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ABSTRACT
The use of standardised phenotyping screens to identify abnormal
phenotypes in mouse knockouts, together with the use of ontologies to
describe such phenotypic features, allows the implementation of an
automated and unbiased pipeline to identify new models of disease by
performing phenotype comparisons across species. Using data from the
International Mouse Phenotyping Consortium (IMPC), approximately
half of mouse mutants are able to mimic, at least partially, the human
ortholog disease phenotypes as computed by the PhenoDigm
algorithm. We found the number of phenotypic abnormalities in the
mouse and the corresponding Mendelian disorder, the pleiotropy and
severity of the disease, and the viability and zygosity status of themouse
knockout to be associated with the ability of mouse models to
recapitulate the human disorder. An analysis of the IMPC impact on
disease gene discovery through a publication-tracking system revealed
that the resource has been implicated in at least 109 validated rare
disease–gene associations over the last decade.
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INTRODUCTION
The International Mouse Phenotyping Consortium (IMPC) has
been generating functional knowledge for mouse orthologs of
human genes for more than 10 years. This is a global effort of
multiple academic biomedical research centres comprising mutant
mouse line production, standardised and comprehensive
phenotyping screens across several life stages, and computational
analysis. The quality-controlled data undergoes a rigorous statistical
pipeline that is made available to the scientific community through
frequent data releases (DRs). For each knockout (KO) line,
abnormal phenotypes are being ascertained across a range of
physiological systems through comparison with wild-type lines
(Kurbatova et al., 2015; Haselimashhadi et al., 2020). These gene–
phenotype associations have been investigated to increase our

knowledge on human disease using multiple, complementary
approaches: (1) to learn about sexual dimorphism and pleiotropic
traits (Karp et al., 2017; Munoz-Fuentes et al., 2022), (2) to reveal
previously unidentified candidate genes for multiple physiological
systems and disease types (Higgins et al., 2022; Bowl et al., 2017;
Chee et al., 2023; Cacheiro et al., 2022, 2020) and (3) to investigate
how well the current phenotypic screens capture specific human
traits (Cacheiro et al., 2023; Lindovsky et al., 2023).

The use of controlled vocabularies that capture the phenotypic
abnormalities observed in the mutant mice (Mammalian Phenotype
Ontology,MP) (Smith and Eppig, 2009; Baldarelli et al., 2024) and the
clinical manifestations observed in patients affected by a particular
disease (Human Phenotype Ontology, HPO) (Kohler et al., 2017)
enables the systematic computation of phenotypic similarities between
a mouse model and a Mendelian disease. This is performed by the
PhenoDigm algorithm (Smedley et al., 2013) as part of the IMPC
computational pipeline and allows us to identify whichmouse KOs are
able to mimic, even if partially, the phenotypes described in humans.
Therefore, new models of known human disease–gene associations
can be revealed, including those for which no mouse model existed
before. As this is calculated for all the pairwise combinations of mouse
mutants (broken down into homozygous versus heterozygous mutants
and embryo versus early adult stages) and rare disorders with available
HPO annotations, previously unreported gene–disease links can also

Research Simplified
Researchers often delete or mutate specific genes in mice to investigate
the roles of these genes and their protein products in human disease.
The International Mouse Phenotyping Consortium (IMPC) is a global
effort by multiple research institutes to generate a collection of mice with
mutations in every protein-coding gene and catalogue the physiological
effects (or phenotype) of the mutations. This is important as these
physiological effects may mimic the symptoms of human diseases,
enabling further research into these conditions.
The authors of this study analysed the IMPC phenotypic data recently

released in December 2023 using the PhenoDigm algorithm, which
compares the phenotypes in the mice with the phenotypes of human
diseases. Out of 2400 mouse models with mutations in genes that are
associated with a human disease, the algorithm found that 1311 mouse
models mimicked the corresponding human disease, a twofold increase
from the previous IMPC data release in March 2019. Moreover, 692
mousemodels that had already been reported in 2019 showed additional
phenotypes in new physiological systems. The authors also found that
the IMPC resourcewas used in 125 published studies that identified roles
of 109 genes in diseases, highlighting its importance in disease gene
discovery.
Overall, this study highlights the value of the IMPC for human genetic

studies, as it is important for researchers to know if the mice they are
using in their laboratory truly resemble the human disease they are
investigating.Handling Editor: Elaine R. Mardis
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be uncovered, e.g. a gene not known to be associated to disease shows
a high phenotypic similarity with multiple well-characterised
developmental syndromes (Cacheiro et al., 2020). Such examples
included mouse KOs for Lmtk2 or Gga1 with several reproductive
system phenotypes mimicking spermatogenic failure disorders
(OMIM:618152, OMIM:618429 and OMIM:618433). A previous
Lmtk2 model collated by the Mouse Genome Informatics (MGI)
resource displayed abnormal male reproductive system phenotypes
(Kawa et al., 2006). For Gga1, existing non-IMPC models showed
various abnormal phenotypes affecting different physiological systems
(Govero et al., 2012). The PhenoDigm algorithm also identified IMPC
models of Dazap2 displaying significant abnormal eye phenotypes
(Groza et al., 2023) similar to those reported in patients affected
by retinitis pigmentosa (OMIM:615565, OMIM:300155 and
OMIM:268025) whereas phenotypes in KOs for Bicdl2 (Groza et
al., 2023) mirrored those present in polycystic kidney diseases
(OMIM:617610, OMIM:263200 and OMIM:620056). Neither of
these two genes have other mouse models with abnormal phenotypes
as compiled by the MGI resource. It is important to highlight that our
comparisons rely exclusively on genotype–phenotype data accessible
through the MGI database due to the automated process of our
PhenoDigm algorithm pipeline and that other models may have been
documented in the literature and not yet captured by MGI.
The viability screen performed in all mutant lines provides invaluable

information to understand the variable degree of intolerance to loss-of-
function variation across the protein-coding genome. The strong
association between lethal lines and Mendelian phenotypes in humans
has been the foundation of multiple novel disease gene discovery
approaches (Cacheiro et al., 2022, 2020). One successful strategy
identified a set of genes that are essential for mouse organism
development but non-essential for cell proliferation and that are highly
constrained according to several metrics. Further comparison of embryo
and early adult mouse phenotypes and clinical features observed in
patients with variants in genes lacking a molecular diagnosis led to the
prioritisation of a subset of previously unreported ‘developmental lethal’
genes, with three of them having been functionally validated as the
causative gene for the disorder (Vetro et al., 2023; Cousin et al., 2021;
Rodger et al., 2020).
Here, we focus on a set of 2742 genes known to be associated with

rare disorders and investigate the ability of their corresponding IMPC
mouse ortholog models to mimic the phenotypes observed in patients,
providing several examples. We also evaluate this performance in the
context of various disease andmousemodel features such as genotype,
number of phenotypic annotations and disease area, and highlight
some of the challenges and limitations of the IMPC approach. Lastly,
we provide an overview of the translational impact of this resource in
rare disease research by conducting a review of the literature using the
IMPC repository for gene discovery in Mendelian conditions. This
analysis extends beyond the phenotypes ascertained through the IMPC
pipeline to the availability of IMPC mutant lines to researchers.
Together, these have allowed the generation of new knowledge that
can be tracked through their use in scientific publications.

RESULTS
DR20.1 and update on models of rare disease
According to the most recent data release at the time of this analysis
(DR20.1, December 2023), 8707 mouse genes have entered the
IMPC phenotyping pipeline. For 2742 (31%), the one-to-one
human ortholog is associated with a Mendelian disease according to
Online Mendelian Inheritance in Man (OMIM)/Orphanet resources
(Amberger et al., 2019; http://www.orpha.net). Our PhenoDigm
algorithm requires MP-encoded phenotypes for the mouse KO and

HPO-encoded phenotypes for the associated disease to compute the
phenotypic similarity between them. Out of 2400 gene KOsmeeting
these criteria, 1311 (55%) are able to mimic, to some extent, the
corresponding human disease phenotypes (Fig. 1A). This is a
twofold increase compared to that in our previously published report
based on DR10.0 (March 2019) in which PhenoDigmmatches were
found for 615 human disease genes in the 5861 phenotyped lines
(Cacheiro et al., 2019). An additional 123 genes are matched when
comparing preweaning lethality annotations in the mouse and
manually curated reports of early, pre-infant death in the OMIM
clinical records (Cacheiro et al., 2024). This number increases to
156 if we include death during childhood. These are gene-level
results and it is important to emphasise that although multiple
mouse models may exist for a given gene (e.g. embryo, early adult,
heterozygous, homozygous), only one might obtain a PhenoDigm
match. Similarly, among several disorders associated with the same
gene, only one might achieve a PhenoDigm match, based on the
documented human phenotypes. The complete list of pairwise
mouse model–disease scores and matching terms is available to
explore and download from https://diseasemodels.research.its.qmul.
ac.uk/.

PhenoDigm generates a percentage-based score for all the pairwise
MP–HPO comparisons relative to the maximum possible scores, i.e.
that of a mouse perfectly mimicking the disease phenotypes. The
distribution of this percentage score for the IMPC models is illustrated
in Fig. 1B. An example of one PhenoDigmmatch is shown in Fig. 1C,
where the IMPC homozygous model for Cox8a shows several
metabolism and eye abnormalities mimicking several phenotypes
described in patients affected by disorders associated with the human
ortholog and with a score (37.28) close to the average (mean=32.1,
s.d.=12.7). A higher score (59.76) is obtained by the Tead1
heterozygous KO (illustrated in Fig. 1D) with several abnormal eye
phenotypes. A near-maximum similarity score (96.08) is achieved by a
model of maturity-onset diabetes of the young, type 4, in which the
heterozygous KO-impaired glucose tolerance captures the diabetes
phenotypes available as HPO terms (Fig. 1E). Detailed information on
these three models is available through the IMPC resource (Groza
et al., 2023).

The IMPC pipeline additionally computes the phenotypic
similarity for different mouse lines and associated phenotypes
available through the MGI database, a resource that collates mouse
data from different sources (Martin et al., 2019; Stark et al., 2021).
By comparing the scores of the separate IMPC and external MGI
models (if available), we were able to identify 400 genes modelled
by IMPC with no previous MGI mouse–human disease phenotypic
match, i.e. no previous mouse KO captured by MGI or no existing
mouse model with phenotypic overlap with the disease phenotypes
as computed by PhenoDigm. For the examples illustrated in Fig. 1,
(1) Cox8a has no other mouse model as captured in MGI,
(2) previous models are reported for Tead1 that do not achieve
a positive score (Sawada et al., 2008; Chen et al., 1994) and
(3) different existing models for Pdx1 show similar overlap with
the associated disease phenotypes (Holland et al., 2002, 2005).
Conversely, PhenoDigm fails to get a positive score for 203 genes in
the current IMPC pipeline with documented abnormal phenotype
and disease association as outlined in the MGI resource.

It is important to note that not only has the number of mouse lines
available through the IMPC programme significantly increased since
DR10.0 in 2019 (from 5861 to 8707 phenotyped genes in DR20.1),
but the number of genes associated to Mendelian disorders has also
increased: 4986 OMIM/Orphanet one-to-one human orthologs of
mouse genes were incorporated into the DR20.1 PhenoDigm analysis
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pipeline in comparison to 4166 genes available in 2019. Additionally,
in DR20.1, we found additional phenotypes in previously unidentified
physiological systems for 692 gene KOs that had already entered the
phenotyping pipeline in DR10.0 and with a link to a human disease in
OMIM/Orphanet at the time. This gradual accumulation of data for a
line is explained by some features of the IMPC programme, including
its multicentre nature, the generation of different mutants for the same
gene (homozygous and heterozygous for lethal lines) and the
phenotyping occurring at different developmental stages.

Analysis of PhenoDigm matches
In order to investigate which features may impact the ability of IMPC
mouse KOs to recapitulate the phenotypes observed in patients, we
further annotated all the OMIM/Orphanet genes that entered our

PhenoDigm pipeline with a high-level disease class (based on
PanelApp level 2 categories; Martin et al., 2019; Stark et al., 2021;
see Materials and Methods) and the evidence for the gene–disease
association (based on the OMIM category ‘disorders with molecular
basis known’ and the PanelApp categorisation of green, amber and red
levels). Additionally, we explored the performance of lines that are
lethal versus viable in a homozygous state, and the coverage of both the
HPO and MP annotations for the disease and the mouse models,
respectively. When we limited the analysis to genes classified as
‘green’ (diagnostic grade), the percentage ofmatches slightly increased
to 58% (1108/1924) compared to 55% for all associations. This
percentage was not uniform across disease categories, ranging from
81% for endocrine disorders to 48% for respiratory disorders and 57%
for neurology and neurodevelopmental disorders, the categorywith the

Fig. 1. Automated identification of disease models. (A) Data from International Mouse Phenotyping Consortium (IMPC) data release (DR) 20.1 showing
the number of mouse genes with a human ortholog associated to Mendelian disease and the subsequent number of PhenoDigm matches, where the mouse
model is able to mimic, at least partially, the phenotypes observed in patients. (B) Distribution of PhenoDigm scores for the mouse model–disease pairs with
a percentage score >0. Grey dots show individual data points and the blue shaded region shows the density curve. The box shows the interquartile range,
the whiskers show the variability outside the interquartile range and the median is marked with a line. (C) An example illustrating the IMPC mouse abnormal
phenotypes for Cox8a (right), the human phenotypes for the associated disorder (left), the individual ontology terms that are matched between the two
organisms and the final percentage PhenoDigm score. (D) The homozygous (hom) knockout (KO) for Tead1 shows preweaning lethality, whereas the
heterozygous (het) model mimics some of the eye phenotypes observed in patients affected by the associated disorder. (E) The heterozygous KO for Pdx1
achieves the maximum similarity score capturing the human phenotypes described for the human disease maturity-onset diabetes of the young, type 4. AD,
autosomal dominant; AR, autosomal recessive; het, heterozygous; hom, homozygous; HPO, Human Phenotype Ontology; MGI, Mouse Genome Informatics;
MP, Mammalian Phenotype Ontology; OMIM, Online Mendelian Inheritance in Man.
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highest number of genes. An enrichment analysis confirmed several
disease classes for which phenotype matches were overrepresented.
(Fig. 2A). The IMPC pipeline measures and captures significant
phenotypesmore in certain systems than in others, which could explain
this difference; e.g. 764 IMPC genes show an endocrine/exocrine
gland phenotype, 812 have a nervous system phenotype, but only 141
have a respiratory system phenotype. Importantly, 3244 genes have an
associated ‘homeostasis/metabolism phenotype’, making it the

category with the highest number of gene–phenotype associations.
Additionally, although specific abnormalities under this parental term
in the MP ontology have a perfectly matching term in the HPO, e.g.
‘MP:0005478, decreased circulating thyroxine level’ and
‘HP:0031507, decreased circulating T4 concentration’, in humans,
this phenotype is found under the ‘abnormality of the endocrine
system’ grouping term. Besides differences in the proportion of
PhenoDigm matches across disease categories, the distribution of the

Fig. 2. Analysis of PhenoDigm matches. (A) Disease categories overrepresented among PhenoDigm matches. (B) Distribution of PhenoDigm scores for
the mouse model–disease pairs with a PhenoDigm match (maximum score per gene). (C) Percentages of matches by disease mode of inheritance. AD,
autosomal dominant; AR, autosomal recessive. (D) Comparison of mouse and human phenotypes between PhenoDigm matches and non-matches. Boxes
show the interquartile range, the whiskers show the variability outside the interquartile range and the median is marked with a line. (E) Correlation between
PhenoDigm scores (PhenoDigm matches) and number of mouse and human phenotypes. (F) Correlation between number of MP terms and the number of
HPO terms associated to each mouse model–disease pair for PhenoDigm matches and non-matches. (G) Coefficients from a logistic regression model fitted
to describe and explain the relationship between the binary variable PhenoDigm match/non-match and several mouse model, gene and disease features.
(H) Correlation between the number of phenotypic procedures completed and the number of significant MP terms for homozygous (viable) and heterozygous
(homozygous lethal) early adult models (outliers removed, one phenotyping procedure can lead to several MP term associations). het, heterozygous; hom,
homozygous; HPO, Human Phenotype Ontology; MP, Mammalian Phenotype Ontology. Odds ratio and Fisher’s exact tests P-values (Benjamini–Hochberg
adjusted) are shown in A; two-sided P-values for Fisher’s exact test and Wilcoxon test are shown in C,D; Pearson’s correlation coefficients (r) are shown in
E,F,H; point estimates of logistic regression coefficients and 95% c.i. are shown in G. Number of mouse model–disease pair PhenoDigm matches, n=2621;
PhenoDigm non-matches, n=6881. Multiple mouse models may exist for a given gene. Similarly, several disorders may be linked to the same gene.
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scores for those genes with a match is not uniform across disease
categories (Fig. 2B). Considering the mode of inheritance for the
associated disorders, the proportion of matches was higher, although
not statistically significant, for the genes linked to both autosomal
dominant and recessive inheritance compared to those linked to just
dominant or just recessive inheritance (Fig. 2C).
The number of phenotypes described both for the mouse mutant

and the associated human disease is significantly different between
PhenoDigm matches and non-matches (Fig. 2D). For the PhenoDigm
matches, there is a positive but very weak correlation between the
value of the score and the number of MP and top-level MP terms,
whereas the opposite is true for the number of HPO and top-level HPO
terms (Fig. 2E). This is as expected given the PhenoDigm algorithm,
in which the queries are the disease–HPO annotations; so the more
terms there are, the less likely it is that all the HPO annotations will be
matched to give a high score. In contrast, having moreMPannotations
for the mouse matches increases the chance of a high score. No
meaningful correlation was found between the number of MP terms
and HPO terms for each mouse model–disease pair (Fig. 2F).
Focusing on mouse model features, for the gene KOs with

viability assessment results, we found a significant association
between viability category and the likelihood of obtaining a
phenotype match (P=0.008), with the percentages of positive scores
being 50, 52 and 58% for the sub-viable, lethal and viable
categories, respectively. The percentage of genes in each category
for all the lines with viability data are 8, 24 and 68%, respectively, a
ratio that has remained fairly constant across data releases. However,
when we consider the subset of disease-associated genes
irrespective of the PhenoDigm match outcome, the percentages
(12, 38 and 50%, respectively) illustrate the previously reported
enrichment for mouse embryonic or early postnatal lethality among
Mendelian genes (Cacheiro et al., 2020; Dickinson et al., 2016;
Georgi et al., 2013).
A logistic regression model was fitted using these and other

mouse model-, human gene- and disease-specific features, in which
PhenoDigm matches (class 1) correspond to the mouse model–
disease pairs with PhenoDigm >0 and PhenoDigm non-matches
(class 0) correspond to pairs with no HPO–MP match. The
regression coefficients shown in Fig. 2G highlight the effect of the
number of phenotyping procedures completed (phenotyping for
some lines has not yet been concluded) and number of significant
mouse phenotypes and HPO terms associated with the human
disorder. Additionally, the genes belonging to different disease
categories and those for which early death has been reported are
more likely to obtain a match. Consistent with the positive direction
of the association for these features, the genes in the latter category
correlate with those associated with multisystemic phenotypes
(Cacheiro et al., 2024). The positive effect of homozygous KO
models is in agreement with a higher proportion of matches found
among the viable lines described above. Homozygous, viable
models showing a higher number of significant phenotypes and
being more likely to obtain a match are also associated with a higher
number of successful phenotyping procedures completed
(P<2.2×10−16). However, the correlation between the number of
procedures completed and significant MP terms is again weak
(Fig. 2H), suggesting that other factors may be involved (see
Discussion).
Themost frequent disease categories among the PhenoDigmmatches

‘rescued’ by manual comparison of lethal phenotypes between mouse
and human include neurology and neurodevelopmental disorders,
followed by metabolic disorders, dysmorphic and congenital
abnormality syndromes, and cardiovascular disorders. In this

particular context, skeletal disorders, while being the third most
prevalent category among all pre-infant lethal phenotypes (Cacheiro
et al., 2024), exhibit lower prevalencewithin this specific subset of genes
associated with early lethal phenotypes in humans for which the mouse
KOs are not able to capture other disease phenotypes.

Impact of IMPC on Mendelian gene discovery
Through a publication-tracker system and subsequent manual
curation to ascertain the distinct use of the resource (see Materials
and Methods), we identified 7111 publications from 2011 to 2024
matching at least one of these criteria: (1) IMPC publication; (2) the
publication uses data generated by the IMPC or cites an IMPC
publication; or (3) uses embryonic stem cell/mouse KO lines
generated by the IMPC.

To assess the impact of the IMPC onMendelian gene discovery, we
investigated which of these IMPC-related publications have described
a previously unreported gene discovery. To this end, we extracted the
PubMed reference number (PMID) from the curated IMPC
publications and cross-referenced them with PMIDs used as
evidence for genes and associated diseases within OMIM
(Amberger et al., 2019) and genes in PanelApp (Martin et al., 2019;
Stark et al., 2021) for the genes with a mouse ortholog that has entered
the IMPC pipeline. The process for gene and disease selection is
elucidated in Fig. 3A and described in the Materials and Methods.
These publications were then manually curated to establish the
following categories: (1) previously unreported gene–Mendelian
disease discovery publications and (2) publications providing
relevant functional evidence for understanding mechanisms. Each
category is further broken down into: (1) publications that use IMPC
data, i.e. gene–phenotype associations assessed by the IMPC
phenotyping pipeline and (2) publications that use IMPC lines
(embryonic stem cells or mice).

From 125 publications in total, the IMPC resource was directly or
indirectly involved in establishing 109 previously unreported gene–
disease associations. For previously unreported Mendelian disease
gene discoveries, 35 genes were established from IMPC data, 29 from
embryonic stem cell/mouse lines and 13 from both data and lines. As
for describing previously unknown functional evidence for a disease
mechanism, one genewas established from IMPCdata, 29 from IMPC
lines and two from both (Fig. 3A). Interestingly, we found IMPC data/
lines were involved inMendelian disease gene discovery or functional
disease mechanisms for an additional set of 26 genes categorised as
amber or red by PanelApp (see Materials and Methods). The IMPC
has generated more and more data since its inception in 2011 as
reflected in Fig. 3B. As an example of IMPC data supporting disease
gene discovery, the role of biallelic variants in KDELR2 causing a
form of osteogenesis imperfecta with neurodevelopmental features
was supported by incompletely penetrant preweaning lethality, bone
structural abnormalities in early adult mice, and decreased size,
abnormalities in head shape and size, facial dysmorphology, and
abnormal embryonic bodywall structure reported in the embryo in the
IMPC mutant (Efthymiou et al., 2021).

DISCUSSION
Comparison of phenotypes across species enables the automated
identification of mouse models that recapitulate the phenotypes of
the Mendelian disorder associated with the corresponding human
ortholog. The standardised, multisystemic, unbiased and high-
throughput nature of the IMPC phenotyping pipeline generates a
dataset that can be investigated to identify factors associated with
the ability of the mouse models to phenocopy human disease. We
found that for almost half of the mouse orthologs of human disease
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genes that the IMPC has tested, there was no phenotypic overlap
detected by our algorithm. Manual curation of lethal phenotypes
reported in humans increased the percentage of matches, suggesting
that the current approach is not well designed to compare these age
of death records. Some of the constraints include ambiguous reports
of age of death and the difficulty in extracting these from OMIM
clinical records, the limited number of current HPO annotations
regarding lethality in humans, and the fact that genes with prenatal
lethal phenotypes are likely underrepresented in current disease
databases (Cacheiro et al., 2022; Dawes et al., 2019). Efforts are

being made to improve and expand prenatal terms in humans
including prenatal and perinatal death (Dhombres et al., 2022). This,
together with the increase in the number of prenatal sequencing
studies, will potentially improve the performance for KO models
with embryonic phenotypes. Improvements to the algorithm could
be implemented to align phenotypes between mice and humans for
the same disorder and gene at equivalent developmental stages.

The differences in performance between viable and lethal lines
highlights several aspects that should be taken into consideration:
(1) although we are evaluating one model (homozygous KO early

Fig. 3. Impact on Mendelian gene discovery. (A) Process for gene and disease selection to examine the impact of the International Mouse Phenotyping
Consortium (IMPC) on Mendelian gene discovery. Genes from OMIM and Panel App were selected based on being human protein-coding genes (HUGO
Gene Nomenclature Committee, HGNC), having a mouse ortholog and being part of the IMPC phenotyping line. Associated diseases to genes listed in
OMIM were selected for information retrieval. The PMIDs of publications used within OMIM and PanelApp for each gene/disease were cross-referenced
against PMIDs from IMPC-related publications. Papers that contributed evidence to establish previously unreported gene–disease discoveries or functional
evidence of a disease mechanism were manually curated. Within that cohort, the number of genes that were investigated using IMPC phenotyping data and/
or an IMPC line were classified. (B) Number of IMPC publications that contributed evidence on gene discoveries per year and number of phenotyped genes
by the IMPC.
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adult) for viable lines, for lethal lines, we are, in most cases,
separately evaluating a homozygous mouse embryo model and a
heterozygous KO early adult model against a single set of human
disease-associated phenotypes; (2) in the lethal homozygous KO
models, we are assessing the complete loss of function of a gene,
whereas for heterozygous mouse models with viable phenotypes,
we are looking at a haploinsufficiency mechanism. Previous
evidence suggests that for embryonic lethal lines, heterozygous
mice are often able to mimic phenotypes observed in humans
carrying biallelic variants, suggesting hypomorphic effects of
protein-truncating variants (Blackburn et al., 2020; Beecroft et al.,
2021). To add to this challenge, the IMPC KOs do not necessarily
model the type of variants observed in humans, e.g. missense
variants and/or gain-of-function mechanisms in different types of
disorders (Foreman et al., 2023; Gallego-Martinez et al., 2019;
Martinez-Barrios et al., 2022), although precision modelling of such
variants has been performed in mice in other projects.
Other limitations pertaining to the IMPC phenotyping and

statistical analysis pipeline involve the heterogeneous
implementation of certain phenotypic assays across phenotyping
centres, which restricts the ability to capture human phenotypes.
This has been discussed in the specific case of congenital heart
disorders (Cacheiro et al., 2023). In addition, the human phenotypes
described for a disorder vary in frequency and come from case
reports in the literature, whereas an associated phenotype as per the
IMPC pipeline is only assessed after strict quality-control
procedures and statistical significance for the KO compared to a
set of matched wild-type mice (Haselimashhadi et al., 2020).
Hence, the inability to identify relevant abnormal phenotypes in
mice, which are observed in humans, does not necessarily imply
that the phenotypes are not present. It is possible that the assay
required to capture the relevant phenotypewas not conducted or that
the sample size was not sufficient to detect the abnormal phenotype,
as only large effects are likely to be detected.
Factors impacting the ability of mouse KOs to model human

disease beyond the phenotyping pipeline, statistical analysis and
cross-species comparison algorithm have been previously discussed
and include the limitation of using one uniform genetic background
and potentially different phenotype associations for single gene KOs
in different backgrounds (Simon et al., 2013; Doran et al., 2016).
Moreover, the more heterogeneous background found in humans,
with polygenic factors contributing to variable expressivity and
penetrance (Oetjens et al., 2019; Fahed et al., 2020) and differences
in developmental gene expression profiles between the two species
that could translate into phenotypic differences (Cardoso-Moreira
et al., 2020) should also be considered.
Overall, the proportion of PhenoDigm matches, computed using

the exact same criteria and sources of human disease annotations, has
increased from a previously published report (Cacheiro et al., 2019).
Given the nature of the IMPC approach, we expect this percentage to
keep rising, as all the phenotypic assays for lines that have already
entered the pipeline are completed and analysed. Importantly, for
many human disease genes, the IMPC mouse ortholog models
constitute either the first mouse model or a model achieving a higher
similarity score. One unique feature of the IMPC is the systematic
annotation of negative phenotypes, where assays have not recorded a
statistically significant abnormal phenotype, and, in the future, we
plan to incorporate these data into the algorithm to improve accuracy.
In addition, all human disease phenotypes are currently treated
equally, but recently, frequencies have been added (how often
patients with the disease exhibit the phenotypes), and these will also
be incorporated to improve performance.

As mentioned earlier, our automated pipeline relies on the
availability of HPO-encoded phenotypes for the human disorder.
However, it is important to recognise that the set of human gene–
disease associations used in our analysis is not exclusive and our
approach may overlook some relevant associations. For instance, our
current implementation fails to include 195 genes in the existing
IMPC pipeline for which documented disease associations exist
according to theMGI resource (Blake et al., 2021), or 106 diagnostic
grade genes listed in PanelApp (Stark et al., 2021). Multiple sources
document evidence on Mendelian phenotype associations, relying
on expert curation and with varying degrees of diagnostic relevance
(Robin-Tobias et al., 2024 preprint). The addition of other disorders
catalogued by the Disease Ontology (Baron et al., 2024) or genes
labelled as ‘amber’ and ‘red’ in PanelApp, for which the phenotype
association needs further evidence and investigation, could be
explored.

In addition to the identification of models for known gene–
disease associations, the impact of the IMPC programme on
Mendelian gene discovery can also be assessed directly through the
use of the data provided by the internal pipeline or indirectly
through the external phenotyping of models using embryonic stem
cell lines and mouse lines generated by the Consortium. We found
125 publications describing previously unreported gene–disease
discoveries and/or providing relevant evidence for the disease
mechanisms for 109 genes that made use of the IMPC resource and
that are captured by OMIM and/or PanelApp. Recent publications
not yet collated by these resources or those not indexed in PubMed
are excluded in this analysis.

In summary, this analysis highlights how the use of standardised
vocabularies of phenotypic abnormalities and algorithms for
cross-species comparisons facilitates the automated and unbiased
identification of mouse models of disease. Here, we limited our
approach to known gene–disease associations; however, the
PhenoDigm algorithm may also be used to uncover previously
unreported gene–phenotype links. The data generated by the IMPC
constitute a valuable resource for human genetic studies, having
been implicated in multiple Mendelian gene discovery studies and
providing functional evidence for disease mechanisms.

MATERIALS AND METHODS
Automated identification of disease models – PhenoDigm
pipeline and analysis of mouse model–disease matches
The PhenoDigm algorithm was used to compute the phenotypic similarity
between mouse models and known human disorders (Kohler et al., 2017).
The percentage-based score used here is obtained by comparing the best and
mean scores for all individual pairwise HPO–MP term comparisons relative
to the maximum possible score, i.e. a mouse model perfectly mimicking all
the human disease phenotypes. For the purpose of our analysis, a
PhenoDigm percentage score greater than 0, which implies at least one
HPO–MP match, was considered a PhenoDigm match.

IMPC mouse model and phenotype associations, and information on
procedures completed according to DR20.1 are available online (https://
ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/release-20.1/results/; data
accessed on 4 April 2023). Additional MGI models (Blake et al., 2021;
Eppig et al., 2017) and their associated phenotypes were also used in
the analysis pipeline to identify novel/improved models [https://www.
informatics.jax.org/downloads/reports/index.html (MGI_PhenoGenoMP.rpt,
MGI_Geno_DiseaseDO.rpt, MGI_DO.rpt); data accessed 4 April 2023].
Human gene–disease associations from OMIM (Amberger et al., 2019)
and Orphanet (http://www.orpha.net) and their associated phenotypes
were obtained from the HPO (Kohler et al., 2017) [https://www.
orphadata.com (en_product1.xml, en_product6.xml); https://www.omim.
org/ (morbidmap.txt); https://hpo.jax.org/app/data/ontology; https://hpo.jax.
org/app/data/annotations (hpo.obo); data accessed 10 November 2023]. The
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initial PhenoDigm pipeline relies on gene–gene ortholog mapping from
Ensembl BioMart (Martin et al., 2023). A stricter one-to-one mouse–human
ortholog relationship was considered for this analysis, with a mapping file
being generated using data from MGI (Blake et al., 2021), Human Genome
Organisation (HUGO) Gene Nomenclature Committee (HGNC) (Seal et al.,
2023) and HGNC Comparison of Orthology Predictions (HCOP) (Yates
et al., 2021). A one-to-one constraint was applied in both directions (human-
to-mouse direction and mouse-to-human direction) and a threshold for
agreement between the prediction services on what constitutes an ortholog of
five or more of the 12 prediction services listed in HCOP was used. The
mapping file used for these analyses is provided as Dataset 1 (data accessed
12 April 2024). Disease categories were obtained from PanelApp, a resource
of expert curated gene panels for Mendelian disorders (Martin et al., 2019;
Stark et al., 2021) (https://panelapp.agha.umccr.org; data accessed 5 April
2024). Gene panels were categorised in hierarchical disease categories; level 2
panel information was used in this analysis. Information on lethal phenotypes
in humans was curated from OMIM clinical records and obtained from the
Lethal Phenotypes Portal (Cacheiro et al., 2024) (https://lethalphenotypes.
research.its.qmul.ac.uk/; data accessed 12 April 2024).

All IMPC phenotypic data, information on standardised phenotyping
protocols, analysis pipelines described in this paper and Animal Research:
Reporting of In Vivo Experiments (ARRIVE) guidelines are publicly
available through the IMPC portal (https://www.mousephenotype.org/) and
the FTP repository (http://ftp.ebi.ac.uk/pub/databases/impc/).

The mouse model–human disease PhenoDigm scores are available
through the IMPC Disease Models Portal (https://diseasemodels.research.
its.qmul.ac.uk/). Additional PhenoDigm scores corresponding to the
similarity between mouse models of non-disease associated genes and
known disorders pairs are provided to assist researchers in previously
unidentified Mendelian gene discovery and prioritising candidates for new
gene–phenotype associations in humans.

Ortholog mapping files are generated on a weekly basis as part of the
internal IMPC pipeline to track the production and phenotyping of mutant
mice in the Genome Targeting Repository (GenTaR). These can be accessed
through the following endpoints: one-to-one ortholog calls, https://www.
gentar.org/orthology-api/api/ortholog/one_to_one/impc/write_to_tsv_file;
all ortholog calls (one-to-one and one-to-many), https://www.gentar.org/
orthology-api/api/ortholog/write_to_tsv_file. The file used in this paper is
available as Dataset 1.

The code is available at https://github.com/whri-phenogenomics/disease_
models.

IMPC publication tracking and identification of relevant papers
IMPC mines the scientific literature using natural language processing
methods to generate a corpus of papers that is then reviewed by an
annotator using an IMPC-specific curation/literature-tracking tool. The
corpus identification is optimised for recall to avoid missing papers and
uses a dictionary of search terms, including official mouse allele
nomenclature that uniquely identifies each IMPC line, references to
repository identifiers in mouse stock centres, portal URLs, the Knockout
Mouse Project (KOMP), IMPC, and also includes papers that cite IMPC
papers. The results are reviewed and categorised into papers that use
IMPC datasets, methods (for example, BioConductor analysis packages)
and mouse lines. Authors do not always use the official nomenclature;
therefore, annotators review the evidence in the paper to determine
whether an IMPC line has been used when official nomenclature is
absent. The dataset comprising reviewed papers was mined to extract
papers referring to IMPC KO lines relevant to this paper that were
published during 2011-2024 (https://www.mousephenotype.org/data/
publications; data accessed 10 April 2024).

Impact of IMPC in Mendelian gene discovery
To identify which of the publications identified through the publication-
tracking system described in the previous section report previously unreported
gene–Mendelian disease associations, we proceeded as follows. First, we
selected the set of human protein-coding genes in HGNC (Seal et al., 2023)
[https://www.genenames.org/ (gene_with_protein_product.txt); data accessed
9 April 2024] with a mouse ortholog that has entered the IMPC phenotyping

pipeline as per DR20.1. Second, we retrieved the HGNC ID and reference list
for each gene and their associated linked disease/phenotype as per OMIM
MorbidMap. Using theOMIM application programming interface (API) (data
accessed 15 April 2024), PMIDs within the evidence lists were used for
analysis, ignoring evidence without a PMID. Subsequently, the PMIDs of the
curated genes were matched with those from IMPC publications, and a similar
approach was applied to the diseases. Publications were selected if a gene–
disease or disease-only association was suggested. A similar process was
followed to identify gene discovery papers based on genes registered in
PanelApp. However, we did not extract exact data on the exact disease
associated with the gene. We retrieved the complete, up-to-date gene set using
the PanelApp API (https://panelapp.agha.umccr.org; data accessed 5 April
2024) and extracted the HGNC ID and publication data associated with each
gene categorised as ‘green’. These are diagnostic-grade genes, with strong
clinical evidence that are used in analysis and reporting within a diagnostic
setting. For ‘amber’ and ‘red’ genes, the evidence is either not conclusive or
low. The publication data of this gene list were refined to retain the available
PMIDs. In instances where PMIDs were not directly available, the available
data such as the citation details of the paper, PubMed Central reference
number, linked publication websites or titles were manually curated to
determine a PMID. Finally, the gene PMIDs were associated with those of the
IMPC publications. After manually curating the publication list from both
sources, the reported genes were categorised as ‘gene discovery’ or ‘functional
disease mechanisms’. When a gene was categorised as both ‘gene discovery’
or ‘functional mechanism’, it was prioritised as ‘gene discovery’ to avoid
overlap.

Statistical analysis and software
Two-sided P-values for the test of independence were computed using Fisher’s
exact test. The Wilcoxon test was used to compare the number of HPO and MP
terms between PhenoDigmmatches and non-matches. Pearson’s coefficient was
used to compute the linear correlations. Odds ratio and the corresponding
confidence intervals were obtained from a 2×2 table with the number of matches
and non-matches for genes belonging to a given disease category compared to
genes in any other disease class. Benjamini–Hochberg correction for multiple
testing was applied. The statistical analysis described abovewere performed in R
(https://www.r-project.org/). Logistic regression model was fitted using
‘tidymodels’ (https://www.tidymodels.org). The web application was also built
using the R programming language, including the following packages: ‘shiny’
(https://cran.r-project.org/web/packages/shiny/), ‘shinydashboard’ (https://cran.r-
project.org/web/packages/shinydashboard/) and ‘DT’ (https://cran.r-project.org/
web/packages/DT/).

The ARRIVE guidelines are applied to the IMPC resource. The full
list, including information on study design, sample size, statistical
methods, experimental animals and procedures and reporting of results, is
available at https://www.mousephenotype.org/about-impc/animal-welfare/
arrive-guidelines/.
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