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Abstract

For asymptotically flat spacetimes, a conjecture by Strominger states that asymp-
totic BMS-supertranslations and their associated charges at past null infinity .~
can be related to those at future null infinity .# © via an antipodal map at spatial in-
finity i°. We analyse the validity of this conjecture using Friedrich’s formulation of
spatial infinity, which gives rise to a regular initial value problem for the conformal
field equations at spatial infinity. A central structure in this analysis is the cylinder
at spatial infinity Z representing a blow-up of the standard spatial infinity point ¥ to
a 2-sphere. The cylinder Z touches past and future null infinities .#* at the critical
sets Z+. We show that for a generic class of asymptotically Euclidean and regular
initial data, BMS-supertranslation charges are not well-defined at Z* unless the
initial data satisfies an extra regularity condition. We also show that given initial
data that satisfy the regularity condition, BMS-supertranslation charges at Z* are
fully determined by the initial data and that the relation between the charges at 7~
and those at Z™ directly follows from our regularity condition.

1 Introduction

Studies of isolated systems, asymptotic structures and symmetries have received in-
creasing interest in recent years due to their relation to black-hole physics [1} 2} [3], the
gravitational memory effect [4, 15, |6] and developments in soft theorems [7, [8, 9]. A
common approach in these studies involves the use of conformal transformations to study
the behaviour of the gravitational field ‘at infinity’ using local differential geometry by
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mapping points at infinity in one manifold to a region located at finite distances in another
manifold, the so-called conformal boundary.

The conformal approach is inspired by R. Penrose seminal work [10, [11] in which
the notion of asymptotically simple (AS) spacetimes was initially introduced with the
aim of identifying a large class of spacetimes that admit a conformal extension similar
to that of Minkowski spacetime. More precisely, a spacetime (M, g) is asymptotically
simple if there exists a smooth, oriented, time-oriented and causal spacetime (M, g) and
a smooth function = on M such that (i) M is a manifold with boundary .# = OM;
(ii) the conformal factor = satisfies: = > 0 on M \ .# and = = 0,d= # 0 on .&;
(iii) the manifolds M and M are related by ¢ : M — M such that p(M) = M \ &
and ¢*g = =?g; and finally, (iv) null geodesics of (M, g) starts and ends on .. In
this context, we say that ¢ is a conformal transformation that maps M to M \ .
The manifolds M and M are referred to as the physical and unphysical manifolds,
respectively. Similarly, the metric g is the physical metric, and g is the unphysical
metric. Generally, the boundary .# (null infinity) can be split into two disjoint sets .# *
(future null infinity) and .# ~ (past null infinity).

The literature on the asymptotic structure of spacetimes can be divided into two
categories: studies of the asymptotic structure at null infinity or at spatial infinity. In
the null regime, it was expected that the Poincaré group would describe the asymptotic
symmetry group for AS spacetimes, given that the background geometry of an AS
spacetime is similar to that of Minkowski. However, the work of Bondi, Metzner and
Sachs [[12] revealed that the asymptotic symmetry group for AS spacetimes is given by
the infinite-dimensional BMS symmetry group, which can be written as the semi-direct
product of the Lorentz group with the infinite-dimensional group of angle-dependent
translations (supertranslations) along null infinity. Notions of asymptotic flatness at
spatial infinity also give rise to an infinite-dimensional asymptotic symmetry group at
spatial infinity, known as the Spi group [13, [14], with a structure similar to the BMS
group —see also [15 (16, 17, (18, [19]].

Asymptotic symmetry groups define corresponding conserved quantities or asymp-
totic charges. At spatial infinity, notions of conserved mass, momentum and angular
momentum can be derived using a Hamiltonian formulation [20, 21]]. More recently,
it was shown that charges associated with supertranslations at spatial infinity are gen-
erally non-vanishing [16} [19]. At null infinity, the challenge is that BMS charges can
not be defined using a standard Hamiltonian formulation as, generically, there exists no
Hamiltonian that generates BMS transformations at null infinity. This observation can
be linked to the fact that the symplectic current can be radiated away at null infinity, i.e.,
BMS charges are not exactly conserved. In fact, BMS charges have non-vanishing fluxes
through null infinity. Nevertheless, the discussion in [22] provides a general definition
of ‘conserved quantities’ associated with asymptotic symmetries, even in scenarios in
which the Hamiltonian does not exist.

A conjecture by Strominger [8]] states that a priori independent asymptotic symmetry
groups at past and future null infinities .#*, denoted by BMS™ and BMS™, respectively,
can be related via an antipodal reflection map near spatial infinity. The verification of
this conjecture, referred to as the matching problem, would imply a global diagonal
asymptotic symmetry group BMS™ x BMS™. In other words, the incoming fluxes
associated with BMS™ would be equal to the outgoing fluxes associated with BMS™.



The matching problem is also a crucial ingredient in the conjectured equivalence relation
between asymptotic symmetries, the soft graviton theorem and the gravitational memory
effect [23, [24]).

The strategy in validating the matching of BMS™' and BMS™ and their associated
charges involves expanding the fields in suitable coordinates around null and spatial in-
finity. On Minkowski spacetime, the matching of asymptotic charges at past and future
null infinities has been verified for the spin-1 and spin-2 fields [25} 26, [27]]. For more
general spacetimes, the analysis is complicated due to the singular conformal structure at
spatial infinity for spacetimes with non-vanishing Arnowitt-Deser-Misner (ADM) mass,
referred to as the problem of spatial infinity —see e.g. Chapter 20 in [28]]. Another chal-
lenge is that one requires a transformation between adapted coordinates at null and spatial
infinity, which can be explicitly computed on Minkowski spacetime but is not generally
known for general spacetimes. Nevertheless, the covariant formulation of Ashtekar and
Hansen [[13]] was used in [29, [30] to prove the matching of asymptotic charges for the
spin-1 and gravitational fields on spacetimes that satisfy Ashtekar-Hansen’s notion of
asymptotic flatness. Similar techniques were used in [31] to investigate the matching
of Lorentz charges for the gravitational field on Ashtekar-Hansen asymptotically flat
spacetimes —see also [32].

The purpose of this article is to verify the matching of BMS asymptotic charges
in a full GR setting using an initial value formulation of the field equations. The
argument made in [8]] is that the matching of BMS-supertranlation charges should hold
for Christodoulou-Klainerman class of spacetimes [33]]. However, as it follows from the
analysis presented in this article, the Christodoulou-Klainerman class of spacetimes are
not general enough to obtain non-trivial asymptotic charges near spatial infinity since
they lead to vanishing BMS-supertranslation charges at spatial infinity —this statement
is further elaborated in Section [7.3]—-see Remark 20l Therefore, the aim of this article
is to identify a generic class of initial data and conditions on the initial data that implies
non-trivial, well-defined asymptotic charges at spatial infinity.

In the context of the initial value problem, Einstein’s field equations are split into
constraint equations and evolution equations; the constraint equations are satisfied by an
initial data set (S h, K ) prescribed on an initial Cauchy hypersurface S, where h is
the intrinsic metric on S and K is the extrinsic curvature. The well- posedness of the
Cauchy problem ensures that there exists a vacuum spacetime (M g), referred to as the
development of the initial data (S, b, K), such that S is a spacelike hypersurface in M
with an intrinsic metric h induced on S by g with an associated extrinsic curvature K.
It is worth noting that not every spacetime can be globally constructed from an initial
value problem. A spacetime is said to be globally hyperbolic if it can be constructed
from an initial value problem of Einstein’s field equations. A special class of initial data
relevant to this article are the so-called asymptotically Euclidean and regular initial data
[34] defined by:

Definition 1 (asymptotically Euclidean and regular). A three-dimensional Riemannian
manifold (8 h) is asymptotically Euclidean and regular if there exists a three-dimensional,
orientable, compact manifold (S, h) with points iy, € S,k = 1,... ;N with N some in-
teger, a function Q € C? and a diffeomorphism ¢ : S\ {iy, ... ,in} — S such that

1. Q(Zk) = 0, dQ(Zk) = 0 and Hess Q(Zk) = —Qh(ik),fOI” all Zk € {il, . ,iN},
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22.09>00n8\{i1,...,in}, and
3. h=0%*honS\ {i1,... ix} withh € C2(S) NC>®(S\ {i1,... ,in}).

In the above, neighbourhoods of the points 7, can be mapped to the asymptotic
ends of S and thus, each of these points represents spacelike infinity. Compared to the
standard definition of asymptotically Euclidean manifolds which describes the asymptotic
expansion of the intrinsic fields on S near the asymptotic ends, Definition [I] is more
geometric in nature and it imposes extra conditions on the smoothness of the initial
data, which in turn affects the asymptotic behaviour of their evolution in time [34]. In
this article, the aim is to obtain non-trivial BMS asymptotic charges associated with the
development of some initial data that satisfy the constraint equations with prescribed
behaviour in the asymptotic region. These initial data were first considered in [35] and
are obtained by means of a gluing construction. This class of initial data includes, as a
particular case, boosted solutions to the constraints and allows for a term with arbitrary
multipolar structure in the initial metric, which appears at the same order as the mass.
As will become evident from our analysis, this arbitrary multipolar structure will be
responsible for the existence of non-trivial BMS asymptotic charges.

It should be noted that the transformation of Einstein’s field equations from the
physical manifold (M, §) to the unphysical manifold (M, g) implies singular equations at
the conformal boundary = = 0. An alternative set of field equations, the so-called metric
conformal field equations, can be constructed following the discussion in [36, 137, 38].
These equations are regular at = = 0, and they imply solutions to Einstein’s field equations
at the points where = # 0 —see [28]], Chapter 8. In this article, we will make use of the
extended conformal field equations (ECFEs). These equations are formulated in terms
of a Weyl connection V and exhibit additional gauge freedom in contrast to the metric
conformal field equations, which are formulated in terms of the Levi-Civita connection
V associated with g. As such, the main goal of this project will be to use the ECFEs to
evaluate BMS asymptotic charges near spatial infinity.

To address the singular conformal structure at spatial infinity, we make use of
Friedrich’s formulation of spatial infinity originally introduced in [39] with the aim
of obtaining a regular initial value problem for the conformal field equations at spatial
infinity. A central structure in this formulation is the cylinder at spatial infinity Z corre-
sponding to a blow-up of the spatial infinity point to a 2-sphere. The cylinder Z touches
the endpoints of past and future null infinities .#* at the critical sets Z. Associated
with this formulation is a particular choice of gauge, referred to as the F-gauge, in which
the coordinates and frames on an initial hypersurface are propagated along conformal
geodesics. One of the remarkable properties of conformal geodesics is that they introduce
a canonical conformal factor that depends on the proper time along the curves and the ini-
tial data. In other words, the F-gauge is constructed so that the location of the conformal
boundary is known a priori. Moreover, in this particular choice of gauge, the cylinder
7 is a total characteristic of the ECFEs, i.e., the associated evolution equations can be
written as a system of transport equations on Z. A significant advantage of Friedrich’s
formulation is that it allows us to link quantities at the critical sets Z* with the initial data
prescribed on an initial hypersurface. This approach was used in [40, 41]] to express the
Newman-Penrose (NP) constants in terms of initial data, and it illustrates our strategy in



this work where the goal is to express BMS asymptotic charges at Z* in terms of our
initial data.

As mentioned earlier, one of the challenges in verifying the matching of asymptotic
charges is that a transformation between adapted coordinates at null and spatial infinity
is required. In this article, BMS asymptotic charges are expressed in the NP-gauge,
comprised of certain conformal gauge conditions, certain coordinates and an orthonormal
frame field satisfying certain frame gauge conditions. The main difference between the
F-gauge and the NP-gauge is that the former is adapted to Cauchy hypersurfaces while the
latter is adapted to null infinity .#*. The discussion in [40] provides a prescription of the
transformation between the NP-gauge and the F-gauge. Given a solution to the ECFEs,
an explicit transformation can be obtained, allowing us to express the BMS asymptotic
charges in terms of the F-gauge. In turn, the BMS-asymptotic charges can be evaluated
at Z* given the solution to the ECFEs.

Main result

The main results of this article can be summarised in the following:

Theorem. For the generic initial data in [35|], asymptotic BMS-supertranslation charges
are not well-defined at the critical sets T* unless the conformal initial data satisfy the
regularity condition given in Lemmalll If the initial data are chosen to satisfy the extra
regularity condition, the BMS-supertranslation charges at I= are fully determined by
the initial data and the matching between charges at T+ and T~ follows directly from the
regularity condition.

As it will be discussed in the main body of the article, the piece of the freely
specifiable initial data from which the value of the BMS charges at Z* arise correspond
to a function £ € C*(S). The regularity condition in Lemma [Tl ensuring that the charges
are well-defined is a statement about the parity of the function £. More precisely, all
odd parity harmonics, except for the one with [ = 1, are required to vanish. This result
provides evidence that Strominger’s antipodal matching condition is, in fact, a regularity
condition on spatial infinity. A full proof of this statement would require a clarification of
the relation between the asymptotic expansions used in our analysis and full solutions to
the conformal Einstein field equations. This, in turn, requires the construction of detailed
estimates for the remainders of the asymptotic expansions along the lines of what was
done in [42] for the spin-2 field —the latter is, however, beyond the scope of this article.

As pointed in [43] the type of parity condition arising from our analysis (and an
analogous one for the extrinsic curvature, which is not required in the present analysis)
is required to make all Poincaré charges at spatial infinity well-defined. This condition
can be traced back to the seminal article [21]. Our analysis points out a deep connection
between the regularity of null infinity and the physical requirement that asymptotic
charges are well-defined. Again, a systematic analysis of these ideas goes beyond the
scope of this article.



Outline of the article

In Section 2] we start by introducing some of the basic conformal tools used throughout
this article —e.g. the conformal field equations and conformal geodesics. Friedrich’s
formulation of spatial infinity and the F-gauge are introduced in Section 3l In Section
4l we discuss the NP-gauge conditions and the relation between the NP-gauge and the
F-gauge. The expressions for BMS-supertranslation charges are introduced in Section
along with their translation to the F-gauge. In Section [6] we present the initial data
utilised in our analysis of the conformal field equations. We conclude the analysis of this
article in Section [7l by obtaining the zero-order solution of the conformal field equations
and evaluating the BMS-supertranslation charges at the critical sets 7.

Notations and conventions

In this article, Latin letters a, b, c, ... will denote spacetime abstract tensorial indices
while ¢, 7, k,... will denote spatial abstract tensorial indices. Capital Latin letters
A, B, C, ... will denote abstract spinorial indices.

To discuss the components of tensors with respect to a coordinate basis, the Greek
letters p, v,... will be used as spacetime coordinate indices while «, 3, ... will be
used as spatial coordinate indices. Then, the components of a generic spacetime ten-
sor T, with respect to an arbitrary coordinate system (z*) will be written as 7}, =
T.,(0/82")*(8/08x")b. Similarly, the components of a generic spatial tensor /;; with
respect to an arbitrary coordinate system (z®) will be written as l,s = 1;;(8,)"(95)’,
where (8,)! = (8/0z%)".

To discuss the components of tensors and spinors with respect to a frame basis,
let a,b,c,... denote tensorial frame indices and A, B, C, ... denote spinorial frame
indices. Then, the components of a generic tensor 7}, with respect to an arbitrary basis
e, = {e,} will be written as Ty, = Tyye,e’ with a, b € {0,1,2,3}. Moreover, if
{0, ¢} denote a spin bases satisfying [o, t] = 1, where [., .] is the antisymmetric product,
then the components of a generic spinor (4 can be written as (4 = (4€4, where

o' =€, M =e”

€1A> Ly = —GOA- (D)

04
The antisymmetric product [., .] of two generic spinors ¢ and A can be expressed as
[[Ca A]] = CBAB = 6ABCA)‘Bv

where €45 is the e-spinor that can be regarded as an index raising/lowering object for
spinors. Throughout, we express spacetime frames {e,} in spinorial notation. The
spinorial counterpart of {e, } is given by

eaa =0%pa€,

where 0% 4 4/ are the Infeld-van der Waerden symbols. Finally, the signature convention
for spacetime metrics used in this article is (+, —, —, —). Throughout, we mostly follow
the notation and conventions of Penrose and Rindler [44]] —see also [28]].



2 Conformal geometry tools

The purpose of this section is to provide a brief introduction of the conformal tools utilised
throughout this article. In the following, let M denote a four-dimensional Lorentzian
manifold. The metrics g and g on M are conformally related if there exists a positive
function (2 such that
g =99,

where € is known as the conformal factor. On the other hand, if M is a four-dimensional
manifold with metric g, then one defines a conformal transformation ¢ as the diffeomor-
phic map ¢ : M — M such that

¢'g ==°g.
where = denotes the conformal factor which is a positive function on M and ¢*g is the
pull-back of g to M. Given the above, one can define:

Definition 2 (conformal compactification). Let U denoEe a compact, connected and
open subset of M, then the diffeomorphic map ¢ : M — U defines a conformal
compactification of M if there exists a positive function = satisfying

i. =2>0inl,

= 0 on the boundary of the open set I/, denoted OU,

(11

ii.
and if g is related to g by
g=(")"=9 in U 2)
In this context, OU is known as the conformal boundary of M.

Remark 1. Throughout, we omit ¢* and (¢*) ! when discussing conformal transforma-
tions and compactifications —e.g., eq. (2) will be written as g = =Z%g.

2.1 The metric conformal field equations

The conformal transformation given by eq. (2) implies transformation laws for the Levi-
Civita connections associated with g and g (denoted by V and V) and other related fields
—e.g. the Riemann curvature tensors R“bcd and R%.4, and the Ricci tensors I%ab and R,
etc. The derivation of these formulae is discussed in [28] but will not be necessary for
our discussion.

Now, assume that (M, g) satisfy the vacuum Einstein field equations, so that

R, = 0. 3)

The transformation law of the Ricci tensor implied by eq. (2)) yields a singular expression
for R,, at = = 0. However, the prescription in [36, [37, 38} 28] introduces a set of field
equations on M that are well-defined at the conformal boundary. We will refer to these
equations as the metric conformal field equations, and they are given by

vavi = _ELab + SGab, (43)
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Vs = — Lo V°E, (4b)

VeLay — VaLey, = Vo 2d"ca, (4¢)
Vad“pea = 0, (4d)
6=s — 3V.2V= =0, (4e)

where V is the g-Levi-Civita connection, L, is the Schouten tensor associated with V,
d®p.q 1s the rescaled Weyl tensor, defined in terms of the Weyl tensor C%.4 as

dbeq = 271 C%ea. )

Finally, s denotes Friedrich’s scalar, given by

1 ¢ = i =
s = 4V V.2 + 24R_,
where R is the Ricci scalar associated with V.

Note that eqs. (@) exhibit conformal gauge freedom manifested by the fact that a
solution to eq. (@) will correspond to an infinite number of solutions to eq. (). In our
analysis, our focus will be on an equivalent set of conformal field equations exhibiting
additional gauge freedom compared to eqs. @).

2.2 The extended conformal field equations

This section briefly overviews the conformal formulation of the Einstein field equations
introduced by Friedrich in [39]. The result of this formulation is a set of equations known
as the extended conformal field equations (ECFEs).

Following the discussion in [28]], let (M, g) denote the physical spacetime satisfying
egs. (@), and let (M, g) denote the unphysical spacetime with

Jab = =G, (6)

Given a g-orthonormal frame {e, } and a dual frame {w®}, one can write

Jab =

*Gab, (7a)
ga,b — —2

3. (7b)

(11 (1]

To introduce the ECFEs, introduce the Weyl connection as a torsion-free connection \Y
satisfying R
Vagbc = _2fagbc> (8)

where @a = ea“@a. The relation between @, V and V is then given by

V-v=S5() (9a)
V-V-=58), (9b)

where 3 = f + Z'd= and S(f) can be written as

S(.f) = Sadefda



with
Sade = 5a65bd + 5ad5bc - gabQCda (10)

where 9, is the Kronecker delta. Given the above, the extended conformal field equations
can be written explicitly in terms of the zero quantities X5, Z¢gab, Acap aNd Apeq as

~ ~

Yab =0, Z%ab=0, Acap=0, Apeg=0, (11)

where (Xap, Z%dab, Dedb, Abea) are defined as

N o 5 e o
2ab = [eb7 ea,] - (Fa b — Fb a)eC7
=c _ pec ~C

=% ab = P dab — P dab,

o S A A o
Acdb = chdb - vchb - da,d bed)

A

_ a a
bed — vad bed — fa,d bed-

—>

Here, [ep, €,] is the commutator defined as [ep, €4] = ep(€q(f)) — ea(es(f)) for any
function f onAM, Lgp are the components of the Schouten tensor L associated with V,

A

I'4®. are the V-connection coefficients, and d,, is a 1-form related to f, by
do = Efy + (dZE),.

Finally, Pcdab and p°44p are the components of the so-called geometric and algebraic
curvature with respect to {e, }, defined by

pcdab = ea(fbcd) - eb(facd) + ffcd(fbfa — fafb) + fbfdfacf - f‘afdf‘bcfa
% dab = Zd°gap + 25 Lys.
The ECFEs yield partial differential equations to be solved for the unknowns
(€q,Ta’, Lap, d®bac)-
In addition to egs. (1)), introduce the zero quantities 0, Yap and ¢qp satisfying
0a =0, 7b=0, <=0, (14)

where

A

0g =dg — Zfa — VaZ,

A A 1
Yab = Lab — Vafb — §Sab6d6c6d>
Sab = Liab] — Viafo)-

The supplementary eqs. (14) relate the solutions of the ECFEs to Einstein’s field equa-
tions. In particular, given a solution (e, f’abc, ﬁab, d*pac) to the ECFEs with a choice of
= and d,, that satisfies the supplementary egs. (I4), thenif = # 0 and det(n®°e, ®ep) # 0
on some open set U of M, the metric



is a solution to eq. (3) onU. Here 744 is used to denote the components of the Minkowski
metric with respect to a Cartesian coordinate frame field, i.e., 745 = diag(1, —1, —1, —1).

Similar to the metric conformal field equations introduced in the previous section,
the ECFEs exhibit conformal gauge freedom. To demonstrate this, define the conformal
metric g such that

gab = Ezgaln

N 2

Gab = K Gab-
Thus, we have = =xgl2, Then, introduce the Levi-Civita connection V associated with
g and define the Weyl connection V as

va,gbc = _2fa,gb67
so that the relation between V, V and V is given by

V-V =5(),
V -V = S(k+rdr),

where k = f — f . In terms of the above, the conformal covariance of the ECFEs can
now be expressed as follows: if (€q, s, Lab, @%pac) is a solution to eqs. (L)), the
collection (&4, ¢, Lap, d®pac) With

€a = K€gq,

[0l = k00l 4 0.°Vak — £Sae?®(kq + k' Vak),
. A A A 1 A ~
Lap = K2 Lap — K*Va(ky + £~ 'Vpr) — aKQSade(kc + k7' ek) (kg + KV ak),
Czabcd = Fdsdabcd,
is also a solution to the ECFEs. However, note that the ECFEs exhibit additional gauge
freedom, corresponding to the freedom in the choice of V, compared to the metric
conformal field equations. Therefore, to obtain a solution to eqs. (L)), our analysis of
the ECFEs will require a gauge choice. In Section[3.1] the final form of the ECFEs will

be obtained by introducing the so-called conformal Gaussian gauge that allows us to fix
the conformal factor = and V.

Remark 2. As our main focus will be on obtaining solutions to the ECFEs, rather than
the metric conformal field equations, the term conformal field equations will be used
interchangeably with ECFEs in later discussions.

The extended conformal field equations in spinor formulation

The analysis of the ECFEs will be carried out using spinors. In the following, let {e, }
denote the g-orthonormal frame introduced in the previous section and let {e 4.4/} refer
to the spinorial version of the frame satisfying

gleaa,epp) = €aBéap. (19)
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Then, introduce the spinorial counterparts of pcdab, % dabs ﬁab, dg, d%eq and f, as

~ !

5CC c - AA’
P~ ppraaBp,p”~ pp'aaBBLaasp.daa,d”” Bpccpp, faa

Since the definition of geometric and algebraic curvature is given in terms of the con-

!

nection coefficients I',?., introduce the spinorial connection coefficients I' 4 4/ B8 ¢/
which can be decomposed as

r BB’ r B B | B’ B
F'aa”” co =Taa"coc” +Taa” cdoc”, (20)

where T' a4 2o are known as the spin connection coefficients. Given the above, the
relation between the Weyl connection V and the unphysical connection V given by eq.
(@) implies that

LaaPc=Taa®c+6a"fon, Taa®g = fan

~ ’ R /
Then, P pp aa s and p€€ ppaasr can be decomposed as

»CC! S5C c' |, pc’ c
P*" ppaaBe = P "paaBpdp~ + P~ paaBpip~,

~ /

cc C c | c
P~" ppAA'BB =P DAABBOD + P DAABBOD ,

where

~ o 1 ~ ~
Papcc'pp' = PaBycc'pp' + 2€AB (vCC’fDD’ — VDD’fCC’) ;

. . 1 5 5
PABcc'DD’ = P(AB)CC'DD’ T QEAB (LCC’/DD’ - LDD/CC/) .

Given these definitions, the extended conformal field equations can be written in terms
of the zero quantities (X445, Z°paa B, Acco'pp BB, ABB/CC'DD’) 25

Yaasp =0, =" paaBp =0, Accppep =0, Appcepp =0,
(23)

where

™M

_ 5 co 5 co
AA'BB = |€aa,€BB/| — (FAA’ BB — L'BB AA’) ecc,

C — pC ~C
DAA'BB' — DAA'BB’ — P DAA'BB’;

(1>

A _ 2 - ? AA
Accpp BB =Vee'Lpp s — Voo LeoBp — daad”™ Beccpp,

A _ ¢ AA AA
Appcc'pp = Vaad™” gpccpp — faad™ Beccopp-
One can also define the spinorial counterparts of the zero quantities d,, Yqp and Gup as
daar, YAA'BB’, SAA’BB’;

that can be expressed in terms of the spinorial counterparts of d,, fq, ﬁab, Ba- Then, egs.
(14)) can be written as

daa =0, YaaBp =0, Ssaa'Bp = 0. (25)
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2.3 Conformal Geodesics

As will become evident, Friedrich’s formulation of spatial infinity relies on a class of
conformal curves known as conformal geodesics. The aim of this section is to briefly
introduce the notion of conformal geodesics utilised in this work.

Definition 3 (conformal geodesics). Let / € R and 7 € I, then the curve x(7) is a
conformal geodesic on the physical spacetime (M, g) if there exists a 1-form 3(7) along
x(7) such that

Vet = —2(8, &) + §(x, &) 3, (26a)
VB = (8.8) — 368, 0)% + L(#, ). (26b)

where & denotes the tangent vector and L is the Schouten tensor associated with V.

In the following, let S denote a spacelike submanifold of (M, §) and consider the
smooth initial data on S as

., €8, @, €T(S),  B.eT.(S),

where T, (S) and T*|,,, (S) denote the tangent and dual tangent space at z, € S, respec-
tively. Given these initial data, there exists a unique conformal geodesic (z(7), 3(7))
passing through each z, € S such that

z(0) = z,, z(0) = ,, B(0) = B.. (27)

To illustrate some of the useful properties of conformal geodesics, introduce the Weyl
connection V satisfying )

Vatgbc = _26a§bca (28)
where 3, is the 1-form satisfying the conformal geodesics eqs. 26). Given this definition,
the relation between V and V is given by

V-V=5@)

where S(3) can be written as
S(/B) - SadeBda
with
Sade = 5ac(sbd + 5ad5bc - gabQCd- (29)

Then, eqs. (26) implies

Vo =0 L. =0. (30)
where L is the Schouten tensor associated with V. Furthermore, one can introduce a
Weyl-propagated frame {e, } as R

Vaieq = 0. 31

Hence, a congruence of conformal geodesics satisfying eqgs. (26) given initial data eq.
27) singles out a Weyl connection V and a Weyl-propagated frame {e,} as suggested
by eq. (28) and eq. (31).
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Another essential feature of conformal geodesics is that a non-intersecting congruence
of conformal geodesics singles out a canonical conformal factor = and a metric g = =Z%g
such that

gz, ) =1. (32)

In other words, the metric g is singled out by enforcing that the parameter 7 of the
conformal geodesics corresponds to the g-proper time. In particular, we have

Proposition 1. Let (M, g) denote a vacuum spacetime satisfying eq. (@) and let
(x(7), B(7)) denote a solution to the conformal geodesics eqs. (26) with initial data eq.
@7). Then, if g = =2g is defined such that g(x, ) = 1, the conformal factor = can be
written as a quadratic polynomial in terms of 7, i.e.

. 1.
E(r) = B, + 5T+ 55*72 (33)

with
S = <ﬁ*7 w*>:*7 SSx = 59 (ﬁ*a ﬁ*) (34)

If {e, } is a g-orthonormal Weyl-propagated frame satisfying eq. (31]), one can show that
the components of 3 with respect to {e, } satisfy

—_ —_ —_
B_H Hﬁ.—wﬁ.
0 — — — My — =% Mk

(1]

where 3, = (3, eq).

In the next section, we will use the unique properties of conformal geodesics to
introduce Friedrich’s formulation of spatial infinity.

3 Friedrich’s formulation of spatial infinity

As discussed in the introduction, the strategy of this work is to make use of Friedrich’s
regular initial value problem of the conformal field equations [39] to analyse the behaviour
of asymptotic charges near spatial infinity. Following the discussion in [40], let S
denote a spacelike submanifold of (M, §) which is asymptotically Euclidean and regular
(Definition[I) with one asymptotic end, and let h denote the intrinsic metric induced by g
onS. Let S denote the hypersurface mentioned in Definition [l with the asymptotic point
i and denote by SU(S) the bundle of normalised spin frames over S with the structure
group SU(2,C). Let {e4*} with A € {0,1} denote the spin frame chosen so that the
components of the e-spinor are given by

€01 — 1, 601 =1.
Also, let 744" denote the spinorial counterpart of the future directed normal vector of S
satisfying 744744 = 2. Then, 744" can be written as

’ _ ’ _ ’
TAA = €0A€0/A —+ €1A€1/A . (35)
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Givent = {t4g} € SU(2,C), one can show

A ,B
€aBt” ct” p = €cp,

— Al
Taat* Bt = B/

Then, given a fixed spin frame {€4“} at i and t € SU(2,C), introduce the transformed
frame €4 (t) as
GAA('[Z) = tABGBA.

To introduce spin frames in a neighbourhood of the asymptotic point ¢ € &, consider
the metric ball B,(7) in S centered at ¢ and choose a > 0 such that B, () is geodesically
convex and the metric h is smooth on B, (7). Then, construct the h-geodesic starting at
i and let p denote the affine parameter along the geodesic so that p(i) = 0. By fixing ¢,
the spin frames € 4 () can be parallelly transported along the geodesic and the frames
obtained are denoted by €4 (p,t), where the upper index for the spin frames will be
removed in the subsequent discussion for convenience. Then, let C, denote the subset of

SU(S) defined as
C, ={ealp,t) € SUS)|—a<p<a,teSU2C)}. 37)
From the above, C, is diffeomorphic to S, given by
S.=1{(p,t) eRx SU(2,C)| —a < p < a},

To relate the structures on C, with those on S, let 7 denote the projection from SU(S)
to S and then denote by 7’ the restriction to C, so that 7’ is a projection map from C, to
B, (7). The action of U(1) on SU(S) will imply an action of U(1) on C,. The quotient
under this action C, = C,/U(1) is diffeomorphic to (—a,a) x S?. Subsequently, if
te€ SU(2,C)and s’ € U(1), then €4(t) and € 4(s't) can be parallelly transported along
the same geodesic and will be given by €a(p, t) and €4(p, s't), respectively. Since the
function p is invariant under the action of U(1), we have

' (ealp, 1)) = m'(€alp, s't)),

and the map 7’ can be factored as
! h .
Co — C, = B, (i),

where 7} is the Hopf fibration and 7 is the exponential map. Note that the set C/,
can be split into two components: C.* on which p > 0 and C,~ on which p < 0.
Each of these components can be mapped into the punctured disk B,(7) \ {i} using 7.
Additionally, given these projections, the point i can be replaced by the set 7,1 (i) which
is diffeomorphic to S%. Then if Iy = {p = 0} C C,, we can identify 7} (ly) = w5~ (i)
and 75,71 (4) glues together the components C/ " and C/,~.

In the following, it will be assumed that (M, g) is the development of the initial data
(S, h) satisfying Definition [l and that (M, g, ©) is the smooth conformal extension of
(M, g) such that M = M U.#+U.#~, where .#* denotes future and past null infinity,
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respectively and © is the conformal factor satisfying i) © > 0 and g = ©%g on M, ii)
© = 0 and dO # 0 on .#*. Then, introduce the manifold M, , by

M, = {(T,p,t) ERXRXSU(2,(C)|0§p<a,—g <7< f}’
K

K

where « is an arbitrary function such that x = pr’ with £ smooth and /(i) = 1,
w = w(p,t) is a smooth non-negative function such that w/x — 1 as p — 0. Note
that a coordinate system can be defined on M, , by introducing a coordinate system on
SU (2, C) together with the functions 7 and p.

Similar to previous discussion, the action of U(1) on SU(2, C) implies an action of
U(1) on M, .. The quotient under this action M, /U (1) will be denoted by M, , and
the projection from M, ,, onto N' C M by 7', where N is the domain of influence of
B, (i) \ {i¢}. The map 7’ can be factored as

Mo
Mo — M, . = N.

Given the mentioned construction, define the following subsets of M, ,,

IE={(r,p,t) € Mol 0< p<a,7= i%}, (382)
I={(r,p,t) € Maulp=0,-1<7 <1}, (38b)
I:t :{(Tvpvt) eMa,H|p:077—:j:]-}7 (38C)
Zo={(r,p,t) € Munl p=0,7 =0}, (384d)

where the sets .~ represent past/future null infinity, Z is the cylinder at spacelike infinity
and Z* are the sets at which .#* touches Z, known as the critical sets.

Remark 3.

i. The subscript , in .#* is used to indicate that the sets .#.= do not represent the
entirety of past/future null infinity, rather they map to a part of null infinity close
to spacelike infinity. In subsequent discussions, we will drop the subscript for
convenience.

ii. Given that 7} (ly) = 7, ~'(i) and that 7, ~!(7) is diffeomorphic to S?, it is clear to
see that 71 (Z) is diffeomorphic to R x S?, hence the use of the term cylinder at
spatial infinity to refer to Z.

So far, the construction C, has not been extended to the spacetime M, ,.. To do so,
assume C, defined as previously and define S, = {p > 0} C S,, then the spin frames
ea(p,t) € SU(S) will be transported off S, into the spacetime by a certain propagation
law along conformal geodesics which are orthogonal to S,. This allows us to determine
the spin frames €4 (7, p, t) at points of M, . \ (ZUZ" UZ") up to multiplication by a
phase parameter that corresponds to the action of U (1) on SU(M).

Remark 4. Subsequent calculations will be carried out on M, ,,. We will use the same
notation to refer to fields on M and their pull-back to M, ,, via 7’ e.g. use © for 7"*O.
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Following the discussion in [40], let Z,,, denote the vector fields generated by u;, the
basis of the Lie Algebra of SU(2, C), given by

L0 4 Lo -1 L/ii 0

Then, introduce the complex vector fields
Xy =—(Zy, +1iZy,), X_ =—(Zy, —iZy), X =-27,,,
satisfying
(X, X,] =2X,, (X, X_]=-2X_, (X, X |=-X.
Given the above, consider the smooth vector field
ean =€ an0, +€' an0,+e aa X, —e anX_, (40)

where e 4 4/ denotes the components of e 4 4- with respect to the local coordinate system
(1, p, t). If w44 denotes the dual frame, then (w44 epp/) = eg?ép? on M, \ Z.

Given that Friedrich’s formulation is an initial value problem formulation of the
conformal field equation, we will be interested in reintroducing the 1 + 3 decomposition
of the field equations in terms of so-called space-spinors —see [45, 44, 28] for details.
In the space-spinor formulation, the frame fields e 4 4- can be decomposed as follows

1
B
€aa = —\/§TAA/8’T — T A’€AB,

where 74 4/ denotes the components of the future directed normal of S and e 4 g is defined
by
eap =Ta% epp = €450, +elpo, + ehp X + e pX_. 41)

Since the ECFEs are written in terms of a Weyl connection, let V denote a Weyl
connection such that

Vagbe = —2fadbe, (42)

where {e,} is the tensorial counterpart of the frame fields defined by eq. (@Q), gap =
g(eq, ep), and f, is an arbitrary 1-form which will be fixed in later discussions.

Now, let xapcp and €4 BCD denote the real and imaginary parts of I aBcD of the
spin connection coefficients r ABCD = T(B AT A)Arcp associated with V defined by

XABCD = —ﬁ(fABCD + fJABcp),

1
§ABCD = \/— (FABCD FXB(;D),

where ij gcp 18 the Hermitian conjugate of I' ypcp. Then, I' s pcp can be written as

1
(aBcD — X(aB)cD) — z€aBfcp, (44)

fABCD = —(§ABCD - XABCD) = 5

S -
4l
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where fap = 784 faja = T84 %) fa.

Given that the curvature tensor R“bcd associated with V can be written in terms of
the rescaled Weyl tensor d%.; and the Schouten tensor ﬁab, it is straightforward to see
that the spinorial counterpart of R%yeq is fully determined by the rescaled Weyl spinor
®aBcD = ¢aBcp) and the space-spinor counterpart of the Schouten tensor © 4pcp,
where p apcp and © 4pep are defined by

]_ A/B/ Ec/D/

QABCD = _ZE daa' BB CC'DD’

©aBcp = Oapcp) = 82 ™ Lasce:.
A further decomposition of © sgcp = © ap(cp) yields

1
©aBcp = OB)cD — §€AB@QQCD-

As shown in [46]], the gauge choice based on conformal geodesics implies that the
conformal factor © can be expressed in terms of initial data as follows:

2
0=x'0 (1 _ 72“—) , (46)

2
where w is given by

B 202

- V=DapQDABQ
Here, D45 denotes the intrinsic covariant derivative on the initial hypersurface S,,.
Moreover, one can show that © satisfies

(47)

w

0 >0 on M, , {6=0}=7"UZ " UZTUZI UL,
eAA’(@) 7é 0, eABEA/B/eAA/(@)eBB/(@) =0 on fa:t.

For the rest of this article, we will refer to the frame {ea 4/} (or equivalently {e,})
satisfying the conditions mentioned, the coordinates (T, p,t) and the conformal gauge
defined above as the F-gauge. In the following section, Friedrich’s approach to the
conformal field equations will be introduced, where the aim is to encode the above gauge
conditions, and their transport laws in the properties of the unknowns appearing in the
conformal field equations.

3.1 Hyperbolic reduction using the conformal Gaussian gauge

This section aims to introduce a hyperbolic reduction procedure of the ECFEs using
the so-called conformal Gaussian gauge based on conformal geodesics, following the
discussion of Chapter 13 in [28]].
In the following, let S = {7 = 0} denote a spacelike hypersurface on the physical
spacetime (M, g) and let
€a, = ea‘éa By = 5‘57 (49)
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denote a smooth initial data specified at each point =, € S. Furthermore, assume that
(2(7), B(7))|e, is the unique solution to eqs. (26) passing through x, € S such that

2(0) =z, z(0) =eo,  B(0) =B

By varying z,, it can be shown that one obtains a smooth caustic free congruence of
conformal geodesics in a small neighbourhood U/ of S.

Remark 5. In subsequent calculations, it will be assumed that (z(7), 3(7)) is a congru-
ence of conformal geodesics satisfying eqs. (26) with initial data eq. (49) specified on
S.

The solution to the conformal geodesic equations allows us to fix the gauge freedom
in the ECFEs associated with the choice of V. In particular, one can introduce the Weyl
connection V as

V-V =508).

As mentioned in Section 2.3] the Weyl connection introduces a Weyl propagated frame
field {e,} satisfying eq. (3I). Moreover, one can obtain a canonical conformal factor
= by imposing conditions eq. (32)). Applying Vs to eq. (32) and using the conformal
geodesic equations, one can show that = satisfies the evolution equation

Va2 =28, &). (50)

Given {e,} and = that satisfy the above mentioned equations and if the frame {e,} is
adapted to the conformal geodesics so that & = e, then the conformal metric g = =g
satisfies

Q(ea, eb) = Tab-
Finally, given local coordinates () on S and setting 2° = 7, the local coordinates on

S can be dragged along the conformal geodesics to obtain a smooth coordinate system
(z#) = (2°, ) on U. In this gauge, one can show that

t=ep=0,, [0%=0, Loa=0 onl, (51)

and that the conformal factor = and 1-form d = =3 can be expressed in terms of the
initial data as:

(1]

—_
—
—

(7)

0:

I
S (1 + <B*7 eO*>T + Zgﬁ(/ﬁ*a ﬁ*)7—2> 9 (52&)
0,2, dq =Z|5(Bs, €ox) for a=1,2,3. (52b)

[11-
I

S

This choice of coordinates, frame fields and conformal factor will be known as the
conformal Gaussian gauge system.

To make use of this gauge in the ECFEs, let ¢ denote an embedding map ¢ : S—- M
so that S is a submanifold of M and let ¢ denote the conformal transformation map
¢ : M — M so that the metric g = =2g on M satisfies eq. (32). Then, the map
$pop:S — M is also an embedding so that S can be considered as a submanifold of
M. If h is the metric induced by g on S and h is the metric induced by g on S, one has

h = Qh, (53)
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where Q = Z|s. Given the smooth coordinate system (z*) on U and if e*, denote
the coefficients of the frame field e, with respect to the coordinate system (z*) i.e.
ety = (dz", e,), then using the gauge conditions eq. (531)), the evolution equations for
€y, [ab. and Ly can be written as

0re'y, = —Tp %€, (54a)
0. 0pq = T4l o + 00 Lba + 64 Lo + 10an’ “Los + Edaos,  (54b)
OrLoe = —Tp o Lse + dgd” cop. (54c)

Note that these equations contain only derivatives with respect to 7, so they can be
considered as a transport system along the conformal geodesics (z(7), B(7)). If n, is the
g-unit normal to S , the rescaled Weyl tensor d%p.q can be decomposed in terms of the
electric part Fgp, and magnetic part B, defined as

_ c, d c,.d
Eab = dacbdn n-, Ba,b = (*d)acbdn n-,

where (*d)qcpa are the components of the left Hodge dual of d,,q. Using this decompo-
sition, one can show that F,, and B, satisty

07 (Eba) + DaBepea)™ + 2aa€* 6Baye — 3X6°Eaye — €664 EacXes + XEba =0,
0-(Bbd) — DaBe(bea)™ — 20a™ b Eaye — 3X* (6 Baya — €6*€a® BacXes + XBba = 0,

where
_ _ c — 1,ab . b
hab = GJab — TaTb, Xab = ha chba X = h Xab; Aq =T VbTaa

and 7, = V2n,.

3.1.1 Spinor formulation of the extended conformal field equations

The ECFEs obtained from the hyperbolic reduction procedure discussed in the previous
section can be expressed in terms of spinors. In particular, if 744" denotes the spinor
counterpart of the vector 7 and {€4“'} denotes the spin frame introduced in Section[3]so
that 744 is given by eq. (33)), then the evolution equations for e aar, Taa e, Laass
and d 4 a'BB'cc’pp’ can be written as

A/iAA’BB’ =0, 7°C'Eapcopp =0, (56a)
AL A

ApgaBpcc =0, 74 N aisep) = 0, (56b)
where we choose to omit the explicit form of these equations — see [28]] for a detailed
expression of these equations.

In the following, let r ABCD, fap and © 4 gcp denote the components of the space-
spinor counterparts of V- spin connection coefficients, the 1-form f and the V-Schouten
tensor, as introduced in Section[3] i.e.,

: _ Ay _ A _ A
I'aep = 78" Tajarep, faB =1B" faya, ©aBcp =78" 0" Laacc
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Note that I’ ABcp can be further decomposed in terms of £ 4pcp and x apcp using eq.
(@4) while the spinorial counterpart of the rescaled Weyl tensor d 4 a'Bp'cc'pp’ can be
decomposed in terms of the rescaled Weyl spinor ¢ opcp as follows:

daa'BB'CC'DD’ = —QABCDEA'B'€C'D' — QA'B/C'D'€ABECD- (57)
Now, define the electric and magnetic parts of the rescaled Weyl spinor ¢ spcp as

l

nascp = = (dapep + Yhpep: ) » fABCD = —5 (¢aBCcD — Yhipep)

DO | =

where the * sign denotes the Hermitian conjugation, so that
_ . A_ B ' D'7
dhpop =Ta? B 16 0" damop.
In terms of the above-mentioned fields, the evolution equations for
(€”aB, €" aB,£aBcD, faB: X(aB)CD, OcD(aB), ©4BQ°)

can be written as

0,€’ a5 = —x(ap) %€’ pq — [aB, (58a)

0,€*aB = —x(aB) %" pq. (58b)

1
0:{aBCcD = —X(AB)PQSPQCD + ﬁ (EAcX(BD)pQ + EBDX(AC)PQ) fPQ (58¢)

1 —_
—V2xaB)c® foye — = (€acOBD® + €8O acq?) — iZpaBcD,

2
Orfas = —x@aB) Cfrg + L@ABQQ, (58d)
V2
drx(aB)cp = —X(aB) ®XPocp — ©aBcp) + ENascp, (58e)
0,Ocpap) = —X(aB) 2Opqap) — 0-Enapcp +iV2d¥ aupcpp, (58f)
9,:0480% = —X(aB) " OrrQ® + V2dP9nappg. (58g)
In the above, dap = 7 gAd A)a’ is the space-spinor counterpart of the 1-form d

introduced in the previous section. Note that the conformal factor =, its derivatives 0=
and d 5 g can be expressed in terms of the initial data as discussed earlier —see eqs. (32).

Finally, let D 4 g and P denote the Sen connection and the Fermi derivative associated
with the Levi-Civita connection V, so that

_ oA _ _AA
DaB =714" VB)a, P=71""Vaa,

then the so-called boundary-adapted evolution system for ¢ 4 pcp can be written as

1
—2Ps000 = 0, —2Po001 — 5000 =0, —2Py011 = 0, (59a)
1
—2Py111 + 5011 =0, —2P3111 = 0. (59b)
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where

1

Papcp = -3 (Pgascp — D" daBoyr) . Cap = D" papEr.

The constraint equations for ¢ 4 gcp can be written as
Cap =0. (60)

Given the evolution equations for the background fields €45, €® 4B, aBCcD> fABs
XB)cD> ©cpaB), ©a BQQ and the boundary-adapted evolution and constraint equa-
tions for the rescaled Weyl tensor ¢ 4 gpcp, the next step is to obtain a scalar version of
these equations that can be solved for the components of the background fields and the
rescaled Weyl tensor.

3.1.2 Scalarising the extended conformal field equations

To obtain a scalar version of the extended conformal field equations, we consider the
irreducible decomposition of spinors with two or four unprimed indices.
In the following, let {e4”} denote some arbitrary spin frame and introduce the

primary Spinors T g, Yan, 2AB; €4pcp and hapep as

1
TAB = \/5(—:0(,4(-:13), YaB = —ﬁel(m—:lg), ZAB = ﬁeomeog), (61a)
€ABCD = 6(A(AGBB‘ECCGD) D); hapcp = —€ac€p)B, (61b)

where the indices with a bracket are symmetrised, and the lower index s < 4 is used to
indicate that s of the indices are set to equal 1 while the remaining are set to equal 0.
The e-spinor can be written in terms of {e 4"} as

0 1 0 1
€EAB — € A€ B — € BE 4.

The spinors €% .~ can be written in terms of 245, y4p and 245 as

. 2 2 2

€ABCD = gZADZBC + gZACZBD + gZABZC’Da

, 1 1 1 1 1 1

€ABCD = 6ZUCDZAB + 6£UBDZAC + 6£UBCZAD + 6£UADZBC + 6£UACZBD + 6xABZCD7
1 1

6124BCD 6$AD$BC + 6$ACIEBD + 6$AB!ECD,

3 1:6 1:5 1:5 1:c 1:c 1:c

€ = —— _— = JE— - — — — -

ABCD 6 CDYAB 6 BDYAC 6 BCYAD 6 ADYBC 6 ACYBD 6 ABYCD,

. p 2 2

€ABCD = gyADyBC + gyACyBD + gyAByCD-

The primary spinors satisfy a number of useful identities —see appendix in [40] for a
full list. For example, the spinors x g, y4p and z4p satisfy

AB AB AB
TApr"” = —1, xapy” =0, rapz”” =0,
1
AB AB AB
yapy~~ =0, yaprt = —5 zapz™” = 0.
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An arbitrary spinor with 2 unprimed indices [ 45 can be decomposed as

lap = lzxap + lyyap + .28,

where

l, = —lapz™®, l, = —2lap2"5, I, = —2l4py*P.

Similarly, an arbitrary spinor with 4 unprimed indices S4pcp can be written as

0 1 2 3 4
Sapcp = So€apcp T S1€apop + S2€apop + S3€apop + Si€apep + Snhasep

+ Se(xBp€ac + Tacerp) + Sy(YDEAC + YacerD) + S:(2BDEAC + ZACEBD).

For totally symmetric spinors, T'ypcp = T{aBcp), the irreducible decomposition can be
written as

0 1 2 3 4
Tapcp = Toeppop + Ti€apep + T2€4p0op + 13€apep + Ta€apon-

Given the above-mentioned decomposition, we can list the components of the spinors
appearing in the evolution eqs. (38) for the background fields as

e’ap — (€),€),€)),

o 1,1 .1 .2 .2 .2 .3 3 3
e’ A — (ew,ey,ez,ew,ey,ez,ex,ey,ez) ,

§aep — (§0,61,82: 63,64, 6n, &0, 600 &2)

faB = (fu, fys £2)

XaB)eD — (X0s X1, X25 X35 X45 Xi» Xa» Xys Xz) »
©aBcp) — (00,01,0,,03,04,0,,0,,0,,0,),
OaB = Oape® — (0,,0,,0.).

It is possible to obtain a scalarised version of the evolution egs. (38)) by various contrac-
tions with the primary spinors. In total, one obtains 45 equations for the 45 components
listed above. In our analysis, the xAct package [47]] for Wolfram language was used to
obtain an explicit form of the scalarised equations. These will not be listed here for
obvious reasons.

Given that p apcp 1s totally symmetric, the components involved in the boundary-
adapted evolution and constraint equations can be listed as follows:

daBcp — (o, b1, P2, P3, P4) -

In terms of the above, the evolution eqgs. (39) and the constraint eqs. (6Q) for ¢ spcp
consists of 5 and 3 equations, respectively, to be solved for the components ¢g, ¢1, @2, P3
and ¢, —see Appendix[Al

4 The Newman-Penrose gauge

As mentioned in the introduction, the BMS-asymptotic charges used in this work are
expressed in terms of the NP-gauge. Before introducing the expressions of the charges,
we will discuss the NP-gauge conditions and the general relation between the NP-gauge
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frame with the F-gauge frame. As will become evident, the main distinction between
the NP-gauge and the F-gauge is that the former is adapted to null infinity .#* while the
latter is adapted to Cauchy hypersurfaces.

In this section, the focus will be on the gauge conditions satisfied by the NP-gauge at
future null infinity .# *. Similar conditions can be formulated at past null infinity .# .
Following the discussion in [40], introduce the conformal metric g° related to g by

g* = 0g. (66)

On a neighbourhood &Y C M of .#7, introduce the smooth adapted frame {e$ 4 }
satisfying the following conditions:

i. The frame field e],, is tangent to and parallelly propagated along .#*. Hence,
jvejy ~0,
where ~ is used to denote equality on ..

ii. On U, there exists a smooth function «° that induces an affine parameter on the
null generators of .# ™ such that

el (u®) ~ 1.

iii. The frame e}, is tangent to the hypersurfaces transverse to .# © (on which u° =
constant), i.e.,

e = gldu°,-).

iv. The frame fields eg,, and ej,, are tangent to the slices {u® = constant} N .7 .
These frame fields as well as eg,, and e],, are parallelly propagated in the direction
of e} .

Let (z*) denote a local coordinate system on I/, then the above gauge conditions can be
expressed in terms of the spin connection coefficients ', ,, £ ¢, which can be written in
terms of the components of e, ,, with respect to (z*) as

1
o o ov o 5 ov °
AA'BC = 5 (e ‘uAA/e Bl/VMel,CO, + e 'LLAA/e Cl/vueuBO/) .

Then, the gauge conditions are given by

o ~ o ~Y
10’11 — 07 F11’11 - 07

o __T0O o __ 1O o o .
I'o00 = Tororors I'100 = Toror + Dovors Loosc =0 onl.

To introduce the NP-gauge frame {e% 4} and the NP-gauge conditions, consider the
conformal rescaling g — g°* where g° is defined by eq. (66). Given # > 0 and an
arbitrary function p > 0 which is constant on the generators of .# ", the NP-gauge frame
{e% 4/} can be introduced as follows: let e}, ~ 6 2pej,, and introduce the affine
parameter u* along the generators of .#* as follows

o

u'(u"):/ 0*(u)p t(u)du' +ul  on.#T.

o
*
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Hence, the frame e}, is parallelly propagated along .# ™ and it satisfies e, (u®) ~ 0. If
C denotes a cut on .+, which is diffeomorphic to S?, then the coordinates (¢, ¢) on C
and the conformal factor 6 can be fixed such that the metric on C is the standard metric
on S?.

In the following, assume that ©u° = u{ and u* = u$ on C and set

. _ .—1_o . _ -2 o . __n—1_o
600/ - p 600/, 611/ i 9 pell/7 eol/ i 9 601/ On C.

Given that g = ©2g, the transformation g ~ g°* implies © — ©° = 0O and the
transformation laws for the spin connection coefficients can be written on C as

Moo = p_l (I'or00 — €0 (log(0))) ,
0111 = pefz (9111 + €31/ (log(8))) .

Thus, with a suitable choice of df and p, one can achieve the following
oo =0, I'9111 =0, ego (©°) = const. # 0 onC. (68)

The conformal rescaling given by eq. (66) implies a transformation of the trace-free part
of the g-Ricci tensor, denoted by s,;,. In particular, one has that

2
0

2 1 2
Sy = Sy — 7 (vuvye — 2V,.0V,0 — ZgW(vAvAe — —vAevw)) ,

6

where s, are the components of s with respect to (x#). Now, define ®3, and ®3, as

[} J— o ov L] J— L] L] [ 1%
(PQQZES;U/B H11€%11, D3, = 5s7,e e 1y (69)

The condition @3, = 0 on .# " implies a linear ordinary differential equation (ODE) for
6~1 on the generators of . *

ey (el (07) + 67105, = 0. (70)
The initial data for 6, e3,,(#) on C can be used to solve for 6 and obtain
P35, ~ 0, I'6111 > 0.

By fixing 6 and e},, on .# 7, the frame fields ef,, and e}, can be determined up to a
rotation. Then, the phase parameter c can be determined by solving

elv(c) = —ie™19e® 11V eroy, (71

along the generators of . with initial data ¢ = 0 on C. Making the replacement
ed, — €'“ep,, allows us to obtain

°
F11/01 ~ 0.

Given that s7,, is defined by
e o 1 L] L] L] L] L] L] L]
O°sh, = igWVAV re° — 2VIV,0°, (72)
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contracting the above with e**yy-€*1o implies that
ViVeer ~ 0.
While a contraction with e**yo €*”11- and e**yg €e*” g1/ gives
el (€ege(0°)) ~0, ego (©°) ~ const.

and
€o1/(€50(0%)) = I'1/00€00/(©°),

respectively. Thus, one concludes
F;.]./OO 2 0.

The conformal rescaling given by eq. (66) implies a transformation law for the Ricci
scalars associated with V* and V

1 12
L] _R+_

6
RN 0

i 0

V2 OVerg — Ve V*h.
By requiring that R* ~ 0, one obtains the following linear ODE for e (#) on the
generators of &
L] L] 2 L] L] ®
elv(ego (0)) — 5911'(9)600/(9) =7,
where F* can be determined using the quantities already obtained on .# . Given the
initial data for e, (6) = p~ 10T y00 On C, the ODE can be integrated to obtain

R* ~ 0, ' 000 = 0.

To introduce coordinates on I/, let 7* denote the affine parameter along the null generators
of the hypersurfaces {u* = const.} such that e, (r*) = 0 and r* ~ 0. Then, the
coordinates (1, ) on C can be extended to .# " and the hypersurfaces {u® = const.}
by requiring them to be constant along the null generators of .#* and {u® = const.}
hypersurfaces, respectively. This allows us to obtain Bondi coordinates (u®,7°*, 9, ) in
a neighbourhood U of .# .

In the following, the conditions on the conformal rescaling, the frame field and the
coordinates will be referred to as the NP-gauge. We will assume that the NP-gauge frame
{e% 4} is a frame field that satisfies the conditions mentioned above. The term NP-spin-
frame will be used to refer to the normalised spin frame {€%“} implying a NP-gauge
frame. Other quantities in the NP-gauge will also be denoted by °.

Remark 6. In subsequent calculations, the spin connection coefficients I'% ,,€ p will be
referred to as the NP connection coeflicients. It will be useful to introduce the following
shorthand notation:

o =-To ', put = -T8,%, v =T7%,%, (73a)
AN =T, 0" =-T'o, e =T%%. (73b)



Given the conformal relation between g*® and g in eq. (66), one has

ap = 0°gav, (74)

where g2, = g°*(e2, ep) and gap = g(€q, €p). Then, the relation between the NP-gauge
frame {e?, } and the F-gauge frame {e, }, parameterised in terms of # and A%, € O(1, 3),
can be written as
e, = 6-A% e, e, = GAabe,',. (75)
Moreover, the NP-gauge spin frame {€%“} and the F-gauge spin frame {€%“} are related
by
6:4A = 0_%ABA€BA, e, = H%ABAEBA. (76)

where AB 4 € SL(2,C).

S BMS-supertranslations charges

Now that we have defined the NP-gauge and its relation to the F-gauge, we can introduce
BMS-asymptotic charges expressed in terms of the NP-gauge. Following the discussion
in [30], for every f € C>(S?), the associated BMS-supertranslation charge Q can be
written as an integral over some cut C of &=

Q(f:0) = j{ eaf (P* — i(+P*) + 10" N?,), 77

where €, is the area element on C, 0*® is the shear tensor, IV, o 1s the news tensor. P*
and (xP*) are defined in terms of the rescaled Weyl tensor d¢, ., and its left Hodge dual
(*d®) apea as follows:

Pt = dzdeflcndlenf,
(*P*) = (%d*)caefln®1on?

where the vectors [* and n® are identified as follows:

1° = e, n*=ey;* onIt (79a)
“=ely, n® = ego’ on. ./ . (79b)
To translate eq. (77) to the F-gauge, our strategy is to obtain an expression for P°,
(¥P*) and 0*®N?,) in terms of scalars for which it would be simpler to compute the
transformation to the F-gauge. Given that the spinorial counterpart of d?, ., can be
decomposed in terms of the rescaled Weyl spinor ¢% 5~ as

° _ ° . . Te . .
AABBCC DD = —PABCDEN B EC D — P B D EABECD-

One has

C—-eC' eD-oD' oFE _oF' oF oF'
P. :dE‘C’DD’EE’FF/O. O. L. 1,4 0. 0. L. ? s

= —(¢3 + 03),
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where {0°,¢*} is the spin dyad adapted to the NP-gauge and

/ ! _ oY /
.AL.BO.CL.D A'-eB O.C LaD ]

e __ Je e __ e —e
?3 = QUpcpO ) O3 = Qupop 0L
For (+P*), one has

o ’ _aF ’
CO.C LoDrD O.EO.E oFLaF )

(xP*) = (%d*)cc'ppEE FFO° )

But, given that

(*d*)anBpccrpp =1 (QS;}BCDEZVB’EE‘/D’ - Q_S;VB/C’D/E;XBGE'D) ’
One can show that (xP*®) is given by
(+P%) = i(¢3 — 93).
Hence, one has that B
P —i(xP*) = —2¢3. (80)

For the background term involving o*® N?,, note that 0** and N, are defined as
(;b = 2(£n B (I)>U¢;b7

(] ecC _© 1 { ] oC (]
Oab = <qa qbd o éqabq d) vcld7
where ¢, is the induced metric on . = .+ U .# ~, and & is defined by ® = 1V2n® on
& and it satisfies the following:
|, = 2.

Note that the metric g* and the covariant derivative V* can be decomposed in terms of
the null tetrad (1%, n*, m®, m®) as

. _ _
Gap = Nalo + lany — Mamp — Mgy,

Ve =neD + l,A — M0 — mgd,

where D = [*V?, A =n?V?, § =m*V? and § = m*V?, [* and n® are defined by eq.
(79)) and

me = el me =ely”  on.I* (83)

From the above, one can show that

o = 0 mamy + 5 memy, on .S,

Ouwp — —)\'mamb — )\.ﬁlamb, on ji,
and

1

= (W a7 =), s,
1

®:Z<€.+€._p._ﬁ.)’ on.7".
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Given that
Lnog, = Aog, + 05, Van® + 05, Vin',
a long computation yields
o* N2, = 2A|0°)? — |o**(3u® + 31° +° +7°), on.#t  (86a)
o Ny = 2A|N 2 — NP (3p° +3p° + " +€°), onS . (86b)
Using egs. (8Q) and (86)) and substituting in eq. (77), one obtains

Q(f,C) = %Ezf( — 205+ Alo®)? — %|a'|2(3,u' +3u° +7° +"y')), on .Z ™,
c

Q(f,C) = %eﬁ( — 205 + AX]* — %|)\'|2(3p' +3p° + € + E’)), on.% ",
c

for which it will be simpler to compute the transformation to the F-gauge.

5.1 BMS-supertranslation charges in the F-gauge

The next step in this analysis is to express ¢3, o®, u®, v*, A*, p® and ¢* in terms of
F-gauge quantities. Given that

0" = €3V €4, pt = —e3ve, €y, 7= —€g V€04,
2= —€}4Vp €, p° = €0tV eta, e =€y'Vooela,
and using eq. (Z6), a long computation yields
o® = AAOBBI/(AAI) — 0_1AA1ACOABO/_\B/1/PBB/A0, (893.)
pt = 07"e5(0) — A%1e51 (Aa%) + 07 AA°ACIAPGAP LT g e, (89b)
1 .
v = —59*1611/(9) — A0l (AA%) + 07T AL ACGABL AR T ep ., (89¢)
A = —A%1e50 (Aa®) + 07 AL ACIAP A o Tep e, (89d)
p. = 0_1660/(0) + AAOGIO/(AAI) — 0_1AA1ACOABl/_\B/0/FBB/Ac, (896)
1 B~
€ = 50—1.950,(9) — Aoege (AA%) + 07 AN ACGABGAE T e,  (891)
where the LHS in the above expressions is written in terms of F-gauge quantities, except

for €% 4/, which will be explicitly computed in later sections. The component ¢3 can be
written in terms of F-gauge quantities as

Te 3 _ AA" AB xC' D’ 7
¢y = _5‘9 3AA1ABO/\C1ADOAA O/AB 1/AC O’AD v(daaBpcopp (90)

- dBA’AB’CC’DD/ =+ dBA’AB/DC’/CD/ - dAA’BB’DC’C’D’)-

Here, d 4 4’ BB'cc'pp denotes the components of the complex conjugate of d 4 a:gp'ccrppr
in the F-gauge. The discussion above indicates that Q can be written as

Q(f, C) = Q(9,AAB,ABA,1_\A/B/,1_\B'A/,€:4A/,FAA'CD,JAA'BB/CC/DD')- (C2Y)

Accordingly, the evaluation of Q at I+ requires a solution for e/, ['a 4¢p and
daaBecopp at ZT. As will become evident, a solution of the conformal field
equations is also necessary for obtaining an asymptotic expression of 6, A4 g and e°, 4.
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6 The initial data and the constraint equations

This section discusses the initial data used in our analysis, which is required to obtain
a solution to the conformal field equations and, more precisely, to obtain non-trivial
BMS asymptotic charges at .#*. The conformal constraint equations, satisfied by our
initial data, will be introduced in terms of the Levi-Civita connection associated with g,
contrary to the extended conformal field equations discussed in Section

6.1 The conformal constraint equations

To introduce the conformal constraint equations, let (M, g) denote the physical spacetime
satisfying eq. (3), and introduce the unphysical spacetime (M, g) with g given by eq.
@). Moreover, let S denote a three-dimensional hypersurface on M with an induced
metric denoted by h. As mentioned earlier, the hypersurface S can be regarded as a
hypersurface on M given the composition map ¢ o ¢ : S — M where ¢ : M — M
and ¢ : S — M. The metric g on M also induces an intrinsic metric h on S related to
h by eq. (33). If n and n are the g and g unit normals of S, then

€ Eg(’ﬁa'ﬁ’) :g(nvn) =1,

since S is a spacelike hypersurface. Moreover, if u, v are some arbitrary vectors on S,
then the extrinsic curvatures K and K are defined by

K(u,v) = (V n,v), K(u,v) = (Vyn,v).
It can be shown that the relation between K and K is given by
K = Q(K + %h),

where
Y =g*(dZ,n) =Z"'¢(d=,n).

Let {e;} denote an h-orthonormal frame. Then, the vacuum conformal constraint
equations on S are given by

D;D;Q + X K;; 4+ QLyij — shy; = 0, (92a)
DY — K;*D,.Q+ QL; =0, (92b)
D;s + XL; + Ly D*Q = 0, (92¢)
D;Ljg — DjLig, + Ydiij — D'Qdpgeiz + KirLj — KjpLi = 0, (92d)
D;Lj — DjL; + K;* Ly, — K;*Lji, — D'Qdy;5 = 0, (92e)
DFdyj — K*idjy, + K*jdis, = 0, (92f)
DFdy; — K™*dyj = 0, (92¢)
6Qs — 382 — 3D;QDQ = 0. (92h)

In the above, D denotes the Levi-Civita connection associated with h and D; = e;'D;
while h;; = h(e;, e;) denotes the components of h with respect to {e;}. Similarly,
K;; and [;; denote the components of the extrinsic curvature and intrinsic Schouten
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tensor with respect to {e;}, respectively. Furthermore, L;, d;; and d,;j, are the spatial
components of the contraction of Lgp, dgpeq With n®. In particular, L;, d;; and d;j, are
defined as

_ a _ a, b — a
L; = Ljgn®, dij = digjpn®n’, dijk = diajrn®.

Remark 7. The spatial components of E,;, introduced in Section [3.1] are equivalent to
d;; while the spatial components of 5, are related to d;;i, by

!
diji = € jx B,

where €', denotes the components of the three-dimensional volume form on S.

6.2 The initial data

To introduce the initial data for the ECFEs, the starting point is to consider an initial
data set satisfying the Hamiltonian and momentum constraints implied by the vacuum
Einstein field eq. (3). More precisely, we will be interested in a vacuum initial data set
(S, h, K) satisfying

P+ K? — KK =0, (93a)
D'Kyj — DyK = 0. (93b)

To obtain non-trivial BMS asymptotic charges at .# =, let us consider the vacuum initial
data prescribed in [35]:

Proposition 2. For any £,( € C?(S?) and q > 1, there exists a vacuum initial data set
(h, 7t) where the components of the intrinsic metric h and the momentum tensor 7 with
respect to the standard Euclidean coordinate chart () have the asymptotics

= A § (xqxp 1 1
haﬁ——<1+r)5aﬁ—r< 7"2 _2aﬁ)+OZ(T )7

Tag = 5= 5 T 75 (~Bas = Bswa + (B72;)0as) + O1(r=27),

where A, {B,}2_, are some constants, and r = \/(z')? + (22)2 + (2?)2. The momen-
tum tensor T is defined as . o

To simplify the analysis in this work, we set ¢ = 1 so that the components of h and
v are written as

Baﬁ = —0aB — % |:<A - §) 5046 +§xa$6:| + OQ(T_Z)a

2 r2

. 1|1 Lok
Tap = 3 {; (=Baws — Bya + (B'2,)0s) + (=5~

r2 r2

] +O1(r™?),
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where the expressions above have been rearranged to group terms of similar orders in 7.
Given eq. ([@3)), the components of K with respect to (z*) can be written as

B 1 1 1 :Eal‘
Kaﬁ = ﬁ _acéaﬁ + ; (-Bal’ﬁ - Bﬁl’a (B xﬁ/) aﬁ) _'_C -

+ 01 (T’i3)

In order to discuss the region near spatial infinity, we introduce the inverse coordinates
(y*) related to (z“) by
[0}

V=g Ya= g

where 0 = 1/(y1)2 + (42)2 + (13)2. In terms of (y®), the components of h and K can
be written as

- (14 Ao) £ (vays & 9
hag = —T5aﬁ - E o - 55046 + Os2(077),

~ ¢ 1 1 | e (B"y,) -
Kop = —2—92@5 ~ i ( 2By + 5(B4y)dap | + 2 (- . =) +01(07h).

In the following, let S’ denote a three-dimensional compact manifold with a spatial
infinity point 7 and let ¢ denote the diffeomorphic map from &\ {i} to S with the
conformal factor €2 given by

o__ 2

V1+ Ao

Then, the components of h' = O?h and K' = 'K with respect to (y*) are related to
hes and K5 by N
Clﬁ - Q/2ha[—}’ Kéﬁﬁ — Q/Kaﬁ.

By expanding €2’ around ¢ = 0, the components %, ; and K7,; can be written as

' o 1
aB — _501[3 - fg (yggﬁ - 55015) + 02(92)7 (983)
, ¢ 1 1 BYyy)\ Yoy
Kos = —55«1/3 ~5 2B(yp) + 2(37%) B ¢— 4( 7) e 20 1 04(0).
(98b)

The above initial data (h', K') is said to be asymptotically Euclidean and regular in the
spirit of Definition[I} To analyse the conformal constraint equations, it will be convenient
to express h' and K’ in terms of the so-called normal coordinates and to introduce the
conformal normal initial data.
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6.2.1 Normal coordinates and conformal normal initial data

Consider the h/-geodesics emanating from i € S’ to nearby points in a neighbourhood
U' € &' and introduce the subset 7 of the tangent space at i

T ={v € T|;(S")| 7w is defined on an interval containing [0, 1]},

where 7, = 7,(t) is the geodesic starting at ¢ (i.e. 7,(0) = 7) with an initial tangent
vector v. Let exp, denote the exponential map at i, exp, : 7 — &', defined such that
exp,(v) = 7,(1). Then, the neighbourhood /' is said to be a normal neighbourhood of
if U’ = exp,;(Q), where Q C T'|;(S’) is a neighbourhood of the zero vector 0, and if for
all t € [0,1],

veQ—tve Q.

For any point p = exp,(v) € U’, the normal coordinates (z®) is given by 2% = e*;v°,
where v are the components of v with respect to an orthonormal basis {e;} and e®; are
defined by
e, = (dy“, e;).

Let v® = (dz®, v) denote the components of v with respect to (2%), then the normal
coordinates for any point p on v, (t) is given by x*(¢t) = tz*. If v.,”, denote the com-
ponents of the h’-Levi-Civita connection coefficients with respect to (z“), the geodesic
equation can be written as

Pzl da® da”

gz TV v =0 99)
then one can show that 7(’157 vanish at 7, i.e.,
%lxﬂv (4) = 0.
This implies that the components of the metric A’ in normal coordinates satisfy
wpy =0 at 7, (100)
where h/,; _ is the derivative of h,; with respect to z7. Taylor expanding the metric h’
around ¢ gives
La(2) = h) + %hngwzé +O(|2]), (101)
where |2]? = §,52°2° and h;(lg) = —0, is the metric at ¢ (i.e. at [z| = 0). The non-

vanishing O(p) terms in the initial data for A’ given by eq. (O8) implies that (y®) are
not normal coordinates. However, the discussion in [48]] shows that the transformation
between a generic set of coordinates (y*) and normal coordinates (2*) is given by

1
y =2 = s 2+ O, (102)

where fy'ﬁ(o)“ﬁ, are the components of the h’-Levi-Civita connection coefficients with

respect to (y®) evaluated at ¢ = 0. In a slight abuse of notation, let /jss . denote the
derivative of hj;; with respect to y”, then v, is given by

1
ra NN / /
5%y = SH (Wasey + Poyp = igr6) -
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From eq. (98)), one has

1 1 1 1
0% = i (90 3" ) = 57 (90— 30 ) = 0000 (P 48

1 « 1 o f « 3 (07
+ 57965;5 (79(“{55) - 519 56“{) - 5 (79(“{56) + 579 55'7) )

where 9% = y®/p. In the above, &, is the derivative of ¢ with respect to the angular
coordinates 97 and () indicates a symmetrisation over v and 3. The transformation
given by eq. (102) implies that the components of h’ with respect to (z*) admit the
following expansion near |z| = 0:

hog = —0ap + O(|2]).

Moreover, the components of the extrinsic curvature K/, 5 with respect to (2%) can be
written as

1 1
K@=—§w—§@awm+;gwmw)+www4@mmm%+oww

Taylor expanding the conformal factor ' around |z| = 0 gives
’ 2 A 3 0)a _B v 4
O = [2f? — JJafP — o0 P20 + O(al).

The next step is to exploit the conformal freedom in Definition [I] with the aim of
simplifying upcoming calculations. In particular, introduce the conformal normal initial
data (h, K), related to (h’, K') by

h = w’h/, K =wK' (104)

In the following, let I/, 5(i) denote the components of the h'-Schouten tensor with respect
to (2%) evaluated at 7. If the conformal factor w is given by

w

1
el with f = §z'aﬁ(¢)zazﬁ, (105)

then one can show that the Riemann curvature tensor associated with h is vanishing at
i. In particular, if D’ denote the h’-covariant derivative, the conformal factor w can be
shown to satisfy

w(i) =1, D! @ (i) =0, D, Dywo(i) = 1,5(1).

Accordingly, the conformal rescaling given by eq. (104) implies that

s (i) = 0.

However, the three-dimensional Riemann curvature tensor 7,845 is fully determined by
lo5. Hence, one has

fagfyg(i) = 0.
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Note that the conformal rescaling in eq. indicates that (h, K) are related to (h, K)
by

where
O =wo0.

In a slight abuse of notation, let
19&

zOé
p )
where p = |z|. By Taylor expanding 2 around p = 0, one gets
A [0
0= <§ + 0 719519(119’7) p* + O(pY), (106a)

1
= p” + Z1[Qp" + O(p").
In the above, I15[(2] is defined by

I1,[Q] = -6 (g + y’ﬁ(‘))%ﬁﬁﬂam) . (107)

A direct computation readily shows that

A0 P = T

where itis recalled that ¢ € C?(S?) is a freely specifiable function on the 2-sphere. Thus,
one has that

I15[Q)] = %g — 3A. (108)

Accordingly, one sees that the coefficient I13[Q2] is completely determined by the freely
specifiable data A and €.

Remark 8. The II,, notation will be used frequently in later calculations. For any smooth
function y, we use I1,,[x] to denote the coefficient of (1/n!)p™ in its Taylor series around
p=0.

From the previous discussion, the components h and K with respect to (z*) are
given by

_ 1
Kog = =200 — = <23(a195) + 5(8“’197)5(15) + (Va5 — 4(B"Y,)0.05 + O(p).

In other words, (h, K) can be written as
iL = Baﬁdza X dZB,
K = Kaﬁdza ® dZﬁ

Observe that the leading order term in K, is equivalent to the leading order in K B
since the contribution from tw is at higher orders. In upcoming calculations, the initial
data (h, K) will be referred to as the conformal normal initial data.
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6.2.2 The regular initial data at spatial infinity

To analyse the conformal constraint eqs. (92)), introduce the orthonormal frame {é; } and
its dual {w*} related to {8/02z*} and {dz} by

e; = éai W' = (:Jaldza.

e*i(i) =1, Wat(i) = 1.
In terms of {€;}, the conformal normal initial data can be written as

h = hij@'® &I,
K = K" ® &7,

with
hij = =0 + O(p?),
_ 1 1
Kij = _%5,-j -3 (QB(mj) + §(Bk19k)5ij) + (939 — 4(B*0)0:9; + O(p).

Substituting in eq. (92)), one can show that

[_’ij = O(p_l)a Jijk = O(P_g), Jij = O(p_g).

Hence, the initial data for the conformal fields L;j, d;;, ... implied by the conformal
normal initial datais singular at p = 0. Following Friedrich’s formulation [39], the regular
initial data for the ECFEs can be introduced by considering the conformal rescaling

QO — k10, (113)

where k = O(p) is the arbitrary function introduced in Section [3l Then, introduce the
rescaled frame fields {e;} and their dual {w®} as
i1

€; = Ke;, w =K w.

Then, the components of the rescaled metric b = x~2h with respect to {e;} are related
to }_lij by

hij = h(ei, 6]')
= l'iiz’_l(lﬁéi, Héj)
= h(&;, ;) = hyj.

Moreover, the components of the rescaled extrinsic curvature K = x~ 'K with respect
to {e;} are related to /;; by

Kij = K(ei, e;) = v 'K (ke;, ke;) = kK.
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Finally, one can_shO\y thag the components of the rescaled conformal fields (L;;, d;jk, dij)
are related to (L;j, dijk, dij) by

_ 27 _ 37 _ 37
Lij = k"L, dijk = K dijk, dij = K’dij.

Hence, the conformal rescaling given by eq. (I13) introduces regular initial data for the
ECFE:s since

K;j = O(p), Lij =0O(p), dijr = O(1), dij = O(1),

where the explicit form of these fields is omitted as they are not required for upcoming
calculations.

Note that the conformal freedom in Friedrich’s formulation is reflected by the different
choices of the conformal factor . In subsequent calculations, assume

K=w, (115)

where w is given by eq. (47). This particular choice of x introduces Friedrich’s horizontal
representation of spatial infinity where .#* are identified by 0 < p < a and 7 = +1

—see eq (38a).
Using eq. (7)) and Taylor expanding w around p = 0 gives

k= p+ 1L[w]p® + O(p?), (116)
with ]

Within the framework of the ECFEs, the conformal factor © relating the spacetime
metrics g and g is fixed by the initial data. Given the above choice of x and using eq.
#q), the conformal factor © can be expanded near p = 0 as

0 =p(1—71%4+0(p%. (117)

6.2.3 Conformally flat initial data for the space spinor fields

Given that the final form of the ECFEs is written in terms of spinors, one needs to obtain
initial data for the spinor fields appearing in eqs. (38) and (39). This discussion can
be carried out for the general initial data discussed in the previous section. However,
the calculations in this work only require expressions for the initial data at zero order.
Accordingly, the formulae for the conformally flat initial data given in [49] will be
sufficient for this analysis. In the following, assume the conformally flat initial data for

egs. (38) and (39), given by

0
eAB:O7

1 _ 2 _ Y 3 _v
€ AB — WZAB, € AB = ;ZAB7 €' AB = ;yABv

W
EaBcp = V2 (;@BDGAC + $Ac€BD)) - \/§(€BDDACW + eacDppw),
faB = Dapw,
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X(aB)cp) =0,

w2

©aB(cD) = ) (DaDcp+ DepDapQ + 2D 4cDpys + 2DpcDp)af) ,
@AB = 07
3
w
$aBCD = 62 (DapDcpt+ DepDap+ 2D acDpyeQ + 2Dp(cDp)aQ) .

It is important to note that the initial data obtained from these equations will not be
consistent with those obtained from eqs. (92). However, the crucial observation is that
the zero-order expressions for the initial data are indeed consistent, which is sufficient
for the rest of the calculations in this article. Using the xAct package, the non-vanishing
conformally flat initial data for the irreducible components of the fields appearing in eqgs.

(58) and (59)) can be expressed as

ei* = w’ ei* = g? 833}* = g?
p p
VBt V20,w) VX (W) VX W)
gm*—_ s gy*—_ia gz*—_ia
P P P
X_(w Xy(w
fx*:ap(w)a fy*: p< )7 fz*: +p< )7
O — _wQXJQF(Q) o, — _2pw28p(X+(Q)) — 2w2 X, (Q)
0x — 2p29 ’ 1x — pQQ )
O — —4pw?0,(Q) + 4p*w?05(Q) — WX (X (Q)) — WX (X_(Q))
2% — QPQQ 5
—2pw?0,(X_(Q)) + 2w? X _(Q) wWw?X2(Q)
@3* = - 2 ) @4* = T T 5320
P82 2p%¢)
w3X2(Q) —2w3X ()
Pox = T 202 O1s = — 302
2p%€) P20
—4puw3d,(Q) + 4p2w38§(§2) — WX (X(Q) — w3 X (X_(Q))
¢2* = 2 QQQ 9
p
—2pw30,(X_(Q)) + 2w X _(Q) wWw3X2(Q)
= 202 T o

where X2 (Q) = X+(X+(9)) and 92(Q) = 0,(9,(Q2)). Using eqs. (106) and (I16),
the non-vanishing initial data for the zeroth-order equations obtained from egs. (58)) and
(39) can be written as

V=1 =1 [)=1 (120a)

0~ Lm0 0 _ 2y, (0 12
Ox — 12 Jr( 3[ ])7 1« — 3 +( 3[ ])7 ( Ob)

1
s = 75 (1201[0] — 2X_ (X (IL[2)). (1200)
2 1

s =3 X)), o) = SXP(I[9), (120d)
where the superscript (¥) indicates that the initial data is evaluated at p = 0. Given that
d=0f+do, (121)
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one can show that the zero-order initial data for the irreducible components of d4p is
given by
40 — ’ dé&) =0, 40 —

Tk Zk

Remark 9. The explicit calculation of the conformal factor ¢ and the transformation
matrices A g will require the first-order solutions of e, e; and e!. For this purpose, we

list the first-order initial data for these components —namely

el =1 el =0, eW=0 (122)

Tk ) yx Zk

Given the initial data for the spinor fields appearing in the ECFEs, it is now possible
to obtain solutions for the background evolution eqs. (38) and the boundary-adapted
evolution and constraint egs. (39)-(60).

7 Evaluating the BMS-supertranslation charges at the
critical sets

This section aims to bring together this analysis’s various elements and obtain an expres-
sion of BMS-supertranslation charges Q at the critical sets Z*. Recall that Q depends
on the solutions of egs. (38) and (39)-(60), the conformal factor € and the transformation
matrices A4 g —see eq. (O1)). In the following, the solutions of eqs. (58) and (39)-(60Q)
will be used to obtain an explicit transformation from the NP-gauge to the F-gauge, allow-
ing us to assess the contribution from the background term o*®* N3, and the components
of papcp to Q at zero-order. As will become evident, this analysis will reveal that the
generic initial data provided in [35] does not give rise to well-defined BMS-asymptotic
charges Q at 7+,

7.1 Asymptotic solution of the extended conformal field equations

In subsequent calculations, the II,, notation introduced in Section [6.2.1] will be used to
express the solutions of egs. (38)) and (39)-(60). Using the II,, notation, the expansion of
the conformal factor © near p = 0 can be written as

6 = (6] + I (O] + STLB] + O(s").

Comparing with eq. (I17)), one has
I,[0] = 0, IL[6] = (1 — 7). (123)

From eq. (52)), the components d,, d,, and d, of the 1-form d 45 can be shown to satisfy

(124a)

0,
0. (124b)

Iy[d,] = 0, y[d,]
2, 1

y Ip[d.]
I [dy] 1

=0, .
=0, 11, [d.]

Taylor expanding the spinor fields appearing in egs. (58] and using the xAct package,
it is possible to show that eqs. (38]) decouple from the boundary-adapted evolution and
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constraint eqs. (39)-(60) at zero-order. In other words, the zero-order system for the
background fields does not depend on ¢q, ¢1, P2, @3 and ¢,. Integrating, one can write
zero-order solutions of egs. (38)) as

Io[e)] = —, Io[ey] = Ig[el] = Iple,] = Ilg[e,] = Iglel] = 0,
Iyle2] =TI, [ez] 0, Myle?] =1,

I[el] =0, Iole)] =1, Ilel] =0,

Ip[&o] = Ho[&1] = IIp[&a] = Mo [&s] = Tp[&a] = o [&n] = O,

Ip[&) = o[&,] = To[&:] = 0,

o[ f.] =1, o[ f,] = Tlo[f.] =0, (125)
Io[xo] = o[x1] = Ho[xa] = Ho[xs] = Mo[xa] = Io[xn] = 0,

oxz] = Ho[x,] = Io[x:] = 0,

Iy [O0] = o[0,1] = II[Os] = 11y[O3] = 1p[04] = IIH[O4] = 0,
Iy[0,] = TIh[0,] =11y[6.] =0,

Ip[0,] = Io[0,] = Ilp[6.] = 0

For the first-order system, only the equations for e, e y I"and e! will decouple from the
boundary—adapted evolution and constraint equations. Integratmg, it can be shown that
IT,[e;], I, [e, ] and IT, [e] are constants and fixed by the initial data given in eq. (I22).
Then, the first-order solution for e}, e, and e is given by

e)=—1+0(p), e =p+0(p), (126a)
e2=1+0(p), e, =1+ 0(p), (126b)
f: =1+0(p), (126¢)

where all other components are O(p) or higher order.

The next step in this analysis is to examine the zero-order boundary-adapted evolution
and constraint eqs. (39)-(60). By Taylor-expanding all the components of the spinor fields
in eqs. (39)-(60) and substituting the zero-order solution of the background fields egs.
(123) and using eqs. (I23)-(124), the zero-order boundary-adapted evolution system can
be written as

1
\/§<1 +7)0; (To[o]) + 2—ﬂX+<Ho[<z>1]> = —2v/2I0y o), (127a)
O, (To[]) + —=X_(Toldo]) + —= X, (y[]) = — —=TLy [, (127b)

zf
v

V2 2v/2

\[
0 (To[@2]) + —= X (Tp[¢n]) + f X (Io[gs]) = 0, (127¢)

\/_
O (o [ps]) + \/— X_(Mol¢]) +

1 1

EWG; \/— X (IT 0[¢4]):ﬁﬂo[¢3]7 (127d)
1

V2(L =)0, (Mo[ga]) + ==X (Mo[¢a]) = 2v20ho[g4], (127e)
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while the zero-order boundary-adapted constraint system is given by

1 1 1

ﬁﬂl(ﬂo[%]) - EX_(HO[%D + @Xﬂno[%]) =0, (128a)
1 1 1

3—\/57'37(1_[0[%]) - mxf(ﬂo[@]) + 4—\/§X+(HO[¢3]) =0, (128b)
1

1 1
2—\/57'37(1_[0[@]) - @Xf(ﬂo[%]) + EXJr(Ho[@]) =0. (128c)

To simplify subsequent calculations, define the complex-valued functions 7}, . as follows
T, : SU(2,C) — C,
t— T,.74(t),

where

‘ o\ Y2 0\ 12
Tn'slt) = <J) (k) t e To(t) = 1.

Here, m =0,1,2,...,and j,k =0,...,m and

Note that the complex conjugate of T},,71,(t) is defined by
Tnin(t) = (1T, M7, (#),
while the action of X, X, and X_ on 7},,7;, is given by

X(T5) = (m = 20)T7x, Xy (Tuli) = V(L =k +m)T/s oy,
X_(T,7:) = =/ (A + k) (m — k)T gqr.

Definition 4 (spin-weight). A function f is said to be of spin-weight s if it satisfies
X(f) = 2sf, where s is an integer or half-integer.

Remark 10. The functions 7,74 (¢t) on SU(2,C) are closely related to the standard
spin-weighted harmonics on S? —see e.g. [40]

Remark 11. By construction, functions on M, ., will have a well-defined spin-weight.

The components I1y[¢,] are functions on R x SU(2, C). Hence, they admit a decom-
position in terms of 7},7;.. In the following, assume that:

Assumption 1. The components T1y[¢,,] admit an expansion of the form

00 21

Moldn] = D> Y norm(T) ™04, 7€ [-1,1], (129)

I=|2—n| m=0

where a,.91.m(7) : R — C.
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Furthermore, note that IT3[Q2] at p = 0 can be decomposed as

o)

5[]~ O—Zzﬂs Jotm T ™. (130)

=0 m=0

Remark 12. The argument of a,,.9;,,,(7) Will be omitted in upcoming calculations. i.e.,
Write ap,;91 1, instead of @y, 91, (7). Moreover, we use ;o s to refer to a,,.o;.m(0).

For [ = 0,m = 0, one can use eq. (129) in eqs. (I27)-(128) to show that as. is
constant and is given by

a2;0,0 = Hs[Q]o,o- (131)
Forl = 1,m =0, 1, 2, the evolution eqs. (I27)) imply
1 1 1
——=Q1.2m + ZA22m = ——=01.2.m, 132a
o) 1;2 62212 23 1;2, ( )
L, ! + ! 0 (132b)
——=a22m — FQ1;2m T SA3;:2m = U,
372 2:2, 742 710822
1 1 1
g — ~G99m = ———32m; 132¢
WG 32, g 22 23 3;2, ( )
while the constraint eqs. (I28)) give
T 1
g+ =gam =0, 133a
22 1;2, 622, ( )
T 1 1
3—\/§a22m+4a12m+4a32m=0, (133b)
1
igom + azam = 0, (133¢)

2v/2 776

where a,,.9;.m = O (an:21.m). By multiplying eqs. (I32) with 7 and substracting from eqs.
(133), one obtain linear equations to be solved for a;.2 ,, @2.2.m and az.o . Substituting
back into the evolution eqs. (I32) and simplifying, one gets

(—1 -+ T)C'L1;27m —aiom = 0. (1343)
TaZ;Q,m — Q2:2.m = 07 (134b)
(1 + T)C'L3;27m — az2m = 0. (134C)

Then, the solution for a;.2 ,,, @22, and ass ,, is given by
a1.2.m = _Cl,m(]- - 7_)7 a2:2m = CQ,mTa a3:2m = C3,m(1 + 7_)7

where Cy ,,, Ca,,, and Cs ,,, are some constants that depend on m with m € {0, 1, 2}. The
initial data for IIy[¢¢], given by eq. (120), indicates that

2V/2
am:—%gmMMm m=0,1,2.

Using eq. (I33b), we have
Cg,m = Cl,m7 m = O, 1, 2.



Finally, eq. (132b)) gives

3
Com = ———=Cim, m=20,1,2.
2, /2 1,
Therefore, @12, a2;2,m and as.2 , can be written as
2v2
A1:2.m = TH?’ [Q]z,m(l - 7'), A2:2.m = 2H3[Q]2,m77 (135a)
22
(9m = —T‘fng[a]gvmu + 7). (135b)

where m € {0, 1, 2}.
For [ > 2,0 < m < 21, the evolution eqs. (I27) imply the ODEs

(1 + T)(ZQ + 2(10 + i\/ (2 + l)(l — 1)a1 = 0, (1363.)

1
n +ay + 5 VU Daz = 2/2+ 1)1 = 1ag = 0, (136b)
3
iz + (a3 — ar) = 0, (136¢)
1
ag—ag—g\/l(l+1)a2+2\/ (2+l)(l—1)a4:0, (136(1)

(1= 7)ay — 2a4 — i\/@ + (= 1az =0, (136¢)

where a,, and a,, refer to a,,.2;m and .2 ., respectively. The constraint eqs. (I28)) give

7'(11+%\/l(l+1)a2+2\/(2+l)(l—1)a0 =0, (137a)
T(i2+z\/ l(l+1)(a3+a1) :0, (137b)
Tas + %\/l(l Fas+ 2/ 2+ 1)1 — Dayg = 0. (137¢)

After some manipulations, the equations for a;, as and a3 can be decoupled. In particular,
one obtains the following second-order ODEs for a1, as and as:

(1 — 73y +2(1 — 1)y + 11+ 1)ay =0, (138a)
(1= 7%)ig — 27d2 + (I + L)az = 0, (138b)
(1—7%)ds —2(1+ 7)az + 1(l + 1)az = 0. (138¢)

Note that the equations for ag and a4 will not decouple. This can be confirmed by solving

egs. ([136b), (I36d) and (I36d) for ai, as and as, respectively, and substituting in eq.
(I37) to obtain an algebraic system that can be written as

a; (1+ 7)ag
Alay | =6/2+D(1—-1) 0 ,
as —(1 — T)CL4
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where A is a 3 X 3 matrix given by

37 (=14+7)VI(l+1) 0
A= (1+7)/U(l+1) 0 —(=14+7)\/I(I+1)
0 (1+7)/I(1+1) 37

One can confirm that det(A) = 0. Hence, the equations for ay and a4 will not decouple.
A solution for ay and a4 can be determined by treating the terms involving a, and as
as source terms. Remarkably, as it will be seen in the next subsection, the value of the
coeflicients a( and a4 are not required in the computation of the BMS asymptotic charges
at the critical sets.

7.2 The explicit transformation from the NP to the F-gauge

In this section, the solution of the background fields given by eqs. (123)) will be used
to obtain asymptotic expansions of the conformal factor § and the transformation ma-
trices A4 relating the NP-gauge and the F-gauge. The analysis in this section will be
concerned with the relation between the F-gauge frame {€ 4/ } and the NP-gauge frame
{e% 4} at future null infinity .# . An analogous calculation can be carried out for the
transformation at .# —. The discussion in this section follows that of the transformation
from the NP-gauge to the F-gauge originally presented in [40]. However, our initial
data differ from those considered in [40], which results in differences in the asymptotic
expansions of some of the fields in this section.

Consider the adapted frame {e% 4 } at .#* satisfying the conditions introduced in
Section[] then the vector field e],, must satisfy

e’ = fV'e, (139)

where V is the Levi-Civita connection associated with g and © is the conformal factor
defining .#* —see eqs. (I17) and (38a). From eq. (I13), the set .# " can be identified
by 7 = 1. To determine the function f in eq. (139)), consider the parallel propagation
condition e**11/'V €11 = 0 satisfied by e7;, which can be written as

1
V'OV, V' + [PV/(5V,0V"0) = 0.

A contraction with a vector field Z transverse to .# ' yields

Z (1v,0v40)

1 - _
VOV, (log f) 7o) (140)
By setting Z = 0,, one can show that
Z (1v,0V"0)
= 211 2 ?). 141
Z0) 1lfa]p” + O(p) (141)
Moreover, the LHS of eq. (I140) can be written as
VOV, (log f) = (=2p" + O(p”)) 9,(log f) + (142)
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<_% (4H1[e§] + éX(H:s[Q])) PP+ O(p3)) X (log f) +
(5 (4rfed + X100 ) 7+ 0 ) X108 )
To solve for f, assume log f can be expanded as

log f = Fo+ Fip+ O(p?),

with X_(Fy) = X4 (Fp) = 0, X_(F1) # 0and X, (Fy) # 0. Then, d,(log f), X_(log f)
and X, (log f) can be written as

9,(log f) = F1 + O(p),
X (log f) = X_(F)p + O(p®),
Xy (log f) = X (Fy)p + O(p).

Using the above and eqs. (140), (I41) and (I42)), one has
F = -1L1[f.]
Next, consider the expansion
f=fo+ fip+ O(p%).

But f =8/, s0
f(]:eF07 flzeFOFl-

In the following, the coeflicient Fj is chosen such that

1 Fl Hl[fx]
fo=——r  hi=—e =l
2v/2 2V2 22
Thus, the function f can be written as
1 Hl[fx] 2
= ——F — + O(p).
f=- NN (p7)

Remark 13. While the function f depends on the first-order solution of f,, it will become
evident that the explicit solution will not be required for the following calculations. In
the rest of this analysis, first-order solutions for the background fields will be treated as
unknowns, and it will be shown that the final expression of Q will only depend on the
zero-order solution.

In the following, assume that the adapted frame {e% 4.} and the F-gauge frame
{eaa } are related by B
eha = A2\ wepp, (143)

where A\ g denote an SL(2, C) transformation matrix. To determine AP 4, note that eq.
({139) can be written as

e°“11/ — feO“AAIQOAA/(@)
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= feoMAA/EABGA/B/BOBB/ (@)

Using eq. (I43) and substituting in the above, one obtains

ANy = feq(©), (144a)
AN = —feln(O), (144b)
MMy = fepn (O). (144c¢)
But,
I1,[Q
con(6) = L+ 0l
X (T3]0
eor(0) = —%ﬁ 100,
X (T15]0
e10(0) = — é\/%[ ])p2 +0(p°),
I15[Q
e11(0) = —2v2p - %/P +0(p?),
Hence, eq. (144a) yields
1 /TI5[Q
M =p+3 ( 32[ I 2H1[fz]) p*+0(p’).

By writing \%; as \%; = |\ |e™!, where w is the phase of \°;, and choosing w; such
that ! = 1, one shows that

1
N1 =+ g ([0 - ATL[1.]) p*2 + O(p*?),
From eq. , one has

1
Mal? = =7 TL[Qp® + O(p).

Assume \'; = |A\';]e™2, and make use of eq. (I44B) to fix e™2. Then, A\'; can be
written as

4[]
)\1 i e 3/2+O 5/2 )
Note that eq. (I43)) implies

)\01681' - )\Ooeiy = —5\0/1/610' - 5\1/1/61/1/-

By applying the above to the affine parameter «° and by making use of the conditions
ey (u®) = 0and e9,,(u°) =1 on .#*, one can show that

Ao = N Veqo (u°) + A peqy (u). (146)

The above equation allow us to determine \% given A\%1/, AY' 1/, e10/(u°) and eq1/(u®).
Then, the condition det(A5) = 1 can be used to determine \'.
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To obtain an asymptotic expression for the affine parameter u°, note that eq.

implies that

ey = <H1[eg]pz + O(p3)) 0 + <Lpz + 0(/)3)> 0, +

v2 v
1 , 2 3
<m (2410, [e2] + X_(II5[))) p* + O(p )) X, +

< 1 (24111 [e3] + X, (TI3[€])) p* + O(p3)) X_.

24+/2

Consider the ansatz

u°:?+W°+B°logp,

where 0,(A°) = 0,(B°) = 0 and W° can be written as
W =uj + O(p).

Then, one has

O, (A°
- (u) = (p ! +0-(W?) + 0,(B°) log p,
e] AO BO [e]
ap(u ) = _? + 7 +8p(W ),
X, (A°
X0) = DX 09) 4 X (5) o
X_(A°
X (u°) = # + X_(W°)+ X_(B°)logp.
Moreover, the condition ej,,(u°) = 1 on .# 7 yields
1
A=——— B =0
V2
From the above, one has
[¢] 1 + WO 1 + [e] + O( )
u = —— =——4u; p).
V2p V2p

Remark 14. In the following, we use ITo[)V°] to refer to uS.

Using eq. (148), we have

exo(1”) = (~{Thlel] - X (V7)) + Olp)
exw(u’) =~ + (L Smje) + o

Substituting in eq. and using det(A ) = 1 yields

)\00 = O<p1/2>7 )\10 =

(148)



From eq. (73), the relation between the NP frame {e®%, 4, } and the F-gauge frame {e*%, 4, }
is given by
° __ AB B
€A =A AA A'EBB'- (149)

Comparing eq. (I149) with eq. (I43), one can show that
A01 — 0—1/2)\016ic’ All _ 0_1/2>\116ic, (150)

where ¢ is a function encoding the phase freedom. From eq. (69), one can obtain an
asymptotic expansion for ®3,. Then, eq. (Z0) with initial data

limf =1,
p—0

can be used to obtain an asymptotic expansion for §. However, the strategy in this analysis
is to use eq. (Z0) to confirm the expansion of # obtained in [40] with the assumptions
that ®3, can be written as

o o o 1 o) 1 o
o5y = HO[(I)ZQ] + Hl[q)QQ]p + §H2[©22]P2 + 6H3 [(I)QQ]pB + O(P4)-

From eq. (Z0)), one can confirm that
o [05,] = 1, [85,] = T(03] =0, T1[6] = STy [05,]
Then, the conformal factor 6 can be written as
f=1+ éH3[<1>§2]p +0(p?).
Using the above and substituting in eqs. (130), one can show that A°; and A!; are given

by

24
1 I1,[€2]
AI‘QYmﬂm

A% = (VB - gy (-3IL(0) + 2IL[5] + 12MIL]) 0% + 0GP ) e, 1510
P 4 O(p5/2)) e, (151b)

Then, eq. (149) show that the frame e3,, can be written as

ety = (Hl\jgg]pg + 0(p3)) 0. + (%PQ + O(pg)) 0, +

11, [e?] m 2 3
(( 2 ﬂX+(H3[Q])>p +O(p )) X+
[

((Hi«;ﬁ] _ \/5;_4(%91)) P+ 0(p3)) X

Applying the above to the affine parameter u* and using the conditions eg,, (u*) = 0 and
e}, (u®) = 1on ., one can show that

A = A% peso(u®) + At yeyrs (u®). (152)
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Then, the condition det(AA B) = 1 can be used to solve for A'y. To determine u°,
consider the ansatz

A
u':7+W'+B'logp,

with 9,(A®*) = 9,(B®) = 0. Then, the condition e},,(u*) = 1 on . can be used to
show that
A*=—V2,  B*=0.

Given the above, the affine parameter «* can be written as

2
u® = —% +We.

Assume W?* can be written as W* = u$ + O(p), then

V2

u® = — +us + O(p).

Similar to earlier discussion, one has ITo[WW*] = u?. Using eq. (I52) and the condition
det(A4p) = 1 yields

A% = (—% (H2 [ey] +V2X_ <H0[W']>) Vo + O<p3/2>) e, (153a)

Ao = (-% + 0(p1/2)) e, (153b)

Remark 15. The phase parameter c can be determined using eq. (7I) and the initial data
¢ = 0 on C. For our purpose, it will be sufficient to note that

e =1+ 0(p).

Given the expansions of the components of the matrix A4 g, one can show that the
components of the inverse matrix A & can be written as

v = (it e 5/2>) ’

Aot = (__ - (H @, 22] . H1£f$]> \/§+0(p3/2)) e

A° = <\/_ Y ( 3M5[Q) 4 2M5[®S,] + 12104 [f.]) p>/2 + O(p5/2)) o,

et = (5 (Mlel] + VEX_TDVD) + O ) e

Given egs. (Z.2), (I51)-(133) and egs. (89), itis possible to obtain asymptotic expansions
for the NP-connection coefficients o®, ;1* and 7°. Then, eq. (86a)) can be used to confirm

whether 0*® N, will contribute to Q at Z. Using eq. (90), one can also determine
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which components of ¢ 4pcp will appear in the expression of Q at Z*. From egs. (89),
one can show that

pt = 0(p"),
R 2
=5 +0(p),
o = —2—;5 (X_(ML[e)) + VAX_(X_(TW])) + O(p)

Then, the term A|o*|? satisfies
Alo*? = 0(p?).
This readily implies that

lim o*®* N®, ~ 0.
p—0

From eq. (90), one can show that

¢3 = —Io[es] + O(p).

Hence, the charges Q at Z* can be written as

Qf,C)|z+ = % —2e, fTlo[¢o], (156)

C

where TIy[¢,] is evaluated at 7 = 1. A similar analysis for the transformation between
the NP-gauge frame {e% 4} and the F-gauge frame {ea/} at .#~ reveals that the
background term o*®N?, given by eq. (86b) will not contribute to Q at Z~ and that
¢35 = —Tly[go] at p = 0. Thus,

Qf,C)lr- = Ja{ 2, fTIo[6s), (157)

where TIy[#,] is evaluated at 7 = —1.

Remark 16. It should be highlighted the limited amount of explicit information about
the asymptotic expansions, which is required for the evaluation of the BMS asymptotic
charges at Z*. In particular, expressions in eqs. (I36) and (I37) are formally identical
to their spin-2 equivalents given in [27].

7.3 BMS-supertranslation charges at the critical sets

The discussion in the previous section indicates that in order to evaluate Q at T+, we
require a solution for ITy[¢o] at 7 = +1. Given the second-order ODE for a5 in eq. (I138)),
one can show that

Proposition 3. For | > 2 and 0 < m < 21, the solution to eq. (138b) is given by:

CL2(T> = -Al,mpl<7') -+ BLle(T) (158)
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where P(T) is the Legendre polynomial of order | and (Q),(T) is the Legendre function of
the second kind of order |, A, ,,, and B, ,,, are constants that can be expressed in terms of
the coefficients 15[ ., appearing in eq. (I30). In particular, one has

(6414 1) Qi1 (0)TT3[Qor,m
6F11(0)Qi(0) — 6P(0)Qus1(0)’

5 (6414 )P (015
T 6P (0)Qi(0) — 6P(0)Qui1 (0)

A = (159a)

(159b)

Note that the recurrence relation of ();(7) implies that (;(7) diverges logarithmically
near 7 = +1, i.e.,

Qi(1) =C In(1 £ 7) + O(1), for some constant C;.

Thus, it is straightforward to see that the solution for ay given in eq. (138)) will diverge
at the critical sets unless B;,,, = 0. From eq. (I59b)), we have that 5;,,, = 0 for even [.
For odd [/, one must restrict the initial data set to ensure that 3; ,,, = 0.

Lemma 1. The solution in Proposition3lis regular at 7 = +1 if and only if the coefficients
Hg [Q]Ql’m SClliSf)1

115[Q)or.m = 0, foroddl >2, 0<m <2l

To simplify the integrand in eqs. (I136)-({157), we rewrite the expansion of ITy[¢s] as

00 l

o[¢p2] = Z Z ot mt (T)To™ 1, (160)

=0 m=—1
and the expansion for IT3[2] at p = 0 as

e}

!
I3[ | =0 = Z Z 5[ o1, m1 T2 ™ 1. (161)

=0 m=-1
Then, the regularity condition in Lemma[ll can be written as:

Lemma 2. The solution in Proposition3lis regular at 7 = +1 if and only if the coefficients
5[ 21,41 satisfy

3[Q)21me = 0, foroddl>2 —1<m<I.

Remark 17. Recalling eq. (108)), one readily sees that the regularity condition in Lemma
is, in fact, a statement about the multipolar structure of the freely specifiable function
¢ on S%. More precisely, the condition excludes from ¢ the modes with odd parity. This
condition is, to the best of our knowledge, new.
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Given initial data that satisfy the above regularity condition, the solution for as.2; 11
for [ > 2 and —] < m <[ can be written as

a2;2l,m+l(T) = Al,erlPl(T)- (162)

Note that A; ,,,+; = 0 for odd [. Therefore, for [ > 2, the solution for as.o; -+ is only
non-vanishing for even [. Substituting in eqs. (I36)-(137) using eqgs. (160), we have

Q(f,C)|z+ = —22 Z .ot m (1) f@fﬂlmﬂ. (163)

=0 m=-—1

But, the functions 75", are related to the complex conjugate of the spherical harmonics

Y} m- In particular, we have the correspondence
N _
T = CrmYim,

where C ,,, is a constant that depends on [ and m and whose specific form is not required
for our discussion —see [49]]. Given that f is a function on S?, one can always write f as

1
/= Crv v

Yo (164)

Substituting in eq. (163), we get

00 l

Qf,C)lz = - Z

=0 m=—1
= —2a2;2l',m/+l/ (il)

Then, using eqs. (I31)), (I35a) and (162)), one has

2;21,m+l(i1) % €2Y/m/ _l,m
c

—2113[ 0, fori =0,m =0,
) FAIL[Q) 0 e, foril=1,-1<m<1,
Qlzs = 0, forodd !> 2 —1 <m <1,
—2A; mt1, foreven! > 2, —1 < m </,

where A; ,,,4; is given by

(6 4+ 1+ 1%)Quy1 (0) 5[ p oy
6P11(0)Q:(0) — 6F(0)Q141(0)
Using eqs. (I08) and (161)), and expanding the freely specifiable data £ as

00 l
E=D ) GamuTu™,

=0 m=—1

Al,erl = -

one can see that

21
3[Qfo0 = —fo 0 — 34,

21
3[Q]21m11 = —le m+-

Then, the final result of our analysis can be summarised in the following:
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Theorem 1. Given the generic initial data in Proposition 2| the asymptotic BMS-
supertranslation charges Q are not well-defined at T+ unless the freely specifiable data
satisfy the regularity condition:

&am+1 =0 foroddl>2 —1<m<I. (166)

Given initial data that satisfy the extra regularity condition, the charges Q at I* can be
expressed in terms of the freely specifiable data A and &:

—21&p,0 + 64, forl=0,m =0,
) FA28 a1, forl=1,-1<m<1,
Qlz+ = 0, forodd1>2,—1<m<I,
—2A] s forevenl > 2, —1 <m <,

where A, ., is given by

A= 21(6 + 1+ 1)Qi11(0)om
bt 12P44(0)Qi(0) — 12P(0)Qi41(0)

Moreover, there is a natural correspondence between the charges at T and I~ expressed
as follows:

Qlz+ = (-1)'Qlz-.

Remark 18. It should be stressed that the above results express the BMS asymptotic
charges at Z* in terms of freely specifiable data coming from the initial metric. Remark-
ably, there is no contribution to the charges coming from the extrinsic curvature.

Remark 19. As a consequence of the regularity condition in Lemma [ one finds that
for [ > 2, only the even parity charges have a non-trivial content. Observe that the
regularity condition given in Lemma []] are necessary conditions for the BMS charges to
be well-defined at the critical sets Z*. The regularity condition eliminates the odd parity
modes for [ > 2 in the function & over S%. Thus, compared with the equivalent conditions
arising from analysing the spin-2 field on the Minkowski spacetime in [27], one finds that
the full non-linear GR situation is much more restrictive. This should not be surprising
as the Einstein constraints are known to be more rigid than their linearised counterpart.

Remark 20. The initial data used in the analysis of the non-linear stability of the
Minkowski spacetime by Christodoulou and Klainerman [3] is of the form

. 2
hag = <1 + Tm) Oap + 0a(r™?),

Kaﬁ = 03(7’75/2>.

Comparing with the data in Proposition 2] it follows that the function £ from which
the asymptotic charges are computed necessarily vanishes. Thus, for the Christodoulou-
Klainerman spacetimes the asymptotic charges at the critical sets vanish. This observation
is, to the best of our knowledge new. A similar statement can be made of the spacetimes
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constructed by Rodianski-Lindblad [S0]. The spacetimes constructed by Klainerman-
Nicolo [S1] arise from data with a 3-metric having an even stronger decay —thus, their
asymptotic BMS charges vanish as well. Notice, however, that the more general analysis
of the stability of the Minkowski spacetime by Bieri [52] requires

il,aﬁ = (Saﬁ —+ OHS (7’71/2),

Kaﬂ = OH2 (T_3/2).

This is consistent with non-vanishing asymptotic charges at the critical sets.

8 Conclusions

In this article, we presented an analysis of BMS asymptotic charges using Friedrich’s
formulation of spatial infinity. Our analysis indicates that the initial data given in [35]]
does not give rise to well-defined asymptotic charges at Z* unless the initial data satisfies
an extra regularity condition. The regularity condition eliminates the odd [ > 2 modes
on the freely specifiable leading term of the initial metric. If the initial data are chosen to
satisfy the regularity condition in eq. (166), BMS asymptotic charges are well-defined
at Z*. Then, if the function f € C°°(S?) is written as eq. (I64), one can show that
BMS asymptotic charges at Z= can be fully expressed in terms of the freely specifiable
data and that there exists a natural correspondence between the charges at Z+ and Z~.
As a consequence of the regularity condition on the initial data, only even parity BMS
asymptotic charges for /| > 2 have a non-trivial content at the critical sets Z=. Observe that
the vanishing of the odd parity BMS asymptotic charges for [ > 2 does not necessarily
mean that the corresponding BMS asymptotic charges vanish everywhere on .#* and
generically they will not be conserved.

Our result expands the discussion in [S3] that showed that the component of the Weyl
tensor appearing in the Bondi mass at .#* match antipodally with that appearing at .# .
In [53], the antipodal matching of these components also follows from the regularity
conditions on .#* and at i°. This provides further evidence that the antipodal matching
is a regularity statement, i.e., it follows directly from the regularity condition on the
initial data. It would be very interesting to prove a converse of the latter —namely, that
the antipodal matching implies regularity conditions on initial data similar to the ones
obtained in the present analysis. This question goes beyond the scope of this article and
will be considered elsewhere.
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A The boundary adapted evolution and constraint equa-
tions

In the main text of this article, we present the analysis of the zero-order boundary
adapted evolution and constraint eqs. (39)-(39). The zero-order system in given in egs.
(127)-({128) while the full system is presented in this section.

The boundary-adapted evolution system eq. (39) can be written as

& (V300 — 24V36160 — 166,00 — 3V2E61 +

46,1 + 42800y + 16V 200 fr — 4V 201 [ — 4V 20 X0+
3vV201x1 — 4V200X2 + 24V 2¢0x5 + 1660X. — 4d1 X+
2V2 (=40, [¢o] (=1 + €)) — 49, [¢o] €} + O, [¢1] €2 + 9, [¢1] €2 —
4€3X [bo] + €2X_ [¢1] — 4e2 X [¢o] + €2X [¢1])) =0 (A1)
6\/_ (30 [é1] + 60 [do] €, + 60, [do] e, + O [do] €2+
9, [po] €; + 6ey X o] + €2 X [¢] + 6e) X [do] + €2 Xy [¢]) =
< (~4v3gd0 — 166,60 + VEE01 +6v3n01 — 1661
2V28003 — 2V 201 fr + 4V 200 fy + 2V 202 f. + 2V 2¢3x0—

V261x2 + 4V260xs — 6v261x0 + 461X + 1690, ) (A2)

214 < (24\/_@ (&0 — Xo0) +24v2¢0 (&4 — X4) —

/202 (& + 66 — X2 — 6xa) + 301 (V26 + 46, — AV2f, = Vaxs — 4y ) +
303 (V261 + 46 — 4V2L. — V2 — 4. ) ) +

V2 (40, [d2] + 3 (0: [61] €2+ 0, [¢1] €] + O, ] €2 + O, 3] €]
3X [01] + €2X_ [p3] + e, Xy [01] + €2X | ¢3))) =0 (A3)

6\/_ (30, [@s] + Or [po] €, + 0y (2] e, + 60 [p4] €
68 [¢4] ez + BZX_ [¢2] + 66§X— [¢4] + eyX+ [¢2] + 662X+ [¢4]) =
é (_2\/§§4¢1 + V26503 + 6V28,03 + 4,05 — 4V/2 Py~

166,64 + 2V203 f» + 2200 f, + 4V 204 f. + 4V 204 x1 —

V2652 + 220104 — 6200 — 4. + 1601 ) (A4)

1 ; 1 i
5 \[ (40, [¢4] (1 + €2) + 40, [¢4] €} + O, [¢3] €+

0y (03] ey, + ep X_ [ds] + €3 X_ [pu] + eI X [ps] + 4€2 Xy [pu]) =
 (F4VBE0n + 3VBEds — 46,05 — AV36abs + 24V B0
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168,04 + 16V204f, + 4v/263 f, + 4V 202~
3v265xs + 432021 — 24V201x0 + 1601 + 43, ) (AS)

The constraint equations eq. (6Q) can be written as

1 1 0
6\/_( 30: [¢1] €} — 30, [¢1] e, — 60 [¢o] €, —

60, [¢o] e, + O- (2] €] + 8, [¢2] €] — 6e) X_ [do] — 3el X _ [n] +
esX_ (o] — 6e. X [po] — 3€2 X [¢1] + €2 X [¢s]) =

% (2\/§§3¢o + 248, ¢ — V261 + 126,01 + V281ds — A€, — 2V 2603+
M@XO — V20201 + VI61xz — 2v200%s — 1261 — 24doxy + 462 ) (A6)
( ¢2 e + 46 [¢2] e + 36 [(bl] e + 38 [(bl]

30, [¢3] e2—3a (93] €1 + 3es X_ (1] 4+ 4el X [¢] —
3€IX_ (0] +3€ X 0] + 42X [6a] — 3e2 X, [04]) =

= (8V6i60 — VEEy1 + 126,61 + 16665 +VEE 05 — 12605 — 8V Beuo+
8\/§¢4X0 — V2¢3x1 + V201X — 8V2¢0xa — 16¢2x — 12¢1x, + 12<Z53Xz> (AT)

(M (30, [¢3] €2 + 30, [¢3] €L + O: [p2] €0 + 0, [po] €}

60, [¢4] €2 — 60, [¢4] €1 + € X_ 0] + 3€3 X_ [¢hs] —
6elX_ [¢4] + egQJX-i- [02] + 3€2 X, [¢3] — 6€2 X, [¢4]) =

< (2VBE01 — VEEss + 46060 + VB + 126265 — 2B — bt
226001 — V23xz + V202xs — 220101 — 1265, — ddaxy + 2400x:)  (A8)
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