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Abstract
Protein coding genes exhibit different degrees of intolerance to loss-of-function variation. The most intolerant genes, whose 
function is essential for cell or/and organism survival, inform on fundamental biological processes related to cell proliferation 
and organism development and provide a window on the molecular mechanisms of human disease. Here we present a brief 
overview of the resources and knowledge gathered around gene essentiality, from cancer cell lines to model organisms to 
human development. We outline the implications of using different sources of evidence and definitions to determine which 
genes are essential and highlight how information on the essentiality status of a gene can inform novel disease gene discovery 
and therapeutic target identification.

Defining essentiality, the first challenge

Knowing how essential a gene is can be key to understanding 
its function and potential involvement in disease. A gene’s 
function may be required for cell proliferation and fitness 
(cellular gene essentiality) or for growth and development of 
an organism (organismal gene essentiality), where its disrup-
tion may lead to lethality ranging from the embryonic stage 
to any period before reproductive age (Rancati et al. 2018).

Most viability studies in mammalian model organisms 
evaluate embryonic and/or postnatal viability, and these, 
together with cell proliferation assays, are some of our main 
sources of essential gene data. When we try to translate this 
knowledge to humans, mainly for the study of human genetic 
disorders, these distinctions and the resulting variability in 
the number of genes labelled as essential are especially rel-
evant. In particular, lethal genes or disorders may include 
those associated with pre-reproductive lethality or where 
reproduction is impaired, the latter due to biological reasons 
or physical and intellectual phenotypes that impede repro-
ductive success (Gao et al. 2015; Amorim, et al. 2017).

Hence, finding which genes are essential is subject to the 
criteria we use to define essentiality and this constitutes one 
of several hurdles. Adding to this challenge, regardless of 
the interpretation of essentiality and even considering the 

same organism or level of organisation, gene essentiality is 
not an unconditional feature. A gene may only be found to be 
essential in certain cell lines, or in some individuals within 
the same species (i.e. mouse genetic backgrounds) implying 
that the interpretation of essentiality as a binary attribute 
is a simplification of a more complex and highly context-
dependent feature (Rancati et al. 2018; Sharma et al. 2020).

What is the actual number of essential 
genes?

An increasing number of large scale CRISPR and RNAi 
screens are being conducted in human cancer cell lines: The 
Cancer Dependency Map (DepMap) and Project Score are 
two of the main projects aimed at investigating the effects of 
gene knockout on the fitness of cell lines, providing scores 
that indicate cell growth inhibition or death (Meyers et al. 
2017; Dwane et al. 2021). A given gene may show variable 
essentiality scores across cell lines, and several attempts 
have been made to identify a core set of essential genes. 
However, the criteria and selected score thresholds can dif-
fer between studies. CEN-tools selected a cluster of genes 
with a high probability of being essential across all the 
investigated cell lines from the projects mentioned above, 
with 942 and 650 genes, respectively, assigned to this core 
essential gene cluster, 519 of which were shared between 
the two projects (Sharma et al. 2020). Previous screens on 
a lower number of cell lines independently reported 1878, 
1734 and 1580 core fitness/essential genes (Wang et al. 
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2015; Blomen et al. 2015; Hart et al. 2015), although the 
exact number may again depend on the selected cut-off. 
According to these results, around 8–10% of protein coding 
genes would be considered cellular essential. A more recent 
resource reveals the phenotypic consequences of disrupt-
ing core cellular processes and provides a new landscape of 
human cellular essential genes, including multidimensional 
image-based phenotypes for 5072 genes. These genes have 
been identified to contribute to optimal cellular fitness, but 
the evidence comes from multiple genetic screens includ-
ing the ones mentioned above, and not all these genes are 
necessarily essential in all the cell lines. These would com-
prise ~ 25% of the coding genome (Funk, et al. 2022).

We are halfway to completing a map of essentiality or 
viability in the mouse. Even accounting for the limitations 
of orthology mapping, we can see important differences in 
the number of lethal lines and the percentage of the coding 
genome considered essential compared to cellular screening 
approaches. In the mouse, this percentage increases to 35% 
of investigated genes based on an International Mouse Phe-
notyping Consortium (IMPC) standardised viability screen 
(Peterson and Murray 2021), a percentage that remains sta-
ble across data releases (Groza et al. 2022), with 2583 out 
of 7335 genes assessed as lethal (1804, 24.6%) or subviable 
(779, 10.6%) according to release 18.0. When using Mouse 
Genome Informatics (MGI) phenotypic annotations from 
lines with heterogeneous backgrounds (Bult et al. 2019), that 
percentage rises to 39%, with 4956 out of 12,753 genes hav-
ing an associated lethal phenotype according to a selected 
set of phenotype terms ranging from embryonic lethality 
before implantation (embryonic day (E) 0 to less than E4.5) 
to postnatal/weaning stage (3–4 weeks of age) (Dickin-
son, et al. 2016). Discrepancies in lethality between mouse 
knockouts from the IMPC and other models collated by MGI 
can be found in ~ 10% of the lines (Cacheiro et al. 2020). 
The impact of genetic background on the particular pheno-
type of essentiality has been investigated in different model 
organisms (Hou et al. 2019; Bello et al. 2020). Additionally, 
within one species gene essentiality may be ‘bypassable’ by 
monogenic suppressors (Li et al. 2019; van Leeuwen, et al. 
2020). Different categorisations of levels of essentiality have 
also been described in yeast: conditional essential, essential, 
redundant essential and absolute essential (Zhang and Ren 
2015). Regardless of whether we consider essentiality at the 
cellular level (gene essential for cell proliferation/fitness/
survival) or at the organism level (gene essential for devel-
opment), gene essentiality cannot be considered a simple 
binary or static attribute1.

A subdivision into two main sets of essential genes has 
been made in different studies. Hart et al. defined these sets 
as ‘core essential’ (essential in all cell lines and contexts) 
and ‘peripheral essential’ (tissue/context-specific essential) 
(Hart et al. 2014). Cacheiro et al. defined genes as either 

‘cellular lethal’ or ‘developmental lethal’, the first set com-
prising a set of genes essential for cell proliferation in most 
cell lines, and the second one those genes where the mouse 
knockout results in preweaning lethality, and that are not 
included in the previous set (Cacheiro et al. 2020). Each cat-
egory contains 35% and 65% of all lethal genes, respectively. 
Unsurprisingly, when the developmental stage at which the 
knockout mice die is considered, early gestation lethal genes, 
where the mouse embryo dies before embryonic day E9.5, 
highly correlate with cellular lethal genes (Cacheiro et al. 
2022). This indicates that there is a set of genes that are 
essential in most cell lines and/or common to all tissues and 
contexts and constitutively expressed that are involved in 
regulating basic cellular functions and another set of essen-
tial genes that may be tissue, context or developmental stage 
specific (Fig. 1).

There are several web portals available that capture 
information on gene essentiality from different resources 
and organisms. The Database of Essential Genes (DEG) 
comprises a catalogue of essential genes identified in bac-
teria and eukaryotes (Luo et al. 2021). The set of human 
essential genes comes from three different sources: human 
orthologues of mouse essential genes; genes with high prob-
ability of intolerance to loss-of-function (LoF) variation 
from the Genome Aggregation Database (gnomAD) (Karc-
zewski et al. 2020); and genes essential according to large 
scale screenings in human cell types. Similarly, regarding 
essential genes in humans, only CRISPR-Cas9 and RNAi 
experimental data in cancer cell lines is included in the 
Online GEne Essentiality Database (OGEE), another online 
resource containing essentiality data from 91 species, where 
conditional (context-dependent) essential genes, i.e. those 
whose essentiality status differs across datasets, are tagged 
(Gurumayum et al. 2021).

Genes essential for human development

Notably, and as reflected by the sets of genes collated in 
the DEG database, our evidence on human essential genes 
comes from cellular assays, human orthologues of mouse 
knockouts and different intolerance scores derived from 
human population sequencing data. Two considerations need 
to be factored in when using these intolerance to LoF vari-
ation scores in this context: (1) they are primarily aimed at 
identifying pathogenic variants and disease-associated genes 
and not characterisation of essential genes, (2) they cap-
ture dominant effects, as opposed to mouse models where 
intolerance to homozygous LoF variation is being evaluated 
(Bartha et al. 2018).

None of these sources of data fully captures those genes 
that are essential for human organism development, i.e. 
those genes with evidence of LoF leading to prenatal or 
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neonatal death. This could also include those genes associ-
ated with pre- reproductive death, or causing severe impact 
on fitness that precludes reproductive success or infertil-
ity. As mentioned above, the definition and consequent 
set of genes essential for human development may vary 
depending on the purpose of the study (Amorim, et al. 
2017). A solution could be to classify the set of known 
lethal genes in humans according to the developmental 
stage at which lethality occurs, as defined by the Human 
Phenotype Ontology (HPO) age of death phenotype terms 
and descriptions (Kohler et al. 2021) (Fig. 2).

Prenatal sequencing is being more widely implemented 
and allows the detection of severe problems, e.g. foetal struc-
tural anomalies, prior to birth, and in the extreme case of 
miscarriage or stillbirth, to perform molecular autopsies to 
clarify the genetic cause of the prenatal death (Robbins et al. 
2019; Stanley et al. 2020; Colley et al. 2019; Yates et al. 
2017; Lord et al. 2019). Similarly, whole genome or exome 
sequencing is being introduced to investigate the genetic 
causes of recurrent pregnancy loss (Najafi et al. 2021). First 
trimester abortuses with no chromosomal abnormalities—
that constitute up to 50% of early pregnancy losses—could 

a

b

Fig. 1   Essential gene classifications a Essentiality may be cell type/
tissue specific, i.e. some genes are essential in all cell lines, some 
essential genes are only shared by certain lines or tissues and some 
others may be only essential in one particular tissue. Similarly, for 
different genetic backgrounds or environments; b Combining infor-
mation from different sources of evidence (knockout screens in 

human cell lines and mouse) has led to a distinction between two 
main sets of essential genes. The boundaries between these categories 
may not be clearly defined, and the set of ‘core’ or ‘cellular’ essential 
genes can consenquently differ depending on the criteria and cut-offs 
selected

Fig. 2   Genes essential for human organism development Defining a 
set of essential (lethal) genes in humans may depend on the purpose 
of the study. A subclassification of lethal genes is suggested based on 

the associated age of death according to Human Phenotype Ontology 
(HPO) terms and definitions
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have a Mendelian origin or more complex pattern of inherit-
ance. The risk of aneuploidy is lower for losses occurring 
later in the pregnancy (Hyde and Schust 2015). Addition-
ally we could consider the aforementioned disorders, where 
death may occur later in life but before reproductive age, 
or with associated phenotypes that impede reproduction 
(Amorim, et al. 2017). Resources for Mendelian disorders 
documenting clinical reports that allow users to perform 
queries using a phenotypic approach include the Online 
Mendelian Inheritance in Man (OMIM) (Amberger, et al. 
2019) and the HPO knowledge bases. However, the evidence 
for conditions with prenatal lethal phenotypes in humans is 
either very limited or not easy to retrieve from these reposi-
tories. One informatic toolkit extracted information from a 
number of various sources to produce a curated list of genes 
candidates to be linked to unexplained infertility and pre-
natal/infantile mortality (Dawes et al. 2019). Genes associ-
ated with infertility have been recently captured in a specific 
resource (Wu et al. 2021). Reduced fertility may indeed be 
associated with (recurrent) early pregnancy loss.

Essential genes and human disease

The essentiality status of a gene provides information on the 
biological process, stages of development, cell types and/or 
tissues where the gene function is required. Additionally, 
they constitute a key resource to investigate the mechanisms 
of disease. The link between essential genes and human dis-
orders is beyond doubt, with an overall enrichment of Men-
delian disease genes amongst the set of lethal mouse ortho-
logue genes (Dickinson, et al. 2016; Dickerson et al. 2011).

Those genes where homozygous LoF is known to cause 
embryonic or postnatal lethality in the mouse constitute 
potential candidates to be associated with early lethal phe-
notypes in humans (Dawes et al. 2019). Hypomorphic or 
non-LoF variants in those genes could lead to partial loss or 
altered function with different phenotypic manifestations, 
in addition to heterozygous LoF variation through domi-
nant-negative or haploinsufficient effects. These may result 
in later onset and/or non-lethal phenotypes that explain the 
strong association between mouse lethal and human disease 
genes. There are multiple examples of homozygous mouse 
knockout lethal genes where heterozygous de novo vari-
ants cause neurodevelopmental disorders (Chao et al. 2017; 
Rodger et al. 2020; Cousin, et al. 2021). Prenatal lethality 
may be considered the most severe phenotypic manifesta-
tion of a Mendelian disorder observed among a much wider 
spectrum of clinical features (Alkuraya 2015; Shamseldin 
et al. 2015). Amongst those genes essential for human devel-
opment with abnormal phenotypes observed during prena-
tal development stages, we find two different scenarios that 
potentially explain the underrepresentation of these genes 

in current gene-disease databases: (a) the associated pheno-
types are restricted to foetal life, hence they may have eluded 
etiological and clinical characterisation since the outcome 
is invariably prenatal or perinatal death; (b) the prenatal 
manifestations constitute a more severe presentation of a 
phenotype previously only observed during postnatal stages, 
hindering the molecular diagnosis at this developmental 
phase (Meier et al. 2019). We expect to find a combination 
of genes where pre/perinatal lethality is the only observable 
phenotype and genes where early lethality is part of a wider, 
postnatal phenotypic spectrum.

This link between essential and disease-associated genes 
has been exploited to investigate particular types of disorders 
and for prioritising genes and potentially pathogenic variants 
in human sequencing studies. Ji et al. provided evidence that 
deleterious variants in essential genes contribute to autism 
spectrum disorder risk (Ji et al. 2016). Two other studies 
found distinct disease categories to be overrepresented in 
different subsets of mouse lethal genes, information that 
was leveraged to develop novel gene discovery strategies 
for neurodevelopmental disorders and inborn errors of the 
metabolism (Cacheiro et al. 2020; Cacheiro et al. 2022).

Machine learning approaches integrating gene expres-
sion across development in relevant tissues among other 
features are providing prioritised sets of genes to be associ-
ated with developmental disorders (Dhindsa et al. 2022). 
The Fetal Sequencing Consortium and specific sequenc-
ing programmes aimed at providing a molecular diagnosis 
for this type of disorders (e.g. Deciphering Developmental 
Disorders) are identifying potentially pathogenic variants in 
genes not yet associated with disease (Giordano and Wapner 
2022; Deciphering Developmental Disorders Study 2015). 
These, together with the known set of Mendelian disease 
genes, those genes essential in cell lines, and the human 
orthologues of mouse and other model organism lethal genes 
constitute our most reliable sources of information to iden-
tify novel candidate genes and catalogue all the genes crucial 
for human development.

Essential genes and drug targets

The screens performed across hundreds of different human 
cancer cell lines allow the generation of cancer depend-
ency maps, since individual cancers may depend on dis-
tinct essential genes for their proliferation and/or survival. 
These conditionally essential genes with variable essenti-
ality across tissues allow the detection of vulnerabilities 
and provide valuable information to identify promising 
therapeutic targets, potentially informing on efficacy, 
selectivity and toxicity (Sharma et al. 2020; Shimada et al. 
2021). 



361Essential genes: a cross‑species perspective﻿	

1 3

Information on embryonic and postnatal lethality, 
together with other abnormal phenotypes observed in the 
mouse knockout, is currently being used in different plat-
forms aimed at identifying and prioritising potential drug 
targets (Ochoa et al. 2022; Nguyen et al. 2017).

The interpretation of constraint metrics derived from 
human sequencing studies and the identification and phe-
notypic characterisation of carriers of LoF variants can 
also assist drug target identification (Minikel et al. 2020). 
Not only the genes where the LoF has a strong phenotypic 
impact are of interest, but also those at the other end of the 
spectrum, where a naturally occurring LoF variant has no 
apparent or subtle impact on the phenotype or may prove 
even beneficial to health. The study of these ‘human knock-
outs’ is key for drug development as they may inform on 
drug efficacy and safety (Narasimhan et al. 2016).

Conclusion

Existing comprehensive resources are collating informa-
tion on cellular essentiality across a large number of human 
cancer cell lines. Similarly, information from large human 
sequencing programmes is used to infer metrics of gene 
intolerance to LoF variation. Information on gene essen-
tiality in the mouse orthologue is available for up to 2/3 of 
human protein coding genes. These different lines of evi-
dence provide invaluable information for the diagnosis and 
understanding of rare genetic disorders and the identification 
of therapeutic targets. However, the catalogue of genes that 
are essential for human development is not yet complete. 
These datasets, together with the known and candidate set 
of Mendelian genes and their associated phenotypes, can 
be integrated to create a catalogue of genes essential for 
human development, ranging from those leading to embry-
onic lethal phenotypes to death before pre-reproductive age. 
This catalogue will be indispensable for our future efforts 
in diagnosing and treating patients with rare conditions 
and understanding the causes of miscarriage and reduced 
fertility.
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