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NEW SPINORIAL MASS-QUASILOCAL ANGULAR MOMENTUM

INEQUALITY FOR INITIAL DATA WITH MARGINALLY FUTURE TRAPPED

SURFACE

JAROS LAW KOPIŃSKI, ALBERTO SORIA, AND JUAN A. VALIENTE KROON

Abstract. We prove a new geometric inequality that relates the Arnowitt-Deser-Misner (ADM)

mass of initial data to a quasilocal angular momentum of a marginally future trapped surface (MFTS)

inner boundary. The inequality is expressed in terms of a 1-spinor, which satisfies an intrinsic first-

order Dirac-type equation. Furthermore, we show that if the initial data is axisymmetric, then the

divergence-free vector used to define the quasilocal angular momentum cannot be a Killing field of

the generic boundary.

1. Introduction

Geometric inequalities arise naturally in General Relativity (GR) as relations involving quantities
characterizing black holes, like mass, angular momentum, and horizon area. One of the most signif-
icant example of a geometric inequality is the positive (ADM) mass theorem. It was first proven by
Schoen and Yau for the time-symmetric case in dimension three in [23] and [24] and later extended
to dimension less than 8 in [22]. On the other hand, Witten [30] proved the spinorial version of the
theorem in dimension 3, and Bartnik realised that the proof could be easily extended to higher di-
mensions provided the manifold was spin [6]. Witten’s spinorial version of the theorem was extended
to the case of initial data with trapped surfaces by Gibbons, Hawking, Horowitz, and Perry in [11].
The spinorial approach was further adapted by Ludvigsen and Vickers in the context of the Bondi
mass in [18]. A refined version of the positivity of the ADM mass has been formulated by Penrose
in the form of a lower bound on this quantity in terms of the horizon area of a black hole. If true, it
would provide further evidence in favor of the weak cosmic censorship conjecture [20]. There exists
a stronger version of the Penrose inequality involving the angular momentum of the initial data,
namely

m ≥
Å |S|
16π

+
4πJ2

|S|

ã 1

2

, (1)

where m, J and |S| are the ADM mass, angular momentum and the outermost apparent horizon
area respectively—see e.g. [9, 10, 19] for more details. This inequality is expected to hold only in
axial symmetry. It admits a rigidity case, where equality exclusively occurs for the Kerr black hole.
A quasilocal version of this relation states that

m ≥
Å |S|
16π

+
4πJ2

BH

|S|

ã 1

2

,

where JBH is the quasilocal angular momentum of the horizon.

Geometric inequalities for black holes remain a very active area of research with new interesting
results being obtained. Among them is a bound on the ADM energy in terms of horizon area, angular
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2 JAROS LAW KOPIŃSKI, ALBERTO SORIA, AND JUAN A. VALIENTE KROON

momentum, and charge obtained by Jaracz and Khuri in [12]. In [2, 3] a different approach was
considered by Anglada, who used the monotonic properties of the Geroch and Hawking energy along
the inverse mean curvature flow in order to prove a Penrose-like inequality with angular momentum.
The first author and Tafel considered perturbations of Schwarzschild data and showed that (1) holds
in this setting [15, 16]. Another refinement to the Penrose inequality with angular momentum has
been proven by Alaee and Kunduri for 4-dimensional biaxially symmetric maximal initial data [1].
Additionally, recent numerical results such as the ones obtained in [17] give support to the validity
of (1) in the context of axial symmetry. The examples presented above are far from exhaustive,
providing a glimpse into contemporary research in geometric inequalities in GR. We refer the reader
to [10,19] for further references.

In the present work a spinorial approach is used to obtain a geometric inequality involving the
ADM mass of the initial data for the vacuum Einstein field equations and a quasilocal angular
momentum (à la Szabados [27,28]) of the MFTS inner boundary. It generalises the result presented
in [14] to the case of non-vanishing connection 1-form on the normal bundle of the boundary. The
solvability of the boundary value problem for the so-called approximate twistor equation is still an
essential ingredient for deriving the main result. The existence of solution is used to obtain a basic
mass inequality

4πm ≥
√
2

∮

∂S
φ̂AγA

B /DBCφ
CdS, (2)

where /DAB and γAB are the 2-dimensional Sen connection and the complex metric on the boundary
respectively (see below for details), while φA is a valence 1 spinor on ∂S. The right-hand side of (2)
can be rewritten in terms of the inner null expansion θ− of the boundary and the aforementioned
angular momentum, provided that φA satisfies a certain first-order Dirac-type equation. Ultimately,

4πm ≥
√
2

∮

S2

ρ′|φ̃0|2ΩdS2 +
κ√
2
O
î
φ̃, U
ó
, (3)

where ρ′ = − θ−

2 , φ̃A is a Dirac eigenspinor on S2, Ω is a conformal factor relating the metrics of ∂S
and S2 and O

î
φ̃, U
ó
a quasilocal angular momentum depending on φ̃A and a rotation potential U

defined below. It should be noted that the integrals in (3) are now taken with respect to the 2-sphere
volume element.

A natural symmetry associated with the angular momentum is the existence of axial Killing vector.
Therefore, with such assumption we analyze a scenario where the quasilocal angular momentum is
generated by such vector (on top of arising from a spinor φA) and show that it is in fact impossible
for a generic MFTS inner boundary ∂S.

The article is structured as follows: Section 2 provides a discussion of our main mathematical tools,
in particular a new formalism for the 1 + 1 + 2 decomposition of spinors. Section 3 is an adaptation
of the result of [14] to the case of non-vanishing connection 1-form on the normal bundle of ∂S.
In Section 4 we present the main result of this work, a new mass-quasilocal angular momentum
inequality for the initial data with a MFTS. In the last section we particularise our analysis to
the axisymmetric setting and show that the divergence-free vector generating the quasilocal angular
momentum cannot arise simultaneously from a first-order Dirac-type equation and be a Killing vector
of the boundary.

In the following, 4-dimensional metrics are considered to have the signature (+−−−). As a result,
Riemannian 3- and 2-dimensional metrics will be negative definite. Whenever appropriate, we will
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expand spinorial expressions using either the Geroch-Held-Penrose (GHP) or Newman-Penrose (NP)
formalism, following the conventions outlined in [21]. Throughout this paper, we employ abstract
index notation, with lowercase letters representing tensorial indices and uppercase letters representing
spinorial indices. Bold font will be used to denote components in a basis.

2. Preliminaries

2.1. Basic setting. An initial data set (S, hab,Kab) for the vacuum Einstein field equations is said
to be asymptotically Schwarzschildean if the metric hab and the second fundamental form Kab satisfy
the decay conditions

hab = −
Å
1 +

2m

r

ã
δab + o∞(r−3/2), (4a)

Kab = o∞(r−5/2), (4b)

with r2 ≡ (x1)2 + (x2)2 + (x3)2, (xα) = (x1, x2, x3) being asymptotically Cartesian coordinates and
m the ADM mass. In this work we assume that S has an inner boundary ∂S which is a topological
2-sphere and is equipped with a metric σab. We consider a 1+1+2 spinor formalism, first proposed
in [26] by Szabados, and based on the use of SL(2,C) spinors. Maintaining the same philosophy as
in [14], the so-called SU(2,C) spinors (or space spinors) introduced in [25] will be essential to our
purposes since they allow to work efficiently on spacelike hypersurfaces. For more information on
the spinor formalism, we refer the reader to [4, 29].

Let τAA
′

be a spinorial counterpart of the orthogonal future vector τa to S such that τAA′τAA
′

= 2.
Likewise, we will denote a spinorial counterpart of the normal vector ρa to ∂S on S as ρAA

′

and
assume that ρAA′ρAA

′

= −2. Let us choose ρAA′ so that it is pointing outwards, towards infinity.
The spinors τAA′ and ρAA′ are orthogonal —i.e. τAA′ρAA

′

= 0. We consider dyads {oA, ιA} such that

τAA′ = oAoA′ + ιAιA′ ,

ρAA′ = oAoA′ − ιAιA′ .

The spinor τAA′ is used to construct a space-spinor version of a given spinor. In particular,

γAB ≡ τ(B
A′

ρA)A′

is the space-spinor version of ρAA′ , also called the complex metric. By construction, the complex
metric can be understood as the space spinor version of the vector ρAA′ , which is the spacelike
normal to ∂S on S (with the normalization ρAA′ρAA

′

= −2). It satisfies γA
BγB

C = δA
C and can be

expressed as
γAB = oAιB + oBιA

with the use of spin dyad.
The spinorial counterpart of the projection operator Πa

b onto the 2-dimensional surface ∂S can
now be defined as

ΠAA′
BB′ ≡ δA

BδA′
B′ − 1

2τAA′τBB
′

+ 1
2ρAA′ρBB

′

= 1
2

Ä
δA

BδA′
B′ − γA

BγA′

B′
ä
. (5)

Similarly, the spinorial counterpart of the projector TAA′BB′ onto S reads

TAA′
BB′ ≡ 1

2

Ä
δA

BδA′
B′ − 1

2τAA′τBB
′
ä
.

Let ∇AA′ be the spinorial counterpart of the spacetime covariant derivative ∇a. The TAA′
BB′

pro-
jector allows to define the 3-dimensional Sen connection DAA′ associated to ∇AA′ as

DAA′πC ≡ TAA′
BB′∇BB′πC .
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As mentioned above, the SU(2,C) (i.e. space-spinor version) of DAA′ can be constructed by means

of τAA
′

as
DAB = τ(B

A′DA)A′ .

The space-spinor version ∇AB of the 3-dimensional Levi-Civita connection on S can be recovered
form DAB via

∇ABπC = DABπC − 1
2KABC

QπQ,

where KABCD ≡ τD
C′DABτCC′ is the Weingarten spinor (note that symbol DAB was chosen in [14]

to denote the space version of the 3-dimensional Levi-Civita connection. Here we prefer to keep the
symbol ∇ for Levi-Civita connections). The Weingarten spinor decomposes as

KABCD = ΩABCD − 1
3KǫA(CǫD)B ,

where ΩABCD ≡ K(ABCD) is its fully symmetrized part, and K ≡ KAB
AB is the mean curvature of

S. The 3-dimensional Levi-Civita operator satisfies ∇ABǫCD = 0.
Given a spinor πA1...AK

, its Hermitian conjugate is defined as follows,

π̂A1...AK
≡ τA1

A′

1 . . . τAk

A′

k πA′

1
...A′

k
.

A spinor πA1...AK
is said to be real if

π̂A1B1...AkBk

C1D1...CmDm = (−1)(k+m)πA1B1...AkBk

C1D1...CmDm .

The space counterpart of the Levi-Civita connection ∇AB is real in the sense that ◊�∇ABπC =
−∇ABπ̂C , while

◊�DABπC = −DABπ̂C +KABC
Dπ̂D.

2.2. On the inner boundary. A 2-dimensional Sen connection /DAA′ on ∂S arises as a Π-projection
of ∇AA′ , i.e.

/DAA′ ≡ ΠAA′
BB′∇BB′ , (6)

and its associated SU(2,C) version is given by /DAB ≡ τ(B
A′

/DA)A′ . It can be promoted to the

2-dimensional Levi-Civita connection /∇AA′ with the use of the transition spinor QAA′BC ,

/∇AA′vBB′ = /DAA′vBB′ −QAA′B
CvCB′ −QAA′B′

C′

vBC′ , (7)

where
QAA′BC ≡ −1

2γC
D /DAA′γBD. (8)

The /∇AA′ connection is torsion-free by definition, i.e.
(
/∇AA′ /∇BB′ − /∇BB′ /∇AA′

)
φ = 0, and its

curvature spinor /rCC′DD′AA′BB′ can be defined defined with the use of the following relation
(
/∇AA′ /∇BB′ − /∇BB′ /∇AA′

)
πC = /rCQAA′BB′πQ = (mamb −mamb)

(
ρρ′ − σσ′ +Ψ2

)
γCDπD, (9)

where mAA′ ≡ oAιA
′

, mAA′ ≡ ιAoA
′

, and Ψ2 ≡ ΨABCDo
AoBιCιD is a component of the Weyl spinor

ΨABCD.
Another 2-dimensional connection ( /DAB) can be obtained by considering a space-spinor counter-

part of /∇AA′ , i.e.
/DAB ≡ τ(B

A′

/∇A)A′ . (10)

It is particularly useful in some calculations and can be related to /DAB via

/DABπC = /DABπC −QAB
Q
CπQ, (11)

where the transition spinor is now given by

QAB
C
D ≡ −1

2γD
Q /DABγQ

C = σ′oAoBoCoD + σιAιBιCιD − ρoAoBιCιD − ρ′ιAιBoCoD. (12)
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A natural choice for the ingoing and outgoing null vectors ka and la spanning the normal bundle
to ∂S is given by

ka = 1
2(τ

a − ρa), la = 1
2 (τ

a + ρa).

The nature of a trapped surfaces is determined by the causal character and orientation of its mean
curvature vector, or equivalently, by the signs of the associated inner and outer null expansions,

θ− = σab∇akb, θ+ = σab∇alb.

Making use of Proposition 4.14.2 in [21] we can express θ− and θ+ in terms of a GHP spin coefficients,

θ− = −2ρ′, θ+ = −2ρ.

We are now ready to define a marginally future trapped surface.

Definition 1. The boundary ∂S is said to be a marginally future trapped surface (MFTS) if θ+ = 0
and θ− ≤ 0 or if θ− = 0 and θ+ ≤ 0, i.e. if ρ = 0 and ρ′ ≥ 0 or if ρ′ = 0 and ρ ≥ 0 on ∂S.
The 2-dimensional connection /DAB annihilates ǫAB and γAB :

/DABǫCD = 0, /DABγCD = 0.

However, /DAB is not a Levi-Civita connection on ∂S as it has a non-vanishing torsion,

/DAB /DCDφ− /DCD /DABφ = 1
2

Ä
AABγC

XδD
Y −ACDγA

XδB
Y
ä
/DXY φ, (13)

where AAB is defined as

AAB ≡ τCC
′

/DABρCC′ = 2
(
α+ β

)
oAoB − 2 (α+ β) ιAιB . (14)

Notice that /DAB was considered in [14] to be the space version of the 2-dimensional Levi-Civita
connection, being defined in the same way as in this work. This was possible since the boundary was
torsion-free in [14] (α+ β = 0 on ∂S). In the current work this restriction is dropped, and AAB 6= 0.

This spinor is real, ÂAB = −AAB, and satisfies γABAAB = 0. We can use it to recover a space-spinor
version of the Levi-Civita connection /∇AB,

/∇ABπC ≡ /DABπC − 1
4AABγC

DπD. (15)

Indeed,
/∇ABǫCD = /∇ABγCD = 0, γAB /∇ABπC = 0, (16)

and /∇AB has vanishing torsion. Moreover,Ä
/∇AC /∇B

C − /∇B
C /∇AC

ä
πB = 1

2

(
Ψ2 + ρρ′ − σσ′ + c.c.

)
πA,

where c.c. denotes the complex conjugation of the expression in the brackets above. Ultimately, the
2-dimensional Sen and Levi-Civita connections on the boundary are related in the following way,

/DABφC = /∇ABφC + 1
4AABγC

DφD +QAB
L
CφL. (17)

The connection /∇AB is real, i.e.
◊�/∇ABπC = − /∇ABπ̂C ,

while,
◊�/DABπC = − /DAB π̂C +

Ä
QABC

D + “QABCD
ä
π̂D + 1

2γ
D

C π̂DAAB.

In the following we will also require an expression for the Hermitian conjugate of the connection
/DAB . A direct computation yields

◊�/DABπC = − /DABπ̂C + 1
2γC

Dπ̂DAAB. (18)
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In [27], Szabados proposed the following definition of quasilocal angular momentum associated
with ∂S,

O[N ] ≡ − 1

2κ

∮

∂S
N cAcdS, (19)

where Na is a divergence-free vector on ∂S, Ac = ρaΠ
f
c∇fτ

a is the connection 1-form on the normal
bundle of ∂S and κ = 8πG the gravitational coupling constant. After inspecting the definition (14) of
a spinor AAB we immediately see that it is in fact a space-spinor counterpart of Ab in the expression
above.

In the sequel we will also make use of a Hodge decomposition on ∂S. Specifically, given any 1-form
Va on ∂S there exist two functions f and f ′ such that

Va = ǫa
b /∇bf + /∇af

′,

where ǫab is the 2-dimensional Riemannian volume form of the boundary ∂S.

2.3. Conformal rescaling of the 2-dimensional Dirac operator. An action of a 2-dimensional
(Levi-Civita) Dirac operator on a spinor πA is given by /∇A

BπB. The purpose of this subsection
is to explore its properties under conformal rescalings of the inner boundary metric σab. Indeed,
according to the uniformization theorem for compact Riemannian surfaces (cf. [13, Theorem 4.4.1]),
σab is conformal to the spherical metric, i.e.

σab = Ω2σ̃ab,

where Ω : S2 → R is a non-negative smooth function and σ̃ab a round 2-sphere metric. Given
any holonomic basis {∂AB} on ∂S, the covariant derivative of πA can be expressed as /∇ABπC =
∂AB(πC) − ΓAB

Q
CπQ, where ΓAB

Q
C ≡ 1

2ΓAB
QL

CL are the spin coefficients associated to the

Christoffel symbols of σab. Since σABCD = Ω2σ̃ABCD, one arrives at

/∇ABπC = ‹/∇ABπC − 1
2

Ä
∂AB(log Ω)σ̃

EF
CF + ∂CF (log Ω)σ̃

EF
AB − ∂EF (log Ω)σ̃ABCF

ä
πE, (20)

where ‹/∇AB is a space-spinor counterpart of the Levi-Civita connection on S2. Contracting the second
and third indices in the above with ǫ̃AB = Ω−1ǫAB gives

/∇A
BπB = Ω−1

[‹/∇A
BπB − 1

2
(∂A

B(log Ω)σ̃EFBF + ∂BF (log Ω)σ̃
EF

A
B − ∂EF (log Ω)σ̃A

B
BF )πE

]
,

with ∂AB defined as

∂AB ≡ 1√
2

Å−∂x1 − i∂x2 ∂x3
∂x3 ∂x1 − i∂x2

ã
, (21)

where the same the same convention for the Infeld-Van der Waerden symbols as in [5] has been as-
sumed. However, because σ̃ABCD = 1

2(ǫ̃AC ǫ̃BD+γ̃AC γ̃BD) and γ̃
ABeAB(log Ω) = 0 (γ̃AB is orthogonal

to ∂S) the equation above reduces to

/∇A
BπB = Ω−1‹/∇A

BπB. (22)

This can be used to establish the following fact: if π̃A is a Dirac eigenspinor on S2 with an eigenvalue
λ ∈ R, i.e.

‹/∇A
Bπ̃B = iλπ̃A,

then

/∇A
BπB = i λΩπA, (23)
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where the spin basis transforms in a following way, õA = 1√
Ω
oA, ι̃A = 1√

Ω
ιA and π̃0 =

√
Ωπ0, π̃1 =√

Ωπ1.

3. Approximate twistor equation

3.1. Setup. Let S1, S3 be the spaces of symmetric valence 1 and 3 spinors over the hypersurface
S. The (overdetermined) spatial twistor operator can be defined as follows,

T : S1 → S3, T(κ)ABC ≡ D(ABκC),

and is a space-spinor counterpart of the twistor operator ∇A′(AκB) (see [5] for more details). The
formal adjoint of T is given by

T∗ : S3 → S1, T∗(ζ)A ≡ DBCζABC −ΩA
BCDζBCD,

and allows to define the approximate twistor operator L ≡ T∗ ◦T : S1 → S1,

L(κ)A ≡ DBCD(ABκC) − ΩA
BCDDBCκD, (24)

which is formally self-adjoint —i.e. L∗ = L.
Let κA be a solution of the approximate twistor equation L(κ)A = 0. The spinors

ξA ≡ 2
3DA

QκQ, ξABC ≡ D(ABκC)

encode independent components of DABκC . Moreover, one has that

L(ξ̂)A = 0.

Given the set of asymptotically Cartesian coordinates (xα) on S, the position spinor can be defined
as follows,

xAB ≡ 1√
2

Å
x1 + ix2 −x3

−x3 −x1 + ix2

ã
.

We will consider a solution of the approximate twistor equation on asymptotically Schwarzschildean
initial data for the vacuum Einstein field equations with an asymptotic behaviour of the form

κA =

Å
1 +

m

r

ã
xABo

B + o∞(r−1/2). (25)

A direct computation shows that

ξA =

Å
1− m

r

ã
oA + o∞(r−3/2), (26a)

ξABC = −3m

2r3
x(ABoC) + o∞(r−5/2). (26b)

As a consequence of the above asymptotic expansion of κA, one arrives at the following inequality
relating the ADM mass of S and an integral of concomitants of the spinor κA, provided that the
inner boundary ∂S is a MFTS [14],

4πm ≥
∮

∂S
nABζC

ÿ�D(ABζC)dS, (27)

where nAB is the outer directed (i.e. towards r = ∞) unit normal on ∂S as a surface of S and ζA ≡ ξ̂A.

Since the space version of ρAA′ is the complex metric γAB ≡ τ(B
A′

ρA)A′ , relation nAB = γAB/
√
2

holds. In the sequel we will use a boundary condition for κA to refine the inequality (27).
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3.2. A boundary value problem for the approximate twistor equation. Let

DA
QκQ = −3

2
φ̂A on ∂S, (28)

where φA is a smooth spinorial field. The approximate twistor equation together with (28) satisfy
the Lopatinskij-Shapiro compatibility conditions (see eg. [8, 31]). This implies that the associated
boundary value problem is elliptic. Moreover, the decay conditions (4a) and (4b) for the first and
second fundamental forms of the initial data make the approximate twistor operator L asymptotically
homogeneous. In the sequel we will make use of an operator B, defined in the in the following way,

B : S1 → S1, B(κ)A ≡ −
√
2γA

P ξP = −2
√
2

3
γA

PDQ
PκQ.

The equation (28) now becomes

B(κ)A|∂S =
√
2γA

P φ̂P ,

and the associated boundary value problem is

L(κ)A = 0, B(κ)A|∂S =
√
2γA

P φ̂P . (29)

To discuss the solvability of (29) one has to look at the adjoint operators L∗ and B∗. A similar
computation as in [14] (in this case the extrinsic geometry of the boundary is non-trivial) leads to
the following:

Proposition 1. If ∂S is a MFTS on the asymptotically Schwarzschildean initial data set (S, hab,Kab)
for the vacuum Einstein field equations, then the boundary value problem

L(κ)A = 0, B(κ)A|∂S =
√
2γA

P φ̂P ,

with a smooth spinorial field φA over ∂S admits a unique solution of the form

κA = κ̊A + θA, θA ∈ H2
−1/2, (30)

with κ̊A given by the leading term in (25) and where Hs
β with s ∈ Z+ and β ∈ R denotes the weighted

L2 Sobolev spaces.

3.3. Inequality with the connection 1-form on the normal bundle of the boundary. The
boundary condition (28) allows to simplify the inequality (27) to the following form

4πm ≥
√
2

∮

∂S
φ̂AγA

B /DBCφ
CdS, (31)

where φA is a free data in the boundary value problem (29). All quantities in the integral are now
intrinsic to the boundary. A relation (17) between the 2-dimensional Sen and Levi-Civita connections
implies that

φ̂AγA
B /DBCφ

C = φ̂AγA
B( /∇BCφ

C) + 1
4 φ̂

AγA
BABC γ

CLφL + φ̂AγA
BQBC

LCφL.

Using (12), the GHP expression for QABCD, it is easy to see that QAB
CB = ρ′ιAo

C on a MFTS.
This can be combined with the fact that γA

BAB
CγC

D = −AAD to yield

4πm ≥−
√
2

∮

∂S
φ̂AγA

B( /∇B
CφC) dS +

√
2

∮

∂S
ρ′|φ0|2dS − 1

2
√
2

∮

∂S
AABφ̂

AφBdS. (32)

It should be noted that since AAB is intrinsic to ∂S the last term can be expressed as

− 1

2
√
2

∮

∂S
φ̂AφBσAB

CDACDdS, (33)

where σABCD = 1
2(ǫACǫBD +γACγBD) is the spinorial counterpart of the 2-dimensional metric.
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4. Mass-quasilocal angular momentum inequality

In this section we present the main result of this article – the mass-quasilocal angular momentum
inequality for the asymptotically Schwarzschildean initial data (S, hab,Kab) for the vacuum Einstein
field equations. It is based on a simplification of (32) under suitable choice of the boundary spinor
φA. A natural condition for φA arises after inspecting the first term on the right-hand side of (32)
– its 2-dimensional Dirac derivative should be controlled. Indeed, we will proceed with a following
choice,

/∇A
BφB = i

λ

Ω
φA, (34)

where Ω is a conformal factor relating a metric σab on ∂S with that on a round sphere S2. It can
be showed that with a suitable choice of the conformal rescaling of the spin basis the equation (34)
corresponds to a Dirac eigenproblem on S2 (see Subsection 2.3 for more details).

The inequality (32) can now be simplified with the use of (34) to the following form,

4πm ≥
√
2

∮

∂S
ρ′|φ0|2dS − 1

2
√
2

∮

∂S
φ̂AφBσAB

CDACD dS, (35)

where the reality of the ADM mass m has been used to eliminate a (purely imaginary) term with
the eigenvalue λ, i.e.

λ

∮

∂S

(
|φ0|2 − |φ1|2

)
Ω−1dS = 0. (36)

To make a connection between the second term on the right-hand side of (35) and the quasilocal
angular momentum (19) we will introduce a spinor NAB , defined as follows,

NAB ≡ σABCDφC φ̂D = φ0φ1ι
AιB − φ1φ0o

AoB . (37)

One can verify that NAB is real, i.e. “NAB = −NAB, so it corresponds to a real 3-vector. Moreover,
γABNAB = 0 and

/∇aN
a = /∇AB

Ä
σABCDφC φ̂D

ä
= /∇AB

Ä
φAφ̂B

ä

= −( /∇B
AφA)φ̂

B + φA(◊�/∇A
BφB) = 0, (38)

where (34) has been used in the last equality. Hence, Na is intrinsic to the boundary ∂S and /∇-
divergence-free, so we can identify it with Na generating the quasilocal angular momentum (19).
With this choice the inequality (35) yields

4πm ≥
√
2

∮

∂S
ρ′|φ0|2dS +

κ√
2
O
î
σABCDφC φ̂D

ó
. (39)

In the remainder of this section we will simplify (39) and express it in terms of integrals over a round
sphere S2 and the eigenspinor of the S2-Dirac operator.

The Hodge decomposition can be applied to the connection 1-form on the normal bundle of the
boundary Ab to yield Ab = ǫb

c /∇cU + /∇bU
′, where U is a rotation potential. This allows to simplify

the quasilocal angular momentum term from (39), i.e.
∮

∂S
NaAadS =

∮

∂S
Uǫab /∇aNbdS. (40)

The spinorial counterpart of the volume element ǫab of ∂S is ǫABCD = i
2 (ǫACγBD + ǫBDγAC), and

ǫab /∇aNb = ǫABCD /∇ABNCD =
2λ

Ω
γABφAφ̂B =

2λ

Ω
(|φ0|2 − |φ1|2), (41)
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where the definition (37) has been taken into account. Inserting this expression into (40) and using
dS = Ω2dS2 yields

∮

∂S
NaAadS = 2λ

∮

S2

U
Ä
|φ̃0|2 − |φ̃1|2

ä
dS2, (42)

where φ̃A =
√
ΩφA. The relation between the volume elements of ∂S and S2 can also be utilized to

write the first term on the right-hand side of (39) in terms of an integral over S2. Ultimately,

4πm ≥
√
2

∮

S2

ρ′|φ̃0|2ΩdS2 +
κ√
2
O
î
φ̃, U
ó
, (43)

where

O
î
φ̃, U
ó
≡ −λ

κ

∮

S2

U
Ä
|φ̃0|2 − |φ̃1|2

ä
dS2,

i.e. the quasilocal angular momentum term can now be written only in terms of the geometry of
S2 and the rotation potential U . Note that the conformal factor Ω appears in the first term in the
right-hand side of the above inequality and it is non-unique since the Möbius group acting on S2

gives rise to different spherical metrics. The inequality obtained is therefore with respect to a given
spherical metric, which can be thought of as a gauge choice here.

5. Axisymmetric inner boundary and the Dirac-Killing system.

A natural assumption associated with the existence of a well-defined angular momentum is that
the initial data is axisymmetric, i.e. there exists 1-form va such that

∇(avb) = 0 on S.
If the inner boundary ∂S is invariant under the action of the 1-parameter group of isometries gen-
erated by va, then va = Πa

bvb (va is intrinsic to ∂S) and the projection of the Killing equation
gives

/∇(avb) = 0 =⇒ /∇av
a = 0.

This suggests that a natural choice for the vector Na defining the quasilocal angular momentum (19)
is that it arises as a solution to the boundary Killing equation, i.e. /∇(aNb) = 0. However, Na has
already been constructed from a spinor φA satisfying a first-order Dirac-type equation (34) on ∂S.
Hence, a natural question arises —can such Na be also a Killing vector of the boundary? We will
show that this cannot be the case on a generic ∂S.

In the sequel we will use an adapted system of coordinates (ψ,ϕ) on the boundary, such that its
metric σab can be written in the following form,

σ = −R2
(

1
F 2dψ ⊗ dψ + F 2dϕ⊗ dϕ

)
, ψ ∈ [ψ0, ψ1], ϕ ∈ [0, 2π],

where F = F (ψ), R is a constant and the axisymmetric Killing vector is now proportional to ∂ϕ.
To avoid the conical singularities on the poles we will assume that F (ψ0) = F (ψ1) = 0. The NP
operators δ and δ reduce to

δ = 1√
2R

(
F∂ψ + i

F ∂ϕ
)
, δ = 1√

2R

(
F∂ψ − i

F ∂ϕ
)
,

in this setting. Moreover, α− β = 1√
2R
∂ψF (see [7] for details).
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A straightforward computation yields

/∇ABNCD + /∇CDNAB = 2ð′
(
φ0φ1

)
oAoBoCoD −

(
ð
(
φ0φ1

)
+ ð

′ (φ0φ1

))
oAoBιCιD

−
(
ð
(
φ0φ1

)
+ ð

′ (φ0φ1

))
ιAιBoCoD + 2ð

(
φ0φ1

)
ιAιBιCιD,

where we have used a decomposition of vector Na in terms of a spinor φA in accordance with (37).
Ultimately, the condition /∇(aNb) = 0 implies that

φ0φ1 = icF, c ∈ R. (44)

Additionally, the spinor φA satisfies a first-order Dirac-type equation (34), which can now be
written as

F∂ψφ1 +
φ1
2 ∂ψF − i

√
2λR
Ω φ0 = 0,

F∂ψφ0 +
φ0
2 ∂ψF − i

√
2λR
Ω φ1 = 0.

(45)

After multiplying the first equation by φ1 and the second by φ0 and performing some manipulations
one arrives at

∂ψ
(
F |φ1|2

)
+ 2

√
2λRcF
Ω = 0,

∂ψ
(
F |φ0|2

)
− 2

√
2λRcF
Ω = 0,

where (44) has been used. Hence

|φ0|2 =
c0
F

+
2
√
2λRc

F

ψ∫

ψ0

F

Ω
dz, |φ1|2 =

c1
F

− 2
√
2λRc

F

ψ∫

ψ0

F

Ω
dz, (46)

for some c0, c1 ∈ R. On the other hand, one can apply F∂ψ to both sides of (44) and use (45) to get
√
2λR

(
|φ1|2 − |φ0|2

)
= 2cΩF∂ψF.

After using (46) we obtain the following compatibility condition for F ,

√
2λR

Å
c1 − c0
F

− 4
√
2λRc

F

ψ∫

ψ0

F

Ω
dz

ã
= 2cΩF∂ψF. (47)

Multiplying the above relation by F and differentiating with respect to ψ we arrive at

c
[
∂ψ

(
ΩF 2∂ψF

)
+ 4R2λ2Ω−1F

]
= 0, (48)

where F (ψ0) = 0 has been used. This equation implies that the metric of the inner boundary (via the
function F ) depends on the choice of the eigenvalue λ. This cannot be the case, as the former arises
as part of the fixed geometric data associated with the initial hypersurface and the latter from the
first-order Dirac-type equation, which is an auxiliary condition used to simplify the mass inequality.
Hence, the only way to solve (48) is to assume that c = 0. In this case φA = 0 and the right-hand
side of the mass-quasilocal angular momentum inequality (39) vanishes.

Remark 1. In case of axisymmetric initial data, the inequality (43) reduces to the positivity of the
ADM mass because φA vanishes. This suggests that the Szabados’s quasi-local angular momentum
cannot give rise to an ADM angular momentum appearing in the Penrose inequality.
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6. Conclusions

We have obtained a new bound for the ADM mass of asymptotically Schwarzschildean initial data
for the vacuum Einstein field equations in terms of the future inner null expansion of the inner
MFTS boundary and its quasilocal angular momentum. Our approach bears similarities to the one
presented in [14], but we extend it here to allow for boundaries with nontrivial extrinsic geometry.
An expression for quasilocal angular momentum (in the sense of Szabados [27]) has been recovered in
the bound for the ADM mass by assuming a specific type of boundary condition for the approximate
twistor equation– a spinor φA solving a first-order Dirac-type equation. The strategy developed in
this work could also be applied to obtain Penrose-type inequalities with different type of asymptotics
(e.g. asymptotically hyperbolic) —as long as the concept of quasilocal angular momentum is well-
defined.
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