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Abstract

For asymptotically flat spacetimes, a conjecture by Strominger states that asymp-

totic BMS-supertranslations and their associated charges at past null infinity I −

can be related to those at future null infinity I + via an antipodal map at spatial in-

finity i
0. We analyse the validity of this conjecture using Friedrich’s formulation of

spatial infinity, which gives rise to a regular initial value problem for the conformal

field equations at spatial infinity. A central structure in this analysis is the cylinder

at spatial infinity I representing a blow-up of the standard spatial infinity point i0 to

a 2-sphere. The cylinder I touches past and future null infinities I ± at the critical

sets I±. We show that for a generic class of asymptotically Euclidean and regular

initial data, BMS-supertranslation charges are not well-defined at I± unless the

initial data satisfies an extra regularity condition. We also show that given initial

data that satisfy the regularity condition, BMS-supertranslation charges at I± are

fully determined by the initial data and that the relation between the charges at I−

and those at I+ directly follows from our regularity condition.

1 Introduction

Studies of isolated systems, asymptotic structures and symmetries have received in-

creasing interest in recent years due to their relation to black-hole physics [1, 2, 3], the

gravitational memory effect [4, 5, 6] and developments in soft theorems [7, 8, 9]. A

common approach in these studies involves the use of conformal transformations to study

the behaviour of the gravitational field ‘at infinity’ using local differential geometry by
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mapping points at infinity in one manifold to a region located at finite distances in another

manifold, the so-called conformal boundary.

The conformal approach is inspired by R. Penrose seminal work [10, 11] in which

the notion of asymptotically simple (AS) spacetimes was initially introduced with the

aim of identifying a large class of spacetimes that admit a conformal extension similar

to that of Minkowski spacetime. More precisely, a spacetime (M̃, g̃) is asymptotically

simple if there exists a smooth, oriented, time-oriented and causal spacetime (M, g) and

a smooth function Ξ on M such that (i) M is a manifold with boundary I ≡ ∂M;

(ii) the conformal factor Ξ satisfies: Ξ > 0 on M \ I and Ξ = 0,dΞ 6= 0 on I ;

(iii) the manifolds M̃ and M are related by φ : M̃ → M such that φ(M̃) = M\ I

and φ∗g = Ξ2g̃; and finally, (iv) null geodesics of (M̃, g̃) starts and ends on I . In

this context, we say that φ is a conformal transformation that maps M̃ to M \ I .

The manifolds M̃ and M are referred to as the physical and unphysical manifolds,

respectively. Similarly, the metric g̃ is the physical metric, and g is the unphysical

metric. Generally, the boundary I (null infinity) can be split into two disjoint sets I +

(future null infinity) and I − (past null infinity).

The literature on the asymptotic structure of spacetimes can be divided into two

categories: studies of the asymptotic structure at null infinity or at spatial infinity. In

the null regime, it was expected that the Poincaré group would describe the asymptotic

symmetry group for AS spacetimes, given that the background geometry of an AS

spacetime is similar to that of Minkowski. However, the work of Bondi, Metzner and

Sachs [12] revealed that the asymptotic symmetry group for AS spacetimes is given by

the infinite-dimensional BMS symmetry group, which can be written as the semi-direct

product of the Lorentz group with the infinite-dimensional group of angle-dependent

translations (supertranslations) along null infinity. Notions of asymptotic flatness at

spatial infinity also give rise to an infinite-dimensional asymptotic symmetry group at

spatial infinity, known as the Spi group [13, 14], with a structure similar to the BMS

group —see also [15, 16, 17, 18, 19].

Asymptotic symmetry groups define corresponding conserved quantities or asymp-

totic charges. At spatial infinity, notions of conserved mass, momentum and angular

momentum can be derived using a Hamiltonian formulation [20, 21]. More recently,

it was shown that charges associated with supertranslations at spatial infinity are gen-

erally non-vanishing [16, 19]. At null infinity, the challenge is that BMS charges can

not be defined using a standard Hamiltonian formulation as, generically, there exists no

Hamiltonian that generates BMS transformations at null infinity. This observation can

be linked to the fact that the symplectic current can be radiated away at null infinity, i.e.,

BMS charges are not exactly conserved. In fact, BMS charges have non-vanishing fluxes

through null infinity. Nevertheless, the discussion in [22] provides a general definition

of ‘conserved quantities’ associated with asymptotic symmetries, even in scenarios in

which the Hamiltonian does not exist.

A conjecture by Strominger [8] states that a priori independent asymptotic symmetry

groups at past and future null infinities I ±, denoted by BMS+ and BMS−, respectively,

can be related via an antipodal reflection map near spatial infinity. The verification of

this conjecture, referred to as the matching problem, would imply a global diagonal

asymptotic symmetry group BMS+ × BMS−. In other words, the incoming fluxes

associated with BMS+ would be equal to the outgoing fluxes associated with BMS−.
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The matching problem is also a crucial ingredient in the conjectured equivalence relation

between asymptotic symmetries, the soft graviton theorem and the gravitational memory

effect [23, 24].

The strategy in validating the matching of BMS+ and BMS− and their associated

charges involves expanding the fields in suitable coordinates around null and spatial in-

finity. On Minkowski spacetime, the matching of asymptotic charges at past and future

null infinities has been verified for the spin-1 and spin-2 fields [25, 26, 27]. For more

general spacetimes, the analysis is complicated due to the singular conformal structure at

spatial infinity for spacetimes with non-vanishing Arnowitt-Deser-Misner (ADM) mass,

referred to as the problem of spatial infinity —see e.g. Chapter 20 in [28]. Another chal-

lenge is that one requires a transformation between adapted coordinates at null and spatial

infinity, which can be explicitly computed on Minkowski spacetime but is not generally

known for general spacetimes. Nevertheless, the covariant formulation of Ashtekar and

Hansen [13] was used in [29, 30] to prove the matching of asymptotic charges for the

spin-1 and gravitational fields on spacetimes that satisfy Ashtekar-Hansen’s notion of

asymptotic flatness. Similar techniques were used in [31] to investigate the matching

of Lorentz charges for the gravitational field on Ashtekar-Hansen asymptotically flat

spacetimes —see also [32].

The purpose of this article is to verify the matching of BMS asymptotic charges

in a full GR setting using an initial value formulation of the field equations. The

argument made in [8] is that the matching of BMS-supertranlation charges should hold

for Christodoulou-Klainerman class of spacetimes [33]. However, as it follows from the

analysis presented in this article, the Christodoulou-Klainerman class of spacetimes are

not general enough to obtain non-trivial asymptotic charges near spatial infinity since

they lead to vanishing BMS-supertranslation charges at spatial infinity —this statement

is further elaborated in Section 7.3 —-see Remark 20. Therefore, the aim of this article

is to identify a generic class of initial data and conditions on the initial data that implies

non-trivial, well-defined asymptotic charges at spatial infinity.

In the context of the initial value problem, Einstein’s field equations are split into

constraint equations and evolution equations; the constraint equations are satisfied by an

initial data set (S̃, h̃, K̃) prescribed on an initial Cauchy hypersurface S̃ , where h̃ is

the intrinsic metric on S̃ and K̃ is the extrinsic curvature. The well-posedness of the

Cauchy problem ensures that there exists a vacuum spacetime (M̃, g̃), referred to as the

development of the initial data (S̃, h̃, K̃), such that S̃ is a spacelike hypersurface in M̃
with an intrinsic metric h̃ induced on S̃ by g̃ with an associated extrinsic curvature K̃.

It is worth noting that not every spacetime can be globally constructed from an initial

value problem. A spacetime is said to be globally hyperbolic if it can be constructed

from an initial value problem of Einstein’s field equations. A special class of initial data

relevant to this article are the so-called asymptotically Euclidean and regular initial data

[34] defined by:

Definition 1 (asymptotically Euclidean and regular). A three-dimensional Riemannian

manifold (S̃, h̃) is asymptotically Euclidean and regular if there exists a three-dimensional,

orientable, compact manifold (S,h) with points ik ∈ S, k = 1, . . . , N with N some in-

teger, a function Ω ∈ C2 and a diffeomorphism ϕ : S \ {i1, . . . , iN} → S̃ such that

1. Ω(ik) = 0,dΩ(ik) = 0 and Hess Ω(ik) = −2h(ik), for all ik ∈ {i1, . . . , iN},
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2. Ω > 0 on S \ {i1, . . . , iN}, and

3. h = Ω2ϕ∗h̃ on S \ {i1, . . . , iN} with h ∈ C2(S) ∩ C∞(S \ {i1, . . . , iN}).

In the above, neighbourhoods of the points ik can be mapped to the asymptotic

ends of S̃ and thus, each of these points represents spacelike infinity. Compared to the

standard definition of asymptotically Euclidean manifolds which describes the asymptotic

expansion of the intrinsic fields on S̃ near the asymptotic ends, Definition 1 is more

geometric in nature and it imposes extra conditions on the smoothness of the initial

data, which in turn affects the asymptotic behaviour of their evolution in time [34]. In

this article, the aim is to obtain non-trivial BMS asymptotic charges associated with the

development of some initial data that satisfy the constraint equations with prescribed

behaviour in the asymptotic region. These initial data were first considered in [35] and

are obtained by means of a gluing construction. This class of initial data includes, as a

particular case, boosted solutions to the constraints and allows for a term with arbitrary

multipolar structure in the initial metric, which appears at the same order as the mass.

As will become evident from our analysis, this arbitrary multipolar structure will be

responsible for the existence of non-trivial BMS asymptotic charges.

It should be noted that the transformation of Einstein’s field equations from the

physical manifold (M̃, g̃) to the unphysical manifold (M,g) implies singular equations at

the conformal boundary Ξ = 0. An alternative set of field equations, the so-called metric

conformal field equations, can be constructed following the discussion in [36, 37, 38].

These equations are regular atΞ = 0, and they imply solutions to Einstein’s field equations

at the points where Ξ 6= 0 —see [28], Chapter 8. In this article, we will make use of the

extended conformal field equations (ECFEs). These equations are formulated in terms

of a Weyl connection ∇̂ and exhibit additional gauge freedom in contrast to the metric

conformal field equations, which are formulated in terms of the Levi-Civita connection

∇ associated with g. As such, the main goal of this project will be to use the ECFEs to

evaluate BMS asymptotic charges near spatial infinity.

To address the singular conformal structure at spatial infinity, we make use of

Friedrich’s formulation of spatial infinity originally introduced in [39] with the aim

of obtaining a regular initial value problem for the conformal field equations at spatial

infinity. A central structure in this formulation is the cylinder at spatial infinity I corre-

sponding to a blow-up of the spatial infinity point to a 2-sphere. The cylinder I touches

the endpoints of past and future null infinities I ± at the critical sets I±. Associated

with this formulation is a particular choice of gauge, referred to as the F-gauge, in which

the coordinates and frames on an initial hypersurface are propagated along conformal

geodesics. One of the remarkable properties of conformal geodesics is that they introduce

a canonical conformal factor that depends on the proper time along the curves and the ini-

tial data. In other words, the F-gauge is constructed so that the location of the conformal

boundary is known a priori. Moreover, in this particular choice of gauge, the cylinder

I is a total characteristic of the ECFEs, i.e., the associated evolution equations can be

written as a system of transport equations on I. A significant advantage of Friedrich’s

formulation is that it allows us to link quantities at the critical sets I± with the initial data

prescribed on an initial hypersurface. This approach was used in [40, 41] to express the

Newman-Penrose (NP) constants in terms of initial data, and it illustrates our strategy in
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this work where the goal is to express BMS asymptotic charges at I± in terms of our

initial data.

As mentioned earlier, one of the challenges in verifying the matching of asymptotic

charges is that a transformation between adapted coordinates at null and spatial infinity

is required. In this article, BMS asymptotic charges are expressed in the NP-gauge,

comprised of certain conformal gauge conditions, certain coordinates and an orthonormal

frame field satisfying certain frame gauge conditions. The main difference between the

F-gauge and the NP-gauge is that the former is adapted to Cauchy hypersurfaces while the

latter is adapted to null infinity I ±. The discussion in [40] provides a prescription of the

transformation between the NP-gauge and the F-gauge. Given a solution to the ECFEs,

an explicit transformation can be obtained, allowing us to express the BMS asymptotic

charges in terms of the F-gauge. In turn, the BMS-asymptotic charges can be evaluated

at I± given the solution to the ECFEs.

Main result

The main results of this article can be summarised in the following:

Theorem. For the generic initial data in [35], asymptotic BMS-supertranslation charges

are not well-defined at the critical sets I± unless the conformal initial data satisfy the

regularity condition given in Lemma 1. If the initial data are chosen to satisfy the extra

regularity condition, the BMS-supertranslation charges at I± are fully determined by

the initial data and the matching between charges at I+ and I− follows directly from the

regularity condition.

As it will be discussed in the main body of the article, the piece of the freely

specifiable initial data from which the value of the BMS charges at I± arise correspond

to a function ξ ∈ C2(S). The regularity condition in Lemma 1 ensuring that the charges

are well-defined is a statement about the parity of the function ξ. More precisely, all

odd parity harmonics, except for the one with l = 1, are required to vanish. This result

provides evidence that Strominger’s antipodal matching condition is, in fact, a regularity

condition on spatial infinity. A full proof of this statement would require a clarification of

the relation between the asymptotic expansions used in our analysis and full solutions to

the conformal Einstein field equations. This, in turn, requires the construction of detailed

estimates for the remainders of the asymptotic expansions along the lines of what was

done in [42] for the spin-2 field —the latter is, however, beyond the scope of this article.

As pointed in [43] the type of parity condition arising from our analysis (and an

analogous one for the extrinsic curvature, which is not required in the present analysis)

is required to make all Poincaré charges at spatial infinity well-defined. This condition

can be traced back to the seminal article [21]. Our analysis points out a deep connection

between the regularity of null infinity and the physical requirement that asymptotic

charges are well-defined. Again, a systematic analysis of these ideas goes beyond the

scope of this article.
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Outline of the article

In Section 2, we start by introducing some of the basic conformal tools used throughout

this article —e.g. the conformal field equations and conformal geodesics. Friedrich’s

formulation of spatial infinity and the F-gauge are introduced in Section 3. In Section

4, we discuss the NP-gauge conditions and the relation between the NP-gauge and the

F-gauge. The expressions for BMS-supertranslation charges are introduced in Section

5 along with their translation to the F-gauge. In Section 6, we present the initial data

utilised in our analysis of the conformal field equations. We conclude the analysis of this

article in Section 7 by obtaining the zero-order solution of the conformal field equations

and evaluating the BMS-supertranslation charges at the critical sets I±.

Notations and conventions

In this article, Latin letters a, b, c, . . . will denote spacetime abstract tensorial indices

while i, j, k, . . . will denote spatial abstract tensorial indices. Capital Latin letters

A, B, C, . . . will denote abstract spinorial indices.

To discuss the components of tensors with respect to a coordinate basis, the Greek

letters µ, ν, . . . will be used as spacetime coordinate indices while α, β, . . . will be

used as spatial coordinate indices. Then, the components of a generic spacetime ten-

sor Tab with respect to an arbitrary coordinate system (xµ) will be written as Tµν =
Tab(∂/∂x

µ)a(∂/∂xν)b. Similarly, the components of a generic spatial tensor lij with

respect to an arbitrary coordinate system (xα) will be written as lαβ = lij(∂α)
i(∂β)

j ,

where (∂α)
i ≡ (∂/∂xα)i.

To discuss the components of tensors and spinors with respect to a frame basis,

let a, b, c, . . . denote tensorial frame indices and A,B,C, . . . denote spinorial frame

indices. Then, the components of a generic tensor Tab with respect to an arbitrary basis

ea ≡ {ea} will be written as Tab = Tabea
aeb

b with a, b ∈ {0, 1, 2, 3}. Moreover, if

{o, ι} denote a spin bases satisfying Jo, ιK = 1, where J., .K is the antisymmetric product,

then the components of a generic spinor ζA can be written as ζA = ζAǫA
A, where

oA = ǫ0
A, ιA = ǫ1

A,

oA = ǫ1A, ιA = −ǫ0A. (1)

The antisymmetric product J., .K of two generic spinors ζ and λ can be expressed as

Jζ, λK = ζBλ
B = ǫABζ

AλB,

where ǫAB is the ǫ-spinor that can be regarded as an index raising/lowering object for

spinors. Throughout, we express spacetime frames {ea} in spinorial notation. The

spinorial counterpart of {ea} is given by

eAA′ = σa
AA′ea

where σa
AA′ are the Infeld-van der Waerden symbols. Finally, the signature convention

for spacetime metrics used in this article is (+,−,−,−). Throughout, we mostly follow

the notation and conventions of Penrose and Rindler [44] —see also [28].
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2 Conformal geometry tools

The purpose of this section is to provide a brief introduction of the conformal tools utilised

throughout this article. In the following, let M̃ denote a four-dimensional Lorentzian

manifold. The metrics g̃ and ĝ on M̃ are conformally related if there exists a positive

function Ω such that

ĝ = Ω2g̃,

where Ω is known as the conformal factor. On the other hand, if M is a four-dimensional

manifold with metric g, then one defines a conformal transformation φ as the diffeomor-

phic map φ : M̃ → M such that

φ∗g = Ξ2g̃.

where Ξ denotes the conformal factor which is a positive function on M̃ and φ∗g is the

pull-back of g to M̃. Given the above, one can define:

Definition 2 (conformal compactification). Let U denote a compact, connected and

open subset of M, then the diffeomorphic map φ : M̃ → U defines a conformal

compactification of M̃ if there exists a positive function Ξ satisfying

i. Ξ > 0 in U ,

ii. Ξ = 0 on the boundary of the open set U , denoted ∂U ,

and if g is related to g̃ by

g = (φ∗)−1(Ξ2g̃) in U . (2)

In this context, ∂U is known as the conformal boundary of M̃.

Remark 1. Throughout, we omit φ∗ and (φ∗)−1 when discussing conformal transforma-

tions and compactifications —e.g., eq. (2) will be written as g = Ξ2g̃.

2.1 The metric conformal field equations

The conformal transformation given by eq. (2) implies transformation laws for the Levi-

Civita connections associated with g̃ and g (denoted by ∇̃ and∇) and other related fields

—e.g. the Riemann curvature tensors R̃a
bcd and Ra

bcd, and the Ricci tensors R̃ab and Rab

etc. The derivation of these formulae is discussed in [28] but will not be necessary for

our discussion.

Now, assume that (M̃, g̃) satisfy the vacuum Einstein field equations, so that

R̃ab = 0. (3)

The transformation law of the Ricci tensor implied by eq. (2) yields a singular expression

for Rab at Ξ = 0. However, the prescription in [36, 37, 38, 28] introduces a set of field

equations on M that are well-defined at the conformal boundary. We will refer to these

equations as the metric conformal field equations, and they are given by

∇a∇bΞ = −ΞLab + sgab, (4a)
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∇as = −Lac∇cΞ, (4b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd, (4c)

∇ad
a
bcd = 0, (4d)

6Ξs− 3∇cΞ∇cΞ = 0, (4e)

where ∇ is the g-Levi-Civita connection, Lab is the Schouten tensor associated with ∇,

dabcd is the rescaled Weyl tensor, defined in terms of the Weyl tensor Ca
bcd as

dabcd = Ξ−1Ca
bcd. (5)

Finally, s denotes Friedrich’s scalar, given by

s ≡ 1

4
∇c∇cΞ +

1

24
RΞ,

where R is the Ricci scalar associated with ∇.

Note that eqs. (4) exhibit conformal gauge freedom manifested by the fact that a

solution to eq. (3) will correspond to an infinite number of solutions to eq. (4). In our

analysis, our focus will be on an equivalent set of conformal field equations exhibiting

additional gauge freedom compared to eqs. (4).

2.2 The extended conformal field equations

This section briefly overviews the conformal formulation of the Einstein field equations

introduced by Friedrich in [39]. The result of this formulation is a set of equations known

as the extended conformal field equations (ECFEs).

Following the discussion in [28], let (M̃, g̃) denote the physical spacetime satisfying

eqs. (3), and let (M, g) denote the unphysical spacetime with

gab = Ξ2g̃ab, (6)

Given a g-orthonormal frame {ea} and a dual frame {ωa}, one can write

gab = Ξ2g̃ab, (7a)

gab = Ξ−2g̃ab. (7b)

To introduce the ECFEs, introduce the Weyl connection as a torsion-free connection ∇̂

satisfying

∇̂agbc = −2fagbc, (8)

where ∇̂a = ea
a∇̂a. The relation between ∇̂, ∇ and ∇̃ is then given by

∇̂−∇ = S(f ), (9a)

∇̂− ∇̃ = S(β), (9b)

where β ≡ f + Ξ−1dΞ and S(f ) can be written as

S(f ) = Sab
cdfd,
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with

Sab
cd = δa

cδb
d + δa

dδb
c − gabg

cd, (10)

where δa
c is the Kronecker delta. Given the above, the extended conformal field equations

can be written explicitly in terms of the zero quantities Σ̂ab, Ξ̂
c
dab, ∆̂cdb and Λ̂bcd as

Σ̂ab = 0, Ξ̂c
dab = 0, ∆̂cdb = 0, Λ̂bcd = 0, (11)

where (Σ̂ab, Ξ̂
c
dab, ∆̂cdb, Λ̂bcd) are defined as

Σ̂ab ≡ [eb, ea]− (Γ̂a
c
b − Γ̂b

c
a)ec,

Ξ̂c
dab ≡ P̂ c

dab − ρ̂cdab,

∆̂cdb ≡ ∇̂cL̂db − ∇̂dL̂cb − dad
a
bcd,

Λ̂bcd ≡ ∇̂ad
a
bcd − fad

a
bcd.

Here, [eb, ea] is the commutator defined as [eb, ea] ≡ eb(ea(f)) − ea(eb(f)) for any

function f on M, L̂ab are the components of the Schouten tensor L̂ associated with ∇̂,

Γ̂a
b
c are the ∇̂-connection coefficients, and da is a 1-form related to fa by

da = Ξfa + (dΞ)a.

Finally, P̂ c
dab and ρ̂cdab are the components of the so-called geometric and algebraic

curvature with respect to {ea}, defined by

P̂ c
dab ≡ ea(Γ̂b

c
d)− eb(Γ̂a

c
d) + Γ̂f

c
d(Γ̂b

f
a − Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f ,

ρ̂cdab ≡ Ξdcdab + 2Sd[a
cf L̂b]f .

The ECFEs yield partial differential equations to be solved for the unknowns

(ea, Γ̂a
b
c, L̂ab, d

a
bdc).

In addition to eqs. (11), introduce the zero quantities δa, γab and ςab satisfying

δa = 0, γab = 0, ςab = 0, (14)

where

δa ≡ da − Ξfa − ∇̂aΞ,

γab = L̂ab − ∇̂aβb −
1

2
Sab

cdβcβd,

ςab = L̂[ab] − ∇̂[afb].

The supplementary eqs. (14) relate the solutions of the ECFEs to Einstein’s field equa-

tions. In particular, given a solution (ea, Γ̂a
b
c, L̂ab, d

a
bdc) to the ECFEs with a choice of

Ξ and da that satisfies the supplementary eqs. (14), then ifΞ 6= 0 and det(ηabea⊗eb) 6= 0
on some open set U of M, the metric

g̃ab = Ξ−2ηabω
a ⊗ ωb

9



is a solution to eq. (3) on U . Here ηab is used to denote the components of the Minkowski

metric with respect to a Cartesian coordinate frame field, i.e., ηab = diag(1,−1,−1,−1).
Similar to the metric conformal field equations introduced in the previous section,

the ECFEs exhibit conformal gauge freedom. To demonstrate this, define the conformal

metric g̀ such that

g̀ab = Ξ̀2g̃ab,

g̀ab = κ2gab.

Thus, we have Ξ̀ = κ−1Ξ. Then, introduce the Levi-Civita connection ∇̀ associated with

g̀ and define the Weyl connection ∇̌ as

∇̌agbc = −2f̀agbc,

so that the relation between ∇̀, ∇̌ and ∇̂ is given by

∇̀− ∇̌ = S(f̀ ),

∇̂− ∇̌ = S(k + κ−1dκ),

where k = f − f̀ . In terms of the above, the conformal covariance of the ECFEs can

now be expressed as follows: if (ea, Γ̂a
b
c, L̂ab, d

a
bdc) is a solution to eqs. (11), the

collection (èa, Γ̌a
b
c, Ľab, d̀

a
bdc) with

èa = κea,

Γ̌a
b
c = κΓ̂a

b
c + δc

b∇̂aκ− κSac
bd(kd + κ−1∇̂dκ),

Ľab = κ2L̂ab − κ2∇̂a(kb + κ−1∇̂bκ)−
1

2
κ2Sab

cd(kc + κ−1∇̂cκ)(kd + κ−1∇̂dκ),

d̀abcd = κ3dabcd,

is also a solution to the ECFEs. However, note that the ECFEs exhibit additional gauge

freedom, corresponding to the freedom in the choice of ∇̂, compared to the metric

conformal field equations. Therefore, to obtain a solution to eqs. (11), our analysis of

the ECFEs will require a gauge choice. In Section 3.1, the final form of the ECFEs will

be obtained by introducing the so-called conformal Gaussian gauge that allows us to fix

the conformal factor Ξ and ∇̂.

Remark 2. As our main focus will be on obtaining solutions to the ECFEs, rather than

the metric conformal field equations, the term conformal field equations will be used

interchangeably with ECFEs in later discussions.

The extended conformal field equations in spinor formulation

The analysis of the ECFEs will be carried out using spinors. In the following, let {ea}
denote the g-orthonormal frame introduced in the previous section and let {eAA′} refer

to the spinorial version of the frame satisfying

g(eAA′ , eBB′) = ǫAB ǭA′B′. (19)
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Then, introduce the spinorial counterparts of P̂ c
dab, ρ̂

c
dab, L̂ab, da, d

a
bcd and fa as

P̂CC′

DD′AA′BB′ , ρ̂CC′

DD′AA′BB′ , L̂AA′BB′, dAA′ , dAA′

BB′CC′DD′ , fAA′

Since the definition of geometric and algebraic curvature is given in terms of the con-

nection coefficients Γ̂a
b
c, introduce the spinorial connection coefficients Γ̂AA′

BB′

CC′

which can be decomposed as

Γ̂AA′
BB′

CC′ = Γ̂AA′
B

CδC′
B′

+
¯̂
ΓAA′

B′

C′δC
B, (20)

where Γ̂AA′
B

C are known as the spin connection coefficients. Given the above, the

relation between the Weyl connection ∇̂ and the unphysical connection ∇ given by eq.

(9) implies that

Γ̂AA′
B

C = ΓAA′
B

C + δA
BfCA′, Γ̂AA′

Q
Q = fAA′ .

Then, P̂CC′

DD′AA′BB′ and ρ̂CC′

DD′AA′BB′ can be decomposed as

P̂CC′

DD′AA′BB′ = P̂C
DAA′BB′δD′

C′

+
¯̂
PC′

D′AA′BB′δD
C ,

ρ̂CC′

DD′AA′BB′ = ρ̂CDAA′BB′δD′
C′

+ ¯̂ρC
′

D′AA′BB′δD
C ,

where

P̂ABCC′DD′ = P̂(AB)CC′DD′ +
1

2
ǫAB

(

∇̂CC′fDD′ − ∇̂DD′fCC′

)

,

ρ̂ABCC′DD′ = ρ̂(AB)CC′DD′ +
1

2
ǫAB

(

L̂CC′DD′ − L̂DD′CC′

)

.

Given these definitions, the extended conformal field equations can be written in terms

of the zero quantities (Σ̂AA′BB′, Ξ̂C
DAA′BB′ , ∆̂CC′DD′BB′, Λ̂BB′CC′DD′) as

Σ̂AA′BB′ = 0, Ξ̂C
DAA′BB′ = 0, ∆̂CC′DD′BB′ = 0, Λ̂BB′CC′DD′ = 0,

(23)

where

Σ̂AA′BB′ ≡ [eAA′ , eBB′]−
(

Γ̂AA′
CC′

BB′ − Γ̂BB′
CC′

AA′

)

eCC′,

Ξ̂C
DAA′BB′ ≡ P̂C

DAA′BB′ − ρ̂CDAA′BB′ ,

∆̂CC′DD′BB′ ≡ ∇̂CC′L̂DD′BB′ − ∇̂DD′L̂CC′BB′ − dAA′dAA′

BB′CC′DD′ ,

Λ̂BB′CC′DD′ ≡ ∇̂AA′dAA′

BB′CC′DD′ − fAA′dAA′

BB′CC′DD′ .

One can also define the spinorial counterparts of the zero quantities δa, γab and ςab as

δAA′ , γAA′BB′, ςAA′BB′ ,

that can be expressed in terms of the spinorial counterparts of da, fa, L̂ab, βa. Then, eqs.

(14) can be written as

δAA′ = 0, γAA′BB′ = 0, ςAA′BB′ = 0. (25)
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2.3 Conformal Geodesics

As will become evident, Friedrich’s formulation of spatial infinity relies on a class of

conformal curves known as conformal geodesics. The aim of this section is to briefly

introduce the notion of conformal geodesics utilised in this work.

Definition 3 (conformal geodesics). Let I ⊆ R and τ ∈ I , then the curve x(τ) is a

conformal geodesic on the physical spacetime (M̃, g̃) if there exists a 1-form β(τ) along

x(τ) such that

∇̃ẋẋ = −2〈β, ẋ〉ẋ+ g̃(ẋ, ẋ)β♯, (26a)

∇̃ẋβ = 〈β, ẋ〉 − 1

2
g̃♯(β,β)ẋ♭ + L̃(ẋ, .), (26b)

where ẋ denotes the tangent vector and L̃ is the Schouten tensor associated with ∇̃.

In the following, let S̃ denote a spacelike submanifold of (M̃, g̃) and consider the

smooth initial data on S̃ as

x⋆ ∈ S̃, ẋ⋆ ∈ T |x⋆
(S̃), β⋆ ∈ T ∗|x⋆

(S̃),

where T |x⋆
(S̃) and T ∗|x⋆

(S̃) denote the tangent and dual tangent space at x⋆ ∈ S̃ , respec-

tively. Given these initial data, there exists a unique conformal geodesic (x(τ),β(τ))
passing through each x⋆ ∈ S̃ such that

x(0) ≡ x⋆, ẋ(0) ≡ ẋ⋆, β(0) ≡ β⋆. (27)

To illustrate some of the useful properties of conformal geodesics, introduce the Weyl

connection ∇̂ satisfying

∇̂ag̃bc = −2βag̃bc, (28)

where βa is the 1-form satisfying the conformal geodesics eqs. (26). Given this definition,

the relation between ∇̃ and ∇̂ is given by

∇̂− ∇̃ = S(β),

where S(β) can be written as

S(β) = Sab
cdβd,

with

Sab
cd = δa

cδb
d + δa

dδb
c − g̃abg̃

cd. (29)

Then, eqs. (26) implies

∇̂ẋẋ = 0, L̂(ẋ, .) = 0. (30)

where L̂ is the Schouten tensor associated with ∇̂. Furthermore, one can introduce a

Weyl-propagated frame {ea} as

∇̂ẋea = 0. (31)

Hence, a congruence of conformal geodesics satisfying eqs. (26) given initial data eq.

(27) singles out a Weyl connection ∇̂ and a Weyl-propagated frame {ea} as suggested

by eq. (28) and eq. (31).

12



Another essential feature of conformal geodesics is that a non-intersecting congruence

of conformal geodesics singles out a canonical conformal factor Ξ and a metric g = Ξ2g̃

such that

g(ẋ, ẋ) = 1. (32)

In other words, the metric g is singled out by enforcing that the parameter τ of the

conformal geodesics corresponds to the g-proper time. In particular, we have

Proposition 1. Let (M̃, g̃) denote a vacuum spacetime satisfying eq. (3) and let

(x(τ),β(τ)) denote a solution to the conformal geodesics eqs. (26) with initial data eq.

(27). Then, if g = Ξ2g̃ is defined such that g(ẋ, ẋ) = 1, the conformal factor Ξ can be

written as a quadratic polynomial in terms of τ , i.e.

Ξ(τ) = Ξ⋆ + Ξ̇⋆τ +
1

2
Ξ̈⋆τ

2 (33)

with

Ξ̇⋆ = 〈β⋆, ẋ⋆〉Ξ⋆, Ξ⋆Ξ̈⋆ =
1

2
g̃♯(β⋆,β⋆). (34)

If {ea} is a g-orthonormal Weyl-propagated frame satisfying eq. (31), one can show that

the components of β with respect to {ea} satisfy

Ξβ0 = Ξ̇, Ξβi = Ξ⋆βi⋆,

where βa ≡ 〈β, ea〉.

In the next section, we will use the unique properties of conformal geodesics to

introduce Friedrich’s formulation of spatial infinity.

3 Friedrich’s formulation of spatial infinity

As discussed in the introduction, the strategy of this work is to make use of Friedrich’s

regular initial value problem of the conformal field equations [39] to analyse the behaviour

of asymptotic charges near spatial infinity. Following the discussion in [40], let S̃
denote a spacelike submanifold of (M̃, g̃) which is asymptotically Euclidean and regular

(Definition 1) with one asymptotic end, and let h̃ denote the intrinsic metric induced by g̃

on S̃ . Let S denote the hypersurface mentioned in Definition 1 with the asymptotic point

i and denote by SU(S) the bundle of normalised spin frames over S with the structure

group SU(2,C). Let {ǫAA} with A ∈ {0, 1} denote the spin frame chosen so that the

components of the ǫ-spinor are given by

ǫ01 = 1, ǫ01 = 1.

Also, let τAA′

denote the spinorial counterpart of the future directed normal vector of S̃
satisfying τAA′τAA′

= 2. Then, τAA′

can be written as

τAA′

= ǫ0
Aǭ0′

A′

+ ǫ1
Aǭ1′

A′

. (35)
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Given t = {tAB} ∈ SU(2,C), one can show

ǫABt
A
Ct

B
D = ǫCD,

τAA′tAB t̄
A′

B′ = τBB′ .

Then, given a fixed spin frame {ǫAA} at i and t ∈ SU(2,C), introduce the transformed

frame ǫA
A(t) as

ǫA
A(t) = tA

BǫB
A.

To introduce spin frames in a neighbourhood of the asymptotic point i ∈ S, consider

the metric ball Ba(i) in S centered at i and choose a > 0 such that Ba(i) is geodesically

convex and the metric h is smooth on Ba(i). Then, construct the h-geodesic starting at

i and let ρ denote the affine parameter along the geodesic so that ρ(i) = 0. By fixing t,

the spin frames ǫA
A(t) can be parallelly transported along the geodesic and the frames

obtained are denoted by ǫA(ρ, t), where the upper index for the spin frames will be

removed in the subsequent discussion for convenience. Then, let Ca denote the subset of

SU(S) defined as

Ca = {ǫA(ρ, t) ∈ SU(S)| − a < ρ < a, t ∈ SU(2,C)}. (37)

From the above, Ca is diffeomorphic to S̄a given by

S̄a = {(ρ, t) ∈ R× SU(2,C)| − a < ρ < a},

To relate the structures on Ca with those on S, let π denote the projection from SU(S)
to S and then denote by π′ the restriction to Ca so that π′ is a projection map from Ca to

Ba(i). The action of U(1) on SU(S) will imply an action of U(1) on Ca. The quotient

under this action C′
a = Ca/U(1) is diffeomorphic to (−a, a) × S2. Subsequently, if

t ∈ SU(2,C) and s′ ∈ U(1), then ǫA(t) and ǫA(s
′t) can be parallelly transported along

the same geodesic and will be given by ǫA(ρ, t) and ǫA(ρ, s
′t), respectively. Since the

function ρ is invariant under the action of U(1), we have

π′(ǫA(ρ, t)) = π′(ǫA(ρ, s
′t)),

and the map π′ can be factored as

Ca
π′
1−→ C′

a

π′
2−→ Ba(i),

where π′
1 is the Hopf fibration and π′

2 is the exponential map. Note that the set C′
a

can be split into two components: C′
a
+ on which ρ > 0 and C′

a
− on which ρ < 0.

Each of these components can be mapped into the punctured disk Ba(i) \ {i} using π′
2.

Additionally, given these projections, the point i can be replaced by the set π′
2
−1(i) which

is diffeomorphic to S
2. Then if I0 = {ρ = 0} ⊂ Ca, we can identify π′

1(I0) = π′
2
−1(i)

and π′
2
−1(i) glues together the components C′

a
+ and C′

a
−.

In the following, it will be assumed that (M̃, g̃) is the development of the initial data

(S̃, h̃) satisfying Definition 1 and that (M, g,Θ) is the smooth conformal extension of

(M̃, g̃) such that M = M̃∪I + ∪I −, where I ± denotes future and past null infinity,

14



respectively and Θ is the conformal factor satisfying i) Θ > 0 and g = Θ2g̃ on M̃, ii)

Θ = 0 and dΘ 6= 0 on I ±. Then, introduce the manifold Ma,κ by

Ma,κ =

{

(τ, ρ, t) ∈ R× R× SU(2,C)| 0 ≤ ρ < a,−ω

κ
≤ τ ≤ ω

κ

}

,

where κ is an arbitrary function such that κ = ρκ′ with κ′ smooth and κ′(i) = 1,

ω ≡ ω(ρ, t) is a smooth non-negative function such that ω/κ → 1 as ρ → 0. Note

that a coordinate system can be defined on Ma,κ by introducing a coordinate system on

SU(2,C) together with the functions τ and ρ.

Similar to previous discussion, the action of U(1) on SU(2,C) implies an action of

U(1) on Ma,κ. The quotient under this action Ma,κ/U(1) will be denoted by M′
a,κ and

the projection from Ma,κ onto N ⊂ M by π̄′, where N is the domain of influence of

Ba(i) \ {i}. The map π̄′ can be factored as

Ma,κ
π̄′
1−→ M′

a,κ

π̄′
2−→ N .

Given the mentioned construction, define the following subsets of Ma,κ

I
±
a = {(τ, ρ, t) ∈ Ma,κ| 0 < ρ < a, τ = ±ω

κ
}, (38a)

I = {(τ, ρ, t) ∈ Ma,κ| ρ = 0,−1 < τ < 1}, (38b)

I± = {(τ, ρ, t) ∈ Ma,κ| ρ = 0, τ = ±1}, (38c)

I0 = {(τ, ρ, t) ∈ Ma,κ| ρ = 0, τ = 0}, (38d)

where the sets I ±
a represent past/future null infinity, I is the cylinder at spacelike infinity

and I± are the sets at which I ±
a touches I, known as the critical sets.

Remark 3.

i. The subscript a in I
±
a is used to indicate that the sets I

±
a do not represent the

entirety of past/future null infinity, rather they map to a part of null infinity close

to spacelike infinity. In subsequent discussions, we will drop the subscript for

convenience.

ii. Given that π′
1(I0) = π′

2
−1(i) and that π′

2
−1(i) is diffeomorphic to S2, it is clear to

see that π̄′
1(I) is diffeomorphic to R × S

2, hence the use of the term cylinder at

spatial infinity to refer to I.

So far, the construction Ca has not been extended to the spacetime Ma,κ. To do so,

assume Ca defined as previously and define Sa = {ρ > 0} ⊂ S̄a, then the spin frames

ǫA(ρ, t) ∈ SU(S) will be transported off Sa into the spacetime by a certain propagation

law along conformal geodesics which are orthogonal to Sa. This allows us to determine

the spin frames ǫA(τ, ρ, t) at points of Ma,κ \ (I ∪ I+ ∪ I−) up to multiplication by a

phase parameter that corresponds to the action of U(1) on SU(M).

Remark 4. Subsequent calculations will be carried out on Ma,κ. We will use the same

notation to refer to fields on M and their pull-back to Ma,κ via π̄′ e.g. use Θ for π̄′∗Θ.
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Following the discussion in [40], let Zui
denote the vector fields generated by ui, the

basis of the Lie Algebra of SU(2,C), given by

u1 =
1

2

(

0 i
i 0

)

, u2 =
1

2

(

0 −1
1 0

)

, u3 =
1

2

(

i 0
0 −i

)

. (39)

Then, introduce the complex vector fields

X+ = −(Zu2
+ iZu1

), X− = −(Zu2
− iZu1

), X = −2iZu3
,

satisfying

[X,X+] = 2X+, [X,X−] = −2X−, [X+, X−] = −X.

Given the above, consider the smooth vector field

eAA′ = e0
AA′∂τ + e1

AA′∂ρ + e+
AA′X+ − e−

AA′X−, (40)

where eµ
AA′ denotes the components of eAA′ with respect to the local coordinate system

(τ, ρ, t). If ωAA′

denotes the dual frame, then 〈ωAA′

, eBB′〉 = ǫB
AǭB′

A′

on Ma,κ \ I.

Given that Friedrich’s formulation is an initial value problem formulation of the

conformal field equation, we will be interested in reintroducing the 1 + 3 decomposition

of the field equations in terms of so-called space-spinors —see [45, 44, 28] for details.

In the space-spinor formulation, the frame fields eAA′ can be decomposed as follows

eAA′ =
1√
2
τAA′∂τ − τBA′eAB ,

where τAA′ denotes the components of the future directed normal ofS and eAB is defined

by

eAB ≡ τ(A
B′

eB)B′ = e0
AB∂τ + e1

AB∂ρ + e+
ABX+ + e−

ABX−. (41)

Since the ECFEs are written in terms of a Weyl connection, let ∇̂ denote a Weyl

connection such that

∇̂agbc = −2fagbc, (42)

where {ea} is the tensorial counterpart of the frame fields defined by eq. (40), gab ≡
g(ea, eb), and fa is an arbitrary 1-form which will be fixed in later discussions.

Now, let χABCD and ξABCD denote the real and imaginary parts of Γ̂ABCD of the

spin connection coefficients Γ̂ABCD ≡ τ(B
A′

Γ̂A)A′CD associated with ∇̂, defined by

χABCD ≡ − 1√
2
(Γ̂ABCD + Γ̂+

ABCD),

ξABCD ≡ 1√
2
(Γ̂ABCD − Γ̂+

ABCD),

where Γ̂+
ABCD is the Hermitian conjugate of Γ̂ABCD. Then, Γ̂ABCD can be written as

Γ̂ABCD =
1√
2
(ξABCD − χABCD) =

1√
2
(ξABCD − χ(AB)CD)− 1

2
ǫABfCD, (44)
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where fAB ≡ τ(B
A′

fA)A′ = τ(B
A′

σa
A)A′fa.

Given that the curvature tensor R̂a
bcd associated with ∇̂ can be written in terms of

the rescaled Weyl tensor dabcd and the Schouten tensor L̂ab, it is straightforward to see

that the spinorial counterpart of R̂a
bcd is fully determined by the rescaled Weyl spinor

φABCD ≡ φ(ABCD) and the space-spinor counterpart of the Schouten tensor ΘABCD,

where φABCD and ΘABCD are defined by

φABCD ≡ −1

4
ǫA

′B′

ǫC
′D′

dAA′BB′CC′DD′

ΘABCD ≡ ΘAB(CD) ≡ τB
A′

τD
C′

L̂AA′CC′.

A further decomposition of ΘABCD ≡ ΘAB(CD) yields

ΘABCD = Θ(AB)CD − 1

2
ǫABΘQ

Q
CD.

As shown in [46], the gauge choice based on conformal geodesics implies that the

conformal factor Θ can be expressed in terms of initial data as follows:

Θ = κ−1Ω

(

1− τ 2
κ2

ω2

)

, (46)

where ω is given by

ω =
2Ω√

−DABΩDABΩ
. (47)

Here, DAB denotes the intrinsic covariant derivative on the initial hypersurface Sa.

Moreover, one can show that Θ satisfies

Θ > 0 on Ma,κ, {Θ = 0} = I
+
a ∪ I− ∪ I ∪ I+ ∪ I

+
a ,

eAA′(Θ) 6= 0, ǫAB ǭA
′B′

eAA′(Θ)eBB′(Θ) = 0 on I
±
a .

For the rest of this article, we will refer to the frame {eAA′} (or equivalently {ea})

satisfying the conditions mentioned, the coordinates (τ, ρ, t) and the conformal gauge

defined above as the F-gauge. In the following section, Friedrich’s approach to the

conformal field equations will be introduced, where the aim is to encode the above gauge

conditions, and their transport laws in the properties of the unknowns appearing in the

conformal field equations.

3.1 Hyperbolic reduction using the conformal Gaussian gauge

This section aims to introduce a hyperbolic reduction procedure of the ECFEs using

the so-called conformal Gaussian gauge based on conformal geodesics, following the

discussion of Chapter 13 in [28].

In the following, let S̃ ≡ {τ = 0} denote a spacelike hypersurface on the physical

spacetime (M̃, g̃) and let

ea⋆
= ea|S̃ , β⋆ = β|S̃ , (49)
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denote a smooth initial data specified at each point x⋆ ∈ S̃. Furthermore, assume that

(x(τ),β(τ))|x⋆
is the unique solution to eqs. (26) passing through x⋆ ∈ S̃ such that

x(0) = x⋆, ẋ(0) = e0⋆, β(0) = β⋆.

By varying x⋆, it can be shown that one obtains a smooth caustic free congruence of

conformal geodesics in a small neighbourhood Ũ of S̃ .

Remark 5. In subsequent calculations, it will be assumed that (x(τ),β(τ)) is a congru-

ence of conformal geodesics satisfying eqs. (26) with initial data eq. (49) specified on

S̃ .

The solution to the conformal geodesic equations allows us to fix the gauge freedom

in the ECFEs associated with the choice of ∇̂. In particular, one can introduce the Weyl

connection ∇̂ as

∇̂− ∇̃ = S(β).

As mentioned in Section 2.3, the Weyl connection introduces a Weyl propagated frame

field {ea} satisfying eq. (31). Moreover, one can obtain a canonical conformal factor

Ξ by imposing conditions eq. (32). Applying ∇̃ẋ to eq. (32) and using the conformal

geodesic equations, one can show that Ξ satisfies the evolution equation

∇̂ẋΞ = Ξ〈β, ẋ〉. (50)

Given {ea} and Ξ that satisfy the above mentioned equations and if the frame {ea} is

adapted to the conformal geodesics so that ẋ = e0, then the conformal metric g ≡ Ξ2g̃

satisfies

g(ea, eb) = ηab.

Finally, given local coordinates (xα) on S̃ and setting x0 = τ , the local coordinates on

S̃ can be dragged along the conformal geodesics to obtain a smooth coordinate system

(xµ) ≡ (x0, xα) on Ũ . In this gauge, one can show that

ẋ = e0 = ∂τ , Γ̂0

a
b = 0, L̂0a = 0 on Ũ , (51)

and that the conformal factor Ξ and 1-form d ≡ Ξβ can be expressed in terms of the

initial data as:

Ξ(τ) = Ξ|S̃
(

1 + 〈β⋆, e0⋆〉τ +
1

4
g̃♯(β⋆,β⋆)τ

2

)

, (52a)

d0 = Ξ̇ = ∂τΞ, da = Ξ|S̃〈β⋆, e0⋆〉 for a = 1, 2, 3. (52b)

This choice of coordinates, frame fields and conformal factor will be known as the

conformal Gaussian gauge system.

To make use of this gauge in the ECFEs, let ϕ denote an embedding map ϕ : S̃ → M̃
so that S̃ is a submanifold of M̃ and let φ denote the conformal transformation map

φ : M̃ → M so that the metric g ≡ Ξ2g̃ on M satisfies eq. (32). Then, the map

φ ◦ ϕ : S̃ → M is also an embedding so that S̃ can be considered as a submanifold of

M. If h̃ is the metric induced by g̃ on S̃ and h is the metric induced by g on S̃ , one has

h = Ω2h̃, (53)
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where Ω = Ξ|S̃ . Given the smooth coordinate system (xµ) on Ũ and if eµ
a denote

the coefficients of the frame field ea with respect to the coordinate system (xµ) i.e.

eµ
a = 〈dxµ, ea〉, then using the gauge conditions eq. (51), the evolution equations for

eµ
a, Γ̂a

b
c and L̂ab can be written as

∂τe
µ
b = −Γ̂b

c
0e

µ
c, (54a)

∂τ Γ̂b
c
d = −Γ̂f

c
dΓ̂b

f
0 + δ0

cL̂bd + δd
cL̂b0 + η0dη

fcL̂bf + Ξdcd0b, (54b)

∂τ L̂bc = −Γ̂b
f
0L̂fc + dfd

f
c0b. (54c)

Note that these equations contain only derivatives with respect to τ , so they can be

considered as a transport system along the conformal geodesics (x(τ),β(τ)). If na is the

g-unit normal to S̃ , the rescaled Weyl tensor dabcd can be decomposed in terms of the

electric part Eab and magnetic part Bab defined as

Eab ≡ dacbdn
cnd, Bab = (∗d)acbdncnd,

where (∗d)acbd are the components of the left Hodge dual of dacbd. Using this decompo-

sition, one can show that Eab and Bab satisfy

∂τ (Ebd) +DaBc(bǫd)
ac + 2aaǫ

ac
(bBd)c − 3χ(b

cEd)c − ǫb
acǫd

efEacχef + χEbd = 0,

∂τ (Bbd)−DaEc(bǫd)
ac − 2aaǫ

ac
(bEd)c − 3χa

(bBd)a − ǫb
acǫd

efBacχef + χBbd = 0,

where

hab ≡ gab − τaτb, χab ≡ ha
c∇cτb, χ ≡ habχab, aa ≡ τb∇bτa,

and τa =
√
2na.

3.1.1 Spinor formulation of the extended conformal field equations

The ECFEs obtained from the hyperbolic reduction procedure discussed in the previous

section can be expressed in terms of spinors. In particular, if τAA′

denotes the spinor

counterpart of the vector τa and {ǫAA} denotes the spin frame introduced in Section 3 so

that τAA′

is given by eq. (35), then the evolution equations for eAA′ , Γ̂AA′
B

C , L̂AA′BB′

and dAA′BB′CC′DD′ can be written as

τAA′

Σ̂AA′BB′ = 0, τCC′

Ξ̂ABCC′DD′ = 0, (56a)

τAA′

∆̂AA′BB′CC′ = 0, τ(A
A′

Λ̂|A′|BCD) = 0, (56b)

where we choose to omit the explicit form of these equations — see [28] for a detailed

expression of these equations.

In the following, let Γ̂ABCD, fAB and ΘABCD denote the components of the space-

spinor counterparts of ∇̂-spin connection coefficients, the 1-form f and the ∇̂-Schouten

tensor, as introduced in Section 3, i.e.,

Γ̂ABCD ≡ τ(B
A′

Γ̂A)A′CD, fAB ≡ τ(B
A′

fA)A′ , ΘABCD ≡ τB
A′

τD
C′

L̂AA′CC′.
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Note that Γ̂ABCD can be further decomposed in terms of ξABCD and χABCD using eq.

(44) while the spinorial counterpart of the rescaled Weyl tensor dAA′BB′CC′DD′ can be

decomposed in terms of the rescaled Weyl spinor φABCD as follows:

dAA′BB′CC′DD′ = −φABCDǫA′B′ǫC′D′ − φ̄A′B′C′D′ǫABǫCD. (57)

Now, define the electric and magnetic parts of the rescaled Weyl spinor φABCD as

ηABCD ≡ 1

2

(

φABCD + φ+
ABCD,

)

, µABCD ≡ − i

2

(

φABCD − φ+
ABCD

)

,

where the + sign denotes the Hermitian conjugation, so that

φ+
ABCD ≡ τA

A′

τB
B′

τC
C′

τD
D′

φ̄A′B′C′D′ .

In terms of the above-mentioned fields, the evolution equations for

(e0
AB, e

α
AB, ξABCD, fAB, χ(AB)CD,ΘCD(AB),ΘABQ

Q)

can be written as

∂τe
0
AB = −χ(AB)

PQe0
PQ − fAB , (58a)

∂τe
α
AB = −χ(AB)

PQeα
PQ, (58b)

∂τξABCD = −χ(AB)
PQξPQCD +

1√
2

(

ǫACχ(BD)PQ + ǫBDχ(AC)PQ

)

fPQ (58c)

−
√
2χ(AB)(C

EfD)E − 1

2

(

ǫACΘBDQ
Q + ǫBDΘACQ

Q
)

− iΞµABCD,

∂τfAB = −χ(AB)
PQfPQ +

1√
2
ΘABQ

Q, (58d)

∂τχ(AB)CD = −χ(AB)
PQχPQCD −ΘAB(CD) + ΞηABCD, (58e)

∂τΘCD(AB) = −χ(AB)
PQΘPQ(AB) − ∂τΞηABCD + i

√
2dP (AµB)CDP , (58f)

∂τΘABQ
Q = −χ(AB)

EFΘEFQ
Q +

√
2dPQηABPQ. (58g)

In the above, dAB ≡ τ(B
A′

dA)A′ is the space-spinor counterpart of the 1-form d

introduced in the previous section. Note that the conformal factor Ξ, its derivatives ∂τΞ
and dAB can be expressed in terms of the initial data as discussed earlier —see eqs. (52).

Finally, letDAB andP denote the Sen connection and the Fermi derivative associated

with the Levi-Civita connection ∇, so that

DAB ≡ τ(A
A′∇B)A′ , P ≡ τAA′∇AA′ ,

then the so-called boundary-adapted evolution system for φABCD can be written as

−2P0000 = 0, −2P0001 −
1

2
C00 = 0, −2P0011 = 0, (59a)

−2P0111 +
1

2
C11 = 0, −2P1111 = 0. (59b)
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where

PABCD = −1

2

(

PφABCD −D(D
FφABC)F

)

, CAB = DEFφABEF .

The constraint equations for φABCD can be written as

CAB = 0. (60)

Given the evolution equations for the background fields e0
AB, eα

AB, ξABCD, fAB,

χ(AB)CD, ΘCD(AB), ΘABQ
Q and the boundary-adapted evolution and constraint equa-

tions for the rescaled Weyl tensor φABCD, the next step is to obtain a scalar version of

these equations that can be solved for the components of the background fields and the

rescaled Weyl tensor.

3.1.2 Scalarising the extended conformal field equations

To obtain a scalar version of the extended conformal field equations, we consider the

irreducible decomposition of spinors with two or four unprimed indices.

In the following, let {ǫAA} denote some arbitrary spin frame and introduce the

primary spinors xAB, yAB, zAB, ǫ
s
ABCD and hABCD as

xAB =
√
2ǫ0(Aǫ

1

B), yAB = − 1√
2
ǫ1(Aǫ

1

B), zAB =
1√
2
ǫ0(Aǫ

0

B), (61a)

ǫsABCD = ǫ(A(Aǫ
B

Bǫ
C
Cǫ

D)s
D), hABCD = −ǫA(CǫD)B , (61b)

where the indices with a bracket are symmetrised, and the lower index s ≤ 4 is used to

indicate that s of the indices are set to equal 1 while the remaining are set to equal 0.

The ǫ-spinor can be written in terms of {ǫAA} as

ǫAB = ǫ0Aǫ
1

B − ǫ0Bǫ
1

A.

The spinors ǫsABCD can be written in terms of xAB, yAB and zAB as

ǫ0ABCD =
2

3
zADzBC +

2

3
zACzBD +

2

3
zABzCD,

ǫ1ABCD =
1

6
xCDzAB +

1

6
xBDzAC +

1

6
xBCzAD +

1

6
xADzBC +

1

6
xACzBD +

1

6
xABzCD,

ǫ2ABCD =
1

6
xADxBC +

1

6
xACxBD +

1

6
xABxCD,

ǫ3ABCD = −1

6
xCDyAB − 1

6
xBDyAC − 1

6
xBCyAD − 1

6
xADyBC − 1

6
xACyBD − 1

6
xAByCD,

ǫ4ABCD =
2

3
yADyBC +

2

3
yACyBD +

2

3
yAByCD.

The primary spinors satisfy a number of useful identities —see appendix in [40] for a

full list. For example, the spinors xAB, yAB and zAB satisfy

xABx
AB = −1, xABy

AB = 0, xABz
AB = 0,

yABy
AB = 0, yABz

AB = −1

2
zABz

AB = 0.
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An arbitrary spinor with 2 unprimed indices lAB can be decomposed as

lAB = lxxAB + lyyAB + lzzAB,

where

lx = −lABx
AB, ly = −2lABz

AB, lz = −2lABy
AB.

Similarly, an arbitrary spinor with 4 unprimed indices SABCD can be written as

SABCD = S0ǫ
0
ABCD + S1ǫ

1
ABCD + S2ǫ

2
ABCD + S3ǫ

3
ABCD + S4ǫ

4
ABCD + ShhABCD

+ Sx(xBDǫAC + xACǫBD) + Sy(yBDǫAC + yACǫBD) + Sz(zBDǫAC + zACǫBD).

For totally symmetric spinors, TABCD = T(ABCD), the irreducible decomposition can be

written as

TABCD = T0ǫ
0
ABCD + T1ǫ

1
ABCD + T2ǫ

2
ABCD + T3ǫ

3
ABCD + T4ǫ

4
ABCD.

Given the above-mentioned decomposition, we can list the components of the spinors

appearing in the evolution eqs. (58) for the background fields as

e0
AB →

(

e0
x, e

0
y, e

0
z

)

,

eα
AB →

(

e1
x, e

1
y, e

1
z, e

2
x, e

2
y, e

2
z, e

3
x, e

3
y, e

3
z

)

,

ξABCD → (ξ0, ξ1, ξ2, ξ3, ξ4, ξh, ξx, ξy, ξz) ,

fAB → (fx, fy, fz) ,

χ(AB)CD → (χ0, χ1, χ2, χ3, χ4, χh, χx, χy, χz) ,

ΘAB(CD) → (Θ0,Θ1,Θ2,Θ3,Θ4,Θh,Θx,Θy,Θz) ,

ΘAB ≡ ΘABQ
Q → (θx, θy, θz) .

It is possible to obtain a scalarised version of the evolution eqs. (58) by various contrac-

tions with the primary spinors. In total, one obtains 45 equations for the 45 components

listed above. In our analysis, the xAct package [47] for Wolfram language was used to

obtain an explicit form of the scalarised equations. These will not be listed here for

obvious reasons.

Given that φABCD is totally symmetric, the components involved in the boundary-

adapted evolution and constraint equations can be listed as follows:

φABCD → (φ0, φ1, φ2, φ3, φ4) .

In terms of the above, the evolution eqs. (59) and the constraint eqs. (60) for φABCD

consists of 5 and 3 equations, respectively, to be solved for the components φ0, φ1, φ2, φ3

and φ4 —see Appendix A.

4 The Newman-Penrose gauge

As mentioned in the introduction, the BMS-asymptotic charges used in this work are

expressed in terms of the NP-gauge. Before introducing the expressions of the charges,

we will discuss the NP-gauge conditions and the general relation between the NP-gauge
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frame with the F-gauge frame. As will become evident, the main distinction between

the NP-gauge and the F-gauge is that the former is adapted to null infinity I ± while the

latter is adapted to Cauchy hypersurfaces.

In this section, the focus will be on the gauge conditions satisfied by the NP-gauge at

future null infinity I +. Similar conditions can be formulated at past null infinity I −.

Following the discussion in [40], introduce the conformal metric g• related to g by

g• = θ2g. (66)

On a neighbourhood U ⊂ M of I +, introduce the smooth adapted frame {e◦
AA′}

satisfying the following conditions:

i. The frame field e◦
11′ is tangent to and parallelly propagated along I +. Hence,

∇◦
11′e

◦
11′ ≃ 0,

where ≃ is used to denote equality on I +.

ii. On U , there exists a smooth function u◦ that induces an affine parameter on the

null generators of I + such that

e◦
11′(u◦) ≃ 1.

iii. The frame e◦
00′ is tangent to the hypersurfaces transverse to I + (on which u◦ =

constant), i.e.,

e◦
00′ = g(du◦, ·).

iv. The frame fields e◦
01′ and e◦

10′ are tangent to the slices {u◦ = constant} ∩ I +.

These frame fields as well as e◦
00′ and e◦

11′ are parallelly propagated in the direction

of e◦
00′ .

Let (xµ) denote a local coordinate system on U , then the above gauge conditions can be

expressed in terms of the spin connection coefficients Γ◦
AA′

B
C , which can be written in

terms of the components of e◦
AA′ with respect to (xµ) as

Γ◦
AA′BC =

1

2
(e◦µ

AA′e◦ν
B1′∇µe

◦
νC0′ + e◦µ

AA′e◦ν
C1′∇µe

◦
νB0′) .

Then, the gauge conditions are given by

Γ◦
10′11

≃ 0, Γ◦
11′11

≃ 0,

Γ◦
10′00

= Γ̄◦
01′0′0′, Γ◦

11′00
= Γ̄◦

01′0′1′ + Γ◦
01′01

, Γ◦
00′BC = 0 on U .

To introduce the NP-gauge frame {e•
AA′} and the NP-gauge conditions, consider the

conformal rescaling g → g• where g• is defined by eq. (66). Given θ > 0 and an

arbitrary function p > 0 which is constant on the generators of I +, the NP-gauge frame

{e•
AA′} can be introduced as follows: let e•

11′ ≃ θ−2pe◦
11′ and introduce the affine

parameter u• along the generators of I
+ as follows

u•(u◦) =

∫ u◦

u◦
⋆

θ2(u′)p−1(u′)du′ + u•
⋆ on I

+.
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Hence, the frame e•
11′ is parallelly propagated along I + and it satisfies e•

11′(u•) ≃ 0. If

C denotes a cut on I +, which is diffeomorphic to S2, then the coordinates (ϑ, ϕ) on C
and the conformal factor θ can be fixed such that the metric on C is the standard metric

on S2.

In the following, assume that u◦ = u◦
⋆ and u• = u•

⋆ on C and set

e•
00′ = p−1e◦

00′, e•
11′ = θ−2pe◦

11′, e•
01′ = θ−1e◦

01′ on C.

Given that g = Θ2g̃, the transformation g 7→ g• implies Θ 7→ Θ• = θΘ and the

transformation laws for the spin connection coefficients can be written on C as

Γ•
10′00

= p−1 (Γ◦
10′00

− e◦
00′(log(θ))) ,

Γ•
01′11

= pθ−2 (Γ◦
01′11

+ e◦
11′(log(θ))) .

Thus, with a suitable choice of dθ and p, one can achieve the following

Γ•
10′00

= 0, Γ•
01′11

= 0, e•
00′(Θ•) = const. 6= 0 on C. (68)

The conformal rescaling given by eq. (66) implies a transformation of the trace-free part

of the g-Ricci tensor, denoted by sab. In particular, one has that

s•µν = sµν −
2

θ

(

∇µ∇νθ −
2

θ
∇µθ∇νθ −

1

4
gµν(∇λ∇λθ − 2

θ
∇λθ∇λθ)

)

,

where sµν are the components of s with respect to (xµ). Now, define Φ◦
22 and Φ•

22 as

Φ◦
22 ≡

1

2
sµνe

◦µ
11′e◦ν

11′, Φ•
22 ≡

1

2
s•µνe

•µ
11′e•ν

11′. (69)

The condition Φ•
22 = 0 on I

+ implies a linear ordinary differential equation (ODE) for

θ−1 on the generators of I +

e◦
11′(e◦

11′(θ−1)) + θ−1Φ◦
22 = 0. (70)

The initial data for θ, e◦
11′(θ) on C can be used to solve for θ and obtain

Φ•
22 ≃ 0, Γ•

01′11
≃ 0.

By fixing θ and e•
11′ on I +, the frame fields e•

01′ and e•
10′ can be determined up to a

rotation. Then, the phase parameter c can be determined by solving

e•
11′(c) = −ie•µ

10′e•ν
11′∇•

µe
•
ν01′, (71)

along the generators of I + with initial data c = 0 on C. Making the replacement

e•
01′ → eice•

01′ allows us to obtain

Γ•
11′01

≃ 0.

Given that s•µν is defined by

Θ•s•µν =
1

2
g•µν∇•

λ∇•λΘ• − 2∇•
µ∇•

νΘ
•, (72)
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contracting the above with e•µ
01′e•ν

10′ implies that

∇•
λ∇•λΘ• ≃ 0.

While a contraction with e•µ
00′e•ν

11′ and e•µ
00′e•ν

01′ gives

e•
11′(e•

00′(Θ•)) ≃ 0, e•
00′(Θ•) ≃ const.

and

e•
01′(e•

00′(Θ•)) = Γ•
11′00

e•
00′(Θ•),

respectively. Thus, one concludes

Γ•
11′00

≃ 0.

The conformal rescaling given by eq. (66) implies a transformation law for the Ricci

scalars associated with ∇
• and ∇

R• =
1

θ2
R +

12

θ2
∇•

αθ∇•αθ − 6

θ
∇•

α∇•αθ.

By requiring that R• ≃ 0, one obtains the following linear ODE for e•
00′(θ) on the

generators of I +

e•
11′(e•

00′(θ))− 2

θ
e•
11′(θ)e•

00′(θ) = F•,

where F• can be determined using the quantities already obtained on I +. Given the

initial data for e•
00′(θ) = p−1θΓ◦

10′00
on C, the ODE can be integrated to obtain

R• ≃ 0, Γ•
10′00

≃ 0.

To introduce coordinates onU , let r• denote the affine parameter along the null generators

of the hypersurfaces {u• = const.} such that e•
00′(r•) = 0 and r• ≃ 0. Then, the

coordinates (ϑ, ϕ) on C can be extended to I + and the hypersurfaces {u• = const.}
by requiring them to be constant along the null generators of I + and {u• = const.}
hypersurfaces, respectively. This allows us to obtain Bondi coordinates (u•, r•, ϑ, ϕ) in

a neighbourhood U of I +.

In the following, the conditions on the conformal rescaling, the frame field and the

coordinates will be referred to as the NP-gauge. We will assume that the NP-gauge frame

{e•
AA′} is a frame field that satisfies the conditions mentioned above. The term NP-spin-

frame will be used to refer to the normalised spin frame {ǫ•AA} implying a NP-gauge

frame. Other quantities in the NP-gauge will also be denoted by •.

Remark 6. In subsequent calculations, the spin connection coefficients Γ•
AA′

C
D will be

referred to as the NP connection coefficients. It will be useful to introduce the following

shorthand notation:

σ• ≡ −Γ•
01′

1

0, µ• ≡ −Γ•
01′

0

1, γ• ≡ Γ•
11′

0

0, (73a)

λ• ≡ Γ•
10′

0

1, ρ• ≡ −Γ•
10′

1

0, ǫ• ≡ Γ•
00′

0

0. (73b)
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Given the conformal relation between g• and g in eq. (66), one has

g•ab = θ2gab, (74)

where g•ab ≡ g•(e•
a, e

•
b) and gab ≡ g(ea, eb). Then, the relation between the NP-gauge

frame {e•
a} and the F-gauge frame {ea}, parameterised in terms of θ and Λa

b ∈ O(1, 3),
can be written as

e•
a = θ−1Λb

aeb, ea = θΛa
be•

b. (75)

Moreover, the NP-gauge spin frame {ǫ•AA} and the F-gauge spin frame {ǫ•AA} are related

by

ǫ•A
A = θ−

1

2ΛB
AǫB

A, ǫ•AA = θ
1

2ΛB
AǫBA. (76)

where ΛB
A ∈ SL(2,C).

5 BMS-supertranslations charges

Now that we have defined the NP-gauge and its relation to the F-gauge, we can introduce

BMS-asymptotic charges expressed in terms of the NP-gauge. Following the discussion

in [30], for every f ∈ C∞(S2), the associated BMS-supertranslation charge Q can be

written as an integral over some cut C of I ±

Q(f ; C) ≡
∮

C

ε2f(P• − i(∗P•) + 1
2
σ•abN•

ab), (77)

where ε2 is the area element on C, σ•ab is the shear tensor, N•
ab is the news tensor. P•

and (∗P•) are defined in terms of the rescaled Weyl tensor d•abcd and its left Hodge dual

(∗d•)abcd as follows:

P• ≡ d•cdef l
cndlenf ,

(∗P•) ≡ (∗d•)cdef lcndlenf ,

where the vectors la and na are identified as follows:

la ≡ e•
00′

a, na ≡ e•
11′

a on I
+, (79a)

la ≡ e•
11′

a, na ≡ e•
00′

a on I
−. (79b)

To translate eq. (77) to the F-gauge, our strategy is to obtain an expression for P•,

(∗P•) and σ•abN•
ab) in terms of scalars for which it would be simpler to compute the

transformation to the F-gauge. Given that the spinorial counterpart of d•abcd can be

decomposed in terms of the rescaled Weyl spinor φ•
ABCD as

d•AA′BB′CC′DD′ = −φ•
ABCDǫ

•
A′B′ǫ•C′D′ − φ̄•

A′B′C′D′ǫ•ABǫ
•
CD.

One has

P• = d•CC′DD′EE′FF ′o•C ō•C
′

ι•D ῑ•D
′

o•E ō•E
′

ι•F ῑ•F
′

,

= −(φ•
2 + φ̄•

2),
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where {o•, ι•} is the spin dyad adapted to the NP-gauge and

φ•
2 ≡ φ•

ABCDo
•Aι•Bo•Cι•D, φ̄•

2 ≡ φ̄•
A′B′C′D′ ō•A

′

ῑ•B
′

ō•C
′

ῑ•D
′

.

For (∗P•), one has

(∗P•) = (∗d•)CC′DD′EE′FF ′o•C ō•C
′

ι•D ῑ•D
′

o•E ō•E
′

ι•F ῑ•F
′

.

But, given that

(∗d•)AA′BB′CC′DD′ = i
(

φ•
ABCDǫ

•
A′B′ǫ•C′D′ − φ̄•

A′B′C′D′ǫ•ABǫ
•
CD

)

,

One can show that (∗P•) is given by

(∗P•) = i(φ•
2 − φ̄•

2).

Hence, one has that

P• − i(∗P•) = −2φ̄•
2. (80)

For the background term involving σ•abN•
ab, note that σ•ab and N•

ab are defined as

N•
ab ≡ 2(Ln − Φ)σ•

ab,

σ•
ab ≡

(

q•a
cq•b

d − 1

2
q•abq

•cd

)

∇•
cld,

where q•ab is the induced metric on I = I + ∪ I −, and Φ is defined by Φ ≡ 1
4
∇•

an
a on

I and it satisfies the following:

Φ|i = 2.

Note that the metric g• and the covariant derivative ∇
• can be decomposed in terms of

the null tetrad (la, na, ma, m̄a) as

g•ab = nalb + lanb − m̄amb −mam̄b,

∇•
a = naD + la∆− m̄aδ −maδ̄,

where D ≡ la∇•
a, ∆ ≡ na∇•

a, δ ≡ ma∇•
a and δ̄ ≡ m̄a∇•

a, l
a and na are defined by eq.

(79) and

ma ≡ e•
01′

a, m̄a ≡ e•
10′

a on I
±. (83)

From the above, one can show that

σ•
ab = σ•m̄am̄b + σ̄•mamb, on I

+,

σ•
ab = −λ•mamb − λ̄•m̄am̄b, on I

−,

and

Φ =
1

4
(µ• + µ̄• − γ• − γ̄•), on I

+,

Φ =
1

4
(ǫ• + ǭ• − ρ• − ρ̄•), on I

−.
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Given that

Lnσ
•
ab = ∆σ•

ab + σ•
cb∇•

an
c + σ•

ac∇•
bn

c,

a long computation yields

σ•abN•
ab = 2∆|σ•|2 − |σ•|2

(

3µ• + 3µ̄• + γ• + γ̄•
)

, on I
+, (86a)

σ•abN•
ab = 2∆|λ•|2 − |λ•|2

(

3ρ• + 3ρ̄• + ǫ• + ǭ•
)

, on I
−. (86b)

Using eqs. (80) and (86) and substituting in eq. (77), one obtains

Q(f, C) =
∮

C

ε2f

(

− 2φ̄•
2 +∆|σ•|2 − 1

2
|σ•|2(3µ• + 3µ̄• + γ• + γ̄•)

)

, on I
+,

Q(f, C) =
∮

C

ε2f

(

− 2φ̄•
2 +∆|λ•|2 − 1

2
|λ•|2(3ρ• + 3ρ̄• + ǫ• + ǭ•)

)

, on I
−,

for which it will be simpler to compute the transformation to the F-gauge.

5.1 BMS-supertranslation charges in the F-gauge

The next step in this analysis is to express φ̄•
2, σ•, µ•, γ•, λ•, ρ• and ǫ• in terms of

F-gauge quantities. Given that

σ• ≡ ǫ•
0

A∇•
01′ǫ

•1
A, µ• ≡ −ǫ•

1

A∇•
01′ǫ

•0
A, γ• ≡ −ǫ•

0

A∇•
11′ǫ

•0
A,

λ• ≡ −ǫ•
1

A∇•
10′ǫ

•0
A, ρ• ≡ ǫ•

0

A∇•
10′ǫ

•1
A, ǫ• ≡ ǫ•

0

A∇•
00′ǫ

•0
A,

and using eq. (76), a long computation yields

σ• = ΛA
0e

•
01′(ΛA

1)− θ−1ΛA
1ΛC

0Λ
B

0Λ̄
B′

1′ΓBB′
A
C , (89a)

µ• = θ−1e•
11′(θ)− ΛA

1e
•
01′(ΛA

0) + θ−1ΛA
0ΛC

1Λ
B

0Λ̄
B′

1′ΓBB′
A
C , (89b)

γ• = −1

2
θ−1e•

11′(θ)− ΛA
0e

•
11′(ΛA

0) + θ−1ΛA
0ΛC

0Λ
B

1Λ̄
B′

1′ΓBB′
A
C ,(89c)

λ• = −ΛA
1e

•
10′(ΛA

0) + θ−1ΛA
0ΛC

1Λ
B

1Λ̄
B′

0′ΓBB′
A
C , (89d)

ρ• = θ−1e•
00′(θ) + ΛA

0e
•
10′(ΛA

1)− θ−1ΛA
1ΛC

0Λ
B

1Λ̄
B′

0′ΓBB′
A
C , (89e)

ǫ• =
1

2
θ−1e•

00′(θ)− ΛA
0e

•
00′(ΛA

0) + θ−1ΛA
0ΛC

0Λ
B

0Λ̄
B′

0′ΓBB′
A
C , (89f)

where the LHS in the above expressions is written in terms of F-gauge quantities, except

for e•
AA′ , which will be explicitly computed in later sections. The component φ̄•

2 can be

written in terms of F-gauge quantities as

φ̄•
2 = −3

2
θ−3ΛA

1Λ
B

0Λ
C
1Λ

D
0Λ̄

A′

0′Λ̄B′

1′Λ̄C′

0′Λ̄D′

1′(d̄AA′BB′CC′DD′ (90)

− d̄BA′AB′CC′DD′ + d̄BA′AB′DC′CD′ − d̄AA′BB′DC′CD′).

Here, d̄AA′BB′CC′DD′ denotes the components of the complex conjugate ofdAA′BB′CC′DD′

in the F-gauge. The discussion above indicates that Q can be written as

Q(f, C) ≡ Q(θ,ΛA
B,ΛB

A, Λ̄A′

B′ , Λ̄B′
A′

, e•
AA′ ,ΓAA′

C
D, d̄AA′BB′CC′DD′). (91)

Accordingly, the evaluation of Q at I± requires a solution for eAA′ , ΓAA′
C
D and

d̄AA′BB′CC′DD′ at I±. As will become evident, a solution of the conformal field

equations is also necessary for obtaining an asymptotic expression of θ,ΛA
B and e•

AA′ .
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6 The initial data and the constraint equations

This section discusses the initial data used in our analysis, which is required to obtain

a solution to the conformal field equations and, more precisely, to obtain non-trivial

BMS asymptotic charges at I ±. The conformal constraint equations, satisfied by our

initial data, will be introduced in terms of the Levi-Civita connection associated with g,

contrary to the extended conformal field equations discussed in Section 2.2.

6.1 The conformal constraint equations

To introduce the conformal constraint equations, let (M̃, g̃) denote the physical spacetime

satisfying eq. (3), and introduce the unphysical spacetime (M, g) with g given by eq.

(6). Moreover, let S̃ denote a three-dimensional hypersurface on M̃ with an induced

metric denoted by h̃. As mentioned earlier, the hypersurface S̃ can be regarded as a

hypersurface on M given the composition map φ ◦ ϕ : S̃ → M where φ : M̃ → M
and ϕ : S̃ → M̃. The metric g on M also induces an intrinsic metric h on S̃ related to

h̃ by eq. (53). If ñ and n are the g̃ and g unit normals of S̃ , then

ǫ ≡ g̃(ñ, ñ) = g(n,n) = 1,

since S̃ is a spacelike hypersurface. Moreover, if u, v are some arbitrary vectors on S̃ ,

then the extrinsic curvatures K̃ and K are defined by

K̃(u, v) = 〈∇̃uñ, v〉, K(u, v) = 〈∇un, v〉.

It can be shown that the relation between K̃ and K is given by

K = Ω(K̃ + Σh̃),

where

Σ = g♯(dΞ,n) = Ξ−1g̃♯(dΞ, ñ).

Let {ei} denote an h-orthonormal frame. Then, the vacuum conformal constraint

equations on S̃ are given by

DiDjΩ + ΣKij + ΩLij − shij = 0, (92a)

DiΣ−Ki
kDkΩ+ ΩLi = 0, (92b)

Dis+ ΣLi + LikD
kΩ = 0, (92c)

DiLjk −DjLik + Σdkij −DlΩdlkij +KikLj −KjkLi = 0, (92d)

DiLj −DjLi +Kj
kLik −Ki

kLjk −DlΩdlij = 0, (92e)

Dkdkij −Kk
idjk +Kk

jdik = 0, (92f)

Dkdkj −Kikdijk = 0, (92g)

6Ωs− 3Σ2 − 3DiΩD
iΩ = 0. (92h)

In the above, D denotes the Levi-Civita connection associated with h and Di ≡ ei
iDi

while hij ≡ h(ei, ej) denotes the components of h with respect to {ei}. Similarly,

Kij and lij denote the components of the extrinsic curvature and intrinsic Schouten
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tensor with respect to {ei}, respectively. Furthermore, Li, dij and dijk are the spatial

components of the contraction of Lab, dabcd with na. In particular, Li, dij and dijk are

defined as

Li ≡ Lian
a, dij ≡ diajbn

anb, dijk ≡ diajkn
a.

Remark 7. The spatial components of Eab, introduced in Section 3.1 are equivalent to

dij while the spatial components of Bab are related to dijk by

dijk = ǫljkBil,

where ǫljk denotes the components of the three-dimensional volume form on S̃.

6.2 The initial data

To introduce the initial data for the ECFEs, the starting point is to consider an initial

data set satisfying the Hamiltonian and momentum constraints implied by the vacuum

Einstein field eq. (3). More precisely, we will be interested in a vacuum initial data set

(S̃, h̃, K̃) satisfying

r̃ + K̃2 − K̃jlK̃
jl = 0, (93a)

D̃jK̃kj − D̃kK̃ = 0. (93b)

To obtain non-trivial BMS asymptotic charges at I ±, let us consider the vacuum initial

data prescribed in [35]:

Proposition 2. For any ξ, ζ ∈ C2(S2) and q ≥ 1, there exists a vacuum initial data set

(h̃, π̃) where the components of the intrinsic metric h̃ and the momentum tensor π̃ with

respect to the standard Euclidean coordinate chart (xα) have the asymptotics

h̃αβ = −
(

1 +
A

r

)

δαβ −
ξ

r

(

xαxβ

r2
− 1

2
δαβ

)

+O2(r
−1−q),

π̃αβ =
ζ

r2
xαxβ

r2
+

1

r3
(−Bαxβ −Bβxα + (Bγxγ)δαβ) +O1(r

−2−q),

where A, {Bα}3α=1 are some constants, and r ≡
√

(x1)2 + (x2)2 + (x3)2. The momen-

tum tensor π̃ is defined as

π̃ij ≡ K̃ij − K̃h̃ij . (95)

To simplify the analysis in this work, we set q = 1 so that the components of h̃ and

π̃ are written as

h̃αβ = −δαβ −
1

r

[(

A− ξ

2

)

δαβ + ξ
xαxβ

r2

]

+O2(r
−2),

π̃αβ =
1

r2

[

1

r
(−Bαxβ − Bβxα + (Bγxγ)δαβ) + ζ

xαxβ

r2

]

+O1(r
−3),
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where the expressions above have been rearranged to group terms of similar orders in r.
Given eq. (95), the components of K̃ with respect to (xα) can be written as

K̃αβ =
1

r2

[

−1

2
ζδαβ +

1

r
(−Bαxβ −Bβxα + (Bγxγ)δαβ) + ζ

xαxβ

r2

]

+O1(r
−3)

In order to discuss the region near spatial infinity, we introduce the inverse coordinates

(yα) related to (xα) by

yα = −xα

r2
, yα = −xα

r2
.

Then, the inverse coordinate transformation is given by

xα = −yα

̺2
, xα = −yα

̺2
, ̺ =

1

r
,

where ̺ =
√

(y1)2 + (y2)2 + (y3)2. In terms of (yα), the components of h̃ and K̃ can

be written as

h̃αβ = −(1 + A̺)

̺4
δαβ −

ξ

̺3

(

yαyβ
̺2

− ξ

2
δαβ

)

+O2(̺
−2),

K̃αβ = − ζ

2̺2
δαβ −

1

̺3

(

2B(αyβ) +
1

2
(Bγyγ)δαβ

)

+
yαyβ
̺4

(

ζ − 4
(Bγyγ)

̺

)

+O1(̺
−1).

In the following, let S ′ denote a three-dimensional compact manifold with a spatial

infinity point i and let φ denote the diffeomorphic map from S ′ \ {i} to S̃ with the

conformal factor Ω′ given by

Ω′ =
̺2√

1 + A̺
.

Then, the components of h′ ≡ Ω′2h̃ and K ′ ≡ Ω′K̃ with respect to (yα) are related to

h̃αβ and K̃αβ by

h′
αβ = Ω′2h̃αβ , K ′

αβ = Ω′K̃αβ .

By expanding Ω′ around ̺ = 0, the components h′
αβ and K ′

αβ can be written as

h′
αβ = −δαβ − ξ̺

(

yαyβ
̺2

− 1

2
δαβ

)

+O2(̺
2), (98a)

K ′
αβ = −ζ

2
δαβ −

1

̺

(

2B(αyβ) +
1

2
(Bγyγ)δαβ

)

+

(

ζ − 4
(Bγyγ)

̺

)

yαyβ
̺2

+O1(̺).

(98b)

The above initial data (h′,K ′) is said to be asymptotically Euclidean and regular in the

spirit of Definition 1. To analyse the conformal constraint equations, it will be convenient

to express h′ and K ′ in terms of the so-called normal coordinates and to introduce the

conformal normal initial data.
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6.2.1 Normal coordinates and conformal normal initial data

Consider the h′-geodesics emanating from i ∈ S ′ to nearby points in a neighbourhood

U ′ ∈ S ′ and introduce the subset T of the tangent space at i

T ≡ {v ∈ T |i(S ′)| γv is defined on an interval containing [0, 1]},
where γv ≡ γv(t) is the geodesic starting at i (i.e. γv(0) = i) with an initial tangent

vector v. Let expi denote the exponential map at i, expi : T → S ′, defined such that

expi(v) = γv(1). Then, the neighbourhood U ′ is said to be a normal neighbourhood of i
if U ′ = expi(Q), where Q ⊂ T |i(S ′) is a neighbourhood of the zero vector 0, and if for

all t ∈ [0, 1],
v ∈ Q → tv ∈ Q.

For any point p = expi(v) ∈ U ′, the normal coordinates (zα) is given by zα = eα
iv

i,

where vi are the components of v with respect to an orthonormal basis {ei} and eα
i are

defined by

eα
i ≡ 〈dyα, ei〉.

Let vα ≡ 〈dzα, v〉 denote the components of v with respect to (zα), then the normal

coordinates for any point p on γv(t) is given by xα(t) = tzα. If γ′
α
β
γ denote the com-

ponents of the h′-Levi-Civita connection coefficients with respect to (zα), the geodesic

equation can be written as

d2xβ

dt2
+ γ′

α
β
γ
dxα

dt

dxγ

dt
= 0, (99)

then one can show that γ′
α
β
γ vanish at i, i.e.,

γ′
α
β
γ(i) = 0.

This implies that the components of the metric h′ in normal coordinates satisfy

h′
αβ,γ = 0 at i, (100)

where h′
αβ,γ is the derivative of h′

αβ with respect to zγ . Taylor expanding the metric h′

around i gives

h′
αβ(z) = h

′(0)
αβ +

1

2
h′
αβ,γδz

γzδ +O(|z|3), (101)

where |z|2 ≡ δαβz
αzβ and h

′(0)
αβ = −δαβ is the metric at i (i.e. at |z| = 0). The non-

vanishing O(̺) terms in the initial data for h′ given by eq. (98) implies that (yα) are

not normal coordinates. However, the discussion in [48] shows that the transformation

between a generic set of coordinates (yα) and normal coordinates (zα) is given by

yα = zα − 1

2
γ
′(0)
β

α
γz

βzγ +O(|z|3), (102)

where γ
′(0)
β

α
γ are the components of the h′-Levi-Civita connection coefficients with

respect to (yα) evaluated at ̺ = 0. In a slight abuse of notation, let h′
βδ,γ denote the

derivative of h′
βδ with respect to yγ, then γ′

β
α
γ is given by

γ′
β
α
γ =

1

2
h′αδ

(

h′
βδ,γ + h′

δγ,β − h′
βγ,δ

)

.
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From eq. (98), one has

γ
′(0)
β

α
γ = ξ;(γ

(

ϑβ)ϑ
α − 1

2
δβ)

α

)

− 1

2
δαδξ;δ

(

ϑβϑγ −
1

2
δβγ

)

− 1

2
ϑβϑ

αϑγ

(

ϑδξ;δ + ξ
)

+
1

2
ϑδξ;δ

(

ϑ(γδβ)
α − 1

2
ϑαδβγ

)

− ξ

2

(

ϑ(γδβ)
α +

3

2
ϑαδβγ

)

,

where ϑα ≡ yα/̺. In the above, ξ;γ is the derivative of ξ with respect to the angular

coordinates ϑγ and (γβ) indicates a symmetrisation over γ and β. The transformation

given by eq. (102) implies that the components of h′ with respect to (zα) admit the

following expansion near |z| = 0:

h′
αβ = −δαβ +O(|z|2).

Moreover, the components of the extrinsic curvature K ′
αβ with respect to (zα) can be

written as

K ′
αβ = −ζ

2
δαβ −

1

2

(

2B(αϑβ) +
1

2
(Bγϑγ)δαβ

)

+ ζϑαϑβ − 4(Bγϑγ)ϑαϑβ +O(|z|).

Taylor expanding the conformal factor Ω′ around |z| = 0 gives

Ω′ = |z|2 − A

2
|z|3 − γ

′(0)
β

α
γz

βzαz
γ +O(|z|4).

The next step is to exploit the conformal freedom in Definition 1 with the aim of

simplifying upcoming calculations. In particular, introduce the conformal normal initial

data (h̄, K̄), related to (h′,K ′) by

h̄ = ̟2h′, K̄ = ̟K ′. (104)

In the following, let l′αβ(i) denote the components of the h′-Schouten tensor with respect

to (zα) evaluated at i. If the conformal factor ̟ is given by

̟ ≡ ef , with f =
1

2
l′αβ(i)z

αzβ , (105)

then one can show that the Riemann curvature tensor associated with h̄ is vanishing at

i. In particular, if D′ denote the h′-covariant derivative, the conformal factor ̟ can be

shown to satisfy

̟(i) = 1, D′
α̟(i) = 0, D′

αD
′
β̟(i) = l′αβ(i).

Accordingly, the conformal rescaling given by eq. (104) implies that

l̄αβ(i) = 0.

However, the three-dimensional Riemann curvature tensor r̄αβγδ is fully determined by

l̄αβ . Hence, one has

r̄αβγδ(i) = 0.
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Note that the conformal rescaling in eq. (104) indicates that (h̄, K̄) are related to (h̃, K̃)
by

h̄ = Ω2h̃, K̄ = ΩK̃,

where

Ω ≡ ̟Ω′.

In a slight abuse of notation, let

ϑα ≡ zα

ρ
,

where ρ ≡ |z|. By Taylor expanding Ω around ρ = 0, one gets

Ω = ρ2 −
(

A

2
+ γ

′(0)
β

α
γϑ

βϑαϑ
γ

)

ρ3 +O(ρ4), (106a)

= ρ2 +
1

6
Π3[Ω]ρ

3 +O(ρ4).

In the above, Π3[Ω] is defined by

Π3[Ω] ≡ −6

(

A

2
+ γ

′(0)
β

α
γϑ

βϑαϑ
γ

)

. (107)

A direct computation readily shows that

γ
′(0)
β

α
γϑ

βϑαϑ
γ = −7

4
ξ,

where it is recalled that ξ ∈ C2(S2) is a freely specifiable function on the 2-sphere. Thus,

one has that

Π3[Ω] =
21

2
ξ − 3A. (108)

Accordingly, one sees that the coefficient Π3[Ω] is completely determined by the freely

specifiable data A and ξ.

Remark 8. The Πn notation will be used frequently in later calculations. For any smooth

function χ, we use Πn[χ] to denote the coefficient of (1/n!)ρn in its Taylor series around

ρ = 0.

From the previous discussion, the components h̄ and K̄ with respect to (zα) are

given by

h̄αβ = −δαβ +O(ρ3),

K̄αβ = −ζ

2
δαβ −

1

2

(

2B(αϑβ) +
1

2
(Bγϑγ)δαβ

)

+ ζϑαϑβ − 4(Bγϑγ)ϑαϑβ +O(ρ).

In other words, (h̄, K̄) can be written as

h̄ = h̄αβdz
α ⊗ dzβ,

K̄ = K̄αβdz
α ⊗ dzβ .

Observe that the leading order term in K̄αβ is equivalent to the leading order in K ′
αβ

since the contribution from ̟ is at higher orders. In upcoming calculations, the initial

data (h̄, K̄) will be referred to as the conformal normal initial data.
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6.2.2 The regular initial data at spatial infinity

To analyse the conformal constraint eqs. (92), introduce the orthonormal frame {ēi} and

its dual {ω̄i} related to {∂/∂zα} and {dzα} by

ēi = ēα
i

∂

∂zα
, ω̄i = ω̄α

idzα.

Given that h̄(ēi, ēj) = δij, one has

ēα
i(i) = 1, ω̄α

i(i) = 1.

In terms of {ēi}, the conformal normal initial data can be written as

h̄ = h̄ijω̄
i ⊗ ω̄j,

K̄ = K̄ijω̄
i ⊗ ω̄j,

with

h̄ij = −δij +O(ρ3),

K̄ij = −ζ

2
δij −

1

2

(

2B(iϑj) +
1

2
(Bkϑk)δij

)

+ ζϑiϑj − 4(Bkϑk)ϑiϑj +O(ρ).

Substituting in eq. (92), one can show that

L̄ij = O(ρ−1), d̄ijk = O(ρ−3), d̄ij = O(ρ−3).

Hence, the initial data for the conformal fields L̄ij , d̄ij, . . . implied by the conformal

normal initial data is singular at ρ = 0. Following Friedrich’s formulation [39], the regular

initial data for the ECFEs can be introduced by considering the conformal rescaling

Ω → κ−1Ω, (113)

where κ = O(ρ) is the arbitrary function introduced in Section 3. Then, introduce the

rescaled frame fields {ei} and their dual {ωi} as

ei = κēi, ωi = κ−1ω̄i.

Then, the components of the rescaled metric h = κ−2h̄ with respect to {ei} are related

to h̄ij by

hij = h(ei, ej)

= κ−2h̄(κēi, κēj)

= h̄(ēi, ēj) = h̄ij.

Moreover, the components of the rescaled extrinsic curvature K = κ−1K̄ with respect

to {ei} are related to K̄ij by

Kij = K(ei, ej) = κ−1K̄(κēi, κēj) = κK̄ij .
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Finally, one can show that the components of the rescaled conformal fields (Lij , dijk, dij)
are related to (L̄ij , d̄ijk, d̄ij) by

Lij = κ2L̄ij , dijk = κ3d̄ijk, dij = κ3d̄ij.

Hence, the conformal rescaling given by eq. (113) introduces regular initial data for the

ECFEs since

Kij = O(ρ), Lij = O(ρ), dijk = O(1), dij = O(1),

where the explicit form of these fields is omitted as they are not required for upcoming

calculations.

Note that the conformal freedom in Friedrich’s formulation is reflected by the different

choices of the conformal factor κ. In subsequent calculations, assume

κ = ω, (115)

where ω is given by eq. (47). This particular choice of κ introduces Friedrich’s horizontal

representation of spatial infinity where I ±
a are identified by 0 < ρ < a and τ = ±1

—see eq (38a).

Using eq. (47) and Taylor expanding ω around ρ = 0 gives

κ = ρ+ 1
2
Π2[ω]ρ

2 +O(ρ3), (116)

with

Π2[ω] = −1

6
Π3[Ω].

Within the framework of the ECFEs, the conformal factor Θ relating the spacetime

metrics g and g̃ is fixed by the initial data. Given the above choice of κ and using eq.

(46), the conformal factor Θ can be expanded near ρ = 0 as

Θ = ρ(1− τ 2) +O(ρ2). (117)

6.2.3 Conformally flat initial data for the space spinor fields

Given that the final form of the ECFEs is written in terms of spinors, one needs to obtain

initial data for the spinor fields appearing in eqs. (58) and (59). This discussion can

be carried out for the general initial data discussed in the previous section. However,

the calculations in this work only require expressions for the initial data at zero order.

Accordingly, the formulae for the conformally flat initial data given in [49] will be

sufficient for this analysis. In the following, assume the conformally flat initial data for

eqs. (58) and (59), given by

e0
AB = 0,

e1
AB = ωxAB , e2

AB =
ω

ρ
zAB , e3

AB =
ω

ρ
yAB,

ξABCD =
√
2

(

ω

ρ
(xBDǫAC + xACǫBD)

)

−
√
2(ǫBDDACω + ǫACDBDω),

fAB = DABω,
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χ((AB)CD) = 0,

ΘAB(CD) = −ω2

6Ω

(

DABDCDΩ +DCDDABΩ+ 2DA(CDD)BΩ+ 2DB(CDD)AΩ
)

,

ΘAB = 0,

φABCD =
ω3

6Ω2

(

DABDCDΩ +DCDDABΩ+ 2DA(CDD)BΩ+ 2DB(CDD)AΩ
)

.

It is important to note that the initial data obtained from these equations will not be

consistent with those obtained from eqs. (92). However, the crucial observation is that

the zero-order expressions for the initial data are indeed consistent, which is sufficient

for the rest of the calculations in this article. Using the xAct package, the non-vanishing

conformally flat initial data for the irreducible components of the fields appearing in eqs.

(58) and (59) can be expressed as

e1
x⋆ = ω, e2

z⋆ =
ω

ρ
, e3

y⋆ =
ω

ρ
,

ξx⋆ = −
√
2ω +

√
2ρ∂ρ(ω)

ρ
, ξy⋆ = −

√
2X−(ω)

ρ
, ξz⋆ = −

√
2X+(ω)

ρ
,

fx⋆ = ∂ρ(ω), fy⋆ =
X−(ω)

ρ
, fz⋆ =

X+(ω)

ρ
,

Θ0⋆ = −ω2X2
+(Ω)

2ρ2Ω
, Θ1⋆ = −2ρω2∂ρ(X+(Ω))− 2ω2X+(Ω)

ρ2Ω
,

Θ2⋆ =
−4ρω2∂ρ(Ω) + 4ρ2ω2∂2

ρ(Ω)− ω2X−(X+(Ω))− ω2X+(X−(Ω))

2ρ2Ω
,

Θ3⋆ = −−2ρω2∂ρ(X−(Ω)) + 2ω2X−(Ω)

ρ2Ω
, Θ4⋆ = −ω2X2

−(Ω)

2ρ2Ω
,

φ0⋆ =
ω3X2

+(Ω)

2ρ2Ω2
, φ1⋆ =

−2ω3X+(Ω)

ρ2Ω2
,

φ2⋆ =
−4ρω3∂ρ(Ω) + 4ρ2ω3∂2

ρ(Ω)− ω3X−(X+(Ω))− ω3X+(X−(Ω))

2ρ2Ω2
,

φ3⋆ =
−2ρω3∂ρ(X−(Ω)) + 2ω3X−(Ω)

ρ2Ω2
, φ4⋆ =

ω3X2
−(Ω)

2ρ2Ω2
,

where X2
±(Ω) ≡ X±(X±(Ω)) and ∂2

ρ(Ω) ≡ ∂ρ(∂ρ(Ω)). Using eqs. (106) and (116),

the non-vanishing initial data for the zeroth-order equations obtained from eqs. (58) and

(59) can be written as

e2(0)
z⋆ = 1, e3(0)

y⋆ = 1, f (0)
x⋆ = 1, (120a)

φ
(0)
0⋆ =

1

12
X2

+(Π3[Ω]), φ
(0)
1⋆ =

2

3
X+(Π3[Ω]), (120b)

φ
(0)
2⋆ =

1

12
(12Π3[Ω]− 2X−(X+(Π3[Ω]))) , (120c)

φ
(0)
3⋆ = −2

3
X−(Π3[Ω]), φ

(0)
4⋆ =

1

12
X2

−(Π3[Ω]), (120d)

where the superscript (0) indicates that the initial data is evaluated at ρ = 0. Given that

d = Θf + dΘ, (121)
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one can show that the zero-order initial data for the irreducible components of dAB is

given by

d(0)x⋆ = 0, d(0)y⋆ = 0, d(0)z⋆ = 0.

Remark 9. The explicit calculation of the conformal factor θ and the transformation

matrices ΛA
B will require the first-order solutions of e1

x, e
1
y and e1

z. For this purpose, we

list the first-order initial data for these components —namely

e1(1)
x⋆ = 1, e1(1)

y⋆ = 0, e1(1)
z⋆ = 0. (122)

Given the initial data for the spinor fields appearing in the ECFEs, it is now possible

to obtain solutions for the background evolution eqs. (58) and the boundary-adapted

evolution and constraint eqs. (59)-(60).

7 Evaluating the BMS-supertranslation charges at the

critical sets

This section aims to bring together this analysis’s various elements and obtain an expres-

sion of BMS-supertranslation charges Q at the critical sets I±. Recall that Q depends

on the solutions of eqs. (58) and (59)-(60), the conformal factor θ and the transformation

matrices ΛA
B —see eq. (91). In the following, the solutions of eqs. (58) and (59)-(60)

will be used to obtain an explicit transformation from the NP-gauge to the F-gauge, allow-

ing us to assess the contribution from the background term σ•abN•
ab and the components

of φABCD to Q at zero-order. As will become evident, this analysis will reveal that the

generic initial data provided in [35] does not give rise to well-defined BMS-asymptotic

charges Q at I±.

7.1 Asymptotic solution of the extended conformal field equations

In subsequent calculations, the Πn notation introduced in Section 6.2.1 will be used to

express the solutions of eqs. (58) and (59)-(60). Using the Πn notation, the expansion of

the conformal factor Θ near ρ = 0 can be written as

Θ = Π0[Θ] + Π1[Θ]ρ+
1

2
Π2[Θ]ρ2 +O(ρ3).

Comparing with eq. (117), one has

Π0[Θ] = 0, Π1[Θ] = (1− τ 2). (123)

From eq. (52), the components dx, dy and dz of the 1-form dAB can be shown to satisfy

Π0[dx] = 0, Π0[dy] = 0, Π0[dz] = 0, (124a)

Π1[dx] = 2, Π1[dy] = 0, Π1[dz] = 0. (124b)

Taylor expanding the spinor fields appearing in eqs. (58) and using the xAct package,

it is possible to show that eqs. (58) decouple from the boundary-adapted evolution and
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constraint eqs. (59)-(60) at zero-order. In other words, the zero-order system for the

background fields does not depend on φ0, φ1, φ2, φ3 and φ4. Integrating, one can write

zero-order solutions of eqs. (58) as

Π0[e
0
x] = −τ, Π0[e

0
y] = Π0[e

0
z] = Π0[e

1
x] = Π0[e

1
y] = Π0[e

1
z] = 0,

Π0[e
2
x] = Π0[e

2
y] = 0, Π0[e

2
z] = 1,

Π0[e
3
x] = 0, Π0[e

3
y] = 1, Π0[e

3
z] = 0,

Π0[ξ0] = Π0[ξ1] = Π0[ξ2] = Π0[ξ3] = Π0[ξ4] = Π0[ξh] = 0,

Π0[ξx] = Π0[ξy] = Π0[ξz] = 0,

Π0[fx] = 1, Π0[fy] = Π0[fz] = 0, (125)

Π0[χ0] = Π0[χ1] = Π0[χ2] = Π0[χ3] = Π0[χ4] = Π0[χh] = 0,

Π0[χx] = Π0[χy] = Π0[χz] = 0,

Π0[Θ0] = Π0[Θ1] = Π0[Θ2] = Π0[Θ3] = Π0[Θ4] = Π0[Θh] = 0,

Π0[Θx] = Π0[Θy] = Π0[Θz] = 0,

Π0[θx] = Π0[θy] = Π0[θz] = 0.

For the first-order system, only the equations for e1
x, e

1
y and e1

z will decouple from the

boundary-adapted evolution and constraint equations. Integrating, it can be shown that

Π1[e
1
x],Π1[e

1
y] and Π1[e

1
z] are constants and fixed by the initial data given in eq. (122).

Then, the first-order solution for e1
x, e

1
y and e1

z is given by

Π1[e
1
x] = 1, Π1[e

1
y] = 0, Π1[e

1
z] = 0.

From the above discussion, the solutions of eqs. (58) can be written as

e0
x = −τ +O(ρ), e1

x = ρ+O(ρ2), (126a)

e2
z = 1 +O(ρ), e3

y = 1 +O(ρ), (126b)

fx = 1 +O(ρ), (126c)

where all other components are O(ρ) or higher order.

The next step in this analysis is to examine the zero-order boundary-adapted evolution

and constraint eqs. (59)-(60). By Taylor-expanding all the components of the spinor fields

in eqs. (59)-(60) and substituting the zero-order solution of the background fields eqs.

(125) and using eqs. (123)-(124), the zero-order boundary-adapted evolution system can

be written as

√
2(1 + τ)∂τ (Π0[φ0]) +

1

2
√
2
X+(Π0[φ1]) = −2

√
2Π0[φ0], (127a)

1

2
√
2
∂τ (Π0[φ1]) +

1√
2
X−(Π0[φ0]) +

1

6
√
2
X+(Π0[φ2]) = − 1

2
√
2
Π0[φ1], (127b)

1

3
√
2
∂τ (Π0[φ2]) +

1

4
√
2
X−(Π0[φ1]) +

1

4
√
2
X+(Π0[φ3]) = 0, (127c)

1

2
√
2
∂τ (Π0[φ3]) +

1

6
√
2
X−(Π0[φ2]) +

1√
2
X+(Π0[φ4]) =

1

2
√
2
Π0[φ3], (127d)

√
2(1− τ)∂τ (Π0[φ4]) +

1

2
√
2
X−(Π0[φ3]) = 2

√
2Π0[φ4], (127e)
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while the zero-order boundary-adapted constraint system is given by

1

2
√
2
τ∂τ (Π0[φ1])−

1√
2
X−(Π0[φ0]) +

1

6
√
2
X+(Π0[φ2]) = 0, (128a)

1

3
√
2
τ∂τ (Π0[φ2])−

1

4
√
2
X−(Π0[φ1]) +

1

4
√
2
X+(Π0[φ3]) = 0, (128b)

1

2
√
2
τ∂τ (Π0[φ3])−

1

6
√
2
X−(Π0[φ2]) +

1√
2
X+(Π0[φ4]) = 0. (128c)

To simplify subsequent calculations,define the complex-valued functionsTm
j
k as follows

Tm
j
k : SU(2,C) → C,

t 7→ Tm
j
k(t),

where

Tm
j
k(t) =

(

m
j

)1/2(
m
k

)1/2

t(b1 (a1 . . . t
bm)

am)k , T0
0
0(t) = 1.

Here, m = 0, 1, 2, . . ., and j, k = 0, . . . , m and

(

m
j

)

=
m!

j!(m− j)!
.

Note that the complex conjugate of Tm
j
k(t) is defined by

Tm
j
k(t) = (−1)j+kTm

m−j
m−k(t),

while the action of X,X+ and X− on Tm
j
k is given by

X(Tm
j
k) = (m− 2k)Tm

j
k, X+(Tm

j
k) =

√

k(1− k +m)Tm
j
k−1,

X−(Tm
j
k) = −

√

(1 + k)(m− k)Tm
j
k+1.

Definition 4 (spin-weight). A function f is said to be of spin-weight s if it satisfies

X(f) = 2sf , where s is an integer or half-integer.

Remark 10. The functions Tm
j
k(t) on SU(2,C) are closely related to the standard

spin-weighted harmonics on S2 —see e.g. [40]

Remark 11. By construction, functions on Ma,κ will have a well-defined spin-weight.

The componentsΠ0[φn] are functions on R×SU(2,C). Hence, they admit a decom-

position in terms of Tm
j
k. In the following, assume that:

Assumption 1. The components Π0[φn] admit an expansion of the form

Π0[φn] =
∞
∑

l=|2−n|

2l
∑

m=0

an;2l,m(τ)T2l
m
l−2+n, τ ∈ [−1, 1], (129)

where an;2l,m(τ) : R → C.
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Furthermore, note that Π3[Ω] at ρ = 0 can be decomposed as

Π3[Ω]|ρ=0 =

∞
∑

l=0

2l
∑

m=0

Π3[Ω]2l,mT2l
m

l. (130)

Remark 12. The argument of an;2l,m(τ) will be omitted in upcoming calculations. i.e.,

write an;2l,m instead of an;2l,m(τ). Moreover, we use an;2l,m⋆ to refer to an;2l,m(0).

For l = 0, m = 0, one can use eq. (129) in eqs. (127)-(128) to show that a2;0,0 is

constant and is given by

a2;0,0 = Π3[Ω]0,0. (131)

For l = 1, m = 0, 1, 2, the evolution eqs. (127) imply

1

2
√
2
ȧ1;2,m +

1

6
a2;2,m = − 1

2
√
2
a1;2,m, (132a)

1

3
√
2
ȧ2;2,m − 1

4
a1;2,m +

1

4
a3;2,m = 0, (132b)

1

2
√
2
ȧ3;2,m − 1

6
a2;2,m =

1

2
√
2
a3;2,m, (132c)

while the constraint eqs. (128) give

τ

2
√
2
ȧ1;2,m +

1

6
a2;2,m = 0, (133a)

τ

3
√
2
ȧ2;2,m +

1

4
a1;2,m +

1

4
a3;2,m = 0, (133b)

τ

2
√
2
ȧ3;2,m +

1

6
a2;2,m = 0, (133c)

where ȧn;2l,m ≡ ∂τ (an;2l,m). By multiplying eqs. (132) with τ and substracting from eqs.

(133), one obtain linear equations to be solved for a1;2,m, a2;2,m and a3;2,m. Substituting

back into the evolution eqs. (132) and simplifying, one gets

(−1 + τ)ȧ1;2,m − a1;2,m = 0. (134a)

τ ȧ2;2,m − a2;2,m = 0, (134b)

(1 + τ)ȧ3;2,m − a3;2,m = 0. (134c)

Then, the solution for a1;2,m, a2;2,m and a3;2,m is given by

a1;2,m = −C1,m(1− τ), a2;2,m = C2,mτ, a3;2,m = C3,m(1 + τ),

where C1,m, C2,m and C3,m are some constants that depend on m with m ∈ {0, 1, 2}. The

initial data for Π0[φ1], given by eq. (120), indicates that

C1,m = −2
√
2

3
Π3[Ω]2,m, m = 0, 1, 2.

Using eq. (133b), we have

C3,m = C1,m, m = 0, 1, 2.
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Finally, eq. (132b) gives

C2,m = − 3√
2
C1,m, m = 0, 1, 2.

Therefore, a1;2,m, a2;2,m and a3;2,m can be written as

a1;2,m =
2
√
2

3
Π3[Ω]2,m(1− τ), a2;2,m = 2Π3[Ω]2,mτ, (135a)

a3;2,m = −2
√
2

3
Π3[Ω]2,m(1 + τ). (135b)

where m ∈ {0, 1, 2}.

For l ≥ 2, 0 ≤ m ≤ 2l, the evolution eqs. (127) imply the ODEs

(1 + τ)ȧ0 + 2a0 +
1

4

√

(2 + l)(l − 1)a1 = 0, (136a)

ȧ1 + a1 +
1

3

√

l(l + 1)a2 − 2
√

(2 + l)(l − 1)a0 = 0, (136b)

ȧ2 +
3

4
(a3 − a1) = 0, (136c)

ȧ3 − a3 −
1

3

√

l(l + 1)a2 + 2
√

(2 + l)(l − 1)a4 = 0, (136d)

(1− τ)ȧ4 − 2a4 −
1

4

√

(2 + l)(l − 1)a3 = 0, (136e)

where an and ȧn refer to an;2l,m and ȧn;2l,m, respectively. The constraint eqs. (128) give

τ ȧ1 +
1

3

√

l(l + 1)a2 + 2
√

(2 + l)(l − 1)a0 = 0, (137a)

τ ȧ2 +
3

4

√

l(l + 1)(a3 + a1) = 0, (137b)

τ ȧ3 +
1

3

√

l(l + 1)a2 + 2
√

(2 + l)(l − 1)a4 = 0. (137c)

After some manipulations, the equations for a1, a2 and a3 can be decoupled. In particular,

one obtains the following second-order ODEs for a1, a2 and a3:

(1− τ 2)ä1 + 2(1− τ)ȧ1 + l(l + 1)a1 = 0, (138a)

(1− τ 2)ä2 − 2τ ȧ2 + l(l + 1)a2 = 0, (138b)

(1− τ 2)ä3 − 2(1 + τ)ȧ3 + l(l + 1)a3 = 0. (138c)

Note that the equations for a0 and a4 will not decouple. This can be confirmed by solving

eqs. (136b), (136c) and (136d) for ȧ1, ȧ2 and ȧ3, respectively, and substituting in eq.

(137) to obtain an algebraic system that can be written as

A





a1
a2
a3



 = 6
√

(2 + l)(l − 1)





(1 + τ)a0
0

−(1− τ)a4



 ,
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where A is a 3× 3 matrix given by

A =





3τ (−1 + τ)
√

l(l + 1) 0

(1 + τ)
√

l(l + 1) 0 −(−1 + τ)
√

l(l + 1)

0 (1 + τ)
√

l(l + 1) 3τ



 .

One can confirm that det(A) = 0. Hence, the equations for a0 and a4 will not decouple.

A solution for a0 and a4 can be determined by treating the terms involving a1 and a3
as source terms. Remarkably, as it will be seen in the next subsection, the value of the

coefficients a0 and a4 are not required in the computation of the BMS asymptotic charges

at the critical sets.

7.2 The explicit transformation from the NP to the F-gauge

In this section, the solution of the background fields given by eqs. (125) will be used

to obtain asymptotic expansions of the conformal factor θ and the transformation ma-

trices ΛA
B relating the NP-gauge and the F-gauge. The analysis in this section will be

concerned with the relation between the F-gauge frame {eAA′} and the NP-gauge frame

{e•
AA′} at future null infinity I +. An analogous calculation can be carried out for the

transformation at I −. The discussion in this section follows that of the transformation

from the NP-gauge to the F-gauge originally presented in [40]. However, our initial

data differ from those considered in [40], which results in differences in the asymptotic

expansions of some of the fields in this section.

Consider the adapted frame {e◦
AA′} at I + satisfying the conditions introduced in

Section 4, then the vector field e◦
11′ must satisfy

e◦µ
11′ = f∇µΘ, (139)

where ∇ is the Levi-Civita connection associated with g and Θ is the conformal factor

defining I + —see eqs. (117) and (38a). From eq. (115), the set I + can be identified

by τ = 1. To determine the function f in eq. (139), consider the parallel propagation

condition e◦µ
11′∇µe

◦ν
11′ = 0 satisfied by e◦

11′ which can be written as

f∇µΘ∇µf∇νΘ+ f 2∇ν(
1

2
∇µΘ∇µΘ) = 0.

A contraction with a vector field Z transverse to I + yields

∇µΘ∇µ(log f) = −Z
(

1
2
∇µΘ∇µΘ

)

Z(Θ)
. (140)

By setting Z = ∂τ , one can show that

Z
(

1
2
∇µΘ∇µΘ

)

Z(Θ)
= 2Π1[fx]ρ

2 +O(ρ3). (141)

Moreover, the LHS of eq. (140) can be written as

∇µΘ∇µ(log f) =
(

−2ρ2 +O(ρ3)
)

∂ρ(log f) + (142)
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(

−1

2

(

4Π1[e
2
x] +

1

6
X−(Π3[Ω])

)

ρ2 +O(ρ3)

)

X−(log f) +

(

−1

2

(

4Π1[e
3
x] +

1

6
X+(Π3[Ω])

)

ρ2 +O(ρ3)

)

X+(log f).

To solve for f , assume log f can be expanded as

log f = F0 + F1ρ+O(ρ2),

withX−(F0) = X+(F0) = 0,X−(F1) 6= 0 andX+(F1) 6= 0. Then, ∂ρ(log f), X−(log f)
and X+(log f) can be written as

∂ρ(log f) = F1 +O(ρ),

X−(log f) = X−(F1)ρ+O(ρ2),

X+(log f) = X+(F1)ρ+O(ρ2).

Using the above and eqs. (140), (141) and (142), one has

F1 = −Π1[fx].

Next, consider the expansion

f = f0 + f1ρ+O(ρ2).

But f = elog f , so

f0 = eF0 , f1 = eF0F1.

In the following, the coefficient F0 is chosen such that

f0 = − 1

2
√
2
, f1 = − F1

2
√
2
=

Π1[fx]

2
√
2
.

Thus, the function f can be written as

f = − 1

2
√
2
− Π1[fx]

2
√
2
ρ+O(ρ2).

Remark 13. While the function f depends on the first-order solution of fx, it will become

evident that the explicit solution will not be required for the following calculations. In

the rest of this analysis, first-order solutions for the background fields will be treated as

unknowns, and it will be shown that the final expression of Q will only depend on the

zero-order solution.

In the following, assume that the adapted frame {e◦
AA′} and the F-gauge frame

{eAA′} are related by

e◦
AA′ = λB

Aλ̄
B′

A′eBB′ , (143)

where λA
B denote an SL(2,C) transformation matrix. To determine λB

A, note that eq.

(139) can be written as

e◦µ
11′ = fe◦µ

AA′e◦AA′

(Θ)
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= fe◦µ
AA′ǫABǫA

′B′

e◦
BB′(Θ).

Using eq. (143) and substituting in the above, one obtains

λ0

1λ̄
0
′

1′ = fe11′(Θ), (144a)

λ0

1λ̄
1
′

1′ = −fe10′(Θ), (144b)

λ1

1λ̄
1

1′ = fe00′(Θ). (144c)

But,

e00′(Θ) =
Π4[Ω]

6
√
2
ρ3 +O(ρ4),

e01′(Θ) = −X+(Π3[Ω])

6
√
2

ρ2 +O(ρ3),

e10′(Θ) = −X−(Π3[Ω])

6
√
2

ρ2 +O(ρ3),

e11′(Θ) = −2
√
2ρ− Π3[Ω]√

2
ρ2 +O(ρ3),

Hence, eq. (144a) yields

|λ0

1|2 = ρ+
1

2

(

Π3[Ω]

2
− 2Π1[fx]

)

ρ2 +O(ρ3).

By writing λ0
1 as λ0

1 = |λ0
1|eiω1 , where ω1 is the phase of λ0

1, and choosing ω1 such

that eiω1 = 1, one shows that

λ0

1 =
√
ρ+

1

8
(Π3[Ω]− 4Π1[fx]) ρ

3/2 +O(ρ5/2),

From eq. (144c), one has

|λ1

1|2 = − 1

24
Π4[Ω]ρ

3 +O(ρ4).

Assume λ1
1 = |λ1

1|eiω2 , and make use of eq. (144b) to fix eiω2 . Then, λ1
1 can be

written as

λ1

1 =
Π4[Ω]

X−(Π3[Ω])
ρ3/2 +O(ρ5/2).

Note that eq. (143) implies

λ0

1e
◦
01′ − λ0

0e
◦
11′ = −λ̄0

′

1′e10′ − λ̄1
′

1′e1′1′.

By applying the above to the affine parameter u◦ and by making use of the conditions

e◦
01′(u◦) = 0 and e◦

11′(u◦) = 1 on I +, one can show that

λ0

0 = λ̄0
′

1′e10′(u◦) + λ̄1
′

1′e11′(u◦). (146)

The above equation allow us to determine λ0
0 given λ̄0

′

1′, λ̄1
′

1′, e10′(u◦) and e11′(u◦).
Then, the condition det(λA

B) = 1 can be used to determine λ1
0.
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To obtain an asymptotic expression for the affine parameter u◦, note that eq. (143)

implies that

e◦
11′ =

(

Π1[e
0
x]√
2

ρ2 +O(ρ3)

)

∂τ +

(

1√
2
ρ2 +O(ρ3)

)

∂ρ +

(

1

24
√
2

(

24Π1[e
2
x] +X−(Π3[Ω])

)

ρ2 +O(ρ3)

)

X+ +

(

1

24
√
2

(

24Π1[e
3
x] +X+(Π3[Ω])

)

ρ2 +O(ρ3)

)

X−.

Consider the ansatz

u◦ =
A◦

ρ
+W◦ +B◦ log ρ,

where ∂ρ(A
◦) = ∂ρ(B

◦) = 0 and W◦ can be written as

W◦ = u◦
⋆ +O(ρ).

Then, one has

∂τ (u
◦) =

∂τ (A
◦)

ρ
+ ∂τ (W◦) + ∂τ (B

◦) log ρ,

∂ρ(u
◦) = −A◦

ρ2
+

B◦

ρ
+ ∂ρ(W◦),

X+(u
◦) =

X+(A
◦)

ρ
+X+(W◦) +X+(B

◦) log ρ,

X−(u
◦) =

X−(A
◦)

ρ
+X−(W◦) +X−(B

◦) log ρ.

Moreover, the condition e◦
11′(u◦) = 1 on I + yields

A◦ = − 1√
2
, B◦ = 0.

From the above, one has

u◦ = − 1√
2ρ

+W◦ = − 1√
2ρ

+ u◦
⋆ +O(ρ). (148)

Remark 14. In the following, we use Π0[W◦] to refer to u◦
⋆.

Using eq. (148), we have

e10′(u◦) =

(

−1

4
Π2[e

1
y]−

1√
2
X−(Π0[W◦])

)

+O(ρ),

e11′(u◦) = − 1

2ρ
+

(

2∂τ (Π0[W◦])√
2

− 1

4
Π2[e

2
x]

)

+O(ρ).

Substituting in eq. (146) and using det(λA
B) = 1 yields

λ0

0 = O(ρ1/2), λ1

0 =
1√
ρ
+

(

Π3[Ω]

8
− Π1[fx]

2

)

+O(ρ3/2).
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From eq. (75), the relation between the NP frame {e•
AA′} and the F-gauge frame {e•

AA′}
is given by

e•
AA′ = ΛB

AΛ̄
B′

A′eBB′ . (149)

Comparing eq. (149) with eq. (143), one can show that

Λ0

1 = θ−1/2λ0

1e
ic, Λ1

1 = θ−1/2λ1

1e
ic, (150)

where c is a function encoding the phase freedom. From eq. (69), one can obtain an

asymptotic expansion for Φ◦
22. Then, eq. (70) with initial data

lim
ρ→0

θ = 1,

can be used to obtain an asymptotic expansion for θ. However, the strategy in this analysis

is to use eq. (70) to confirm the expansion of θ obtained in [40] with the assumptions

that Φ◦
22 can be written as

Φ◦
22 = Π0[Φ

◦
22] + Π1[Φ

◦
22]ρ+

1

2
Π2[Φ

◦
22]ρ

2 +
1

6
Π3[Φ

◦
22]ρ

3 +O(ρ4).

From eq. (70), one can confirm that

Π0[Φ
◦
22] = Π1[Φ

◦
22] = Π2[Φ

◦
22] = 0, Π1[θ] =

1

6
Π3[Φ

◦
22].

Then, the conformal factor θ can be written as

θ = 1 +
1

6
Π3[Φ

◦
22]ρ+O(ρ2).

Using the above and substituting in eqs. (150), one can show that Λ0
1 and Λ1

1 are given

by

Λ0

1 =

(√
ρ− 1

24
(−3Π3[Ω] + 2Π3[Φ

◦
22] + 12Π1[fx]) ρ

3/2 +O(ρ5/2)

)

eic, (151a)

Λ1

1 =

(

Π4[Ω]

X−(Π3[Ω])
ρ3/2 +O(ρ5/2)

)

eic. (151b)

Then, eq. (149) show that the frame e•
11′ can be written as

e•
11′ =

(

Π1[e
0
x]√
2

ρ2 +O(ρ3)

)

∂τ +

(

1√
2
ρ2 +O(ρ3)

)

∂ρ +

((

Π1[e
2
x]√
2

− Π4[Ω]√
2X+(Π3[Ω])

)

ρ2 +O(ρ3)

)

X+ +

((

Π1[e
3
x]√
2

− Π4[Ω]√
2X−(Π3[Ω])

)

ρ2 +O(ρ3)

)

X−.

Applying the above to the affine parameter u• and using the conditions e•
01′(u•) = 0 and

e•
11′(u•) = 1 on I

+, one can show that

Λ0

0 = Λ̄0
′

1′e10′(u•) + Λ̄1
′

1′e11′(u•). (152)
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Then, the condition det(ΛA
B) = 1 can be used to solve for Λ1

0. To determine u•,

consider the ansatz

u• =
A•

ρ
+W• +B• log ρ,

with ∂ρ(A
•) = ∂ρ(B

•) = 0. Then, the condition e•
11′(u•) = 1 on I + can be used to

show that

A• = −
√
2, B• = 0.

Given the above, the affine parameter u• can be written as

u• = −
√
2

ρ
+W•.

Assume W• can be written as W• = u•
⋆ +O(ρ), then

u• = −
√
2

ρ
+ u•

⋆ +O(ρ).

Similar to earlier discussion, one has Π0[W•] = u•
⋆. Using eq. (152) and the condition

det(ΛA
B) = 1 yields

Λ0

0 =

(

−1

2

(

Π2[e
1
y] +

√
2X−(Π0[W•])

)√
ρ+O(ρ3/2)

)

e−ic, (153a)

Λ1

0 =

(

− 1√
ρ
+O(ρ1/2)

)

e−ic. (153b)

Remark 15. The phase parameter c can be determined using eq. (71) and the initial data

c = 0 on C. For our purpose, it will be sufficient to note that

eic = 1 +O(ρ).

Given the expansions of the components of the matrix ΛA
B, one can show that the

components of the inverse matrix ΛA
B can be written as

Λ0

0 =

(

− Π4[Ω]

X−(Π3[Ω])
ρ3/2 +O(ρ5/2)

)

eic,

Λ0

1 =

(

− 1√
ρ
−
(

Π3[Ω]

8
+

Π3[Φ
◦
22]

12
+

Π1[fx]

2

)√
2 +O(ρ3/2)

)

e−ic,

Λ1

0 =

(√
ρ− 1

24
(−3Π3[Ω] + 2Π3[Φ

◦
22] + 12Π1[fx]) ρ

3/2 +O(ρ5/2)

)

eic,

Λ1

1 =

(

1

2

(

Π2[e
1
y] +

√
2X−(Π0[W•])

)

+O(ρ3/2)

)

e−ic.

Given eqs. (7.2), (151)-(153) and eqs. (89), it is possible to obtain asymptotic expansions

for the NP-connection coefficients σ•, µ• and γ•. Then, eq. (86a) can be used to confirm

whether σ•abN•
ab will contribute to Q at I+. Using eq. (90), one can also determine
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which components of φABCD will appear in the expression of Q at I+. From eqs. (89),

one can show that

µ• = O(ρ2),

γ• = − ρ

2
√
2
+O(ρ2),

σ• = − 1

2
√
2

(

X−(Π2[e
1
y]) +

√
2X−(X−(Π0[W•]))

)

+O(ρ).

Then, the term ∆|σ•|2 satisfies

∆|σ•|2 = O(ρ2).

This readily implies that

lim
ρ→0

σ•abN•
ab ≃ 0.

From eq. (90), one can show that

φ̄•
2 = −Π0[φ̄2] +O(ρ).

Hence, the charges Q at I+ can be written as

Q(f, C)|I+ =

∮

C

−2ε2fΠ0[φ̄2], (156)

where Π0[φ̄2] is evaluated at τ = 1. A similar analysis for the transformation between

the NP-gauge frame {e•
AA′} and the F-gauge frame {eAA′} at I − reveals that the

background term σ•abN•
ab given by eq. (86b) will not contribute to Q at I− and that

φ̄•
2 = −Π0[φ̄2] at ρ = 0. Thus,

Q(f, C)|I− =

∮

C

−2ε2fΠ0[φ̄2], (157)

where Π0[φ̄2] is evaluated at τ = −1.

Remark 16. It should be highlighted the limited amount of explicit information about

the asymptotic expansions, which is required for the evaluation of the BMS asymptotic

charges at I±. In particular, expressions in eqs. (156) and (157) are formally identical

to their spin-2 equivalents given in [27].

7.3 BMS-supertranslation charges at the critical sets

The discussion in the previous section indicates that in order to evaluate Q at I±, we

require a solution for Π0[φ̄2] at τ = ±1. Given the second-order ODE for a2 in eq. (138),

one can show that

Proposition 3. For l ≥ 2 and 0 ≤ m ≤ 2l, the solution to eq. (138b) is given by:

a2(τ) = Al,mPl(τ) + Bl,mQl(τ) (158)
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where Pl(τ) is the Legendre polynomial of order l and Ql(τ) is the Legendre function of

the second kind of order l, Al,m and Bl,m are constants that can be expressed in terms of

the coefficients Π3[Ω]2l,m appearing in eq. (130). In particular, one has

Al,m = − (6 + l + l2)Ql+1(0)Π3[Ω]2l,m
6Pl+1(0)Ql(0)− 6Pl(0)Ql+1(0)

, (159a)

Bl,m =
(6 + l + l2)Pl+1(0)Π3[Ω]2l,m

6Pl+1(0)Ql(0)− 6Pl(0)Ql+1(0)
. (159b)

Note that the recurrence relation of Ql(τ) implies that Ql(τ) diverges logarithmically

near τ = ±1, i.e.,

Ql(τ) = Cl ln(1± τ) +O(1), for some constant Cl.

Thus, it is straightforward to see that the solution for a2 given in eq. (158) will diverge

at the critical sets unless Bl,m = 0. From eq. (159b), we have that Bl,m = 0 for even l.
For odd l, one must restrict the initial data set to ensure that Bl,m = 0.

Lemma 1. The solution in Proposition 3 is regular at τ = ±1 if and only if the coefficients

Π3[Ω]2l,m satisfy

Π3[Ω]2l,m = 0, for odd l ≥ 2, 0 ≤ m ≤ 2l.

To simplify the integrand in eqs. (156)-(157), we rewrite the expansion of Π0[φ2] as

Π0[φ2] =

∞
∑

l=0

l
∑

m=−l

a2;2l,m+l(τ)T2l
m+l

l, (160)

and the expansion for Π3[Ω] at ρ = 0 as

Π3[Ω]|ρ=0 =
∞
∑

l=0

l
∑

m=−l

Π3[Ω]2l,m+lT2l
m+l

l. (161)

Then, the regularity condition in Lemma 1 can be written as:

Lemma 2. The solution in Proposition 3 is regular at τ = ±1 if and only if the coefficients

Π3[Ω]2l,m+l satisfy

Π3[Ω]2l,m+l = 0, for odd l ≥ 2 − l ≤ m ≤ l.

Remark 17. Recalling eq. (108), one readily sees that the regularity condition in Lemma

2 is, in fact, a statement about the multipolar structure of the freely specifiable function

ξ on S2. More precisely, the condition excludes from ξ the modes with odd parity. This

condition is, to the best of our knowledge, new.
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Given initial data that satisfy the above regularity condition, the solution for a2;2l,m+l

for l ≥ 2 and −l ≤ m ≤ l can be written as

a2;2l,m+l(τ) = Al,m+lPl(τ). (162)

Note that Al,m+l = 0 for odd l. Therefore, for l ≥ 2, the solution for a2;2l,m+l is only

non-vanishing for even l. Substituting in eqs. (156)-(157) using eqs. (160), we have

Q(f, C)|I± = −2
∞
∑

l=0

l
∑

m=−l

ā2;2l,m+l(±1)

∮

C

ε2fT̄2l
m+l

l. (163)

But, the functions T̄2l
m+l

l are related to the complex conjugate of the spherical harmonics

Ȳl,m. In particular, we have the correspondence

T̄2l
m+l

l 7→ Cl,mȲl,m,

where Cl,m is a constant that depends on l and m and whose specific form is not required

for our discussion —see [49]. Given that f is a function on S2, one can always write f as

f =
1

Cl′,m′

Yl′m′ . (164)

Substituting in eq. (163), we get

Q(f, C)|I± = −2
∞
∑

l=0

l
∑

m=−l

Cl,m

Cl′,m′

ā2;2l,m+l(±1)

∮

C

ε2Yl′m′ Ȳl,m

= −2ā2;2l′,m′+l′(±1)

Then, using eqs. (131), (135a) and (162), one has

Q|I± =



















−2Π3[Ω]0,0, for l = 0, m = 0,

∓4Π3[Ω]2,m+1, for l = 1,−1 ≤ m ≤ 1,

0, for odd l ≥ 2,−l ≤ m ≤ l,

−2Al,m+l, for even l ≥ 2,−l ≤ m ≤ l,

where Al,m+l is given by

Al,m+l = − (6 + l + l2)Ql+1(0)Π3[Ω]2l,m+l

6Pl+1(0)Ql(0)− 6Pl(0)Ql+1(0)
.

Using eqs. (108) and (161), and expanding the freely specifiable data ξ as

ξ =
∞
∑

l=0

l
∑

m=−l

ξ2l,m+lT2l
m+l

l,

one can see that

Π3[Ω]0,0 =
21

2
ξ0,0 − 3A,

Π3[Ω]2l,m+l =
21

2
ξ2l,m+l.

Then, the final result of our analysis can be summarised in the following:
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Theorem 1. Given the generic initial data in Proposition 2, the asymptotic BMS-

supertranslation charges Q are not well-defined at I± unless the freely specifiable data

satisfy the regularity condition:

ξ2l,m+l = 0 for odd l ≥ 2 − l ≤ m ≤ l. (166)

Given initial data that satisfy the extra regularity condition, the charges Q at I± can be

expressed in terms of the freely specifiable data A and ξ:

Q|I± =



















−21ξ0,0 + 6A, for l = 0, m = 0,

∓42ξ2,m+1, for l = 1,−1 ≤ m ≤ 1,

0, for odd l ≥ 2,−l ≤ m ≤ l,

−2A′
l,m+l, for even l ≥ 2,−l ≤ m ≤ l,

where A′
l,m+l is given by

A′
l,m+l = − 21(6 + l + l2)Ql+1(0)ξ2l,m+l

12Pl+1(0)Ql(0)− 12Pl(0)Ql+1(0)
.

Moreover, there is a natural correspondence between the charges at I+ and I− expressed

as follows:

Q|I+ = (−1)lQ|I−.

Remark 18. It should be stressed that the above results express the BMS asymptotic

charges at I± in terms of freely specifiable data coming from the initial metric. Remark-

ably, there is no contribution to the charges coming from the extrinsic curvature.

Remark 19. As a consequence of the regularity condition in Lemma 1, one finds that

for l ≥ 2, only the even parity charges have a non-trivial content. Observe that the

regularity condition given in Lemma 1 are necessary conditions for the BMS charges to

be well-defined at the critical sets I±. The regularity condition eliminates the odd parity

modes for l ≥ 2 in the function ξ over S2. Thus, compared with the equivalent conditions

arising from analysing the spin-2 field on the Minkowski spacetime in [27], one finds that

the full non-linear GR situation is much more restrictive. This should not be surprising

as the Einstein constraints are known to be more rigid than their linearised counterpart.

Remark 20. The initial data used in the analysis of the non-linear stability of the

Minkowski spacetime by Christodoulou and Klainerman [5] is of the form

h̃αβ =

(

1 +
2m

r

)

δαβ + o4(r
−3/2),

K̃αβ = o3(r
−5/2).

Comparing with the data in Proposition 2, it follows that the function ξ from which

the asymptotic charges are computed necessarily vanishes. Thus, for the Christodoulou-

Klainerman spacetimes the asymptotic charges at the critical sets vanish. This observation

is, to the best of our knowledge new. A similar statement can be made of the spacetimes
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constructed by Rodianski-Lindblad [50]. The spacetimes constructed by Klainerman-

Nicolo [51] arise from data with a 3-metric having an even stronger decay —thus, their

asymptotic BMS charges vanish as well. Notice, however, that the more general analysis

of the stability of the Minkowski spacetime by Bieri [52] requires

h̃αβ = δαβ +OH3(r−1/2),

K̃αβ = OH2(r−3/2).

This is consistent with non-vanishing asymptotic charges at the critical sets.

8 Conclusions

In this article, we presented an analysis of BMS asymptotic charges using Friedrich’s

formulation of spatial infinity. Our analysis indicates that the initial data given in [35]

does not give rise to well-defined asymptotic charges at I± unless the initial data satisfies

an extra regularity condition. The regularity condition eliminates the odd l ≥ 2 modes

on the freely specifiable leading term of the initial metric. If the initial data are chosen to

satisfy the regularity condition in eq. (166), BMS asymptotic charges are well-defined

at I±. Then, if the function f ∈ C∞(S2) is written as eq. (164), one can show that

BMS asymptotic charges at I± can be fully expressed in terms of the freely specifiable

data and that there exists a natural correspondence between the charges at I+ and I−.

As a consequence of the regularity condition on the initial data, only even parity BMS

asymptotic charges for l ≥ 2 have a non-trivial content at the critical setsI±. Observe that

the vanishing of the odd parity BMS asymptotic charges for l ≥ 2 does not necessarily

mean that the corresponding BMS asymptotic charges vanish everywhere on I ± and

generically they will not be conserved.

Our result expands the discussion in [53] that showed that the component of the Weyl

tensor appearing in the Bondi mass at I + match antipodally with that appearing at I −.

In [53], the antipodal matching of these components also follows from the regularity

conditions on I ± and at i0. This provides further evidence that the antipodal matching

is a regularity statement, i.e., it follows directly from the regularity condition on the

initial data. It would be very interesting to prove a converse of the latter —namely, that

the antipodal matching implies regularity conditions on initial data similar to the ones

obtained in the present analysis. This question goes beyond the scope of this article and

will be considered elsewhere.
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A The boundary adapted evolution and constraint equa-

tions

In the main text of this article, we present the analysis of the zero-order boundary

adapted evolution and constraint eqs. (59)-(59). The zero-order system in given in eqs.

(127)-(128) while the full system is presented in this section.

The boundary-adapted evolution system eq. (59) can be written as

1

8

(

4
√
2ξ2φ0 − 24

√
2ξhφ0 − 16ξxφ0 − 3

√
2ξ1φ1+

4ξzφ1 + 4
√
2ξ0φ2 + 16

√
2φ0fx − 4

√
2φ1fz − 4

√
2φ2χ0+

3
√
2φ1χ1 − 4

√
2φ0χ2 + 24

√
2φ0χh + 16φ0χx − 4φ1χz+

2
√
2
(

−4∂τ [φ0]
(

−1 + e0
x

)

− 4∂ρ [φ0]e
1
x + ∂τ [φ1] e

0
z + ∂ρ [φ1]e

1
z−

4e3
xX− [φ0] + e3

zX− [φ1]− 4e2
xX+ [φ0] + e2

zX+ [φ1]
))

= 0 (A1)

1

6
√
2

(

3∂τ [φ1] + 6∂τ [φ0] e
0
y + 6∂ρ [φ0] e

1
y + ∂τ [φ2] e

0
z+

∂ρ [φ2]e
1
z + 6e3

yX− [φ0] + e3
zX− [φ2] + 6e2

yX+ [φ0] + e2
zX+ [φ2]

)

=

1

8

(

−4
√
2ξ3φ0 − 16ξyφ0 +

√
2ξ2φ1 + 6

√
2ξhφ1 − 4ξxφ1−

2
√
2ξ0φ3 − 2

√
2φ1fx + 4

√
2φ0fy + 2

√
2φ2fz + 2

√
2φ3χ0−

√
2φ1χ2 + 4

√
2φ0χ3 − 6

√
2φ1χh + 4φ1χx + 16φ0χy

)

(A2)

1

24

(

1

2

(

24
√
2φ4 (ξ0 − χ0) + 24

√
2φ0 (ξ4 − χ4)−

4
√
2φ2 (ξ2 + 6ξh − χ2 − 6χh) + 3φ1

(√
2ξ3 + 4ξy − 4

√
2fy −

√
2χ3 − 4χy

)

+

3φ3

(√
2ξ1 + 4ξz − 4

√
2fz −

√
2χ1 − 4χz

))

+
√
2
(

4∂τ [φ2] + 3
(

∂τ [φ1]e
0
y + ∂ρ [φ1]e

1
y + ∂τ [φ3]e

0
z + ∂ρ [φ3] e

1
z+

e3
yX− [φ1] + e3

zX− [φ3] + ey2X+ [φ1] + e2
zX+ [φ3]

)))

= 0 (A3)

1

6
√
2

(

3∂τ [φ3] + ∂τ [φ2] e
0
y + ∂ρ [φ2] e1

y + 6∂τ [φ4]e
0
z+

6∂ρ [φ4] e
1
z + e3

yX− [φ2] + 6e3
zX− [φ4] + e2

yX+ [φ2] + 6e2
zX+ [φ4]

)

=

1

8

(

−2
√
2ξ4φ1 +

√
2ξ2φ3 + 6

√
2ξhφ3 + 4ξxφ3 − 4

√
2ξ1φ4−

16ξzφ4 + 2
√
2φ3fx + 2

√
2φ2fy + 4

√
2φ4fz + 4

√
2φ4χ1−

√
2φ3χ2 + 2

√
2φ1χ4 − 6

√
2φ3χh − 4φ3χx + 16φ4χz

)

(A4)

1

2
√
2

(

4∂τ [φ4]
(

1 + e0
x

)

+ 4∂ρ [φ4] e
1
x + ∂τ [φ3] e

0
y+

∂ρ [φ3]e
1
y + e3

yX− [φ3] + 4e3
xX− [φ4] + e2

yX+ [φ3] + 4e2
xX+ [φ4]

)

=

1

8

(

−4
√
2ξ4φ2 + 3

√
2ξ3φ3 − 4ξyφ3 − 4

√
2ξ2φ4 + 24

√
2ξhφ4−
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16ξxφ4 + 16
√
2φ4fx + 4

√
2φ3fy + 4

√
2φ4χ2−

3
√
2φ3χ3 + 4

√
2φ2χ4 − 24

√
2φ4χh + 16φ4χx + 4φ3χy

)

(A5)

The constraint equations eq. (60) can be written as

1

6
√
2

(

−3∂τ [φ1] e
0
x − 3∂ρ [φ1]e

1
x − 6∂τ [φ0]e

0
y−

6∂ρ [φ0]e
1
y + ∂τ [φ2]e

0
z + ∂ρ [φ2] e

1
z − 6e3

yX− [φ0]− 3e3
xX− [φ1] +

e3
zX− [φ2]− 6e2

yX+ [φ0]− 3e2
xX+ [φ1] + e2

zX+ [φ2]
)

=

1

8

(

2
√
2ξ3φ0 + 24ξyφ0 −

√
2ξ2φ1 + 12ξxφ1 +

√
2ξ1φ2 − 4ξzφ2 − 2

√
2ξ0φ3+

2
√
2φ3χ0 −

√
2φ2χ1 +

√
2φ1χ2 − 2

√
2φ0χ3 − 12φ1χx − 24φ0χy + 4φ2χz

)

(A6)

− 1

12
√
2

(

4∂τ [φ2] e
0
x + 4∂ρ [φ2] e

1
x + 3∂τ [φ1] e

0
y + 3∂ρ [φ1] e

1
y−

3∂τ [φ3]e
0
z − 3∂ρ [φ3] e

1
z + 3e3

yX− [φ1] + 4e3
xX− [φ2]−

3e3
zX− [φ3] + 3e2

yX+ [φ1] + 4e2
xX+ [φ2]− 3e2

zX+ [φ3]
)

=

1

16

(

8
√
2ξ4φ0 −

√
2ξ3φ1 + 12ξyφ1 + 16ξxφ2 +

√
2ξ1φ3 − 12ξzφ3 − 8

√
2ξ0φ4+

8
√
2φ4χ0 −

√
2φ3χ1 +

√
2φ1χ3 − 8

√
2φ0χ4 − 16φ2χx − 12φ1χy + 12φ3χz

)

(A7)

− 1

6
√
2

(

3∂τ [φ3] e
0
x + 3∂ρ [φ3] e

1
x + ∂τ [φ2]e

0
y + ∂ρ [φ2] e

1
y

6∂τ [φ4]e
0
z − 6∂ρ [φ4] e

1
z + e3

yX− [φ2] + 3e3
xX− [φ3]−

6e3
zX− [φ4] + e2

yX+ [φ2] + 3e2
xX+ [φ3]− 6e2

zX+ [φ4]
)

=

1

8

(

2
√
2ξ4φ1 −

√
2ξ3φ2 + 4ξyφ2 +

√
2ξ2φ3 + 12ξxφ3 − 2

√
2ξ1φ4 − 24ξzφ4+

2
√
2φ4χ1 −

√
2φ3χ2 +

√
2φ2χ3 − 2

√
2φ1χ4 − 12φ3χx − 4φ2χy + 24φ4χz

)

(A8)
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