

estimator built for heterogeneous deployments.
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3.4 Disaggregation Techniques

As previously discussed, the accuracy of sketch fragments varies across the

system due to the heterogeneous loads and sizes of the fragments. This leads

to a suboptimal resource utilization and can, in the worst cases, even lead to

a reduction in accuracy compared to traditional aggregated sketches.

I will focus on Count Sketch disaggregation in this section by presenting

DiSketch, a disaggregatable CS for heterogeneous environments. Furthermore,

I will explain two techniques: key-based sampling and subepoching. These

techniques collectively form the spatiotemporal indexing of DiSketch.

3.4.1 Per-Key Sampling

Sampling can be used to reduce the relative estimation variance between

fragments. For example, a fragment that has less memory or under a higher

load than other fragments can use sampling to process only a subset of

incoming flows. This way, accuracies across fragments for flows that are

sampled yield similarly high accuracies, allowing for easier aggregation across

fragments. All fragments yield a decent minimum accuracy, regardless of

theirs size of loads that they are under.

For example, the error of a Count Sketch row with w counters is bounded

by the second frequency moment [32]. Given the unavailability of the exact

frequency vector, we can approximate the second moment by the sum of the

squared counters F̂2 =
∑w

i=1 C
2
i [8], where Ci represents the value of the i-th

counter. Following recently proven variance bounds on Count Sketches [126],

we approximate the per-row Mean Squared Error (MSE) as a function of the

key sampling rate p:

MSE ≈ F̂2 · p/w =⇒ p ∝ w/F̂2

The per-fragment sampling rate is statically defined at the start of each

sketching epoch, using historical data. The fragments accuracies are balanced

by adjusting the per-fragment sampling rate p as a function of w and F̂2



Chapter 3. Sketch Disaggregation 43

relative to the network-wide averages w and F2:

p(w, F̂2) = min

{
1 ,

w

w
× F2

F̂2

× s

}
(3.1)

, where s is the sampling factor denoting the sampling rate p of an “average”

fragment. I discuss the assumption of in-band access to these values in

Section 3.5.1, and empirically demonstrate its effectiveness further down in

Section 3.6.2.

Direct application of sampling on fragments faces challenges due to the

inability to normalize sampling rates across network paths, given the lack

of real-time on-switch access to fragment widths and loads for any arbitrary

network path. This discrepancy leads to significant risk in heterogeneous

networks: heavily loaded paths or paths with smaller fragments may fail to

sample some flows, rendering them not queryable or highly vulnerable to hash

collisions in the case of a single on-path sampler.

3.4.2 Per-Fragment Subepoching

Sketch fragments are periodically exported for central collection, where they

are aggregated and stored in chronological order. The period between a

fragment’s reset and its exportation is referred to as the sketching epoch.

As the duration of an epoch increases, the number of processed items rises,

leading to a higher estimation error. Previous work assumes that all rows in

a sketch monitor the same time window, meaning all rows are exported and

reset simultaneously. To my knowledge, no prior work investigates per-row

epochs. However, introducing variability in epoch durations among fragments

provides an opportunity to improve the accuracy of disaggregated sketches in

heterogeneous environments.

All network-wide DiSketch fragments agree on the length of a full sketching

epoch: Te. However, fragments will simultaneously keep their own de facto

epoch duration that is a power-of-two divisible of Te. The set of available

durations is therefore in the set {Te,
Te

2
, Te

4
, . . .}. I refer to this fragment-specific

epoch duration as the subepoch duration Tn, where Tn = Te

n
. Therefore, each
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fragment exports and resets their counters n times per epoch, as n distinct

subepoch records. These records are sent for central collection and aggregation,

where they are awaiting queries.

The number of subepochs in fragment fi is based on the time Ti at which

the fragment error is expected to reach a pre-determined target error3. There-

fore, the number of subepochs in a fragment will depend on a combination of

the amount of allocated sketching memory as well as the expected load and

flow size distribution traversing the fragment. The subepoch duration Ti is

chosen to be the closest available Tn so that Ti ≈ Te, aligning the fragment

with other fragments reaching similar error levels at similar times. I discuss

the choice of a per-fragment n further down in Section 3.5.1.

Packets traversing several network nodes may be processed by fragments

operating under different subepoch durations, for instance, fragments of

varying sizes along a network packet’s path for how subepoch durations

are chosen). Thanks to the power-of-two divisibility of these durations and

system-wide time synchronization, subepochs from different fragments can be

seamlessly merged into perfectly overlapping sketching windows of length Te
4.

Consequently, Te is established as the temporal granularity for queries, with

the query window being any arbitrary multiple of Te.

Epoch

Time

P
at

h

flowID

Hop 1

Hop 2

Hop 3

Figure 3.7: Spatiotemporal indexing, the base of DiSketch.

However, this approach has a problem. While all fragments may achieve

similar estimation accuracies by the end of their respective subepochs, smaller

3Choosing a target error is up to the network operator. See Section 3.5.1 for a discussion.
4Without time synchronization, subepochs from different fragments risk being offset,

and might not combine into perfectly overlapping full-length epochs.
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fragments require concatenation of numerous subepochs to cover the entire

query window. For a set of n independent estimations, each with variance ei,

the cumulative estimation variance is
∑n

i=1 ei. As subepochs are aggregated to

provide an estimate for a complete epoch, their estimation errors accumulate.

Therefore, fragments of different sizes will not maintain the same estimation

variance even with subepoching, compromising the reliability of estimations

from smaller fragments.

To address this disparity, I integrate subepoching with key-based sampling

by introducing spatiotemporal indexing (Figure 3.7), which is elaborated on

in the following section.

3.5 DiSketch - A Spatiotemporal Count

Sketch

Query Window [Epoch granularity]

Fragment

Epoch Subepochs

Fragment

Fragment

3-hop
path

Time

Figure 3.8: Terminology Overview. DiSketch epochs are divided into pre-

defined subepochs. Fragments are autonomous and consist of single rows

operating within fixed subepochs. Queries are executed against composite

sketches, comprising subepoch records from all on-path fragments.

To demonstrate my proposed disaggregation techniques, I design and

evaluate a disaggregatable frequency estimation sketch, monitoring flow sizes

in a network. I aim to design a sketch that can effectively utilize heterogeneous
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available memory at switches while surpassing the accuracy of both monolithic

and naively disaggregated sketches.

At an overview, DiSketch is based on per-key sampling combined with

per-fragment subepoching. This is accomplished by hashing a key (e.g., a

flowID) into exactly one subepoch during each epoch, leading to flows being

sporadically tracked by fragments. For example, a large fragment fi where

Ti = Te has n = 1, and tracks all flows all of the time, while a smaller fragment

with n = 4 only tracks a quarter of flows at any given time.

Together, per-key sampling and subepoching form spatiotemporal indexing,

which disaggregates sketches across space and time according to the capacities

of each fragment. This way, DiSketch achieves high accuracy even in highly

heterogeneous environments without imposing unreasonable assumptions or

overheads such as knowledge of all fragments further down on a packet’s

path while ensuring that all flows remain queryable. Each fragment operates

autonomously, without requiring direct communication or knowledge about

any other individual fragment.

3.5.1 DiSketch Fragments

The fragments of DiSketch each consist of a single CS row, and are deployed

to switches network-wide to cover every network path.

Equalizing fragment errors

Heterogeneity implies width or load heterogeneity between fragments, and

DiSketch handles this through a combination of per-key sampling and per-

fragment subepoching. Each fragment divides its local sketching epoch into

subepochs, in which the CS only processes a subset of encountered keys.

As previously mentioned in Section 3.4.2, the aim is to achieve a similar

estimation error for each fragment in the network.

The drawback of this approach is that fragments only monitor a specific

key intermittently, in specific subepochs, resulting in potential blind spots at

specific time intervals. A fragment’s estimations are essentially extrapolated

from the rates seen while a key is tracked. This is not an issue for keys with
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relatively uniform arrival times but can lead to estimation errors in keys with

highly bursty arrival patterns. My evaluation, using real-world backbone

traces, demonstrates a high accuracy on traffic patterns seen by ISPs.

Exporting Counters

DiSketch fragments’ records are exported at the end of each subepoch, en-

capsulated in a data structure comprising the switch ID, counters, start and

end times of the subepoch, and the hash seeds. DiSketch does not enforce

a specific technology for record exportation, and one could, for example,

download the memory buffers to the on-switch OS and send them for col-

lection through TCP, or employ an in-band collection technique similarly

to LightGuardian [227]. My solutions presented in this chapter result in a

relatively low load on collection, and a high-speed collection solution such as

my Direct Telemetry Access (DTA) technique (further down in Chapter 5),

is not strictly necessary.

Following the export, counters are reset to prepare for the subsequent

sketching subepoch. For the final subepoch of each epoch, the hash functions

are also updated to prevent persistent hash collisions and mitigate continuous

blind spots for certain keys on network paths with limited memory availability.

The hash function replacement is performed locally by each fragment, without

necessitating direct communication or collaboration with other fragments.

For example, new hash functions could be chosen by generating a random

Cyclic Redundancy Check (CRC) polynomial, or picked from a pre-generated

list.

Fragments with a high number of subepochs increase the frequency with

which counter information must be sent to centralized collection. However,

the overall volume of data sent per time unit is approximately the same

regardless of subepoch size, as smaller subepochs have fewer counters, and

the overall volume of data collected centrally is similar to that of traditional

monolithic sketches. Switches are expected to export at most a few megabytes

per data epoch.

I discuss how subepoch records are aggregated and queried further down
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in Section 3.5.2.

Number of Per-Fragment Subepochs

Fragments only monitor any given flow in one subepoch per epoch, and the

number of subepochs in a fragment is essentially the inverse of the sampling

probability p. Thus, the number of subepochs n is calculated based on the

sampling probability p:

n = 2⌊log2 1/p⌉ (3.2)

Combining Equation 3.2 with Equation 3.1 from Section 3.4.1 gives us a

function to calculate the number of per-fragment subepochs:

n = 2

⌊
− log2

(
min

{
1 , w

w
×F2

F̂2
×s

})⌉
(3.3)

Base Number of Subepochs

Determining the base number of subepochs for a fragment is essential. As

shown in Equation 3.1, the sampling rate s is pivotal here, with a base

formula n = 1
s

for perfectly average fragments (i.e., F̂2 = F2 and w = w). In

other words, the number of subepochs is inversely linearly proportional to s.

Unfortunately, finding an optimal s is not straightforward and is a balance:

• Increasing s reduces the number of subepochs, thus reducing the risk

of per-flow blindspots where all on-path fragments sample away a flow

simultaneously. When s is high, more fragments will have n = 1, i.e., a

single subepoch per epoch. This can lead to a high accuracy variation

for n = 1 fragments, leading to suboptimal composite accuracy in

heterogeneous environments.

• Decreasing s results in more subepochs. This reduces the occurrence

rate of n = 1 fragments, but generally increases the rate of per-fragment

blind spots, thus increasing the risk of per-flow blind spots. The effect is

negligible for flows with perfectly uniform transmission, but significant

for highly bursty traffic patterns.
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I acknowledge the complexity of this setting, and I have not investigated

this tradeoff in-depth. My evaluation uses an arbitrary value of s = 0.5,

leading to an average of n = 2 subepochs per fragment. This setting is most

certainly not optimal. Spatiotemporal disaggregation is likely able to perform

even better than my evaluation shows, under more optimized settings. I leave

this investigation as future work.

Short Paths

Different flows traverse different network paths, which can be as short as a

single hop (e.g., for intra-rack traffic). DiSketch detects single-hop network

paths5, where a key traverses just a single fragment, and handles them as a

special case to provide better estimates. In these cases, collision resilience

is re-established by mapping keys to three different counters. Specifically,

one of three independent index-selecting hash functions is randomly chosen

per packet. The counter output is normalized (that is, multiplied by three)

at query-time to account for the distribution of updates between counters,

and the median from these counters is used as the output from the fragment.

This way, no additional memory logic is imposed on the fragments. Instead,

just a small computational overhead is added for random number generation

to select the hash function.

Required In-Band Knowledge

DiSketch fragments compute an appropriate number of subepochs according

to Equation 3.3. Therefore, we need to motivate the in-band availability of

the upcoming second frequency moment F̂2, the network-wide average second

frequency moment F2, and the network-wide average fragment width w.

An exact second frequency moment F2 for the upcoming epoch is prac-

tically unknowable. First, it is based on the ground truth frequencies of

the flows, which is unavailable - hence sketching. Second, it requires perfect

5Single-hop paths can be detected by a switch when both the ingress and egress ports

connect to either a server or a network egress, assuming that DiSketch fragments are

deployed on every network switch.
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prediction of the upcoming traffic distribution across the network. As shown

in Section 3.4.1, a past F2 can be reasonably approximated as F̂2 by sum-

ming the squared counters of the previous sketching epoch. F̂2 will act as

a prediction of the F2 of the upcoming epoch, motivated by traffic patterns

being relatively predictable over a few seconds [21].

Similarly, the average network-wide traffic load is reasonably predictable,

with movements on the timescale of hours [176]. Even on these timescales,

the changes in network-wide utilization are relatively mild. Therefore one

can either approximate this with a single static average or send updates to

fragments on an hourly basis.

The final knowledge assumption is the network-wide average fragment

width. This information is trivially accessible in static sketch deployments,

where fragments are computed and distributed centrally. In deployments with

dynamic reconfiguration, where fragments can grow and shrink during runtime,

then this information is more troublesome. One could either approximate

the network-wide average through a fixed value or send periodic updates to

fragments when changes to the network-wide average occur.

3.5.2 Out-of-Band Querying

In this section, I explain how the exported DiSketch subepoch records are

aggregated and queried at the collector to form comprehensive network flow

size estimations.

A centralized collector retrieves subepoch records from fragments at the

end of each fragment subepoch. These records are chronologically stored and

aggregated per fragment, to be retrieved and combined with other fragments’

records to answer queries for arbitrary network paths and time windows. An

overview of the query algorithm of DiSketch is presented in Algorithm 1, and

a step-by-step explanation is as follows:

Step 1 - Retrieving the network path

To answer a query for flow flowID , we first need to retrieve the network path

S that those packets have traversed. DiSketch does not supply network paths
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Algorithm 1 DiSketch Query Processing

1: Input: flowID , tstart , tend
2: Output: Composite estimation for flowID over the query window

3: Step 1: Identify switches S involved in path(flowID).

4: Step 2: Extract relevant subepoch records SE:

5: (a) For each switch Si, retrieve the set of stored subepochs SEi where

tstart ≤ SEi,x.start ≤ tend .

6: (b) Exclude subepochs in SE not sampling flowID.

7: Step 3: Normalize subepoch records SE to ŜE:

8: (a) Determine minimum subepoch length Tmin across SE.

9: (b) For each SEi, compute normalization factor ri = SEi.T
Tmin

.

10: (c) Divide each SEi into ri chronologically contiguous subepochs ŜEi,j ,

where each ŜEi,j.T = Tstart , ŜEi,j.output = SEi.output
ri

, and ŜEi,j.start =

SEi.start + j × Tmin .

11: Step 4: Compute query output from ŜE:

12: (a) Group ŜE records by time-window into W where |W | = tend−tstart
Tmin

.

For each Wi, set Wi = {ŜEx.output |ŜEx.start = tstart + iTmin}.
13: (b) Calculate the composite estimation as Output =∑|W |−1

i=0 median(Wi).
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Figure 3.9: DiSketch epochs are dynamic composites built from subepochs

of autonomous sketching fragments. Subepoch records are collected from

all fragments and centrally aggregated. Relevant records are selected and

processed on a per-query basis, building dynamic queryable composites.

directly and requires path tracing telemetry to be present in the network,

or that network paths can be centrally calculated. Rapid path changes

occurring within an epoch can be troublesome, and I discuss this in the

chapter discussion (see Section 3.7.4).

Step 2 - Retrieving the subepoch records

We need to retrieve the subepoch records that have monitored the flow during

the query window. The subepoch storage is visualized in Figure 3.9. Records

are stored chronologically, aggregated under each fragment, and retrieving

the relevant subepochs is therefore straightforward. The sampling hash is

re-computed per epoch for each fragment and all flowID-sampling subepochs

are retrieved, yielding a list of subepochs (SE) that monitored the flowID

during the query window. This is visualized as (1) in Figure 3.10. We now

have a list of all relevant records, and the next two steps describe how these

are combined to yield a single estimation of the key frequency during the

queried time interval.
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Figure 3.10: Querying a key in DiSketch. On-path records are retrieved, and

the subepochs that sampled the key during the query window are selected.

Records are normalized and queried as a composite.

Step 3 - Normalizing the subepochs

These subepoch records in SE are queried as single-row Count Sketches,

using the record-specific indexing- and signage hash seeds, yielding a list of

frequency-estimation outputs from the subepochs. The subepoch records

in SE are normalized into ŜE so that they are all equal-length, matching

the length of the shortest subepoch duration Tmin present in SE. This is

done by computing a normalization factor ri for each subepoch record SEi,

so that ri = SEi.T
Tmin

. The record SEi is split into ri contiguous subrecords

{ ˆSEi,0, ..., ˆSEi,ri−1} each of length Tmin . Each new subrecord is assigned

the estimation-output ŜEi,j.output = SEi.output
ri

. The normalized subepoch

vector ŜE comprises normalized subepochs records of lengths Tmin where∑|SE|
i=1 SEi.output =

∑|ŜE|
i=1 ŜEi.output, thereby retaining total output in-

tegrity. Subepoch normalization is visualized as (2) in Figure 3.10.

Step 4 - Composing a composite sketch output

The normalized subepoch records are clustered together into groups based on

the records’ start times. Intra-group medians are calculated, yielding a list

of per-time-window flow size estimates. Finally, these per-group estimates

are summed together to yield a flow size estimation based on the composite

sketch. This final step is visualized as (3) in Figure 3.10.
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3.5.3 Hardware Implementation of DiSketch

Demonstrating the hardware feasibility of my disaggregation technique, I have

implemented DiSketch in Tofino, a P4-programmable switch. My technique

is lightweight, imposing minor on-switch overheads on top of naive per-row

disaggregation. Subepoch durations are decided at compile-time, matching

the width of the deployed fragment. Integrated time synchronization triggers

epoching by generating a control packet to the switch-local CPU. Subepoching

uses almost the exact same mechanisms as traditional epoching, imposing

minor overheads. Subepoch sampling is done by adding a single hash compu-

tation using the built-in CRC engine with a custom polynomial, resulting in

a stateless and re-computable mapping between keys and subepochs. The

re-introduction of redundancies for single-hop paths is triggered if both the

ingress and egress ports are connected to hosts and randomly select one of

three CRC polynomials to use for the index computation in the counter array.

As described in Section 3.4.1, I approximate the second frequency moment

F2 as F̂2 =
∑w

i=1C
2
i [8]. Expanding DiSketch with predictive load awareness

requires updating F̂2 after every counter update, necessitating one additional

stateful ALU call per fragment. Say c is the value of the counter that will be

modified, we can then update F̂2 accordingly:

F̂2 =

F̂2 − c2 + (c + 1)2, if incrementing

F̂2 − c2 + (c− 1)2, if decrementing
(3.4)

We can then use F̂2 on-switch for computing n at the end of each epoch6.

3.6 Evaluation

Topologies. The network topologies and memory distributions from Fig-

ure 3.11 are used throughout the evaluation, demonstrating disaggregation

in a variety of scenarios. This encompasses four scenarios, which integrate

6The accuracy of F̂2 compared to F2 is impacted by subepoching, since the counters on

which it is based periodically reset. I leave this investigation as future work.
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Figure 3.11: Network topologies and memory distributions used during evalu-

ation.

two common network topologies – FatTree (FT) and SpineLeaf (SL) – with

three distinct memory distributions as illustrated. The Random memory

distribution method generates pseudo-random memory pools for switches.

This approach ensures the generation of memory pools with a pre-defined av-

erage size and inter-switch memory size heterogeneity, designed to correspond

with the targeted Gini inequality index specified for the tests. The generated

memory pools are randomly distributed to switches, not considering their

topological position. A fully random distribution is likely a poor approxima-

tion of real-world deployments, but grants an insight into the robustness of

my solution. As a default, FT Random has gini = 0.4, resulting in significant

width heterogeneity. An example per-switch width distribution at gini = 0.4

is: [13%, 14%, 16%, 31%, 32%, 32%, 44%, 49%, 66%, 72%, 88%, 114%, 117%,

163%, 172%, 175%, 178%, 203%, 205%, 216%], i.e., fragment-sizes ranging

from 13% to 216% of the mean. For comparison, FT Steps has a Gini of

0.28, Sl Steps 0.17, and FT Equal 0.

Due to the financial costs of building a large-scale testbed with sufficient
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programmable switches, all probabilistic properties of my technique are

evaluated through comprehensive simulation. This simulator’s functionality

has been verified to be identical to the hardware prototype.

Traces. In this evaluation, I use the real-world CAIDA-NYC Equinix

packet trace [31], recorded at a backbone link in 2019. If nothing else is stated,

then I have replayed 30 seconds of traffic (∼16M packets, covering ∼1.2M

flows). I only have access to traffic recorded at a single network link, and we

uniformly map IP addresses to hosts in the network to allow for network-wide

communication.

I chose to use the CAIDA trace because it provides an extensive and

detailed packet trace necessary for my analysis. Specifically, I needed a very

long packet trace to ensure that the DiSketch structure would be adequately

saturated and tested under substantial traffic volumes. Unfortunately, I did

not have access to data center traces that were large enough to meet these

requirements.

It is important to note that the flow size distribution in the CAIDA

trace may not directly translate to other network environments, such as data

centers. Traffic patterns significantly impact the efficiency of spatiotemporal

disaggregation and thus affect DiSketch. Intra-flow burstiness, for instance,

might go undetected by per-fragment blind spots. Data center traffic char-

acteristics can vary widely depending on the specific scenario, and a single

trace is unable to universally represent all possible traffic patterns. While the

CAIDA trace serves as a useful proxy, it does not definitively represent data

center traffic, which would likely exhibit different flow size distributions and

patterns.

To mitigate DiSketch’s susceptibility to blind spots, the base number

of subepochs can be reduced. However, this comes at the cost of reduced

effectiveness in mitigating heterogeneity-driven inaccuracies (see the discussion

in Section 3.5.1).

DiSketch Models. Here, I evaluate two different versions of DiSketch:

DiSketch-Uni and DiSketch-Bi. Their designs are the same except for the

information that n (i.e., the number of fragment subepochs) is based on. In

DiSketch-Uni, the choice of n for a fragment (yielding 2n subepochs) is based
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the ratio of the fragment size to the network-wide average fragment size, and

does not take into account inter-fragment load heterogeneity. In contrast,

DiSketch-Bi bases n both on the width ratios, as well as on the ratio of the

fragments’ loads to the network-wide average load for the upcoming epoch.

In practice, the load for an upcoming epoch is likely unknown and has to

be predicted based on knowledge about the network as well as historical

data. The load pattern tends to be relatively predictable on the order of

seconds [21]. The DiSketch-Bi evaluated in this section has full knowledge

about the incoming traffic load 7.

3.6.1 DiSketch Estimation Accuracy

In this section, I aim to show the overall benefit of disaggregation and

DiSketch on sketching accuracy. Here, I evaluate DiSketch-Uni, the “simple”

DiSketch model that is unaware of the per-switch load and only mitigates size

heterogeneities. DiSketch-Uni is deployed with an exportation rate of 16 (see

Section 3.6.4 for the impact of this choice). For simplicity, I focus purely on

utilizing memory gaps in this experiment8. Load heterogeneity is not explicitly

modeled, and IP addresses in the packet trace are uniformly distributed across

the hosts. Count Sketch is deployed monolithically, allocating all available

memory at the core switches towards sketch counters, while DISCO [29]

and DiSketch use all available network-wide memory for sketching. The

experimental results are presented in Figure 3.12.

We see clearly how the monolithic Count Sketch fails to deliver acceptable

accuracies under resource gap deployments since it is restricted to the memory

size of single nodes. DISCO and DiSketch both use identical memory and

counter logic. However, per-node epoching as well as time-based sampling

significantly reduces the estimation errors of DiSketch.

7I refer back to the previous discussion in Section 3.5.1 about the feasibility of load

prediction.
8DiSketch is already demonstrated to impose a small footprint on non-memory resources.

Computational resource gaps are less interesting to investigate since having too few

computational resources means that a fragment can not deploy at all.
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Figure 3.12: The flow size estimation error of load-unaware DiSketch-Uni in

comparison with traditional deployments, at various memory sizes.

Note the unstable accuracy of DiSketch in the FT Random scenario. Here,

some flows are unlucky and only encounter tiny fragments that are performing

time-wise sampling. All fragments in a path can accidentally sample away a

key during an overlapping window, resulting in momentary monitoring blind

spots. This showcases the importance of deploying sketch disaggregation

techniques that fit the environment.

Recall that this experiment investigates Load-unaware DiSketch (DiSketch-

Uni). This design is unaware of the load within an epoch and is susceptible

to accuracy degradation when some fragments are unexpectedly overloaded

with traffic. We can see this effect in the low-error high-memory deployment

scenarios, especially in > 1MB FT Random. Investigations of the raw ex-

perimental data show that poor accuracy presents when large fragments are

simultaneously highly loaded due to suboptimal loadbalancing9. DiSketch-Uni

9The experiment employs Equal-Cost Multi-Path routing (ECMP) to load balance

traffic in the topology.



Chapter 3. Sketch Disaggregation 59

32KB 64KB
128KB

256KB
512KB 1MB 2MB

10 2

10 1

100

101

Data Structure
UM
UM-d

Base MemoryAv
er

ag
e 

Re
la

tiv
e 

Er
ro

r

Figure 3.13: The error in entropy estimation of UnivMon, with and without

disaggregation.

calculates subepoching based purely on fragment sizes, which risks assigning

higher-than-optimal importance for over-loaded fragments. I am confident

that Load-aware DiSketch (DiSketch-Bi) would outperform DiSketch-Uni,

and I plan to include these experiments in a full publication following my

doctoral graduation. For now, please refer to the following section 3.6.2 for a

demonstration of the benefit of load-aware subepoching.

Takeaway: Sketch disaggregation reduces monitoring errors, and

DiSketch-Uni further improves the monitoring accuracy by a near order

of magnitude. Subepoch sampling can result in momentary blind spots in

low-memory paths.

Entropy Estimation

In this section, I inspect the benefit of disaggregation on a non-flow size

estimation sketch, namely UnivMon. Using the same experimental setup as

before, we deploy UnivMon for entropy estimation queries in the FT Random

scenario. This sketch is both deployed aggregated on core switches, as well as

disaggregated across the network. Here, I show the impact of disaggregation

on entropy estimation, using the FT Random with the same parameters as

the previous experiment. I present the results in Figure 3.13, where we see a

significant error reduction of UnivMon when disaggregated.

Takeaway: My disaggregation techniques are not limited to flow size
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estimation, and can reduce entropy estimation errors in UnivMon by approxi-

mately 80%.

3.6.2 Performance in Heterogeneous Environments

Here, I assess how well DiSketch handles sketching in heterogeneous environ-

ments (i.e., where the traffic load and memory sizes vary between switches).

I evaluate the flow size estimation accuracy of the two DiSketch models (i.e.,

DiSketch-Uni and DiSketch-Bi) as well as DISCO [29] which performed well

during the previous full-scale experiments in (Section 3.6.1).

Sender ReceiverLoad 1

f1 f2 f3 f4 f5

Load 2 Load 3 Load 4 Load 5

Figure 3.14: Experimental Setup in Heterogeneity Tests.

Topology. As opposed to the prior experiment, these tests simulate a

single 5-hop network path (shown in Figure 3.14). The load heterogeneity of

networks depends on a variety of factors including the network topology, load

balancing, topological position of nodes, and the traffic patterns of connected

hosts/clusters. By focusing on a single path, I gain precise control of the

per-switch traffic volumes and can set the heterogeneity levels freely. Traffic

on other semi-overlapping paths is emulated as per-switch background traffic.

Generating Heterogeneity. I simulate a range of heterogeneity levels

for fragment sizes and traffic loads of the hops, defined as the Coefficient of

Variation (CoV), i.e., the relative standard deviation. I evaluate multiple CoVs

ranging from perfectly homogeneous (CoV = 0) to significantly heterogeneous

(CoV = 1.8). The total amount of background traffic (259K packets) and

the number of on-path counters (5120) is fixed across tests10. I generate

10The small scale in these simulations allowed me to evaluate numerous heterogeneity

settings within a reasonable time, and yields the same general pattern as full-scale het-

erogeneity simulations. Full-scale DiSketch experiments were presented in the previous

Section 3.14
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two random lists of 5 integers, one for the per-hop load, and another for the

per-fragment width. Both of these lists are generated so that the sum equals

the pre-set total amount of packets/counters, and that their coefficients of

variation approximately match the test. For instance, a background traffic

distribution with CoV ≈ 1.5 can be [204189(78.7%), 18364(7.1%), 29(0.01%),

2265(0.9%), 34675(13.4%)]. The generated loads and widths are independent

and are randomly distributed to the simulated nodes.

Network Traffic. There is a total of six different packet streams: five

background traffic streams passing through one switch each, and one evalua-

tion stream that traverses the entire path. I use the aforementioned CAIDA

packet trace as the base of all network traffic in this simulation, and map

IP addresses into the different traffic streams. Packets in each stream are

then replayed chronologically in the order they appear in the packet trace.

There is a single sender/receiver pair in the simulation, at opposite ends

of the simulated path. 2.6K packets are transmitted in this stream and

across the full path, comprising ∼ 300 flows. The network traffic is replayed

perfectly mixed so that each time window contains traffic from the streams

in proportion to their sizes.

Evaluation Metric. I evaluate the flow size estimation accuracy of the

disaggregated sketch, retrieved by querying the flows from the evaluation

stream at the end of the simulation. For this, I use the Normalized Root Mean

Squared Error (NRMSE) [16]. NRMSE provides a dimensionless measure of

error by normalizing the Root Mean Squared Error (RMSE) based on the

total number of packets in the stream. The RMSE is calculated as the square

root of the Mean Squared Error (MSE), which quantifies the average squared

difference between the estimated and actual number of packets in a flow.

The NRMSE is then obtained by dividing the RMSE by the total number of

packets in the stream, ensuring that the error metric is independent of the

scale of the data. Formally, NRMSE is defined as follows:

NRMSE =
RMSE

numpkts total
=

√
MSE

numpkts total

A straightforward metric such as average error is not used, as it does

not account for the magnitude of individual errors and can mask large
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Figure 3.15: Heterogeneity’s impact on flow size estimation, showing the

log-NRMSE at different levels of heterogeneity.

discrepancies between estimated and actual values. In contrast, NRMSE,

by considering the squared differences, provides a more robust and sensitive

measure of the model’s performance [16]. In practice, a change in NRMSE

can indicate a significant improvement or degradation in model accuracy,

with smaller values indicating better performance.

Results. The average NRMSE at each heterogeneity pair is presented

in Figure 3.15. To further simplify the comparison, I show the difference in

NRMSE at the bottom. This experiment reveals a clear link between network

heterogeneity and the performance of sketches. Fragment width heterogeneity

has a detrimental effect on performance, whereas traffic load heterogeneity

enhances it. The resilience of sketches to hash collisions, achieved through
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counter redundancy, explains this relationship.

High heterogeneity in fragment width, as seen in the random width

distributions11, leads to a general reduction in the size of most fragments.

Although one fragment may grow large and experience a lowered collision

rate, this does not offset the diminished performance caused by the reduced

effectiveness of all redundant measurements, regardless of their individual

contributions to the composite output. Conversely, significant traffic load

heterogeneity condenses the majority of background traffic onto a limited

number of hops, thereby reducing the load on the remaining nodes and

enhancing the performance of most fragments.

The performance benefit of load heterogeneity essentially disappears for

DiSketch-Uni, where subepoching relies solely on fragment sizes without

considering traffic loads. Large DiSketch fragments significantly influence

the final output, which correspondingly leads to poor performance when

traffic overload makes these large fragments poor estimators. This issue is

exemplified through the DiSketch-Uni model, which underperforms compared

to DISCO (shown in the right graph) in environments characterized by both

high width and load heterogeneity. Note, however, that the load-unaware

DiSketch-Uni unsurprisingly performs well in homogeneous load environments.

DiSketch-Bi, the load-aware DiSketch model, retains the positive effects of load

heterogeneity. Consequently, I advocate for the implementation of load-aware

subepoching in the deployment of disaggregated sketches within environments

exhibiting significant load heterogeneity.

Finally, in comparison with DISCO, DiSketch-Bi consistently enhances the

accuracy of flow size estimation without requiring additional memory resources.

The extent of improvement varies with the evaluation parameters, achieving

a reduction of NRMSE between 0.2 and 0.8. This range of improvement

signifies a near-order-of-magnitude enhancement in performance.

11The shape of the distribution can affect the results. For instance, a ”balanced”

heterogeneous distribution, in which each shrinking fragment is counterbalanced by another

growing fragment, generally outperforms a ”one takes all” distribution where every fragment

except one shrinks uniformly. The results presented here reflect the average from numerous

simulations with entirely random width and load distributions.
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Figure 3.16: Disaggregated sketches are failure resilient, partially retaining

the state after failure events. Shown here is the inaccuracy of real-time heavy

hitter detection.

Takeaway: The environmental heterogeneity has a significant impact

on the sketch performance, and disaggregated sketches benefit from load

heterogeneity. DiSketch consistently improves sketching performance in

heterogeneous environments, reducing errors by almost an order of magnitude.

3.6.3 Failure Resilience

Network failures are critical events that require thorough investigation and

troubleshooting to identify their root causes. Loss of telemetry data during

these incidents is especially problematic, as operators depend on information

from the affected time and location for their insights. Disaggregated sketches

have their counters spread out across multiple switches, and therefore retain

much of their state during node failures. In this section, I evaluate how

effective disaggregation is at maintaining accuracy measurements during

switch failure events. I replay 10M network packets through two topologies,

fat tree, and spine leaf, so that all flows traverse the network core. Here, I

perform real-time heavy-hitter detection through a standard Count Sketch,

either deployed aggregated on core switches or disaggregated across the

network. I chose to keep row widths identical in all switches, regardless of

deployment, so the baseline accuracy is the same for both aggregated and
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disaggregated sketches. A failure event is triggered at the halfway point in the

experiments, disconnecting one of the core switches and forcing the re-routing

of affected flows. I present the results in Figure 3.16.

Note the impact that the topology has on the failure resilience of the

disaggregated sketch. Failure resilience of disaggregated sketches is thanks

to an overlap in the set of on-path sketch rows for a flow before and after a

failure event. Paths in spine leaf consist of three nodes: two edges and one

core. When a core switch fails, the post-failure sketch will still retain 2/3 rows,

which is still enough so that a majority of rows retain the original statefulness;

we see how disaggregation leads to highly accurate measurements immediately

following a failure. The fat tree consists of up to five hops: two edges, two

aggregation, and one core. The number of original rows remaining on-path

post-failure is either 2/5, 3/5, or 4/5; therefore, a worst-case post-failure event

can lead to most hops being replaced in a flow path. We see this effect in the fat

tree results, where the disaggregated sketch also experiences a significant drop

in accuracy after the failure (although somewhat smaller than for aggregated

sketches). If the re-routing algorithm is modified to preserve as much of

the original path as possible post-failure, then this effect disappears and

disaggregation is highly failure resilient. Given that disaggregated sketches

are assumed to be deployed in Software-Defined Network (SDN) environments,

operators would have full control of post-failure routing and fast re-route

methods.

Takeaway: Disaggregated sketches are highly failure resilient, depending

on the topology and re-routing algorithm, reducing the post-failure drop in

accuracy from basically complete to barely noticeable.



66 3.6. Evaluation

1 2 4 8 16 32 64 128
Epochs per Query Window 

60%

70%

80%

90%

100%

Ac
cu

ra
cy

[F
1 

Sc
or

e]

Figure 3.17: Higher-rate exportation increases DiSketch performance.

3.6.4 Rate of Epoching

Subepochs are re-computed at the start of each epoch, altering the subepoch

sampling and counter-indexing of all DiSketch fragments. This both coun-

teracts persistent hash collisions, as well as avoids persistent time-wise blind

spots for unlucky flows. Here, I demonstrate the impact that a fine-grained

temporal fragmentation has on the sketching accuracy of DiSketch, by altering

the rate of epoching. I keep the query window fixed across tests but vary the

length (and therefore the amount) of epochs within it. I simulate DiSketch-Uni

in the FT Random scenario, and present the results in Figure 3.17.

We see that frequent epoch re-computation results in significant accuracy

improvements, where the median F1 score can be increased from 77% to

> 99% entirely by increasing the rate of epoching, with no change in on-switch

memory consumption. There are two tradeoffs to increasing the exportation

rate: the load on collection increases, and offline queries require more com-

putations to answer. Offline queries require two hash computations per-hop

and per-epoch within the query window: once to retrieve the subepoch, and

once to compute the intra-subepoch index. Thus, the query complexity grows

linearly with the number of epochs. The temporal granularity of DiSketch

should therefore be adjusted according to the needs of the network, ensuring

that neither the collection stacks nor analysis engines are overwhelmed.

However, it should be noted that disaggregation increases the speed

of sketch extraction by allowing parallel extraction from multiple nodes,
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effectively using the memory-extraction bandwidth of all switches instead of

just the bandwidth of a few sketch-hosting switches.

Takeaway: Querying over multiple epochs results in significantly in-

creased estimation accuracies, at the expense of a linear increase in collection

load and query complexity.

3.7 Discussion & Future Work

This section provides a brief discussion of spatiotemporal disaggregation and

proposes future research into the techniques presented in this chapter.

3.7.1 Outlier Sensitivity

Several aspects of the design rely on global properties such as the amount of

traffic or memory allocated at switches (Section 3.4). While this approach is

suitable in many cases, there could be others in which a single or few switches

skew the parameters and degrade the overall accuracy. For example, consider

a scenario where intra-rack traffic is prominent [176]. In such cases, it might

be appropriate to change the average value to a metric more robust to outliers,

such as the median or trimmed mean. Alternatively, if the skewness is the

result of inter-zone heterogeneity, and most traffic stays intra-zone, then it

could be argued that per-zone normalization is preferred over network-wide

normalization.

3.7.2 Other Data Structures

This dissertation chapter presented the idea of spatiotemporal disaggregation

and demonstrated its usefulness through the example of a Count Sketch.

However, I expect these ideas to be useful beyond that and envision that they

can be applied to other similar sketches (e.g., Count-Min Sketch, Bloom Filter,

and HyperLogLog), as well as possibly other non-sketching data structures.

The exact technical requirements for spatiotemporal disaggregatability, as
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well as structure modifications required for individual sketches, are left as

future work.

Access Control Lists

There are some network functions, such as Access Control Lists (ACLs), that

could benefit from disaggregation. ACLs can be memory-heavy structures,

and disaggregation would spread out this footprint over multiple devices.

Further, destination filters could be placed closer to the destination servers,

while source filters could be placed near those network clusters, or at network

ingress points. Finally, disaggregation would change the ACL placement

strategy, and potentially reduce the risk of invalid placement leading to a

fraction of traffic circumventing filtering due to invalid placement and/or

routing. However, a new set of challenges would arise, such as designing

algorithms for optimal rule placement that allows for efficient use of resources,

while also allowing for early reactivity and triggering of blocking rules.

HyperLogLog

HyperLogLog (HLL) is a sketch-like data structure used for cardinality estima-

tion, e.g., to estimate the total number of distinct network flows in a stream

of packets. Similarly to flow size estimating sketches (e.g., CS, Count-Min

Sketch (CMS), and UnivMon), the amount of allocated memory increases

the accuracy of the estimation. If the HLL registers (or counters) are split

into multiple virtual rows, similar to flow-size estimators, one can likely apply

many of the disaggregation techniques mentioned in this chapter. I envision

that we would see similar benefits when spatiotemporal disaggregation is

applied to HLL, but leave the design of this data structure as future work.

3.7.3 Finding an Optimal Subepoch Granularity

Spatiotemporal disaggregation is built around subepoching, where the mon-

itoring epoch is dynamically divided into briefer subepochs based on the

capacities of the individual fragments. However, one critical aspect has not
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been investigated: the average number of subepochs that a fragment will use.

I am referring to specifying s in Equation 3.1. As discussed in Section 3.5.1,

choosing the static value of s is non-trivial, and is a tradeoff that depends on

multiple factors including the flow traffic patterns and expected heterogeneity

levels. This warrants a full theoretical analysis, as well as experimentation to

demonstrate the impact of this choice in various network environments.

3.7.4 Path Stability

Some load balancing schemes, such as flowlet switching [208], frequently alter

the path of flows at incredibly short timescales. These techniques result

in irregular and unstable flow paths, impacting the practicality of sketch

disaggregation. For instance, if flow paths change during a sketching epoch,

then portions of the flow increments within that epoch could end up in

different sets of fragments. Without awareness of these path changes, the

estimation accuracies of the analysis engine could suffer. If the analysis

engine is unaware of such paths, then the estimation accuracies would suffer.

However, it is possible to design disaggregation techniques that accommodate

path changes. Assuming fine-grained path tracing is already implemented,

the analysis engine could incorporate all fragments traversed during the epoch

into the composite sketch output. Weighting could be employed based on the

duration during which a flow has traversed each fragment. The development of

precise techniques to perform sketch-based estimations under these conditions

remains an area for future work.

Alternatively, one could configure the load balancing techniques to only

perform re-routing at epoch transitions. This adjustment would ensure that

each sketching epoch contains the same set of fragments, except in cases of

re-routing triggered by failures. This method could stabilize the path data

within each epoch, improving the consistency and accuracy of sketch-based

monitoring.
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3.7.5 Query-Time Weighting

DiSketch is decent at equalizing the errors between heterogeneous fragments,

to some degree. However, there are three sources of inequality that it can not

mitigate:

Max-length subepochs. Fragments with a high amount of memory

and/or a low amount of traffic load can be dynamically configured to run a

single subepoch per epoch (n = 1), which is the extreme setting for the most

highly capable fragments. Unfortunately, it is not possible to configure less

than one subepoch per epoch (i.e., we can not sample > 100% of flows at any

given time). Therefore, spatiotemporal disaggregation is unable to equalize

the accuracy of the most highly performing fragments, and the n = 1 group

can contain a wide range of fragment capabilities.

Subepoch bucketing. A fragment can only be configured with a power-

of-two number of subepochs. This limits the efficiency of sketch-time error

equalization since a subepoch group can contain fragments that just barely

qualified, to other fragments that are nearly twice as capable and almost

got promoted to a subepoch halving. This leads to error inequalities that

subepoching is unable to solve at sketching-time.

Load prediction. Spatiotemporal disaggregation, as it is implemented

in DiSketch, attempts to configure upcoming epochs by extrapolating from

historical information to predict the load of the upcoming epoch. However,

this is highly unlikely to be entirely accurate in practice, and the load is

almost guaranteed to deviate from the prediction. Inaccurate predictions

can very well lead to suboptimal epoch configuration, where some fragments

in a subepoch group might be much more or less capable than they were

expecting.

Potential Solution. These accuracy inequalities are not currently han-

dled, and the output of each fragment is treated as just as important within

each subepoch window. All of these expected errors are thankfully computable

at query time and can be used to retroactively adjust the query-time impor-

tance of fragments. The subepoch configuration itself can not be modified

retroactively, but one could apply weighting to the output of each fragment
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during composite generation and querying. A naive solution is to replace the

per-subepoch-window median calculation (see Figure 3.10) with a weighted

median. Query-time re-equalization techniques warrant a deeper investigation

and are left as future work.

3.7.6 F2 Heuristic for Spatiotemporal Disaggregation

Spatiotemporal disaggregation, as implemented in DiSketch, extrapolates from

the traffic load of historical epochs to configure the upcoming epochs. For this,

I approximate the second frequency moment F̂2 according to Equation 3.4.

However, this heuristic is developed under the assumption that a sketch

has monitored an entire epoch and continuously monitored every traffic flow

during this time. This is not the case in spatiotemporal disaggregation.

Instead, counters are periodically reset within each epoch, and the set of

monitored flows is different within each subepoch. Therefore, the accuracy

of this heuristic is impacted. The F2 accuracy needs to be investigated, and

the heuristic itself would potentially benefit from a modification to take

spatiotemporal disaggregation into account. I leave this as future work.
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3.8 Chapter Summary

In this chapter, I addressed the first research objective of my dissertation:

“Make Sketches Network-wide Deployable”. To achieve this, I developed

and presented spatiotemporal disaggregation, a novel technique for deploying

sketch-based data structures across multiple network switches. This technique

leverages network-wide resources to enhance estimation accuracy, provide

failure resilience, and reduce sketch extraction delays. I exemplified spatiotem-

poral disaggregation by applying it to Count Sketch (CS), leading to the

development of DiSketch.

By fragmenting and distributing sketches over multiple nodes, DiSketch ef-

ficiently handles the inherent challenges posed by heterogeneous environments,

such as varying resource availability and traffic loads. The combination of spa-

tial and temporal indexing through subepoching ensures that each fragment

operates within its capacity while maintaining high accuracy and reliability

in flow size estimation. My solution ensures the autonomous operation of

fragments, avoiding unreasonable assumptions and overheads for inter-switch

communication.

My evaluation of DiSketch demonstrated significant improvements in

estimation accuracy, reducing errors by up to an order of magnitude compared

to traditional monolithic and naively disaggregated sketches. Additionally,

disaggregation showed high resilience to network failures, maintaining accurate

monitoring even during critical events.



Chapter 4

Lightweight Sketching and Flow

Extraction

This chapter presents my collaborative research on sketch processing tech-

niques for extremely low-error flow size estimation and flow-ID extraction

under severe memory constraints, such as in network switches. This work

addresses the second research objective, “Improve the Cost vs Accuracy

Tradeoff in Sketches”, by optimizing per-sketch memory utilization.

To achieve this, I introduce Flow Lightweight Detection and Ranging

(FlowLiDAR), a novel solution capable of tracking nearly all network flows

while requiring only a modest amount of data plane memory. These methods

enhance the usefulness of probabilistic monitoring techniques by providing

more reliable measurements for the control loop.

While this project overlaps with the previous chapter on sketch disaggre-

gation, the focus here is on maximizing efficiency within individual sketches

rather than deploying them network-wide. Both techniques can be applied si-

multaneously with minor intercompatibility changes, offering a comprehensive

approach to sketch-based network monitoring. Although this work implicitly

targets data center networks, it is likely applicable in broader contexts.

73
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Attributions The research presented in this chapter is the result of col-

laborative efforts. As such, determining the originator of individual parts

can be challenging. Nevertheless, the following list outlines some of the

individual contributions that I made to the work in this chapter, excluding

general contributions such as discussion participation and narrative/writing

contributions:

• I provided unique expertise on the hardware and its limitations, con-

tributing significantly to all on-switch algorithmic- and system designs

to ensure real-world compatibility.

• I developed the hardware prototype and conducted hardware evalua-

tions.

• I designed and created all evaluation figures. This work includes re-

questing supplementary simulation experiments to be performed when

results were inconclusive or incomplete.
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4.1 Introduction

The previous chapter provided a robust solution for network-wide sketching,

resulting in a deployment strategy for highly accurate and flexible sketch-based

monitoring. Although the resource costs are effectively spread across multiple

nodes, the overall in-network resource footprint remains high. Further, the

chapter did not investigate efficient methods of extracting the actual queryable

keys (e.g., flow IDs). As will become apparent, key extraction is an open issue

where improvements have a great potential to reduce the overall in-network

costs.

To reduce this cost, the research community is proposing various solu-

tions [91, 133,222]. Some rely on probabilistic data structures with bounded

errors to store counters and only track the flowIDs for heavy flows (e.g.,

ElasticSketch [222]) so to enable the reconstruction of (flowID, counter) tu-

ples. The problem is that they can suffer unacceptable inaccuracies when

required to track short flows [91]. Others encode flowIDs and associated

counters directly in the Application Specific Integrated Circuit (ASIC) (e.g.,

FlowRadar [133]) or adopt signal-processing techniques to limit the amount

of resources to be used (e.g., NZE [91]). Although they can potentially track

all flows in the network, they experience a loss in accuracy when fine-grained

flow-level telemetry (i.e., flow IDs more specific than the standard 5-tuple) is

needed. An alternative approach in this scenario is to send the flowIDs to

the control plane and keep only the counters in the data plane as done in

the PR-sketch [183]. This makes the data plane memory independent of the

flowID size. However, the data plane memory needed for the flow-detection

filter and counters is still large, limiting the number of flows that can be

feasibly monitored at high accuracies.

In this chapter, I present Flow Lightweight Detection and Ranging (FlowL-

iDAR), a new solution that can track nearly all flows in the network. As

in PR-sketch, FlowLiDAR decouples flowIDs from their associated counters.

FlowLiDAR introduces key innovations over the PR-sketch design that allow

it to significantly reduce the amount of data plane memory needed to achieve

close to 100% accuracy in per-flow estimations. For example, FlowLiDAR
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uses an exact equation solving in the data plane to extract the size of the

flows from the counters at the end of a measurement epoch. I also propose a

new mechanism, named lazy updates that eliminates the need to use counters

in the on-switch ASIC for short flows of up to a few packets. This not only

reduces the data plane memory required but also reduces the complexity of

the equation solving and improves its accuracy. I implemented FlowLiDAR

in P4 and evaluated it on the same real-world packet trace as Disaggregat-

able Sketch (DiSketch). As shown further down in the chapter, FlowLiDAR

improves the accuracy of flow counting when compared against state-of-the-

art solutions such as NZE, the PR-Sketch, and Elastic Sketch by orders of

magnitude. Moreover, while FlowLiDAR successfully tracks 98.7% of existing

flows, other techniques can only reconstruct at most 60% of them under there

same resource restrictions.

The main contributions in this chapter are:

• I introduce FlowLiDAR, which decouples flowIDs from their associated

counters, significantly reducing memory usage in the data plane.

• I develop the lazy updates mechanism, a Bloom filter variant that further

reduces memory requirements and complexity by not using counters for

short flows.

• I demonstrate the superior accuracy and efficiency of FlowLiDAR

through an extensive comparative evaluation.

• I validate the real-world deployability of FlowLiDAR through a hardware

prototype, including algorithmic modifications that ensure compatibility

with the high-speed Protocol Independent Switch Architecture (PISA)

architecture.

4.2 Motivation

Tracking as many network flows as possible is of paramount importance [91,

133,190,213]. This is because it allows us to capture events that otherwise
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would be easily missed. These events include transient loops, blackholes,

and switch faults (operators report that table corruptions lead to packet

losses and incorrect forwarding for some traffic [231]). Those may affect

just a few packets during a very short period, introducing transient losses

into the network. The problem is that even just a few losses can cause

significant tail-latency increases and throughput drops for both Transmission

Control Protocol (TCP) and Remote Direct Memory Access (RDMA) traffic,

potentially leading to violations of Service Level Agreements (SLAs) as well as

revenue loss [50]. Unfortunately, a high flow coverage rate with high precision

is becoming increasingly difficult, mainly because of three main trends:

Trend #1: Networking devices now support many use-cases. The rise

of programmable data planes has allowed the research community to develop

a widespread number of applications including congestion control [80, 134],

load balancing [5,113], caching [108], and machine learning acceleration [177].

Consequence : as more functions are added to the data plane, higher pressure

is put on switches’ memory and computational resources, reducing their

(already limited) capabilities for flow-level telemetry.
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Figure 4.1: Memory/bandwidth ratio of differ-

ent Broadcom Tomahawk switch generations

Trend #2: Link speeds

outpace memory capacity.

Over the last decade, switch-

ing ASICs have increased

their aggregate capacity from

less than a terabit per sec-

ond (Tb/s) to more than

50 Tb/s1. This capacity

increase has enabled state-

of-the-art switches to sup-

port more physical ports and

higher bandwidth, reducing the number of switches required to handle the

same workload as before. As a direct consequence, there is now a need to

1A detailed discussion is available at https://elegantnetwork.github.io/posts/A-

Summary-of-Network-ASICs/
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support a much higher number of simultaneous flows. An analysis of real

traffic traces has estimated the presence of 120,000 active flows per gigabit per

second (Gbps) of traffic, potentially leading to over 3,000 million active flows

in 25.6 Tbps switches [178]. Unfortunately, the increase in switch speed has

consistently outpaced the growth of internal ASIC memory. In Figure 4.1, I

compare the aggregate bandwidth against the internal memory available in the

latest generations of state-of-the-art Broadcom switches2. This comparison

shows that the memory is not keeping up with the bandwidth.

Consequence : there is a need for more memory-efficient flow recording

technology.

Trend #3: A need for longer flowIDs. The rise of virtualization, involving

technologies such as VXLAN, which encapsulate network traffic to enable the

creation of virtualized network overlays, and the rapid convergence of cloud-

native service access APIs based on the HTTP communication protocol [11,13]

are posing new challenges in flow-level telemetry. Virtualization and HTTP

are distinct reasons for this increase. On one hand, virtualization through

encapsulation increases the length and complexity of flow identifiers due to

encapsulation. On the other hand, the increasing generality of higher-layer

protocols like HTTP has led operators to explore their feasibility beyond

the Web, for media streaming (e.g., WebRTC3), remote procedure calls (e.g.,

gRPC4), data center networking [13], or transport of DNS. When everything

is encoded into HTTP, basic L2–L4-layer insight into traffic is no longer

adequate to understand network behavior [11]. The traditional five-tuple

becomes ineffective when the destination port is uniformly 80 (HTTP) or 443

(HTTPS) regardless of whether the traffic is a REST API call or a long-lived

media stream.

Consequence : There is a need for storing more fine-grained flow identifiers

using additional packet header fields, which increases the memory requirements

in the ASIC.

2Data are taken from https://people.ucsc.edu/˜warner/buffer.html
3https://webrtc.org/
4https://grpc.io/

https://webrtc.org/
https://grpc.io/
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4.2.1 Limits of Current Solutions

To address these challenges, state-of-the-art solutions commonly use probabilis-

tic data structures [133,139,222] to reduce the switch memory requirements

at the cost of query accuracy. Despite their theoretical error bounds, existing

solutions still suffer to provide comprehensive guarantees for all flows in

a network. This is because existing algorithms are typically designed to

provide guarantees for specific flows (e.g., heavy hitters [58, 180] or super-

spreaders [226]) and/or aggregated flow statistics (e.g., cardinality [64] or

traffic distribution [119]). As a consequence, when applying these solutions

to the entire traffic, the derived bounds are too coarse-grained to work. This

leads to a considerable gap: only a small portion of flows benefit from the

theoretical bounds, while the remaining flows still exhibit poor accuracy.
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Figure 4.2: Fraction of flows that can be moni-

tored with a fixed amount of memory for Elas-

ticSketch (ES), NZE, FlowRadar (FR), PR-

Sketch (PR), and FlowLiDAR

A recent paper has high-

lighted this issue and pro-

posed a solution [91], named

Near Zero Error (NZE)

which, as its name states, re-

duces the errors but does not

eliminate them. In more de-

tail, the accuracy for small

flows is still not guaranteed,

especially if many bits are

needed for the flow identi-

fiers. Therefore, the prob-

lem remains when consider-

ing trend #3: adopting increasingly longer flow identifiers. This is addressed

by the PR-sketch, which sends all flowIDs to the control plane and keeps only

the flow detector and counters in the ASIC [183]. However, the PR-sketch

still requires a significant amount of ASIC memory per flow (see Section 4.5.3

for details), making it less efficient than existing solutions except for very

large flowIDs. To better understand this, FlowLiDAR is compared against

numerous state-of-the-art algorithms (i.e., Elastic Sketch [222], NZE [91],
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FlowRadar [133], and the PR-sketch [183]). In Figure 4.2, I present the

fraction of flows that can be accurately tracked using a fixed memory size of

10 MB to perform size estimation of 1.2 million active flows [178].

In that experiment, NZE successfully tracks all flows only when flowIDs

are 32 bits (e.g., flowIDs are a single IPv4 address). Longer flow identifiers

must be adopted for more exact insights, which inhibits the ability of NZE to

track all flows. Indeed, when using a standard 5-tuple, the flow coverage drops

to just 60%. On the other hand, ElasticSketch can track only 90% of flows

with high accuracy (< 1% relative error) with 32 bits, but its performance

degrades more gracefully5. Similarly, FlowRadar is unable to track all flows

for any flowID size, and its coverage is lower than both that of NZE and

Elastic Sketch. When more packet header fields need to be considered, as

in the case of tunneled connections requiring VXLAN + 5-tuple or when

upper layer protocol headers are needed, the flow coverage drops further.

For instance, when requiring 256-bits flowIDs, the flow coverage of Elastic

Sketch, NZE, and FlowRadar drops to approximately 60%, 35%, and 20%

respectively, which is unacceptably low. Finally, the PR-sketch flow coverage

does not depend on the flowID size as expected but it is below 40%, which is

worse than existing schemes for small flowID sizes. FlowLiDAR, however, is

able to consistently track over 99% of flows regardless of the flowID size.

5Elastic Sketch uses two main data structures: a hash table for the heavy part, which

is flowID size dependent, and a large count sketch to count the small flows. Here, the

memory is split between the two structures, varying the flowID size to bound the average

relative error below 50%.
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4.3 FlowLiDAR Overview

This section gives an overview of FlowLiDAR, followed by a detailed descrip-

tion of each component underlying the solution.

4.3.1 Overall Approach

Figure 4.3: Block diagram of the proposed FlowLiDAR. The data plane

detects new flows, sends the IDs to the control plane, and counts the packets.

The control plane stores the flow IDs and periodically computes an exact flow

frequency vector

The concept of FlowLiDAR is illustrated in Figure 4.3 and makes use

of both switch data and control planes. The idea, similarly to [183] is to

place all the functions that have to be done per packet in the data plane

while those that are much less frequent are placed in the control plane. In

more detail, flow detection and counting of packets are done in the data

plane while the processing of new flows and a fine-grained computation of the

flow frequencies is done by the control plane. This approach needs to send

information between the control and data planes, and the interface bandwidth

may be a potential issue. Further down, I discuss why this should not be the

case in switching ASICs that have high-speed links between both planes and



82 4.3. FlowLiDAR Overview

propose variants of FlowLiDAR that can reduce the amount of information

sent on that interface.

This split is based on the observation that new flows, in some environments

such as campus networks, are only a small fraction of the packets [110]. This

has been corroborated by analyzing the three CAIDA ISP packet traces, where

flows average approximately 15 packets per minute. The results show that in

a one-second window, the average number of packets per flow is single-digit

which increases in larger windows. Therefore, storing flowIDs in the switch is

immensely costly, and I suggest detecting new flows in the ASIC, and sending

new IDs to the control plane. This eliminates the need to store the flowIDs in

the limited data plane memory, dramatically reducing the memory footprint.

With this idea in mind, what we need to have in the ASIC is a mechanism

to detect new flows, for example through a Bloom Filter (BF) [133]. This

detector has to be in the data plane to be able to handle the immense speeds

of the hardware. In FlowLiDAR, the detector is a Bloom Filter (BF) that is

optimized to reduce its memory footprint [87].

The same reasoning applies to the counters used to count packets, which

also have to process every packet and thus also have to be placed in the

ASIC. In more detail, FlowLiDAR uses a Count-Min Sketch (CMS) for packet

counting [169]. This enables us to provide in-data-plane flow size estimations

in real-time. Additionally, snapshots of the BF and CMS are sent periodically

to the control plane, and the data structures are (mostly) reset at the onset

of a sketching epoch.

The control plane stores the FlowIDs, and when it receives a snapshot of

the CMS and BF it computes the exact flow frequency vector using a more

complex algorithm that models the CMS as a system of equations. Again this

is possible as it is done much less frequently than the per-packet operations

done in the data plane. Even if extracting the exact values is the main aim of

FlowLiDAR, I want to highlight that a further memory reduction is possible

at the cost of accepting an approximate resolution of the CMS system of

equations, and this solution is therefore able to deliver highly memory-efficient

on-switch sketch. Details about this option are provided in Section. 4.3.4

and evaluated in 4.5.4. In the following subsections, I describe each of the
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FlowLiDAR components in more detail, as well as the relationship between

them.

4.3.2 Flow Detector

The flow detector identifies new flows and sends their IDs to the control plane.

Here, I describe three methods to implement the Flow Detector. The first

method is based on a standard BF and provides a baseline for the other two

methods.

I developed a second BF variant, which I call a lazy BF. This variant

reduces the false positive probability of the standard method at the expense

of an increase in the bandwidth required by the control plane, as well as

introducing dependencies between some in-ASIC computations. For the rest

of the paper, when nothing else is stated, this is the flow detection algorithm

used in this chapter.

We could use a third method if the control plane bandwidth becomes a

bottleneck. This method only sends FlowIDs that were not present in the

previous epoch toward the control plane. For this, one can use a pair of BFs,

where one stores the FlowIDs of the previous epoch and the other stores

those of the current epoch. In all cases, flow detection is done as soon as the

first packet of the flow returns a negative on the BF and it is immediately

reported to the control plane, a process that takes only a few microseconds

in the worst case.

Standard BF The detection of FlowIDs is done per measurement epoch

so that, after sending it to the control plane, the detector is reset to start a

new epoch. To this end, the flow detector has to check all the packets and

thus has to perform simple operations. As in [133], [183], FlowLiDAR uses

a BF to detect new flows. The overall approach is to update the BF with

every new packet (so that subsequent packets of the flow return a positive)

and send the FlowID to the control plane if this is the first time that the flow

was seen by the BF. Using a BF eliminates the need to store raw FlowIDs,

thus reducing the memory requirements. However, it has the drawback of
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risking false positives, resulting in a few flows not being detected and sent to

the control plane. For a given number of target flows, the probability of false

positives can be made small by appropriately selecting the BF array size m

and the number of arrays and hash functions k. The initial flow detection

algorithm is shown in Algorithm 2.

Algorithm 2 Initial algorithm for flow detection

1: Reset the BF

2: Start the epoch timer

3: for Each packet with FlowID x do

4: Query element x in the filter

5: if Negative then

6: Add x to the filter

7: Send FlowID to the control plane

8: end if

9: Send x to packet counting block

10: Timer expired? If yes restart the process

11: end for

The BF maps each FlowID to k independent arrays of m bits. The use of

independent arrays per hash function makes it possible to access each position

in parallel and facilitates the implementation in a programmable data plane

as will be seen in section 4.4. Additionally, it enables a more advanced flow

detection scheme, which I implemented in FlowLiDAR, and is described next.

The fraction of flows that are not detected during an epoch can be

estimated by computing the false positive probability of the filter when each

new flow arrives and then adding all those probabilities together. The false

positive probability of a filter that has k arrays of m bits and on which i

elements have been inserted can be approximated by:

P (i) ≈ (1− e−
i
m )k (4.1)

Then if on an epoch there are n flows, the fraction of false positives can

be estimated by adding the probabilities of the second flow P (1), the third

flow P (2), and so on until the nth flow obtaining:
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FPP ≈
∑n

i=2 P (i− 1)

n
(4.2)

Lazy updates BF The advanced BF scheme, which I denote as lazy updates

BF, is based on the observation that depending on the epoch duration, most

flows only have a single or just a few packets in that period. To maximize

sketching accuracy, a short epoch is preferred, and the main limiting factor is

the speed at which the structure can be exported and analyzed. For instance,

Table 4.1 presents the percentage of flows containing only one, two, or three

packets within a one-second epoch, based on the CAIDA traces.

1-packet 2-packets 3-packets more than 3 packets

39% 18% 10% 33%

Table 4.1: Percentage of flows having one, two, or three packets

When that is the case, it may be beneficial not to set all the bits for the

new flow in the BF to one but just one at a time. This would reduce the

number of positive bits in the filter, thus reducing the false positive probability.

For example, if 40% of flows only have a single packet, this would be reduced

by close to 40% the insertions on the second to kth arrays. Using independent

arrays is better in this configuration to reduce the false positive rate similar to

what happens in d-left hashing [141]. Deriving the false positive probability

for flows in this advanced scheme is more complex but an approximation can

be easily obtained. Let us denote by l(j) the fraction of flows that have j or

more packets in the epoch. Consider a filter with k arrays on which i elements

have been inserted. Then in the jth array, there will be approximately i · l(j)

elements inserted. With that assumption, the false positive probability of

the filter can be computed as the product of the fraction of bits set to one in

each array which is given by (1− e−
i·l(j)
m ) obtaining:
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Pa(i) ≈
k∏

j=1

(1− e−
i·l(j)
m ) (4.3)

where l(j) accounts for the fact that a fraction of the flows has j or less

packets and thus are not inserted on tables j + 1, . . . , k unless they suffer

false positives on the previous tables. This approximation would tend to

underestimate the false positive probability as there will be false positives.

For example, a flow with a single packet may find the bit set on the first

BF table and would thus be inserted on the second and so forth. Finally,

the fraction of flows that are false positive can be estimated by using Pa(i)

instead of P (i) in equation (4.2).

The drawback of using this advanced scheme is that multi-packet flowIDs

may be sent to the control plane several times. Let us consider the bandwidth

needed to send the FlowIDs to the control plane. Each FlowID has 13 bytes

in IPV46. On average the number of packets per flow is much larger than one,

for example even when considering one-second windows, the CAIDA traces

have on average multi-packet flow. Considering an average packet size of 500

bytes, the overhead would be below 13/(500*5) so roughly 0.5% which would

be acceptable in most cases. Indeed as discussed before, bandwidth grows

faster than on-chip memory and thus using a small fraction of the bandwidth

in exchange for a large reduction in the memory needed (as FlowIDs no longer

need to be stored on-chip) is attractive.

Finally, we can also take advantage of this BF optimization to not send

the first packets to the packet counting block. This has the additional benefit

of reducing the load on the CMS as we will see shortly. The advanced flow

detection is presented in Algorithm 3. Note that although the algorithm

describes a serial implementation, the for loop over the k arrays has no

temporal dependencies and thus can be unfolded and executed in parallel

with each value of i corresponding to one of the filter arrays.

6The FlowID is composed of the source and destination IP addresses, the protocol, and

the source and destination ports.
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Algorithm 3 Advanced algorithm for flow detection using lazy updates for

the BF
1: Reset the BF

2: Start the epoch timer

3: for Each packet with FlowID x do

4: for i = 1 to k do

5: if hi(x) == 0 then

6: Set hi(x) = 1 and i = k

7: Send FlowID to the control plane

8: break

9: else

10: if i == k then

11: Send x to packet counting block

12: end if

13: end if

14: end for

15: Timer expired? If yes restart the process

16: end for
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Differential Flow Detector with a pair of BFs As discussed before,

the control plane bandwidth is not expected to be a bottleneck in switching

ASICs. However, there may be other architectures in which it may be an

issue. For those cases, one option is only sending the FlowIDs that are not

present in the previous epochs to the control plane. This way, only the new

flows are sent to the controller, while the old ones are retrieved from the

snapshot taken in the previous epoch. In particular, in this configuration, the

Flow Detector uses two BFs. In the first BF, called oldBF all the FlowIDs

of the previous epoch have been inserted. This BF is checked when a packet

arrives to avoid sending a FlowID that is already in the snapshot stored in

the control plane. The second BF, called currentBF , works as the standard

BF and stores all the FlowIDs that have packets in the current epoch. A

FlowID is sent to the controller only if it is not present in both BFs. At

the end of a measurement period, the set of active FlowIDs can be retrieved

by merging the FlowIDs sent in the current epoch and the FlowIDs of the

previous snapshot that are still active. These can be extracted from the

previous snapshot by checking which ones are positive in the currentBF

indicating that with high probability they are still active. At the end of the

measurement epoch, the oldBF stores the content of the currentBF , and the

currentBF is reset. The differential flow detection is presented in Algorithm

4. I want you to note that the use of a BF pair has been explored in previous

literature, but mainly to avoid filter overload [22,142].

4.3.3 Packet Counting

The other data plane component maps each flow to several arrays of counters

and increments one counter per array as in a CMS. This enables a fast

estimation of the flow size by just taking the minimum of those counters.

Additionally, the CMS contents are sent periodically to the control plane

for further analysis. In that analysis, it is beneficial to have as many counters

with a value of zero as possible. To achieve this, I exploit the BF used to

detect new flows as a counter for the first packets (those sent to the control

plane) so that only flows with more than one (or a few if we use the lazy
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Algorithm 4 Algorithm for flow detection using a pair of BFs

1: copy currentBF into oldBF

2: reset currentBF

3: Start the epoch timer

4: for Each packet with FlowID x do

5: Query element x in the currentBF

6: if Negative then

7: Add x to the currentBF

8: Query element x in the oldBF

9: if Negative then

10: Send FlowID to the control plane

11: end if

12: end if

13: Send x to the packet counting block

14: Timer expired? If yes restart the process

15: end for

version) packets in the epoch use the counters. This has a large benefit as a

significant fraction of the flows no longer need a counter.

In contrast to a standard CMS, FlowLiDAR splits the CMS into a set

of smaller CMS, each indexed by a master hash function. This choice will

introduce a somewhat increased error but permits splitting the flow analysis

(presented in the next section) to a set of disjoint sparse linear systems, thus

providing a significant analysis speed-up compared to packet counting using

a traditional non-split CMS. In essence, this is a tradeoff between accuracy

and offline processing costs.

4.3.4 Postprocessing

I did not participate directly in the development of the analysis solution

presented in this subsection. However, I am including it here to grant

the reader a complete view of the work, as well as the full context of my

contributions.

The control plane continuously collects FlowIDs from the ASIC, and at
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the end of the epoch receives the populated BF CMS. Using these, the control

plane can compute the exact values of the flow sizes. This is denoted as

postprocessing of the information and is done in three stages, some of which

are preprocessing for the final stage in the postprocessing: BF preprocessing,

CMS preprocessing, and CMS equations solving.

BF Preprocessing

An interesting observation is that when lazy updates are used, the BF can be

used to identify a fraction of the flows. In more detail, the FlowIDs collected

on the control plane can be tested on the snapshot of the BF received from the

data plane, and those that return a negative have for sure not been added to

the CMS. This means that their number of packets corresponds to the number

of times that the flowID has been received in the control plane. Therefore,

the exact packet frequency is obtained for those flows. Additionally, we can

remove them from further consideration, thereby simplifying the problem.

The BF preprocessing is described in Algorithm 5.

Algorithm 5 BF preprocessing with lazy updates

1: Compute the set of distinct flows D encountered by the data plane during the

epoch.

2: Create an empty set C for flows to be processed in the CMS.

3: for each FlowID x in D do

4: Query element x in the BF

5: if Negative then

6: Set the number of packets x as the number of times it

was received in the control plane.

7: else

8: Add x to C

9: end if

10: end for

11: Use set C in the CMS preprocessing step.
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CMS Preprocessing

Similarly, for any flow that maps to a counter in the CMS with a value of zero,

we can get the exact number of packets by counting the number of times that

the flowID has been received in the control plane. In the case of a “classic”

BF, this is at most one packet, while the lazy BF could be interpreted as

multiple non-counted packets. The flow is known to have more packets than

the CMS has counted since the flowID has been sent to the control plane

after a return-negative in the BF where CMS is not updated. Again, these

flows can be removed from further consideration. The CMS preprocessing is

described in Algorithm 6.

Algorithm 6 CMS preprocessing

1: Get set C of FlowIDs from the previous preprocessing step.

2: for each FlowID x in C do

3: Query element x in the CMS

4: if estimate packet count == 0 then

5: Set the number of packets x as the number of times it

was received in the control plane.

6: Remove x from C

7: end if

8: end for

9: Use set C in the CMS equations solving step.

Exact CMS equation solving. Let now F = {f1, . . . , fn} be the set of

FlowIDs for which the packet count could not yet be identified. Assume for

now that there are no false positives in the BF and hence F is fully known in

the control plane (the effect of false positives is commented below). Moreover,

we have access to the vector b = [b1, . . . , bm]T of counters stored in the CMS.

The packet-count for flow fj is the number of times that fj has been received

in the control plane plus the number xj of times that fj has been added

to the CMS. We write x := [x1, . . . , xn]T as a vector. The challenge is to

compute x given b, F and the k hash functions h1, . . . , hk used in the CMS.
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This problem can be captured by a system of linear equations

Ax = b (4.4)

where aij ∈ {0, 1} indicates whether i ∈ {h1(fj), . . . , hk(fj)}, i.e. whether flow

fj has contributed to the counter bi. Here it is assumed that h1(fj), . . . , hk(fj)

are pairwise distinct such that a flow cannot contribute multiple times to the

same counter.

The most immediate question is whether x is uniquely determined by

equation (4.4) or whether there exists x′ ̸= x with b = Ax = Ax′. This is

equivalent to the existence of x′′ ̸= 0 with Ax′′ = 0, which exists if and only

if the columns of A are linearly dependent.

k 3 4 5

c∗k 0.918 0.977 0.992

Table 4.2: Thresholds for CMS equa-

tion solving.

Assuming that the k hash func-

tions behave like fully random func-

tions, the columns of A ∈ {0, 1}m×n

are stochastically independent and

contain exactly k ones per column

in uniformly random positions. Such

matrices have been studied in the

literature on cuckoo hashing and ran-

dom boolean formulas [52, 55, 170].

Sharp threshold behavior concerning the load factor c = m
n

has been demon-

strated. More precisely, there exists a constant c∗k ∈ (0, 1) such that the

following holds. For any c < c∗k − ε the matrix A has linearly independent

columns with probability 1 − n−Ω(1), even when F2 = {0, 1} is used as the

underlying field [52,55,170] (this implies independence for underlying fields

Q and R). For any c > c∗k + ε there exists with probability 1− n−Ω(1) a set

C of columns of A and a set R of rows of A with |C| > |R| such that all

1-entries within C are within R [52, 67]. This precludes the independence

of the column set C over any field. The threshold values are reproduced in

Table 4.2.
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Figure 4.4: Percentage of full-rank matrices

with different load factors and k values

The behavior seen in a

simulation with 100 trials

with k = 3, 4 and CMS size

of m = 2K, 4K, 8K, 16K as

shown in Figure 4.4 matches

these asymptotic predictions

quite well.

Note that the complexity

of solving equation (4.4) is

super-linear in m. To im-

prove running times for large

m, one could attempt to adopt variants of structured Gaussian elimination

as was done in [70] for solving equation (4.4) over finite fields. Alternatively

one could use a smaller load factor exploiting that below the so-called peeling

threshold equation (4.4) can be solved in linear time over any group with

probability 1− n−Ω(1) [83, 153].

The algorithm relies on a splitting hash function and solves a set of several

small systems, instead of a single bigger system solving the various systems

in parallel, taking advantage of Central Processing Unit (CPU) multi-core

architectures. In the evaluation section, I will show how this split reduces the

computation time.

On the issue of false positives. In the case where at least one false

positive has occurred in the BF, we only know a subset F1 ⊂ F of the

remaining FlowIDs, and we do not know F2 = F \ F1. The underlying

equation is then A1x1 + A2x2 = b where A and x are sliced into two parts

relating to F1 and F2. With no knowledge of A2 there is no hope of recovering

the counts x2 for F2. There are, however, several methods for approximately

recovering the counts x1 for F1 under reasonable assumptions. In an insightful

paper by Ting [203], ϵ := A2x2 is modeled as a random error vector and

our task is to find x1 that maximizes the likelihood of ϵ = b − A1x1. If we

assume that the |F2| entries of ϵ are independently sampled from a log-concave

distribution D, then we obtain a convex optimization problem. For instance,
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if D is assumed to be a normal distribution, then we recover the linear least

squares method where ||A1x1 − b||2 is to be minimized. This method already

yields decent results in practice [127] despite the unfounded assumption on

D (e.g. a normal distribution does not guarantee ϵ ≥ 0). For even better

accuracy, Ting [203] proposes methods for estimating D based on those entries

of b to which no key in x1 has contributed.

In my implementation, I compute an approximate value of x1, called x̂1.

We have x̂1 = A−1
1 b. The approximation error is e = x̂1 − x1 = A−1

1 ϵ. Since

FlowLiDAR targets a small False Positive Rate (FPR), there is a small value

of ||ϵ||, since only a few elements of the vector ϵ are different from zero, thus it

is expected that also ||e|| will be small. This is confirmed by the experiments,

as will be shown later in the chapter’s evaluation.

Furthermore, it is always possible to compare the solution x provided

by the equation solver to the minimum among the k rows of the CMS

corresponding to the xi variable, choosing the minimum among these two

values. This guarantees that the error due to the BF will be similar to the

approximation of the traditional CMS in the worst case.

Finally, splitting the system into a set of smaller independent systems

further alleviates this problem. In fact, for most of the subsystems, the

occurrence of false positives has a negligible impact on the overall error, while

for the few subsystems in which this error is significant, the result is bound

to those achieved by the traditional CMS approximation.

Approximate CMS Equations Solving

If the rank r of the matrix is less than the number of variables n the system

is underdetermined and has multiple solutions. In particular, the system has

several free variables that are l = n − r. In the following, an algorithm is

described that selects the l free variables that minimize the absolute error.

This algorithm can be used when the exact CMS equation solving fails.

The algorithm, presented as Algorithm 7 selects the system equations with

the smallest constant terms bi and imposes as value of the corresponding

variables bi/ni, where ni is the number of variables appearing in the i-th
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system equation. Fixing the value of these unknowns corresponds to setting

some additional rows to the A matrix. The procedure is repeated until the

sum of the ni fixed variables reaches the value of l. The algorithm reduces

the underdetermined problem to a linear system with exactly one solution,

which can be solved using the standard method used to resolve the sparse

linear system of equation (4.4).

Algorithm 7 Algorithm for the selection of the free variables

1: Sort the vector b in ascending order

2: for Each bi do

3: Get the variables xa, ..xb corresponding to row i of the matrix A that differs

from 0

4: set the values of xa, ..xb to bi/ni

5: set l = l − ni

6: if l == 0 then

7: break the loop

8: end if

9: end for

10: Solve the Ax = b system with the additional equations given by row 4.

This algorithm will select one of the possible solutions for solving the

linear system, but it can not be sure that this is the actual distribution of

the number of packets per flow. However, I will show in the FlowLiDAR

evaluation that the average absolute error

AAE =
1

n

∑
i

|xi − x̂i|

and the average relative error

ARE =
1

n

∑
i

|xi − x̂i|
xi

obtained using this algorithm are better than the Average Absolute Error

(AAE) and Average Relative Error (ARE) obtained both using the least

square method proposed by PR-sketch and the standard CMS algorithm (that

for the variables xi takes the minimum among the buckets addressed by fi).
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Version Pipeline SRAM sALU TCAM Hash

Stages Bit

FlowLiDAR 2 5.1% 11.3% 0.3% 2.7%

Lazy FlowLiDAR 3 5.4% 11.3% 0.3% 3.1%

Table 4.3: Resource footprint imposed by FlowLiDAR in Tofino 2. These

numbers are based on a 4x128K BF, and 64 5x1K 16-bit CM sketches

4.4 Implementation

I implemented FlowLiDAR in 500 lines of P416 code7 for Tofino 2, using the

Barefoot SDE 9.7 [2]. The results are obtained using a 4x128K BF, with

64 count-min sketches each containing 5 rows of 1K 16-bit counters. The

resource costs, as shown in Table 4.3, are relatively modest and leave plenty

of room for any co-located functionality at the switch.

Note that my prototype uses a relatively high number of stateful ALUs.

This is because an efficient implementation without recirculation necessitates

a dedicated stateful ALU for each of the 9 hash functions used for the

combined BF and CMS dimensions. Here, the indexing in the BF and CMS

and the selection of which sketch to apply are all based on the switch-native

Cyclic Redundancy Check (CRC) engine, using custom polynomials that are

statically configured at compile-time for a high level of independence between

the hash functions.

Finally, it is worth noting that the lazy version of FlowLiDAR requires

more stages (+3 compared to +2 stages). This is due to the introduction of a

strict dependency between the BF-bits, which forces the compiler to stretch

the BF across several hardware stages.

This implementation demonstrates that the design is compatible with the

high-throughput PISA architecture, proving it can effectively operate within

high-speed pipelined network switches.

7The P4 source code and the simulator are available at this link:

https://github.com/FlowLidar/FlowLidar.
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4.5 Evaluation

A software simulator has been developed for evaluating FlowLiDAR. The

simulator reproduces the behavior of the hardware prototype while providing

more flexibility in terms of the number of used hashes and sizing of data

structures, thus providing better insights into the behavior of FlowLiDAR.

The code has then been used to monitor the flows in three CAIDA traces using

FlowLiDAR with different configuration parameters. In particular, I consider

three different traces taken from the 2016 dataset [30]: (C1) 21/01/2016

Minute 13:00, (C2) 18/02/2016 Minute 13:30, and (C3) 17/03/2016 Minute

14:00. The characteristics of the three CAIDA traces are reported in Table

4.4. Before proceeding to discuss the results, it is important to note that the

relative performance of the different sketches will be similar when the link

speeds increase from the 10G of the CAIDA traces to faster links such as

those currently used in modern data centers.

Although ISP traffic, such as CAIDA, is not a perfect representation

of data center environments, I need extensive packet traces that are only

available from ISP traces to saturate the data structures. Please refer back

to Section 3.6 in the previous chapter for a more in-depth explanation of this

choice and its drawbacks.

short name duration # of pkts # of flows average bit rate average packet size

C1 60 sec 31M 905K 2.1 Gbps 509B

C2 58 sec 31M 781K 3.1 Gbps 722B

C3 60 sec 34M 579K 4.1 Gbps 898B

Table 4.4: Characteristics of the CAIDA traces used in the evaluation

In the first experiment, I use one-second sketching epochs, a BF with four

arrays of 128K bits, and a CMS with 64 arrays of 1K counters of 16 bits. The

basic scheme and the lazy update are evaluated and the results are shown in

Figures 4.5-4.12.

The plots report the percentage of flows with exact results per epoch,
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the percentage of flows not detected due to False Positives (FPs), and the

bandwidth to the control plane. It can be noticed that FlowLiDAR with

the standard BF can exactly (with no error) estimate more than 80% of

flows. Small-scale experiments show that for 95% of flows, the error is less

than or equal to 1. Consequently, the average absolute and relative error

of FlowLiDAR are well below those of the traditional CMS evaluation (see

Figures 4.7-4.8). The fraction of flows with an error greater than one is due

to the pollution caused by the untracked flows (Figure 4.6), which are the

flows not detected due to a false positive in the BFs. The plots also show

that lazy updates greatly reduce the rate of false positives (Fig, 4.6). This

improves both the fraction of flows with zero error, which approaches 100%,

and the average absolute and relative errors (Fig, 4.7-4.8).

The drawback of the use of lazy updates is the additional required band-

width, which grows from 60K flowIDs per epoch of the standard BF to 130K

flowIDs per epoch (Fig, 4.12).

4.5.1 Benefit of Lazy Update BF

Since the lazy updates have an additional margin, this section presents the

same experiment but reduces the CMS to half, using 32 arrays of 1K counters

of 16 bits. The lazy update with 32x1K and 64x1K CMSs are compared and

the results are shown in Figures 4.9-4.10. In this case, the experiment show

that the use of lazy update enables decreasing the size of the CMS without

affecting the quality of the results. Also with the 32x1K CMS, it is possible

to achieve nearly 100% of the exact results.

In the second experiment, I explore the parameters of the lazy update.

The same experiments are performed while changing the value of the BF and

CMS parameters. In particular, three configurations (4x128K,6x64K,8x32K)

are selected for the lazy update BF and two configurations (32x1024, 64x512)

for the CMS. The parameters are chosen to get insight on the compromise

between the bandwidth required by the lazy BF and the memory saving on

the lazy BF due to the fewer number of bits set to 1 in the lazy BF for the

flows with less than k packets. Table 4.5 reports the FPR and the required
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bandwidth (BW) for the three lazy BF configurations, the AAE and the ARE

both for the 32x1024 and 64x512 CMS configurations. The results show that

the lazy update can save 25% of memory (from the 512Kbits of the 4x128K

to 384Kbits of the 6x64K) with a negligible penalty for the false positive rate,

a 20%-25% of BW overhead and a better value of the AAE and ARE both

for the 32 and the 64 CMS configurations. With the 8x32K BF FlowLiDAR

saves 50% with a BW overhead between 25%-35% and a slightly worse AAE.

As mentioned earlier, this is a tradeoff between accuracy and bandwidth load

that has to be decided by network engineers and operators during system

deployment.

metric k C1 trace C2 trace C3 trace

FP
4 0.0563% 0.0473% 0.0052%
6 0.0300% 0.0250% 0.0013%
8 0.1739% 0.1438% 0.0029%

BW (# of flows)
4 130K 129K 72K
6 154K 151K 88K
8 163K 160K 97K

AAE (32x1K CMS)
4 0.0194 0.0137 0.00043
6 0.0031 0.0021 0.00006
8 0.0202 0.0128 0.00013

AAE (64x512 CMS)
4 0.0176 0.0127 0.00039
6 0.0030 0.0020 0.00006
8 0.0186 0.0121 0.00014

ARE (32x1K CMS)
4 0.0052 0.0037 0.00009
6 0.0008 0.0005 0.00002
8 0.0060 0.0039 0.00003

ARE (64x512 CMS)
4 0.0047 0.0035 0.00008
6 0.0007 0.0005 0.00002
8 0.0057 0.0037 0.00003

Table 4.5: Analysis of lazy update benefit

4.5.2 Bandwidth and Epoch Resolution

One of the possible issues of the FlowLiDAR approach is the need to send to

the controller a significant amount of data. In particular, for each epoch it is
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necessary to send to the controller: (i) all the active flows detected by the

BF and, (ii) the snapshot of the CMS stored in the data plane. Furthermore,

if advanced strategies based on the Lazy updates BF or the BFs pair for

differential flow detection are used, also (iii) the snapshot of the BFs must

be sent to the controller. Even if the mechanisms to forward these data

to the controller can be different, we can assume that they use the same

communication channel such for example a PCIe connection between the

ASIC and the on-switch CPU. It is thus important to understand how much

bandwidth is required and how the use of different epoch lengths affects this

bandwidth. A smaller epoch period will provide a better resolution of the

network snapshot and thus should be preferable. On the other side, the BW

will be directly proportional to the number of epochs in a second, thus at

first look, a too-short epoch period could saturate the available bandwidth.

However, it is also worth noticing that in a shorter period, there will be fewer

active flows, thus less pressure on the communication channel. Moreover, a

smaller number of flows also permits us to reduce the size of both the BF

and the CMS, thus allowing us to significantly reduce the overall amount

of data to send to the controller. To summarize, smaller structures can be

extracted quickly, while larger structures need a longer time to be extracted,

and therefore a longer epoch duration.

A set of experiments was performed using the three aforementioned CAIDA

traces to get an insight into the relationship between bandwidth and epoch

duration. In particular, 10 epoch periods are selected, distributed with an

exponential scale between 1 ms and 1 second (i.e with values 1 ms, 2 ms,

4 ms, 8 ms, .. 1024 ms). Also, the size of the BF was scaled in the same

way, starting from a BF size of 1Kb and doubling the size at each step. This

choice allows a fixed contribution to the bandwidth that is of 1Mb/sec ≈
128KB/sec, which is fairly small. With the above configurations, the FP rate

is around 2% for the differential BF, less than 1% for the standard BF, and

less than 0.05% for the lazy updates. Figure 4.13 shows the results in terms

of FP rate for the three options taken into account.

The second contribution is due to the size of the CMS. If we aim to achieve

an exact solution, the CMS load should be less than 0.97 when k=4, thus the
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Figure 4.14: Number of flows sent to

the controller per second as a function

of the epoch period

number of counters in the CMS should be slightly greater than the number of

active flows. Considering a 2B counter, in the best case in which we almost

fill the CMS up to 97%, the required bandwidth is directly proportional to

the number of flows sent to the controller. The third contribution is simply

the number of active flows that are sent to the controller.

In Figure 4.14 I report the number of flows sent to the controller. It

is possible to see that, as expected the number of flows sent per second

decreases for higher epoch periods, but also if we want to run FlowLiDAR

at a high resolution of 1 ms, the amount of data to send to the controller is

still manageable. From the above data, we can estimate the overall required

bandwidth as follows. If we suppose that the FlowID is 16B, such as the

standard 5-tuple of 104 bits plus some additional information, and considering

the 2B for each CMS counter, we can estimate the overall bandwidth for the

controller with the standard BF as CBW = 128KB+(16+2) ·nf . For the lazy

updates BF the actual number of flowIDs sent to the controller is n̂f > nf ,

while the number of counters in the CMS is reduced since the lazy updates

avoid the insertion in the CMS of the flows with less than 4 packets. The data

reported in Figure 4.14 shows a n̂f ≈ 1.5 · nf . Furthermore, we can estimate

a 50% reduction in the CMS size and thus the BW for the lazy updates can

be computed as CBW = 128KB + (24 + 1) ·nf . For the case of the differential

flow detection, we can reduce the amount of flows sent to the controller by

around 25%, corresponding to a BW of CBW = 128KB + (12 + 2) · nf .

The above-presented evaluation shows that the FlowLiDARs system re-
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quires a bandwidth of 6.4MB/sec (3.6 MB/sec) in the worst case of 1 ms

resolution with lazy updates (differential BFs) and 1.5MB/sec (0.94 MB/sec)

in the case of 1-second resolution. Supposing that the connection between

the control plane and the data plane is provided by a PCIe interface, also

the worst case of 6.4MB/sec is fully sustainable using only a fraction of the

available PCIe bandwidth. Even if we consider a 20X speedup to mimic the

behavior of a 100 Gbps link, as done as an example in Sonata [77], the worst

case requires on the order of 1 Gbps of PCIe bandwidth. Applying the same

speedup, in Figure 4.13 and Figure 4.14 the x-axis should be scaled by 20x to

estimate the FPR and bandwidth for a fully used 100 Gbps link.

4.5.3 Comparison with Other Solutions

In this section, I compare FlowLiDAR with FlowRadar [133], the NZE

sketch [91], the PR sketch [183] and the ElasticSketch [222]. If FlowRadar has

sufficient memory, it can provide an exact result for almost all the monitored

flows. Instead, with insufficient memory, the IBLT decoding process fails, no

FlowIDs can be recovered, and no flow estimation can be done. Therefore,

for the comparison between FlowRadar and FlowLiDARs, I estimated the

minimum amount of memory needed to achieve 99% of exact results. Instead,

for NZE, PR-sketch, and ElasticSketch, the amount of memory is fixed.

Several metrics are evaluated, namely the required bandwidth, AAE, ARE,

and the percentage of flows with no error. For FlowLiDARs, a lazy BF

of (4x128 Kbits) and a CMS of (32x1Kx16bits) were used, with an overall

memory of 128 KB. For NZE the code from the NZE repository is used,

allocating for the BF in the NZE sketch the same size as the lazy BF in

FlowLiDARs, and the amount of memory used by the FlowLiDARs CMS

corresponds to the sum of the CMS and hash tables used in the NZE sketch.

In detail, 32KB was allocated to the NZE CMS and 32KB to the hash table.

For the PR-sketch the configuration is similar to FlowLiDARs: 64KB for the

BF and 32Kx16bits for the CMS.

Note that the size of the lazy BF of FlowLidar and of the BF of NZE and

PR-sketch is related to the number of undetected flows, i.e. flows that are not
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monitored by the system. To monitor more than 99% of flows, for a trace with

around 60K flows, at least 64KB of memory is needed for the standard BF

used in PR-sketch (see equation (4.1)). This corresponds to a ratio between

BF and CMS different from the one used in the original PR-sketch paper.

Using the default ratio of 12.5% leads to a ratio of undetected flows of around

20%.

For ElasticSketch, 25% of memory is allocated to the heavy part (32KB)

and 75% of memory to the light part (96KB), following the configuration pro-

posed in their paper [222]. Note that since the original paper of ElasticSketch

does not mention the case in which all the monitored FlowIDs are sent to the

controller at the end of the measurement epoch, the BW usage is not included

in this dissertation either. Following the configuration of [133], FlowRadar

requires around 1.4 MB to correctly decode traces C1 and C2, and around

800KB for trace C3. Thus FlowLiDARs provides a memory saving between

6x and 10x compared to FlowRadar.
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Figure 4.15: Comparison between FlowLiDAR (FL), NZE, PR-Sketch (PR),

and ElasticSketch (ES)

In Figure 4.15, I show the comparison with NZE, PR-sketch, and ElasticS-

ketch for one trace with an epoch time of 1 second. However, the results are

similar for other traces and configurations and consistently show that FlowLi-

DARs provides better results at the expense of a slight increase in the number

of flowIDs sent to the control plane. In particular, FlowLiDARs has much

better results both in terms of ARE and AAE, as well as in terms of flows

with no error8. This is mainly due to two reasons: first of all, in FlowLiDARs,

small flows are directly counted by the control plane and do not use the CMS

counters; second, FlowLiDARs avoids a hash table in the data plane, which

permits doubling the size of the CMS. Both of these improve the possibility

of exact results using the resolution method described in section 4.3.4.

8Note that the performance characteristics of PR-sketch, as well as FlowLiDARs,

depends on the overall configuration of the data structure (e.g., the ratio of memory used

for filtering vs sketching). Here, the ratio is chosen to be the same in both systems to

provide a fair comparison.



106 4.5. Evaluation

128KB 1MB 2MB 3MB 4MB 5MB 6MB
Total Memory

40%

60%

80%

100%

Er
ro

r-F
re

e 
Fl

ow
s

FlowLiDAR
PR Sketch

Figure 4.16: Comparing FlowLiDAR and PR-

sketch in terms of error-free flows at different

allocated memory sizes

Finally, since the PR-

sketch is conceptually close

to FlowLiDAR, an additional

comparison was conducted

on the memory efficiency,

which I present in Figure 4.16.

The fraction of flows tracked

without any estimation errors

was recorded (data refers to

the C1 trace) when a varying

amount of memory was allo-

cated for filtering and sketching. The PR-sketch achieves higher error-free

rates as more memory is allocated but at a much lower rate than FlowLiDARs.

For example, to achieve a target error-free rate of 90%, PR-sketch would

require 8x as much memory as FlowLiDARs. This clearly shows the benefits

of the innovations introduced in this chapter. The better performance of

FlowLiDARs is mainly due to the lazy BF, which reduces the number of

monitored flows, thus increasing the memory size range in which the exact

resolution can be used. However, even in the case of an underdetermined

system, the use of an ad-hoc approximate resolution provides better results

than the least square method used in PR-sketch, as discussed below.

4.5.4 FlowLiDAR Approximate Resolution

As mentioned in section 4.3.4, when the number of flows is higher than

the number of CMS rows, the system is underdetermined, and there are

multiple possible solutions. A set of experiments was performed that reduced

the size of the CMS to understand the quality of the approximate solution

provided by Algorithm 7. In particular, the lazy update BF is used with

k = 4 and the overall memory of the CMS was reduced from 512 Kbits (the

32x1K configuration discussed in section 4.5.1), which can provide the exact

resolution, down to 32Kbits of a 32x64 CMS configuration. The collected

data proves that even with a small amount of memory, it is possible to have
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a good estimation of the flow size. The results are compared with the ones

achieved using the least square method proposed in PR-sketch9 and with the

estimated values obtained using the standard CMS estimation based on the

minimum value. Note that the least square method simply picks one of the

possible solutions (all of them have the L2-norm equal to zero), and therefore

does not give a guarantee on the actual error between the proposed solution

and the actual values. Instead, FlowLiDARs selects the free variables of the

system to fix among the smallest ones, thus minimizing the error between

the free variables and the actual values. Table 4.6 presents the percentage

of exact estimations for different configurations, along with the AAE and

ARE of the FlowLiDARs approximate resolution. These results are compared

with those obtained using the least squares method and the standard CMS

estimation method.

size #exact #exact AAE AAE AAE ARE ARE ARE

(bits) lstsq lstsq std lstsq std

32x1K (exact) 512K 99.0% 99.0% 0.019 0.019 3.468 0.0052 0.0052 1.97

32x512 256K 65.0% 60.8% 5.11 5.75 12.9 0.58 1.17 7.57

32x256 128K 63.3% 58.8% 9.11 18.0 42.6 1.32 3.68 24.31

32x128 64K 63.2% 58.8% 21.93 50.4 121 3.94 10.3 68.54

32x64 32K 63.1% 58.8% 45.41 129.9 315 8.57 26.5 177

Table 4.6: Performance of FlowLiDAR approximate CMS resolution

The table shows that the approximate resolution is still able to provide

exact estimations in 60% of cases. These values are mostly due to the use

of the lazy update BF that counts the number of packets in the flow based

on the number of occurrences of the FlowID sent to the control plane. The

main benefit of the approximate resolution appears on the obtained AAE

and ARE values, which are significantly smaller than the ones achievable

using the standard evaluation of the CMS. In particular, when the memory

available for the CMS is small, the approximate resolution provides a much

better estimation than the standard one. For example, comparing the 32x64

configuration that requires 32Kbits, it has around a 3x better AAE and ARE

9This can be seen as an improved PR-sketch since it first exploits the benefit of the

lazy update mechanism and after uses the least square method.
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compared to the least square method used in PR-sketch, a 7x better AAE

and a 20x better ARE compared to the one achievable using the traditional

CMS.

4.5.5 Equation Solving Time

Another aspect of the FlowLiDAR implementation to take into account is

the processing time needed for CMS equation solving. It is known that the

processing time grows more than quadratically [49] and thus it is important to

reduce the size of the CMSs used by FlowLiDAR. On the other hand, the use

of smaller CMSs has a slightly negative impact on the probability of exactly

solving the CMS equation. In more detail, since a single hash function is used

to select the CMS for a given flow, the load factor of each CMS will vary.

Therefore some CMSs will be overloaded, and if they go over the resolution

threshold the exact CMS resolution will fail. Note that this is not a dramatic

event, since in case of failure, FlowLiDAR uses as a fallback the estimation

of size based on the minimum. To better investigate this aspect, a set of

experiments was performed on an 8 core, 16 threads Intel i7-10700K CPU

clocked at 3.80 GHz to evaluate the processing time of a CMS exact resolution

using a single core, varying the number of rows of the system equation. The

results are presented in Table 4.7.
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CMS size 256 512 1K 2K 4K

Processing time (ms) 0.6 2.8 15 100 680

Table 4.7: Processing Time for Exact CMS resolution

From Table 4.7

we can identify a

CMS size that allows

a line rate decoding

using the parameters

selected in the previ-

ous section. In par-

ticular, for the shortest epoch period of 1 ms, 2 CMS of 256 elements are

sufficient to store the active flows in one epoch (that are less than 300 in the

three CAIDA traces used in the simulations), and can also be decoded in a

time interval less than the epoch period using 2 CPU threads. For longer

periods the scenario is less challenging since we can exploit multiple cores to

perform the exact resolution of different CMS equations in parallel. Further-

more, a greater epoch period permits to increase in the size of the single CMS.

For instance, it is feasible to deploy 64 1K CMSs with a 1-second resolution,

which a single thread can process in approximately 960 milliseconds.
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4.6 Chapter Summary

In this chapter, I addressed the second research objective of my dissertation:

“Improve the Cost vs Accuracy Tradeoff in Sketches”. To achieve this, I

developed and presented FlowLiDAR, a novel solution that optimizes per-

sketch memory utilization to provide highly accurate flow size estimates even

under severe memory constraints.

FlowLiDAR introduces several key innovations. Firstly, it eliminates the

need to store FlowIDs in the data plane by sending them to the control plane,

significantly reducing memory requirements. Secondly, it enhances accuracy

by solving the sketch as a linear programming problem, made efficient through

a multi-sketch per-switch deployment. Thirdly, the lazy update mechanism

in the Bloom filter reduces false positives as well as reduces the number of

flows counted by the sketch itself.

The FlowLiDAR approach efficiently combines these techniques to dras-

tically reduce data plane memory usage while achieving excellent accuracy.

By decoupling FlowIDs from their associated counters and implementing

lazy updates, FlowLiDAR addresses the inherent challenges posed by the

high-speed, memory-constrained environments typical of network switches.

My evaluation of FlowLiDAR demonstrated substantial improvements in

estimation accuracy compared to state-of-the-art alternatives. For instance,

FlowLiDAR requires at least 6x less memory than FlowRadar. When com-

pared with NZE, PR-sketch, and ElasticSketch configured with the same

amount of memory, FlowLiDAR reduced the errors by orders of magnitude.

Moreover, FlowLiDAR successfully tracks 98.7% of existing flows, whereas

other techniques only reconstruct at most 60% of flows with similar resources,

greatly increasing the flow coverage.
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High-Speed Collection

The two previous research chapters focused on collection-light sketch-based

monitoring. However, sketches have limitations in versatility, primarily sup-

porting simple key-based estimations. As discussed in the background chapter,

comprehensive network insights necessitate multiple in-network monitoring so-

lutions, many of which generate vast amounts of data, necessitating sampling

to manage the collection bottleneck.

To address the third research objective, “Alleviate the Telemetry Collection

Bottleneck”, this chapter develops advanced techniques and algorithms for

efficient and scalable data aggregation. Here, I introduce Direct Telemetry

Access (DTA), a high-performance telemetry collection system designed to

improve the cost vs. insight tradeoff in fine-grained network telemetry.

DTA can aggregate and transfer hundreds of millions of telemetry reports

per second from switches to a centralized collector, improving collection rates

by an order of magnitude compared to current solutions. Additionally, to

further enhance scalability, DTA is horizontally scalable, supporting multiple

parallel collectors. This system is built on Remote Direct Memory Access

(RDMA) and introduces novel reporting primitives to ensure seamless integra-

tion with existing telemetry mechanisms such as In-band Network Telemetry

(INT) and Marple.

Although DTA primarily focuses on large-scale data collection in mod-

ern data centers, it also applies to other large-scale environments, such as

111
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Autonomous Systems (ASs).

Attributions The contributions in this chapter were led and delivered

by me, except for the stochastic analysis, which was performed by Prof.

Michael Mitzenmacher and Dr. Ran Ben Basat. All co-authors in the already

published papers participated in general discussions during weekly meetings.
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Figure 5.1: An overview of the telemetry data flow in DTA.

5.1 Introduction

Although sketches fill an important niche in network telemetry, they are limited

to estimations of specific metrics and need to be supplemented with other

monitoring systems for a holistic insight [78, 194]. Similarly to sketches, most

monitoring solutions aggregate per-switch data into centralized collectors [12,

34, 77, 93, 105, 115, 163], commonly located in an ordinary rack within the

datacenter fabric [94, 151], to grant a network-wide view.

Unfortunately, as telemetry gets more fine-grained, the amount of data

to send to a collector increases, and it is progressively harder to scale data

collection systems [115,207,230]. Indeed, a switch can generate up to millions

of telemetry reports per second [159, 230] and a data center network can

comprise thousands of them [76]. Also, the amount of data keeps growing

with larger networks and higher line rates [185].

Existing research boosts scalability in data collection by improving the

collector’s network stacks [115, 207], by aggregating and filtering data at

switches [103, 120, 159, 209, 230], or by reducing the exported information

through switch cooperation [131]. However, as I show, a collector can easily

become either Central Processing Unit (CPU)- or memory-bounded (§5.2).

This is due to the amount of data processing (i.e., Input/Output (I/O),

parsing, and data insertion) required for every incoming report.
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I propose Direct Telemetry Access (DTA) — a telemetry collection system

(Figure 5.1) optimized for aggregating and moving hundreds of millions of

reports per second from switches into queryable data structures in collectors’

memory. In designing DTA, I considered four key goals: (1) relieving a

collector’s CPU from processing incoming reports while also (2) greatly

lowering the number of memory access into it. Those aspects dramatically

reduce overheads at the collectors. Furthermore, I wanted (3) to be compatible

with state-of-the-art telemetry reporting solutions (e.g., In-band Network

Telemetry (INT) [103], Marple [159]) while (4) imposing minimal hardware

resource overheads at switches.

To meet the first goal, we could simply have switches generate Remote

Direct Memory Access (RDMA) (Remote Direct Memory Access) [101] calls

to a collector’s memory. RDMA is available on many commodity network

cards [104,199,215] and can perform hundreds of millions of memory writes

per second [199], significantly faster than the most performant CPU-based

telemetry collector [115]. Previous work [117] has shown that one can generate

RDMA instructions between a switch and a server for network functions.

However, it is challenging to adopt RDMA between multiple switches and a

collector for telemetry systems as RDMA performance degrades substantially

when multiple clients write to the same server [111]. Furthermore, managing

RDMA connections at switches is costly in terms of hardware resources and

this would conflict with my fourth goal.

Instead, I developed a solution where the telemetry data exported by

switches is encapsulated into a custom and lightweight protocol. This encap-

sulated data is intercepted by the last hop switch in front of the collector,

commonly the Top of Rack (ToR) switch, which I refer to as a DTA translator.

The translator converts the encapsulated data into standard RDMA calls for

the corresponding memory (§5.3).

To achieve the first goal, the CPU avoids processing reports by design, as

data is inserted directly into a collector’s memory via RDMA.

For the second goal, the translator aggregates and batches reports before

invoking RDMA calls, inserting the data into a collector’s memory using

RDMA-compatible write-only data structures that enable indexing of aggre-
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gates without reading from memory, thus reducing memory pressure on the

collector’s memory based on the needs of the telemetry data.

For the third goal, I designed several switch-level RDMA-extension prim-

itives (Key-Write, Postcarding, Append, and Key-Increment), available to

reporting switches. The translator converts these into standard RDMA calls,

ensuring compatibility with many telemetry systems (§5.4).

Finally, for the fourth goal, telemetry-reporting switches use my User

Datagram Protocol (UDP)-based protocol to send reports, freeing them from

managing RDMA, a responsibility solely handled by the translator.

I implemented DTA using commodity RDMA Network Interface Cards

(NICs) and programmable switches (§5.5) and my evaluation (§5.6) shows that

it can process and aggregate over 400M INT reports per second, without any

CPU involvement, which is 16x faster than the state-of-the-art CPU-based

collector for high-speed networks [115]. Further, when the received data can

be recorded sequentially, as in the case of temporally ordered event reports, it

can ingest up to a billion reports per second, 41x more than state-of-the-art.

The main contributions in this chapter are:

• I show that collectors can easily become either CPU- or memory-

bounded, greatly limiting their ability to process reports and store

them in queryable data structures.

• I propose Direct Telemetry Access, a novel telemetry collection system

generic enough to support major telemetry reporting solutions proposed

by the research community (e.g., Marple) or industry (e.g., INT).

• I validate the hardware feasibility of DTA by prototyping it using

commodity RDMA NICs and programmable switches, all of which are

released as open source.

• I provide an in-depth evaluation demonstrating DTA’s significant col-

lection capacities compared to current solutions, while simultaneously

reducing memory and CPU overheads.
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System Per-switch Report Rate

INT Postcards (Per-hop latency, 0.5% sampling) 19 Mpps

Marple [159] (Flowlet sizes) 7.2 Mpps

Marple [159] (TCP out-of-sequence) 6.7 Mpps

NetSeer [230] (Loss events) 950 Kpps

Table 5.1: Per-reporter data generation rates by various monitoring systems,

as presented in their papers and verified through my experiments. Numbers

are based on 6.4Tbps switches.

5.2 Motivation

Telemetry systems are commonly composed of two main components: (1)

switches reporting data and (2) collectors, specialized software installed in

dedicated servers located in ordinary racks within the data center fabric, that

store the reported data [94,151]. As telemetry systems move to fine-grained

real-time analysis with support for network-wide queries, report collection

becomes the new key bottleneck [115].

I investigated several state-of-the-art telemetry systems and summarize the

reporting rate generated by a single switch in Table 5.1, based on the numbers

available in the corresponding papers.1 For example, postcarded INT [103]

could generate up to 19M reports per second when enabled on a commodity

6.4Tbps switch and in the presence of a standard load of ≈40% [225]. Other

solutions export less data, either because they pre-process and filter data at

switches [77, 230], or because they focus on more specific tasks, thus limiting

the data to report [159].

The main takeaway is that state-of-the-art solutions can easily generate

millions of reports per second per switch. However, to be able to gather a

network-wide view at datacenter scale, we may need to collect data from

thousands of switches [76] and this requires high-performance collection

stacks [115,207]. For each report from a switch, collectors spend CPU cycles

1INT does not advertise a telemetry reporting rate. Thus, as an example, I chose an

arbitrary sampling rate of 0.5% to keep overheads reasonably low.
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Figure 5.2: The performance of CPU-based collectors. MultiLog is CPU-

bound, while Cuckoo is memory-bound as with 20 cores, 42% of the cycles

are spent waiting for a memory operation to finish.

to receive the data (i.e., I/O), parse it (extract content from the report), and

insert it in a queryable data structure for later use (i.e., indexing) [36, 115,

149,207].

Here, an important trade-off must be considered: while more complex

indexing mechanisms can efficiently answer various types of queries, they

typically require more CPU cycles for data insertion. Consider, for example,

a simple collector that uses only a hash table to record incoming reports.

This solution works well for storing and retrieving counters (e.g., Netflow

flow records [38]). However, such a solution might be impractical for certain

types of queries, such as temporal queries that examine a time interval (such

as analyzing losses [230], congestion [74], suspicious flows [120] or latency

spikes [225] that happens at a certain period in time).

To better understand this trade-off, I have deployed a state-of-the-art Data

Plane Development Kit (DPDK)-based telemetry collector allowing storage
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Figure 5.3: Number of cores needed for single-metric collection with MultiLog

at various network sizes.

and diverse queries through an Atomic MultiLog [115] (from now on I simply

refer to it as “MultiLog”).2 I used a high-speed server equipped with 2x Intel

Xeon Silver 4114 CPUs with 10 cores each clocked to 2.20GHz, and 2x32GB

Dynamic RAM (DRAM) clocked to 2.67GHz. I compared the performance

of this system to a DPDK-based lightweight solution which employs only a

simple cuckoo hash table to store the received information (I refer to it as

“Cuckoo”). I analyzed their behavior when receiving and storing INT reports

and found that the MultiLog collector is CPU bounded : indeed, its ability to

ingest reports grows linearly with its number of cores (Figure 5.2a). Moreover,

the majority of its CPU cycles, around 72.8%, are spent in inserting the data

into its internal database (Figure 5.2c). The main takeaway is that a complex

indexing scheme can significantly impact the collector’s performance.

To put this in perspective, in Figure 5.3, I show the number of cores

that would be needed for a growing size of a data center network when

employing the MultiLog collector in the presence of switches reporting different

information. Here, we see that for networks comprising around a thousand

switches [76], we would need to dedicate nearly 10K cores just for collection.

2Atomic MultiLog is the basic storage abstraction in Confluo [115] and is similar in

interface to database tables.
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For example, in a K = 28 fat tree, this would correspond to over 11% of servers

(assuming 16 cores each), and the problem worsens for smaller networks.

In contrast, the lightweight Cuckoo scheme can ingest more reports per

second (Figure 5.2a) using the same number of cores. However, a new

bottleneck arises: in my tests, we see that with more than 11 cores it becomes

memory bounded. For example, with 20 cores, 42% of cycles are spent waiting

for a memory operation to finish (Figure 5.2b). This is because the high

number of reports received puts tremendous stress on the memory subsystem,

which must be read and written to parse the reports, calculate the hashes,

and resolve collisions.

5.2.1 Design Goals

Based on these observations, I argue that an effective telemetry collection

method should:

1. Minimize the number of cores required for data collection.

2. Lower the number of memory accesses per report.

3. Be compatible with state-of-the-art telemetry reporting systems.

4. Use minimal hardware resources to get reports to a collector.
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5.3 Direct Telemetry Access Overview

DTA leverages translators, which are the last-hop switches adjacent to the

collectors. Translators receive telemetry data from reporters (i.e., switches

exporting telemetry data), encapsulated in my lightweight custom protocol.

They then aggregate and batch the reports and use standard RDMA calls to

write them directly into queryable data structures in the collectors’ memory

(Figure 5.1). In the following, I discuss how, with this architecture, DTA

meets the goals set above.

Meeting goal #1. A strawman solution to meet the first goal could

have switches write their reports directly in collectors’ memory with RDMA

calls [124]. This would zero any CPU requirements at collectors by design.

Although this idea appears attractive, and generating RDMA instructions

directly from switches is possible [117], it becomes problematic when applied

to telemetry collection. Namely, It is inefficient to support multiple RDMA

senders writing in the same servers [111]. This is paramount for network

telemetry, where numerous switches report their data to a collector. Addi-

tionally, RDMA NICs can only handle a limited number of active connections

(also known as queue pairs) at high speed. Increasing the number of queue

pairs degrades RDMA performance by up to 5x [54]. This limits the total

number of switches that can generate telemetry RDMA packets to a collector

before performance starts degrading. Alternatively, several switches can share

the same queue pair, but RDMA assumes that every packet received at the

collector has a strictly sequential ID, which is impractical for a distributed

network of switches. DTA overcomes these challenges by having the translator,

which is the last-hop switch before the collector, act as the RDMA writer.

Further, by aggregating the reports we can optimize the number of CPU

cycles needed for querying as related information is stored contiguously.

Meeting goal #2. I propose two techniques to lower the number of accesses

into collectors’ memory. First, I aggregate reports at the translator, thereby

writing each aggregate using a single write rather than one per report. Second,
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while telemetry data has to be stored in the collectors’ memory in such a way

that it is easy to query [115], even simple data structures like hash tables often

require an excessive number of memory accesses, e.g., for conflict resolution.

Instead, I design RDMA-compatible write-only data structures that enable

the indexing of aggregates without reading from memory. Additionally, by

circumventing the CPU for data ingestion, this solution also removes I/O and

parsing overheads of report collection.

Meeting goal #3. I propose several powerful primitives available at the

translator that can be used by state-of-the-art telemetry reporting systems

(Table 5.2). The primitives abstract away many common challenges (e.g.,

deciding where to write data to or how to leverage the small switches’ mem-

ory) and allow telemetry system designers to seamlessly benefit from my

optimizations (e.g., CPU and memory accesses minimization).

Meeting goal #4. In DTA, to minimize in-network hardware resources

utilization, reporting switches simply use a UDP-based lightweight protocol

to send reports to the translator. That way, we alleviate the burden of RDMA

generation and aggregation in all switches but the translators. Indeed, the

standard RDMA communication protocol, RDMA over Converged Ether-

net (RoCEv2), requires maintaining expensive per-connection metadata and

generating appropriate headers and associated checksums.

5.4 DTA Primitives

DTA allows easy integration with state-of-the-art telemetry monitoring sys-

tems [18, 74, 77, 159] through my four collection primitives that together

support a wide range of telemetry solutions: Key-Write, Postcarding, Append,

and Key-Increment. These primitives provide for placing data in the right

place at the collector’s memory during reporting time, to alleviate as much

as possible the cost of query execution.

I show in Table 5.2 that the primitives are sufficiently generic to support

many state-of-the-art telemetry systems. Additionally, in Section 5.4.5, I
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Primitive Example monitoring Description

Key-Write
(key,data)

INT-MD [74,116]

(Path Tracing)

INT sinks reporting 5x4B switch IDs using flow 5-tuple keys

Marple [159]

(Host counters)

Reporting 4B counters using source IP keys, through non-merging aggregation

PacketScope [201]

(Flow troubleshooting)

Report fixed-size per-flow per-switch traversal information using (switchID,5-

tuple) as key

PINT [18]

(Per-flow queries)

1B reports with 5-tuple keys, using redundancies for data compression through

n = f(pktID)

Sonata [77]

(Per-query results)

Reporting fixed-size network query results using queryID keys

Postcarding
(key,hop,data)

INT-XD/MX [74,116]

(Path Measurements)

Switches report 4B INT postcards using (flow 5-tuple, hop) keys

Trajectory Sampling [56]

(Path Frequencies)

Collection of unique packet labels from all hops for sampled packets

Append
(listID,data)

dShark [65]

(Parser-Grouper transfer)

Parsers append packet summaries to lists hosted by Grouper-servers

INT [74,116]

(Congestion events)

INT sinks append 4B reports to a list of network congestion events

Marple [159]

(Lossy connections)

Report 13B flows to a list with packet loss rate greater than threshold

NetSeer [230]

(Loss events)

Appending 18B loss event reports into network-wide list of packet losses

PacketScope [201]

(Pipeline-loss insight)

On packet drop: send 14B pipeline-traversal information to central list of

pipeline-loss events

Sonata [77]

(Raw data transfer)

Appending query-specific packet tuples from switches to lists at streaming

processors

Key-Increment
(key,counter)

Marple [159]

(Host counters)

Reporting 4B counters using source IP keys, through addition-based aggrega-

tion

TurboFlow [190]

(Per-flow counters)

Sending 4B counters from evicted microflow-records for aggregation using

flow key as keys

Table 5.2: Existing telemetry monitoring systems, mapped into the primitives

proposed by the current iteration of DTA.

discuss DTA extensions with new primitives, for scenarios where my proposed

algorithms are insufficient.

I show the structure of a DTA report in Figure 5.4. The telemetry payload

exported by a switch, which depends on the specific monitoring system

being used, is encapsulated into a UDP packet that carries custom headers.
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Figure 5.4: DTA supports legacy telemetry systems through encapsulation

with new headers.

The DTA header (specifying the DTA primitive) and primitive sub-header

(containing the primitive parameters) are used by the translator to decide

what and where to write in the collectors’ data structures. This flexibility

is essential as the various monitoring systems require writing telemetry in

different ways for efficient analysis at the collector. In the following sections,

I discuss my proposed primitives. This description assumes that no DTA

messages are lost, which could be either through Priority Flow Control (PFC)

or a custom flow control solution as discussed later in §5.7. The primitives

themselves would still work even in case of severe in-transit loss of reports,

although with degraded probabilistic guarantees which is not accounted

for in the following theoretical analysis. In most cases, report loss is not

detrimental to the functioning of DTA, except for the obvious loss of telemetry

insight. However, Postcarding might experience collection latencies following

a report-loss, which is discussed in that section.

5.4.1 Key-Write

Key-Write (KW) (visualized in Figure 5.5) is designed for key-value pair

collection. Storing per-flow data is one scenario where this primitive is

useful (additional examples are in Table 5.2). For an overview, I present the

Key-Write translation and querying in Algorithm 8 and Algorithm 9.

Key-value indexing is challenging when the keys come from arbitrary

domains (e.g., flow 5-tuples) and we want to map them to a small address

space using simple write operations. Due to the lack of read-before-write

operations at high performances, I was unable to integrate collision-free

techniques such as Cuckoo hashing at line rates [166]. Both to my, as well as
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Algorithm 8 DTA-to-RDMA translation in Key-Write

1: Input: Redundancy N , Key K, Telemetry data D

2: Bufstart ← Address to start of RDMA memory buffer

3: Buflen ← Number of allocated KeyVal slots

4: Slotlen ← Size of one KeyVal slot

5: function CraftWrite(n, K, D)

6: Slot ← h0(n,K) mod Buflen

7: Dest ← Bufstart + Slot × Slotlen

8: Csum ← h1(K)

9: Write (Csum, D) to address Dest through RDMA

10: end function

11: for n = 0 to N do

12: CraftWrite(n, K, D)

13: end for
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my collaborators’ knowledge, no blind-write and collision-free data structures

exist that would solve this problem. Due to this, I chose to keep the proposed

solutions probabilistic, and the probabilistic properties are discussed further

down, including an in-depth evaluation.

Therefore, Key-Write (KW) provides a probabilistic key-value storage of

telemetry data and is designed for resource-efficient data plane deployments.

This is achieved by constructing a central key-value store as a shared hash

table for all telemetry-generating network switches. Indexing per-key data

in this hash table is performed statelessly without collaboration through

global hash functions. However, data written to a single memory location

is highly susceptible to overwrites due to hash collisions with another key’s

write. The algorithm, therefore, inserts telemetry data as N identical entries

at N memory locations to achieve partial collision tolerance through built-in

data redundancy. In addition, a checksum of the telemetry key is stored

alongside each data entry, which allows queries to be verified by validating

the checksum. Although checksum computation imposes a computational and

storage overhead, this algorithm significantly outperforms current solutions

as is shown in the evaluation.

The network and hardware resource overheads of KW are further reduced

by moving the indexing and redundancy generation into the DTA translator.

This design choice effectively reduces the telemetry traffic by a factor of the

level of redundancy and further reduces the telemetry report costs in the

individual switches by replacing costly RDMA generation with the much

more lightweight DTA protocol (§5.6.3). Isolating KW logic within collector-

managing translators eliminates the associated resource cost for all other

switches.

The following stochastic analysis contains content written by one of my

collaborators for our co-authored paper. I have included the full analysis here

to provide a comprehensive understanding of the algorithms. As discussed

later in Section 5.4.6, rigorous bounds can be derived on the probability that

KW succeeds. Two potential errors can occur: (i) failure to locate a stored

value for a given key (i.e., no matching checksum found at the key’s indices);

(ii) returning an incorrect value for a given key (i.e., false-positive checksum
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matches at the key’s indices).

Denoting the number of slots by M , the number of pairs written after the

queried key by αM , and the checksum length by b bits, the probability of (i)

is bounded by:

(1− e−α·N)N · (1− 2−b)N (5.1)

+ (1− e−α·N)N · (1− (1− 2−b)N −N · 2−b · (1− 2−b)N−1) (5.2)

+
(N−1∑

j=1

(
N

j

)
· (1− e−α·N)j · e−α·N(N−j) · (1− (1− 2−b)j)

)
. (5.3)

Here, (5.1) bounds the probability that all N locations are overwritten

with other checksums; (5.2) bounds the probability that all locations are

overwritten and at least two items with our key’s checksum write different

values; and (5.3) bounds the probability that not all slots are overwritten, but

at least one is overwritten with the query key’s checksum. The probability of

giving the wrong output (ii) is also bounded by

(1− e−α·N)N ·N · 2−b. (5.4)

For example, if N = 2, b = 32, α = 0.1, the chance of not providing the

output is less than 3.3%, while the probability of wrong output is bounded

by 1.6 · 10−11. This aligns with the best effort standard of network telemetry

(e.g., INT is often collected using UDP, and packet loss results in missing

reports) while having a negligible chance of wrong output. Note that this

error is significantly lower than with N = 1 (which results in not providing

output with probability 9.5%) and higher than for N = 4 (probability 1.2%).

However, increasing N also has implications to throughput (more RDMA

writes) and is not always justified; I elaborate on this tradeoff in §5.6.5 and

show that N = 2 is often a good compromise.

DTA also lets switches specify the importance of per-key telemetry data

by including the level of redundancy (N), or the number of copies to store,

as a field in the KW header. Higher redundancy means a longer lifetime

before overwrites, as I discuss in §5.6.5. As the level of redundancy used at

report time may not be known while querying, the collector can assume by
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Algorithm 9 Querying the Key-Write storage

1: Input: Redundancy N , Key K, Consensus threshold T

2: Output: Dwinner

3: Buflen ← Number of allocated KeyVal slots

4: Storage ← Array size Buflen with ⟨Csum, D⟩ elements

5: function GetSlot(n, K)

6: Slot ← h0(n,K) mod Buflen

7: return Storage[Slot ]

8: end function

9: Csum ← h1(K)

10: for n = 0 to N do

11: (Csumslot , D)← GetSlot(n, K)

12: if Csum == Csumslot then

13: Add D to list of candidates

14: end if

15: end for

16: Dwinner ← candidate D if D appears at least T times
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Figure 5.6: Postcarding Overview.

default a maximum (e.g., N = 4) redundancy level. If the data was reported

using fewer slots, unused slots would appear as empty or overwritten entries

(collision).

5.4.2 Postcarding

Here I describe one of the more intricate DTA primitives: Postcarding (visu-

alized in Figure 5.6).

One of the most popular INT working modes is postcarding (INT eX-

port Data/eMbed instruct(X)ions (INT-XD/MX) [74]), where each switch

generates postcards when processing selected packets and sends them to

the collector (e.g., for tracing a flow’s path.) A report is a collection of

one postcard from each hop. Intuitively, while the KW primitive could be

used to write all postcards for a given packet, this is likely inefficient for

several reasons. First, each packet can trigger multiple reports translating

into multiple RDMA writes even if N = 1 (e.g., one per switch ID for path

tracing). In turn, for answering queries with KW (e.g., outputting the switch

ID list), the collector needs to make multiple random-access reads, which

is unnecessarily slow. Further, adding the KW’s checksum to each hop’s

information is wasteful and degrades the storage size vs. queryability tradeoff.
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For ease of presentation, I first explain how to reduce the number of writes

and later elaborate on how to decrease the width of each slot.

My observation is that if we know a bound B on the number of hops

a packet traverses (e.g., five for fat tree topology), then we can improve

the above by writing all of a packet’s postcards into a consecutive memory

block. To that end, DTA breaks the M memory locations into chunks of

size B, yielding C = M/B chunks. The i’th postcard for a packet/flow

ID x is written into B·h(x) + i, where h maps identifiers into chunks (i.e.,

h(x) ∈ {0, . . . , C − 1}). This way, the report for all up to B is consecutive

in the memory, as shown in Figure 5.7. Note that this primitive assumes a

maximum path length that is knowable in a network topology.

DTA Postcarding uses a mapping from IDs to postcards at the translator

to reduce the number of RDMA writes. That is, the translator shall buffer

postcards 0, 1, . . . , B − 1 before writing the report to the collector’s memory

using a single RDMA write, once B flow postcards are counted in the trans-

lator. Further, answering queries will thus require a single memory random

access. As not all packets follow a B hop path, egress switches can provide a

packet’s path length inside postcards, and translators can use this value to

trigger writes before the postcard counter reaches B. This path length can

either be defined in each postcard, or at the final node egressing the network.

Additionally, reports may be flushed due to collisions within the switch’s

buffer.

Finally, we can reduce the number of bits needed for each location com-

pared with writing the value and checksum to each slot. By leveraging the

B postcards, I amplified the success probability; the report is output only
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if all checksums are valid, thereby minimizing the chance of wrong outputs.

To achieve this, we use b > log2 |V | bits per location to get a collision chance

of approximately (|V | · 2−b) for each location and (|V | · 2−b)B overall. Here,

V represents the set of all possible values (e.g., all switch IDs). As noted by

Probabilistic INT (PINT) [18], |V | is often smaller than 232 (although the INT

standard requires that each value is reported using exactly four bytes [74]),

allowing the use of small b values.

Let g be a hash function that maps values v ∈ V into b-bit bitstrings,

where b is the desired slot width. We use a “blank” value ⊔ to denote

that values for a given hop were not collected (potentially because the path

length was shorter than B); this way, each flow always writes all hops’ values,

minimizing the chance of false output due to hash collisions. Then, when

receiving a postcard value vx,i ∈ V from the i’th hop of flow/packet ID x, we

write checksum(x, i)⊕ g(vx,i) into location B · h(x) + i (here checksum(x, i)

also returns a b-bit result and ⊕ is the bitwise-xor operator). When answering

queries about x, we check if there exists ℓ such that for all i ∈ {0, . . . , ℓ− 1}
there exists a value vx,i ∈ V for which checksum(x, i) ⊕ g(vx,i) is stored in

slot B · h(x) + i and for all i ∈ {ℓ, . . . , B − 1} checksum(x, i)⊕ g(⊔) is stored.

If so, we output that the postcard reports were vx,0, vx,1, . . . , vx,ℓ−1. In this

case, we say that the chunk contains valid information. Note that checking

the existence of such vx,i can be done in constant time using a pre-populated

lookup table that stores all key-value pairs {(g(v), v) | v ∈ V ∪ {⊔}}.
My approach generalizes with redundancy N > 1: we use N hash

functions h1, . . . , hN such that checksum(x, i) ⊕ g(vx,i) is written into lo-

cations {B · hj(x) + i | j ∈ {1, . . . , N}}. For answering queries, we output

vx,0, vx,1, . . . , vx,ℓ−1 if it appears in a valid subset of the N chunks, and all

other chunks contain invalid information.

Section 5.4.7 analyzes the primitive and proves that the probability of not

providing an output is bounded by:

(1− e−α·N )N ·
(
1−

(
(|V |+ 1) · 2−b

)B )N
(5.5)

+ (1− e−α·N )N ·
(
1−

(
1−

(
(|V |+ 1) · 2−b

)B)N
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−N ·
(
(|V |+ 1) · 2−b

)B
·
(
1−

(
(|V |+ 1) · 2−b

)B)N−1)
(5.6)

+
N−1∑
j=1

(
N

j

)
· (1− e−α·N )j · e−α·N(N−j)

·
(
1−

(
1−

(
(|V |+ 1) · 2−b

)B)j)
. (5.7)

It also shows that the chance of wrong output is bounded by:

(1− e−α·N)N ·N ·
(
(|V |+ 1) · 2−b

)B
. (5.8)

Consider a numeric example to contrast these results with using KW for

each report of a given packet. Specifically, suppose that we are in a large

data center (|V | = 218 switches) and want to run path tracing by collecting

all (up to B = 5) switch IDs using N = 2 redundancy. Further, let us set

b = 32-bit per report and compare it with 64 bits (32 for the key’s checksum

and 32 bits for the switch ID) used in KW, and that C · α packets’ reports

were collected after the queried one, for α = 0.1. The probability of not

outputting a collected report (5.5-5.7) is then at most 3.3% and the chance

of providing the wrong output (5.8) is lower than 10−22. In contrast, using

KW for postcarding gives a false output probability of ≈ 8 · 10−11 (in at least

one hop) using twice the bit-width per entry!

5.4.3 Append

Some telemetry scenarios are not easily managed with key-value stores. A

classic example is when a switch exports a stream of events, where a report

would include an event identifier and an associated timestamp (e.g., packet

losses [230], congestion events [74], suspicious flows [120], latency spikes [225]).

A key-value store is inappropriate for this scenario; rather, a list or queue is

a better abstraction.

I therefore provide a primitive that allows reporters to append information

into global lists, with a pre-defined telemetry category in each list. I call this

primitive Append (visualized in Figure 5.8). For an overview, see Algorithm 10

and Algorithm 11.
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Telemetry reporters simply have to craft a single DTA packet declaring

what data they want to append into which list, and forward it to the ap-

propriate collector. The translator then intercepts the packet and generates

an RDMA call to insert the data in the correct slot in the pre-allocated list.

The translator utilizes a pointer to keep track of the current write location

for each list, allowing it to insert incoming data per list. Append inserts

reports sequentially and contiguously into memory. This leads to an efficient

use of memory and strong query performance. Translation also allows us to

significantly improve on the collection speeds by batching multiple reports

together in a single RDMA operation.

5.4.4 Key-Increment

Key-Increment (KI) (Figure 5.9) is similar to the KW primitive, but allows for

addition-based data aggregation. That is, the Key-Increment (KI) primitive

does not instruct the collector to set a key to a specific value, but it instead

increments the value held by the key. For example, switches might only

store a few counters in a local cache, and evict old counters from the cache

periodically when new counters take their place [159, 190]. Sketches, as

explained in previous chapters, are also great candidates for these types

of collections by delivering purely counter-based measurements. The KI

primitive can then achieve collection of these counters at RDMA rates. As
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Algorithm 10 DTA-to-RDMA translation in Append

1: Input: List ID L, Data D

2: ListBuffers ← Vector with |Lists| buffer pointers

3: BufferLengths ← Vector with |Lists| buffer lengths

4: Heads ← Vector with |Lists| head-offsets

5: BatchSize ← The global batch size

6: BatchPointer ← Vector with |Lists| integers

7: Batches ← 2D-vector sized [|Lists|][BatchSize − 1]

8: function WriteBatch(L,D)

9: Batch ← (Batches [L], D)

10: Address ← ListBuffers [L] + Heads [L]

11: Write Batch to address Address through RDMA

12: Heads [L] += BatchSize

13: if Heads [L] == BatchSize then

14: Heads [L]← 0

15: end if

16: end function

17: if BatchPointer [L] == BatchSize then

18: WriteBatch(L,D)

19: BatchPointer [L]← 0

20: else

21: Batches [L][BatchPointer [L]]← D

22: BatchPointer [L] += 1

23: end if

Algorithm 11 Querying the Append storage

1: Input: List ID L

2: Output: data

3: ListBuffers ← Vector with |Lists| buffer pointers

4: BufferLengths ← Vector with |Lists| buffer lengths

5: Heads ← Vector with |Lists| head-offsets

6: data ← ListBuffers [L] + Heads [L]

7: Heads [L]← (Heads [L] + 1) mod BufferLengths [L]
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Figure 5.9: Key-Increment Overview.

with KW, the translator reduces network overheads compared with a more

naive design. For an overview, see Algorithm 12 and Algorithm 13.

The KI memory acts as a Count-Min Sketch [46] and the translator

increments N values using the RDMA Fetch-and-Add primitive. On a query,

KI returns the minimum value from these N locations. Hash collisions may

lead to value overestimation, with error guarantees matching those of Count-

Min Sketch (CMS) [46]. The counters’ memory may be reset periodically,

similar to sketching epochs, depending on the needs of the application.

5.4.5 Custom Primitives

DTA is easily extensible to other primitives by introducing new translation

paths at translators, although they would remain constrained by the limi-

tations imposed by the switching hardware [148]. Some of these limitations

could be overcome by implementing the translator logic into Smart Network

Interface Cards (SmartNICs) (see §5.7). For example, one could extend DTA

to support the collection of sketch-based measurements by crafting a more

tailored version of KI. This could allow for either in-network discovery of

network-wide heavy hitters, or aggregation of counters at the translator to
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Algorithm 12 DTA-to-RDMA translation in Key-Increment

1: Input: Redundancy N , Key K, Counter C

2: Bufstart ← Address to start of RDMA memory buffer

3: Buflen ← Number of allocated KeyVal slots

4: function CraftWrite(n,K,C)

5: Slot ← h0(n,K) mod Buflen

6: Dest ← Bufstart + Slot × 4

7: Increment Dest by C through RDMA Fetch&Add

8: end function

9: for n = 0 to N do

10: CraftWrite(n,K,C)

11: end for

Algorithm 13 Querying the Key-Increment storage

1: Input: Redundancy N , Key K

2: Output: Cwinner

3: Buflen ← Number of allocated KeyVal slots

4: Storage ← Array size Buflen with ⟨C⟩ elements

5: function GetSlot(n,K)

6: Slot ← h0(n,K) mod Buflen

7: return Storage[Slot ]

8: end function

9: Counters ← empty list

10: for n = 0 to N do

11: Counters [n]← GetSlot(n,K)

12: end for

13: Cwinner ← min(Counters)
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decrease the collection load at compute servers. Additionally, the translator

does not have to be a semi-passive data aggregator as presented here, and

primitives could be designed to be more active. For example, one could use

techniques similar to the ones presented by Gao et al. [69] to derive the

network state directly at the translator based on the intercepted telemetry

reports, thereby offloading even parts of analysis from the telemetry collectors.

5.4.6 Stochastics of the Key-Write primitive

Similarly to before, this stochastic analysis contains equations and content

provided in part by one of my collaborators for our co-authored paper.

Because Key-Write (KW) treats the RDMA memory as a large key-value

hash table where only checksums of keys are stored and values may be

overwritten over time, we must consider the possibility that when we make

a query, we are unable to return an answer, or we may return an incorrect

answer. Here, I call the case where we have no answer to return an empty

return, and the case where we return an incorrect answer a return error. The

probability of an empty return or a return error depends on the parameters

of the system, and on the method we choose to determine the return value.

Below are some of the possible tradeoffs, as well as a mathematical analysis

of the KW primitive.

Let us first consider a simple example. When a write occurs for a key-value

pair, in the hash table N copies of the b-bit key checksum and the value are

stored at random locations. Let us assume that checksums are uniformly

distributed for any given key throughout this analysis. When a read occurs,

let us suppose that we return a value if there is only a single value amongst

the N memory locations matching that checksum (the value could occur up

to N times, of course).

An empty return can occur, for example, if none of the N locations have

the right checksum when we perform a query. That is, all N copies of the key

have been overwritten, and none of the N locations currently hold a value for

another key with the same checksum. To analyze this case, let us consider

the following scenario. Suppose that we have M memory cells total and that
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there are K = αM updates of distinct keys between when our query key q

was last written, and when we are making a query for its values. The Poisson

approximation can then be used for the binomial (as is standard in these

types of analyses and accurate for even reasonably large M , N , K; see, for

example, [28, 150]). Using such approximations, the probability that any one

of the N locations is overwritten is given by (1 − e−KN/M), and that all of

them are overwritten is (1− e−KN/M )N . The probability that all of them are

overwritten and the key checksum is not found is approximated by

(1− e−KN/M)N · (1− 2−b)N = (1− e−αN)N · (1− 2−b)N .

An empty return can also be encountered if the N cells contain two or

more distinct values with the same correct checksum, as there is no way to

distinguish the correct and incorrect values.

This probability is lower bounded by

N−1∑
j=1

(
N

j

)
(1− e−αN )je−αN(N−j)(1− (1− 2−b)j) ,

and upper bounded by

(N−1∑
j=1

(
N

j

)
(1− e−αN )je−αN(N−j)(1− (1− 2−b)j)

)
+ (1− e−αN )N (1− (1− 2−b)N −N · 2−b(1− 2−b)N−1).

The first summation is the probability that at least one of the original N

locations is not overwritten, but at least one overwritten location gets the

same checksum (we pessimistically assume that it obtains a different value).

The second expression adds a term for when all original values are overwritten

and two or more obtain the same checksum. Note that we need to give bounds

as values in overwritten locations may or may not be the same.

There could be a return error if all N copies of the original key are

overwritten and one or more of those cells are overwritten with the same
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checksum and the same (incorrect) value. This probability is lower bounded

by

(1− e−αN)NN2−b(1− 2−b)N−1,

which is the probability that all of the original locations are overwritten and

a single overwriting key obtains the checksum, and upper bounded by

(1− e−αN)N(1− (1− 2−b)N),

the probability that the original locations are overwritten and at least one

overwriting key obtains the checksum.

There are many ways to modify the configuration or return method to

lower the empty returns and/or return errors, at the cost of more computation

and/or more memory. The most natural is to simply use a larger checksum,

and I suggest a 32-bit checksum to be appropriate for many situations.

However, note that at “Internet scale” rare events will occur, even matching

of 32-bit checksums, and so this should be considered when utilizing KW

information. One can also use a “plurality vote” if more than one value appears

for the queried checksum; additionally one can require that a checksum/value

pair occur at least twice among the N values before being returned. (Note

that, for example, requiring the consensus of two values can be decided per

query without changing anything else; one can decide for specific queries

whether to trade off empty returns and return errors this way.) Additional

ideas from coding theory [72, 135], including using different checksums for

each location or XORing each value with a pseudorandom value, could also

be applied. As a default, I suggest a 32-bit checksum and a “plurality vote”.

5.4.7 Stochastics of the Postcarding Primitive

Here, we calculate:

(a) The probability that a flow’s values fail to be reported because the flow

has been overwritten.

(b) The probability that a flow is reported with incorrect values.
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We assume that the number of reports (up to B postcards that belong to the

same flow/packet) since the queried ID is α · C.

For (a), we consider several reasons (similar to (5.1)-(5.3)) for failing to

report the values and analyze them separately.

• All of the queried flow’s chunks are overwritten by other flows and

none of them produce valid information. We have the probability that

a slot is overwritten bounded by (1 − e−α·N). Also, the probability

of a given overwritten slot to not produce valid information is: 1 −(
(|V |+ 1) · 2−b

)B
. Therefore, the overall probability of this event is at

most

(1− e−α·N)N ·
(

1−
(
(|V |+ 1) · 2−b

)B)N
. (5.9)

• All the flow’s chunks are overwritten and at least two produce valid

information arrays that differ. This probability is bounded by:

(1− e−α·N)N ·

(
1−

(
1−

(
(|V |+ 1) · 2−b

)B)N
−N ·

(
(|V |+ 1) · 2−b

)B
·
(

1−
(
(|V |+ 1) · 2−b

)B)N−1
)
. (5.10)

• At least one chunk (but not all) is overwritten and produces valid

information. This error probability is at most

N−1∑
j=1

(
N

j

)
· (1− e−α·N )j · e−α·N(N−j)

·

(
1−

(
1−

(
(|V |+ 1) · 2−b

)B)j
)
. (5.11)
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Next, we analyze the probability of replying incorrectly (b). This happens

when all the queried key’s chunks are overwritten and all valid chunks hold

the same information. Then, the probability of such an error is at most:

(1− e−α·N)N ·N ·
(
(|V |+ 1) · 2−b

)B
. (5.12)

Consider a numeric example to contrast these results with using KW for

each report of a given packet. Specifically, suppose that we are in a large

data center (|V | = 218 switches) and want to run path tracing by collecting

all (up to B = 5) switch IDs using N = 2 redundancy. Further, let us set

b = 32-bit per report (as is a common standard) and compare it with 64 bits

(32 for the key’s checksum and 32 bits for the switch ID) used in KW and that

C · α packets’ reports were collected after the queried one, for α = 0.1. We

have that the probability of not outputting a collected report (5.9-5.11) is at

most 3.3% and the chance of providing the wrong output (5.12) is lower than

10−22. In contrast, using KW for postcarding gives a false output probability

of ≈ 8 · 10−11 (in at least one hop) using twice the width per entry! This

improvement is due to a couple of reasons. First, we leverage the difference

between the number of switches (e.g., |V | = 218) and the width of the value

field (hardcoded at 32-bits per the INT standard [74]). Second, we leverage

the fact that each packet carries multiple (e.g., B = 5) reports to amplify the

success probability and mitigate the chance of wrong output. Further, for

reports for which we can buffer all postcards at the translator (which depends

on the allocated memory and the number of simultaneous postcard reports

generated), this approach reduces the number of RDMA writes by a factor of

B.

5.5 DTA Implementation

My codebase includes approximately 5K lines of code divided between the

logic for the DTA reporter (§5.5.1), the translator (§5.5.2), and collector

RDMA service (§5.5.3). The hardware resource footprints are presented later

in Sections §5.6.3 and §5.6.4. I have released DTA in open-source [122], and I
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am in contact with multiple labs working on follow-up research based on this

codebase.

5.5.1 Reporter

The reporter takes ≈ 700 lines of P4 16 for the Tofino Application Specific

Integrated Circuit (ASIC). Controller functionality is written in ≈ 100 Python

lines, and is responsible for populating forwarding tables and inserting collector

Internet Protocol (IP) addresses for the DTA primitives.

DTA reports are generated entirely in the data plane and the logic is in

charge of encapsulating the telemetry report into a UDP packet followed

by the two DTA-specific headers where the primitive and its configuration

parameters are included.

5.5.2 Translator

The translator has a control program written in 800 lines of Python that

runs on the switch CPU. This control program sets up the RDMA connection

to the collector by crafting RDMA Communication Manager (RDMA-CM)

packets, which are then injected into the ASIC and forwarded to the RDMA

NIC at the collector. Connection-initializing replies from the collector are



142 5.5. DTA Implementation

forwarded from the translator ASIC down to the control program for parsing

and processing to establish the RDMA queue pairs.

The translator ASIC pipeline (visualized in Figure 5.10) is written in

2K lines of P4 16 for the Tofino ASIC. This pipeline includes support for

internal line-rate processing of the DTA primitives, RDMA generation, basic

user-traffic forwarding, as well as RDMA queue-pair resynchronization and

rate limiting to ensure stable RDMA connections in case of congestion events

at collectors’ NICs. Rate limiting can be configured to generate a Negative

ACKnowledgment (NACK) sent back to a reporter in case of a dropped report

during these congestion events.

The RDMA logic is shared by all primitives. This includes lookup tables

filled with RDMA metadata, Static RAM (SRAM) storage for the queue pair

packet sequence numbers, and the task of crafting RoCEv2 headers. The

DTA packets themselves are used as the base for RDMA generation. This is

done by completely substituting the DTA headers with the specific RoCEv2

headers required by the DTA operation.

The redundancy in Key-Write (KW), Key-Increment (KI), and Postcarding

is generated by the packet replication engine through multicasting (Multicaster

in Figure 5.10). The switch CPU crafts specific multicast rules to force the

ASIC to emit several packets at the correct egress port as triggered by a

single DTA ingress.

Key-Write and Key-Increment both follow the same fundamental logic,

with the main difference being the RDMA operation that they trigger. KW

triggers RDMA Write operations, while a KI triggers RDMA Fetch-and-Add.

Both cause N packet injections into the egress pipeline, using the multicast

technique. The Tofino-native Cyclic Redundancy Check (CRC) engine is used

to calculate the N memory locations as well as a concatenated 4B checksum

in the case of KW translation. Carefully selected CRC polynomials are used

to create several independent hash functions using the same underlying CRC

engine3

Postcarding uses an SRAM-based hash table with 32K slots storing fixed-

3There is further support for longer checksums, at the cost of reduced space efficiency,

if query errors are not acceptable even in very rare cases.
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size 32-bit payloads. The Tofino-native CRC engine is used for indexing and

value encoding. The hop-specific checksums are implemented through custom

CRC polynomials instead. Emissions are triggered either by a collision or when

a row counter reaches the path length. Note that for efficient implementation,

the RDMA payload sizes must be powers of 2. This is due to the use of

bitshift-based multiplication during address calculation. Consequently, for

5-hop paths, chunk sizes are increased from 20 bytes (5 × 4 bytes) to 32

bytes. This adjustment sacrifices storage efficiency to achieve a reduced

switch footprint.

Append has its logic split between ingress and egress, where ingress is

responsible for building batches, and egress tracks per-list memory pointers.

Batching of size B is achieved by storing B − 1 incoming list entries into

SRAM using per-list registers. Every Bth packet in a list will read all stored

items, and bring these to the egress pipeline where they are sent as a single

RDMA Write packet. Lists are implemented as ring buffers, and the translator

keeps a per-list head pointer to track where in server memory the next batch

should be written. My open-sourced prototype supports tracking up to 131K

simultaneous lists.

5.5.3 Collector

The collector is written in 1.3K lines of C++ using standard Infiniband

RDMA libraries and has support for per-primitive memory structures and

querying the reported telemetry data. The collector can host several primitives

in parallel using unique RDMA-CM ports, and advertise primitive-specific

metadata to the translator using RDMA-Send packets.

5.6 Evaluation

In this section, I show that:

• DTA supports very high collection rates (§5.6.1).

• DTA imposes a negligible memory pressure at collectors (§5.6.2).
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Figure 5.11: A performance comparison of DTA against state-of-the-art CPU-

based collectors. These use 16 cores for data ingestion, while DTA essentially

bypasses the CPU entirely for data ingestion by using RDMA. (b) MultiLog

vs DTA when using Marple as a monitoring system running on switches.

• DTA is lightweight (§5.6.3, §5.6.4).

• DTA’s primitives are fast (§5.6.5, §5.6.6, §5.6.7).

I used two x86 servers connected through a BF2556X-1T [161] Tofino 1 [102]

switch with 100G links. Both servers mount 2x Intel Xeon Silver 4114 CPUs,

2x32GB DDR4 Random Access Memory (RAM) @ 2.6GHz, and run Ubuntu

20.04 (kernel 5.4). One server acts as a DTA report generator using TRex [37].

The other, equipped with an RDMA-enabled Mellanox Bluefield-2 DPU [165],

acts as the collector. Here, server Basic Input/Output System (BIOS) has

been optimized for high-throughput RDMA [106], and all RDMA-registered

memory is allocated on 1GB huge pages. My experiments consistently showed

a 0% packet loss rate at the translator-collector link. The reporter-translator

path is more complex to emulate, and these evaluations assume a 0% loss

rate for incoming reports. This is done to isolate the performance of DTA

since reporter-translator forwarding of reports is outside my research scope.

5.6.1 DTA in Action

Here I first investigate if DTA scales better than CPU-based collectors in the

presence of telemetry volumes generated by large-scale networks. To do so, I

compare the performance of DTA and state-of-the-art CPU-collectors when
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coupled with two different monitoring systems: INT [74,116] and Marple [159].

Here, I use a DTA configuration with N = 1 and batching of size 16, while

CPU-collectors use 16 dedicated CPU cores in the same Non-Uniform Memory

Access (NUMA)-node.

The collectors in Figure 5.11a collect generic 4B INT reports that are

available for offline queries using the flow 5-tuple as the key. I test INTCollec-

tor [207], to the best of my knowledge the only open source INT collector that

uses InfluxDB for storage. I also study BTrDB [10], and the state-of-the-art

solution for high-speed networks, Confluo, based on MultiLog technology.

Key-Write (KW) inserts each report into its key-value store, and Postcarding

assumes 5-hop aggregation with no intermediate reports. Append instead

inserts the reports into one of the available data lists4. As Figure 5.11a shows,

DTA improves on key-based INT collection by at least 4x, or up to 16x when

aggregating the postcards into 5-hop tuples, with even higher performance

gains if pre-categorized and chronological storage through Append suffices.

I also integrated Marple with DTA and MultiLog and configured them

to support the same queries against the collected data (i.e., Lossy Flows,

Transmission Control Protocol (TCP) Timeout, and Flowlet Sizes). Here,

Lossy Flows reports high loss rates together with their corresponding flow 5-

tuples, and DTA uses the Append primitive to store the data chronologically

in several lists, allowing operators to retrieve the most recently reported

network flows with packet loss rates in one of several ranges. TCP Timeouts

reports the number of TCP timeouts per flow in recent time, and DTA uses the

KW primitive to allow operators to query the number of timeouts experienced

by any arbitrary flow. Flowlet Sizes reports flow 5-tuples together with the

number of packets in their most recent flowlets, and DTA appends the flow

identifiers to one of the available lists to allow the construction of per-flow

histograms of flowlet sizes.

In contrast to the earlier chapters, this section uses real data center

traffic [20], since these experiments are short-lived, and the length of available

data center traces suffices. I found that DTA increases the number of Marple

4The reporters were configured to arbitrarily select a list ID in Append per report,

emulating some underlying data categorization.
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Figure 5.12: Average number of memory instructions per report for ingestion

of INT postcards.

reporters (i.e., network switches) that a collector can support before the

rate of data generation overwhelms the collector, and I show this result in

Figure 5.11b. Their queries cost as well as their performances are analyzed in

later sections (§5.6.5, §5.6.7).

Takeaway: DTA improves on data collection speeds compared with CPU-

based collectors by one to two orders of magnitude when integrated with

state-of-the-art telemetry systems while supporting the same types of queries.

5.6.2 Reduced Memory Pressure

In Figure 5.12, I present the average number of memory instructions required

per report for the DTA primitives when configured with a redundancy level of

2, path length of 5 hops, and batch size of 16 elements. These parameters were

chosen according to the previous discussions in Section 5.4. Intuitively, changes

in redundancy level and batch sizes linearly impact memory instruction rate,

while the path length has a sub-linear impact due to early emission.

DTA imposes a low pressure on memory. This is achieved mostly because

no accesses are needed for I/O and report parsing, regardless of the indexing

scheme used. Some DTA primitives use less than a single memory instruction

per report on average, owing to their aggregation and batching techniques,

which can intelligently insert several reports simultaneously with a single

RDMA operation. For example, KW, the primitive that imposes the heaviest

load on memory, needs just 0.58% as many accesses as MultiLog.

Takeaway: DTA significantly reduces the number of memory accesses re-
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quired for report ingestion.

5.6.3 Cost of Generating DTA Reports

I compared the hardware costs associated with generating DTA reports against

either directly emitting RDMA calls from switches, or creating UDP-based

messages as generally done by CPU-based collectors. For this, I used a

switch implementing a simple INT eXport Data (INT-XD) system and, in

Figure 5.13, I show the cost associated with the change of its report-generation

mechanism.

Here, we can see that DTA is nearly as lightweight as UDP, while RDMA

generation is much more expensive. Since both memory and computational

resources are statically assigned to fixed computations and dependencies, the

actual resource cost is known at compile-time and is unchanging during run

time. Additionally, my design does not need any recirculation, which means

that the translator can ingress reports at line-rate thanks to the properties of

the target hardware architecture.

Takeaway: DTA halves the resource footprint of reporters compared with

RDMA-generating alternatives, and has a similar resource footprint to sim-

ple UDP generation. The downside is the higher cost for translator logic

(Table 5.3).
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Table
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Bus
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ALU

Base footprint 13.2% 10.6% 49.0% 30.7% 25.0%

Batching +3.2% +7.2% +7.8% +7.8% +31.3%

Table 5.3: Resource footprint of a translator in Tofino while supporting

Key-Write, Postcarding, and Append. Append is batching 16x4B reports.

5.6.4 Cost of Translation

RDMA generation, including DTA report interception and primitive pro-

cessing, is entirely located within the translator. These are relatively heavy

computations, and the cost of translation has to be investigated. Table 5.3

shows the resource usage of the translator, alongside the additional costs of

including Append batching.The footprint of the DTA translator is mainly due

to its concurrent built-in support for several different primitives. Application-

dependent operators might reduce their hardware costs by enabling fewer

primitives.

Batching of Append data has a relatively high cost in terms of memory

logic (Stateful Arithmetic Logic Unit (ALU)), due to my non-recirculating

RDMA-generating pipeline requiring access to all B−1 entries during a single

pipeline traversal. It is worth noting that batching also has the potential

for a tenfold increase in collection throughput, and I conclude that it is a

worthwhile tradeoff. A compromise is to reduce the batch sizes, as they

linearly correlate with the number of additional stateful ALU calls.

Deploying multiple simultaneous Append-lists does not require additional

logic in the ASIC, it just necessitates more statefulness for keeping per-list

information (e.g., head-pointers and per-list batched data). Note that the

actual SRAM footprint of the translator is small, and my experiments show

that the translator can support hundreds of thousands of simultaneous lists

for complex setups, which is much more than the 255 lists included at the

time of evaluation. The number of lists has not shown any impact on the
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runtime performance.

Takeaway: A translator pipeline which simultaneously supports the KW,

Postcarding, and Append primitives fits in first-generation programmable

switches, while leaving a majority of resources freed up for other functionality.

Batching can impose a high toll on the Stateful ALUs.

5.6.5 Key-Write Performance

I have benchmarked the collection performance of the DTA KW primitive

using INT as a use case. I instantiated a 4GiB key-value store at the collector

and had the translator receive either 4B or 20B encapsulated INT messages

from the reporter (my traffic generator). The former case emulates the

scenario of having INT working in postcard mode with event detection (so

some hops may not generate a postcard), while the latter reproduces an INT

path tracing configuration on a 5-hops topology where the last hop reports

data to a collector. I repeated the test using different levels of redundancy

(N) and reported the results obtained in Figure 5.14. Notice the expected

linear relationship between the throughput and level of redundancy since

each incoming report will generate N RDMA packets towards the collector.

However, one might still prefer the performance tradeoff against the increased

data robustness in the collector storage, which allows for successful queries
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Figure 5.15: Key-Write primitive querying performance.

against much older telemetry reports. Furthermore, the collection rate is

unaffected by the increase in the telemetry data size until the 100Gbps line

rate is reached. I saw that this was the case for telemetry payloads of 16B or

larger in my tests.

Takeaway: KW can collect 100M INT reports per second and its performance

depends on the redundancy level.

Key-Write Query Speed

Querying for data stored in the key-value store using the KW primitive

requires the calculation of several hashes. Here I evaluate the worst case

performance scenario when the collector has to retrieve every redundancy slot

before being able to answer a query. Specifically, I queried 100M random

telemetry keys, with a key-value data structure of size 4GiB containing 4B

INT postcards data alongside 4B concatenated checksums for query validation.

Figure 5.15a shows the speed at which the collector can answer incoming

telemetry queries using various redundancy levels (N).

KW query processing can be easily parallelized, and I found the query

performance to scale near-linearly when I allocated more cores for processing.

For example, 4 cores could query 7.1 million flow paths per second with

N = 2, while 8 cores manage 14.2 million queries per second.
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Figure 5.16: Average query success rates delivered by the Key-Write primitive,

depending on the key-value store load factor and the number of addresses per

key (N). The background color indicates optimal N in each interval.

Figure 5.15b shows the time breakdown serving queries. Most of the

execution time is spent calculating CRC hashes, for either verifying the

concatenated checksum (Checksum), or calculating memory addresses of the

N redundancy entries (Get Slot). The query performance is therefore highly

impacted by the speed of the CRC implementation5, and more optimized

implementations should see a performance increase.

Takeaway: Because of RDMA, my Key-Value store can insert entries faster

than the CPU can query. The performance of the CRC implementation plays

a key role.

Key-Write Redundancy Effectiveness

The probabilistic nature of KW cannot guarantee final queryability on a

given reported key due to hash collisions with newer data entries. I show

in Figure 5.16 how the query success rate6 depends on the load factor (i.e.,

the total number of telemetry keys over available memory addresses), and

the redundancy level (N). There is a clear data resiliency improvement by

5I used the generic Boost libraries’ CRC: https://www.boost.org/.
6The query success rate is defined as the probability at which a previously reported key

can be queried from the key-value store.

https://www.boost.org/
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Figure 5.17: DTA Key-Write ages out eventually. This figure shows INT

5-hop path tracing queryability of 100 million flows at various storage sizes.

having keys write to N > 1 memory addresses when the storage load factor

is in reasonable intervals. When the load factor increases, adopting more

addresses per key does not help because it is harder to reach consensus at

query time. The background color in Figure 5.16 indicates which N delivered

the highest key-queryability in each interval.

Higher levels of redundancy improve data longevity, but at the cost of

reduced collection and query performance as demonstrated previously in

Figures 5.14 and 5.15. Determining an optimal redundancy level therefore

has to be a balance between enhanced data queryability and a reduction in

primitive performance. N = 2 is a generally good compromise, showing great

queryability improvements over N = 1 at a range of densities.

Takeaway: Increasing the redundancy of all keys does not always improve

the query success rate in KW. An optimal redundancy should be set on a

case-by-case basis.

Key-Write Data Longevity

Data reported by the KW primitive will age out of memory over time due

to hash collisions with subsequent reports, which overwrites the memory

slots. Figure 5.17 shows the queryability of randomly reported INT 5-hop

path tracing data (i.e., 20B) at various storage sizes and report ages, with

redundancy level N = 2 and 4B checksums. For example, a key-value storage
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Figure 5.18: INT-XD/MX postcard collection, using the DTA Postcarding

primitive at various buffer/cache sizes. A report is defined as a successfully

aggregated 5-hop path (containing 5 postcards, one per hop).

as small as 3GiB is enough to deliver 99.3% successful queries against flows

with as many as 10 million subsequently reported paths, which however falls to

44.5% when 100 million subsequent flows are stored in the structure. However,

increasing storage to 30GiB would allow an impressive 99.99% query success

rate for paths with 10 million subsequent reports, or 98.2% success even for

flows as old as 100 million subsequent reports.

Retrospection requires historical persistent storage of telemetry data. Due

to this, telemetry operators should perform a periodic transfer of data from

the DTA transient storage into persistent storage if retrospection is essential.

Takeaway: It is possible to record data from around 10M flows in the

key-value store while maintaining a 99.99% queryability with just 30GiB of

storage.

5.6.6 Postcarding Performance

The Postcarding primitive has been benchmarked for aggregating and col-

lecting INT-XD/MX postcards across 5-hop network paths. The number of

other flows appearing at the translator while aggregating per-flow postcards

increases the risk of premature buffer emission. Figure 5.18 shows us the

effect that the number of intermediate flows and the size of the buffer has
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Figure 5.19: Telemery event-report collection, using DTA Append and dif-

ferent batch sizes. Performance increases linearly with batch sizes until we

achieve line rate with batches of 4x4B. The collection speed is not impacted

by the list sizes.

on the aggregation performance, with a maximum achieved collection rate of

90.5MPaths/s (452.5MPostcards/s).7

Comparing the performance to KW in Figure 5.14, where we would need

5 different reports to collect a full path, we see a significant performance gain

by the Postcarding primitive.

For a straightforward understanding of the performance of the primitive,

no path length variations are included in this experiment as this would lead

to increased experimental complexities such as path length distributions.

Intuitively, the performance of Postcarding is sublinearly impacted by the

path length, and longer path lengths generally lead to a higher collection rate

(thanks to the increased efficiency of in-translator batching).

Takeaway: The performance of Postcarding depends on the rate of buffer

collisions in the translator during the aggregation phase and can improve

upon the best-case Key-Write performance by up to 4.3x for 5-hop collection.

7Early emissions (i.e., path-reports with missing postcards) are counted as failures in

this test despite being potentially useful (e.g., knowing 4 out of 5 hops in a path), and are

not included in the collection throughput.
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5.6.7 Append Performance

I have benchmarked the performance of the Append primitive for collecting

telemetry event reports, both at different batch sizes and the size of the

allocated data list, while reporting data into a single list. The results are

shown in Figure 5.19.

As expected, there is no performance impact from different report sizes

until we reach the line rate of 100G for large batch sizes after, which the

performance increases sublinearly. The results in Figure 5.19 show this effect

for 4B queue-depth reports, where we reach line rate at batches of 4. The DTA

base performance is bounded by the RDMA message rate of the NIC, which

is the current collection bottleneck of my system, and the high performance

of the Append primitive is due to including several reports in each memory

operation. Performing equivalent tests with up to 131K parallel lists showed

a negligible performance impact.

Takeaway: The Append primitive is able to collect over 1 billion telemetry

event reports per second.
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Figure 5.20: Append primitive querying performance. Append-lists are

queried either while collecting no reports or at 50% capacity (while collecting

600M reports per second). Collection has a negligible impact on the data

retrieval rate, and the processing rate scales near-linearly with the number of

cores. The dotted lines show the maximum collection rates at different batch

sizes.

Append Data Access Rate

Figure 5.20a shows the raw list polling rates, which is the speed at which

appended data can be read into the CPU for processing. I assume that

collection runs simultaneously to the CPU retrieving data from the lists in

real-time, by having the translator process 600 million Append operations per

second in batches of size 16, which approximates collection at half capacity.

Simultaneously collecting and processing telemetry data show no noticeable

impact on either collection or processing, showing that DTA is not memory-

bounded even at this speed8.

Extracting telemetry data from the lists is a very lightweight process, as

shown in Figure 5.20b, requiring a pointer increment, possibly rolling back to

8DTA is neither memory- nor CPU bounded in these tests, regardless of the collection

rate, but is instead limited by the message rate of the network card
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the start of the buffer, and then reading the memory location. I allocated

multiple lists equal to the number of CPU cores used during the test to

prevent race conditions at the tail pointer9.

My tests showed that just 8 cores proved capable of extracting every

telemetry report even when large batches reported at maximum capacity.

This leaves us with much processing power for complex real-time telemetry

processing. We see that the collector can even retrieve list entries faster than

the RAM clock speed, likely thanks to cache prefetching.

Takeaway: The CPU retrieves appended reports faster than they can be

collected (Figure 5.19), with margin left for further processing.

5.7 Discussion

This section provides a brief discussion of DTA and proposes future research

into the techniques presented in this chapter.

5.7.1 Generality and Scope

DTA is not intended to be a competitor of existing data plane assisted moni-

toring systems [18,74,77,116,159,190,201,201,230]. These either focus on

extracting new metrics or reducing the costs of telemetry monitoring through

intelligent pre-processing and filtering within the switching ASIC. Neverthe-

less, these systems generate a significant amount of telemetry information,

especially with large-scale networks, multiple queries, and/or fine telemetry

granularities (Table 5.1).

DTA can be coupled with existing telemetry systems and serve as an

interface between the on-switch monitoring functions and the telemetry

analysis back-end in the control plane. To achieve broad compatibility with a

variety of monitoring solutions, I have designed several generic and highly

flexible primitives to simplify the integration of DTA into both existing and

9DTA does not necessarily limit the number of polling cores per list, and several cores

can poll a single list by, for example, assigning them a set of non-overlapping indexes in

the list and using per-core tail pointers.
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future telemetry environments. As a consequence, with DTA, I replace only

the report ingestion mechanism of the telemetry collector (e.g., DPDK along

with data structure population), not the rest of the collector (e.g., data

analysis and decision-making). For example, it is possible to couple the

streaming analysis engine of Sonata [77] with DTA: in this scenario, DTA

is in charge of transferring data from switches to collector’s memory, while

the original Sonata’s engine performs analysis on the received data. For a

more extensive list of examples, refer to Table 5.2 that recap how DTA can

be integrated into various telemetry systems to enhance their performances.

5.7.2 In-NIC Translation

There are two main approaches that I have considered on where to deploy

the translator: a SmartNIC located at the collector and the last-hop switch

(which I explored in this chapter). A SmartNIC would allow me to completely

remove RDMA traffic: the NIC data plane would process incoming DTA

packets and instead translate them directly into local Direct Memory Access

(DMA) calls. Exploring DTA translation in SmartNICs is left for future work.

Nevertheless, I believe that my P4 implementation can be a starting point

for P4-capable NICs [192].

Further, one benefit of placing translation at the last-hop Top of Rack

(ToR) switch is that it allows DTA collectors to function with relatively cheap

and high-performant commodity RDMA-capable NICs, without requiring

NIC extensions with DTA translation capacities. Building translation into

the ToR is more efficient in a rack with multiple collectors, all managed by

a single translator since the actual translation logic only has to reside in

a single device. Further, one could extend in-ToR translation with more

complex functionality, such as dynamically load balancing between collectors,

or fragmenting the storage buffers across multiple physical machines.
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5.7.3 Multiple Collectors

It is beneficial to enable collection at multiple servers for scalability or

resiliency. DTA can scale horizontally by deploying additional collectors and

relies on reporter-based load balancing of telemetry data among collectors.

However, we need to ensure that the load balancing is stateless and can

be centrally recalculated, to ensure scalability and efficiency in finding the

storage locations for queries. The destination IP addresses of DTA reports are

decided on a per-primitive basis. The KW, Postcarding, and KI primitives are

designed as distributed key-value stores. Reporters use a hash of the telemetry

key to determine the destination collector for storing the information. This

design allows horizontal scaling of collection capacity by deploying more

servers and updating the collector-mapping lookup tables hosted in each

reporter. Append traffic selects a collector based on the chosen list ID, as

decided by pre-loaded lookup tables. This ensures that all per-category

telemetry data is efficiently aggregated in a single location, and telemetry

scaling can be achieved by deploying additional lists to host data for the

Append primitive.

Additionally, network operators could decide to collect query-specific

measurements at specific collectors, storing relevant measurements near each

other to enhance the query performance. However, this is a choice that is

not DTA-specific, and already exists regardless of which telemetry collection

solution is being used.

5.7.4 Flow Control in DTA

Best-effort transport protocols, e.g., UDP, are used by many well-known

telemetry systems (e.g., [38, 103]). Similarly, DTA does not assure reliable

delivery. However, it can be used in conjunction with flow control mechanisms

that allow for lossless delivery of data [73,97].
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5.7.5 Query-Enhancing Extensions

In some cases, queries may be known ahead of time, in which case a translator

can aid in their processing. For example, while switches can measure the

queuing latency of a flow, we are often interested in knowing the end-to-end

delay [181], which can be expressed as follows:

SELECT flowID ,path WHERE SUM(latency) > T

Knowing the query ahead of time, DTA translators can wait for postcards

from all switches through which the SYNchronization (SYN) packet of the flow

was routed, sum their latency, and report the flow and path only when the

combined latency is over a threshold T . A method such as this could be used

in conjunction with the Append primitive to populate a list of high-latency

(flowID, path) tuples alongside a complete list of all network/sector-wide

tuples.

5.7.6 Push Notifications

An advantage CPU-based collectors have over DTA is that the CPU can

trigger analysis tasks as soon as it receives reports. In the case of DTA,

for key-value store operations, the CPU must first find out if new data has

been written into the memory; however, I assume for Append operations

that the CPU is continuously monitoring the lists to allow for equivalent

reactivity to CPU-based solutions. Additionally, DTA packets can include

an immediate flag, allowing a translator to notify a collectors’ CPUs of new

data arrivals through RDMA immediate interrupts (e.g., indicating issues in

a flow). Determining which reports should carry this flag is outside the scope

of DTA.

5.7.7 The Next Bottleneck

DTA significantly reduces the cost of telemetry ingestion mainly by bypassing

any CPU processing. In my experiments, the new bottleneck is the message

rate of the RDMA NICs at the collectors. To address this message rate
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limitation, DTA already supports multi-NIC collectors. Future RDMA-

capable NICs will likely have higher message rates, leading to an even higher

DTA performance.

A possible future bottleneck is the memory speed where we store the

telemetry data structures. However, current-generation DRAM can achieve

billions of memory transfers per second and is likely to increase further in

the future. Therefore, telemetry ingestion might no longer be seen as the

main bottleneck in telemetry systems going forward, if the CPU is bypassed.

Instead, given the increasing sophistication and complexity of data analysis

tools, the de facto bottleneck might instead be the rate at which reports can

still be meaningfully analyzed in real time.

Alternatively, in a data lake deployment, where data is passively collected

without real-time analysis, the rate at which data is transferred from transient

DTA storage to persistent, long-term storage in queryable data structures

may become a bottleneck. This issue is particularly pronounced if the transfer

process involves complex processing and re-indexing of the data.

5.7.8 Security Considerations

The introduction of DTA introduces new complexities to networks, potentially

creating additional attack vectors and security vulnerabilities. For instance,

malicious actors could forge false telemetry data to disrupt network control

operations or to conceal ongoing attacks. Since DTA reports are encapsulated

in UDP, they may be vulnerable to UDP Session Hijacking attacks making

such attacks plausible [107].

To mitigate these risks, several strategies can be considered. One ap-

proach is to have reporters cryptographically sign telemetry reports before

transmission, ensuring their authenticity and integrity. Another strategy is

to enforce specific network paths for telemetry reports, ensuring that these

reports originate only from the network switches that are stated as senders,

and are not maliciously injected into the network through a network ingress

link.

This issue is not necessarily DTA-specific, and impacts other systems such
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as INT. I leave research into mitigation strategies as future work.

5.7.9 Batching Trade-offs

Batching greatly increases telemetry collection rates. However, this requires in-

ASIC statefulness. Even though the SRAM footprint of batching is relatively

small (3% in my §5.6.4 example), I saw a significant impact on the available

memory logic. Each memory operation is limited to a 32-bit bus, requiring

multiple memory operations to process batch entries larger than 4B. Complex

deployments with large telemetry payloads might therefore have to reduce

the batch size to free up switch memory logic (e.g., a batch with 8B entries

might halve the batch size compared with 4B entries to keep a similar

footprint). One possible alternative is to reduce the hardware resources by

allowing RDMA-crafting packets to traverse the pipeline multiple times while

retrieving the batch. For example, batches may use half as much memory

logic if allowed to recirculate once, by re-using memory logic between pipeline

traversals. This also allows us to increase the batch sizes further to reduce

the load on the collector’s NIC, at the cost of increased egress-pipe traffic

during RDMA-creation for Append operations.
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5.8 Chapter Summary

In this chapter, I addressed the third research objective of my dissertation:

“Alleviate the Telemetry Collection Bottleneck”. To achieve this, I developed

and presented DTA, a high-performance telemetry collection system designed

to enhance the cost vs. insight tradeoff in fine-grained network telemetry.

DTA introduces several key innovations. First, it leverages RDMA to

enable direct memory access, significantly increasing collection rates by an

order of magnitude compared to current solutions. A pivotal innovation within

DTA is the translator, which allows the extension of RDMA capabilities at

line-rate to support queryable data structures suitable for telemetry storage.

This translator intercepts telemetry data and efficiently converts it into RDMA

calls, creating an abstraction that allows high-speed data structure population

without necessitating custom NIC changes.

Through this abstraction, DTA introduces novel reporting primitives that

ensure seamless integration with existing telemetry mechanisms like INT and

Marple. These primitives enable efficient and flexible data handling tailored

to various telemetry requirements.

My evaluation of DTA demonstrated substantial improvements in collec-

tion rates and efficiency. Specifically, DTA can process and aggregate over

400 million INT reports per second, a 16x improvement over state-of-the-art

CPU-based collectors. Additionally, when collecting data sequentially, DTA

can handle up to a billion reports per second, representing a 41x increase in

performance.
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Chapter 6

Conclusion

This chapter concludes the research by highlighting several advancements in

network telemetry that significantly enhance the accuracy and granularity of

telemetry reports. Through the development of novel techniques such as spa-

tiotemporal disaggregation, FlowLiDAR, and Direct Telemetry Access (DTA),

we have addressed critical challenges related to deployment, accuracy, and

data collection in modern network environments, while ensuring compatibility

with high-speed switches.

This concluding chapter summarizes the main contributions of this work

and their relation to my research objectives.

6.1 Objectives Revisited

This dissertation aimed to address three primary research objectives: making

sketches network-wide deployable, improving the cost vs. accuracy tradeoff

in sketches, and alleviating the telemetry collection bottleneck.

1. Make Sketches Network-wide Deployable: Chapter 3 achieved

this objective through the development of spatiotemporal disaggregation,

which allows sketches to be fragmented and deployed across multiple network

switches in heterogeneous environments. This approach enhances estimation

165
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accuracy and provides failure resilience, as demonstrated by the creation and

evaluation of DiSketch, a fully disaggregatable frequency estimator.

2. Improve the Cost vs Accuracy Tradeoff in Sketches: Chapter 4

enhanced the memory efficiency of sketching by introducing FlowLiDAR, a

solution that decouples flow identification storage from the limited on-switch

memory using innovative techniques such as lazy Bloom Filters (BFs) and

differential flow detection. These innovations significantly reduce the memory

required for accurate frequency estimation, thereby improving the memory

efficiency of sketch-based monitoring.

3. Alleviate the Telemetry Collection Bottleneck: Chapter 5 ad-

dressed the collection bottleneck by introducing DTA. This system leverages

in-network pre-processing and indexing of reports to enable CPU-bypassing

collection via Remote Direct Memory Access (RDMA), significantly increasing

telemetry collection rates. This system was validated through implementation

on commodity hardware and demonstrated significant performance improve-

ments.
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6.2 Summary of Contributions

The research chapters collectively demonstrated the successful realization of

the initial research objectives. In this section, I provide a detailed overview

of my primary contributions towards achieving each research objective.

6.2.1 Network-wide Deployable Sketches

Chapter 3 made significant strides towards achieving the first research ob-

jective of making sketches network-wide deployable to grant placement-

agnosticism, failure tolerance, and accuracy enhancements. The primary

contributions in this regard are:

Spatiotemporal Disaggregation: I developed a novel method called

spatiotemporal disaggregation, which enables robust fragmentation and deploy-

ment of sketches across multiple network switches. This technique leverages

network-wide resources to enhance estimation accuracy, provide failure re-

silience, and reduce sketch extraction delays. Spatiotemporal disaggregation

is developed for dynamic deployment in highly heterogeneous environments,

where both the available per-node memory as well as traffic load and flow

size distributions might vary.

DiSketch: By applying spatiotemporal disaggregation to the traditional

Count Sketch (CS), I created Disaggregatable Sketch (DiSketch), a disaggre-

gated frequency estimator that can answer common network telemetry queries

such as retrieving the number of packets or data volumes in any network

flow. DiSketch significantly reduces estimation errors by almost an order of

magnitude compared to traditional aggregated sketches, demonstrating the

applied efficacy of spatiotemporal disaggregation.

These contributions advance the state-of-the-art in sketch-based telemetry

by providing a scalable and efficient method for deploying estimators across

an entire network, overcoming challenges related to resource constraints and

traffic variability.
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6.2.2 Optimizing Cost vs Accuracy in Sketches

Similarly, Chapter 4 presents several innovations to further improve on the cost

vs accuracy tradeoff in sketches by focusing not on network-wide deployment,

but on the processing within individual sketches. The primary contributions

in this regard are:

Lazy Bloom filter updates: By rethinking the computational dependen-

cies within standard BFs, I present a structure called a lazy Bloom filter. This

data structure is functionally similar to standard BFs but offers a few key

benefits. These include a reduced false positive rate and the capability to

filter out keys (e.g., traffic flows) with up to a set number of occurrences.

FlowLiDAR: The chapter also presents Flow Lightweight Detection and

Ranging (FlowLiDAR), a solution capable of tracking almost all network

flows with modest data plane memory, independent of the flowID size. It

leverages the lazy BF, along with key innovations such as differential flow

detection, decoupling flowID storage from the data plane, and using linear

programming. FlowLiDAR drastically reduces the memory required for highly

accurate frequency estimation compared with current alternatives.

6.2.3 Alleviating the Telemetry Collection Bottleneck

Finally, Chapter 5 argues for a fundamental redesign of traditional teleme-

try collection stacks to overcome critical bottlenecks, immensely increasing

telemetry collection rates. The primary contributions in this regard are:

Direct Telemetry Access (DTA): I developed DTA, a high-performance

telemetry collection system that leverages RDMA to increase data collection

rates significantly. DTA achieves this by enabling direct memory access, by-

passing the CPU for processing incoming telemetry reports, greatly enhancing

the efficiency and scalability of telemetry data collection.
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Translation Mechanism: A pivotal innovation within DTA is the transla-

tor. This component intercepts telemetry data from switches and converts

them into RDMA calls, which isolates data structure management into a

single device which reduces the deployment costs of switches and allows

seamless RDMA extensions.

Novel RDMA Verbs: The translator allows support for high-speed data

structure population in a way that distributed RDMA generation cannot.

Leveraging this benefit, I introduce new CPU-bypassing memory verbs called

DTA primitives : Key-Write, Postcarding, Append, and Key-Increment.

Broad Compatibility and Performance Enhancements: I demonstrate

how these primitives support a wide range of existing monitoring systems and

telemetry scenarios, including state-of-the-art systems like In-band Network

Telemetry (INT) and Marple. Further, DTA is shown to significantly increase

the collection capacities of these systems.

6.3 Implications of the Research

While designed within P4-programmable Protocol Independent Switch Ar-

chitecture (PISA) constraints, the algorithms are not inherently dependent

on this architecture or even on programmable networks. The computational

limitations of this architecture, outlined in Section 2.4.1, are stringent but

necessary to ensure consistent line rate throughput at immense speed. My

prototypes show that these algorithms and solutions are compatible with at

least some high-speed networking hardware and work at terabit per second

speeds. With this effort, I aim to advance next-generation network telemetry,

providing technology for detailed insights at reasonable costs.

Despite mentioning sample-free telemetry throughout this dissertation,

achieving this is not my sole objective. Instead, by developing technology

capable of sample-free telemetry, I simultaneously open up for much less

restrictive sampling or selection methods than those commonly used. For
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example, a spatiotemporally disaggregated FlowLiDAR would offer network-

wide visibility into flows at a lower cost. Simultaneously, DTA can significantly

increase the insight in existing telemetry systems at much lower infrastructure

costs than before.

I envision accessible and sophisticated network monitoring at a level of

granularity previously reserved for the most critical networks of organizations

with immense budgets. Such insight greatly enhances real-time detection and

mitigation of issues such as operational disruptions, link flooding attacks, and

penetration attempts through precise fingerprinting.

Multiple labs have shown interest in leveraging my technology for real-time

machine learning analysis of traffic patterns. While I cannot guarantee the

computational feasibility of these real-time systems due to potential high

inference costs, the improved level of insight inarguably enhances the accuracy

of machine learning inferences if they prove computationally viable.

6.4 Limitations

This dissertation advances sketch-based monitoring but does not address the

on-switch costs of non-sketch technologies. Sketches, while useful, do not

capture all networking events, requiring supplementary technologies. For

instance, identifying packet loss events and their causes can consume up

to 30% of switches’ computational capacities [230], indicating that diverse

network telemetry remains costly. Approximately half of these costs go toward

reducing telemetry reports [230]. With advancements from this dissertation,

cheaper report-reduction techniques might suffice.

Additionally, DTA enhances server-side collection but does not consider

network load from data transmission or costs of subsequent analyses. This

burden is typical of fine-grained monitoring systems, including spatiotemporal

disaggregation which increases telemetry volumes by several factors. Inte-

grating analytical and pre-processing capabilities into network infrastructure

could leverage hardware speed and reduce data transit distances, aligning

with trends in query-based monitoring [77,159,223]. Despite these challenges,
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sketches remain an efficient component for many counter-based queries. Addi-

tionally, query-based monitoring can still generate high telemetry loads [159],

making this dissertation’s contributions remain relevant.

6.5 Final Remarks

This dissertation significantly advances network telemetry, particularly in

sketch-based monitoring and telemetry collection. The contributions enhance

measurement accuracies and data extraction rates, providing deeper insights

into network states and traffic patterns while maintaining computational

efficiency and cost-effectiveness.

Consequently, these innovations pave the way for enhanced performance

optimization and improved real-time network security monitoring, ultimately

leading to more robust and reliable next-generation networks.
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