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Abstract—UAV communication has received widespread atten-
tion in MEC systems due to its high flexibility and line-of-sight
transmission. Users can reduce their local computing pressures
and computation delay by offloading tasks to the UAV as an edge
server. However, the coverage capability of a single UAV is very
limited. Moreover, the data offloaded to the UAV will be easily
eavesdropped. Thus, in this paper, we propose two secure trans-
mission methods for multi-UAV-assisted mobile edge computing
based on the single-agent and multi-agent reinforcement learning,
respectively. In the proposed methods, we first utilize the spiral
placement algorithm to optimize the deployment of UAVs, which
covers all users with the minimum number of UAVs. Then, to
reduce the information eavesdropping by a flying eavesdropper,
we utilize the reinforcement learning to optimize the secure
offloading to maximize the system utility by considering different
types of users’ tasks with diverse preferences for residual energy
of computing equipment and processing delay. Simulation results
indicate that compared with the single-agent method and the
benchmark, the multi-agent method can optimize the offloading
in a better manner and achieve larger system utility.

Index Terms—UAV communication, mobile edge computing,
reinforcement learning, secure transmission.

I. INTRODUCTION

The fifth generation (5G) mobile communications have

brought many applications with high latency and bandwidth

requirements [1]–[3]. Most of the intelligent services of 5G,

e.g., automatic drive and virtual reality, have extremely high

requirements on computing delay, which makes it difficult to

process the huge number of computing tasks within an very

short time. On the other hand, due to the limited energy of

mobile devices, the high energy consumption caused by the

large number of computing tasks is also a challenging puzzle

[4], [5]. To solve these problems, mobile edge computing

(MEC) and its offloading methods have been proposed [6],
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[7]. With the help of MEC, the mobile users on the edge of

the network can send tasks to the edge servers for computing,

thereby reducing the energy consumption and latency [8], [9].

Equipping edge servers on unmanned aerial vehicles (UAVs)

enables rapid network deployment regardless of the terrain

factors because the UAV has high mobility and line-of-sight

(LoS) transmission capabilities. It can also greatly reduce

the computing energy consumption and latency [10]. Under

the limitation of energy, Li et al. maximized the migration

throughput of user tasks by utilizing UAV as the edge server

[11]. Zhang et al. proposed a UAV-assisted MEC system

includes a base station (BS) with MEC server, a UAV-MEC

server and multiple mobile devices, in which a weighted

system cost including both the energy consumption and delay

is minimized through optimizing the offloading [12]. Liu et al.
jointly optimized the central processing unit (CPU) control,

offloading strategy and flight trajectory to minimize the total

energy consumption of the UAV [13]. Zhang et al. minimized

the total energy consumption through jointly optimizing the bit

allocation, slot scheduling, power allocation and trajectory in

the UAV-assisted MEC system [14]. Zhang et al. utilized UAV

as the edge server and relay to minimize the average delay

through sequentially solving the joint user association and

computing resource allocation problem, the communication

resource allocation problem and the UAV layout problem

[15]. In order to minimize the energy consumption of mo-

bile devices, UAV’s propulsion and computing power in the

UAV-assisted MEC system, Tun et al. jointly optimized the

trajectory, resource allocation, and task offloading [16].

Due to the limited coverage, one single UAV can only

provide MEC services for a limited number of users within

the coverage. In order to serve more users to realize edge

computing, multiple UAVs need to be deployed. Haber et al.
investigated the problem of multi-UAV-assisted ultra-reliable,

low-latency computational offloading, which maximized the

rate of served requests by optimizing the UAV’s positions,

offloading decisions and the allocated resources while meet-

ing the requirements of delay and reliability [17]. Wang et
al. established a multi-UAV collaborative MEC framework

and minimized the system’s energy consumption under the

condition that all offloading tasks are completed [18]. Xiao

et al. jointly optimized the flight trajectory and offloading

allocation to minimize the energy consumption of the multi-

UAV-assisted MEC system [19]. Yang et al. found the optimal

offloading with the goal of global load balancing in the multi-
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UAV-assisted MEC system [20]. Sun et al. optimized the 3-

dimensional (3D) deployment of UAVs to reduce the total

delay under the condition that UAVs complete all offloading

task of users [21]. With the goal of reducing energy consump-

tion, Wang et al. jointly optimized the task scheduling and

deployment of UAVs for the multi-UAV-assisted MEC system

[22]. Wang et al. jointly optimized each UAV’s trajectory and

the offloading decision from all the users to maximize the

fairness among all the users and the fairness of user-load of

each UAV, as well as minimizing the energy consumption of

all the users [23].
It is noticed that in the UAV-assisted MEC system, the data

offloaded to the UAV for edge computing can be easily eaves-

dropped, as it is transmitted through LoS links. Therefore,

the secure transmission of offloading data in the UAV-assisted

MEC system is significant. Based on the deep reinforcement

learning, Jing et al. maximized the average secrecy rate of

users through the optimization of the flight trajectory in the

UAV-assisted MEC system [24]. Gu et al. jointly optimized the

computing and communication resource to minimize the UAV

computing and offloading energy consumption on the premise

of satisfying the constraints of secure offloading rate and

computation delay [25]. Under the constraints of the secure

offloading rate and transmit power, Li et al. minimized the

total energy consumption of the UAV through the optimization

of the task allocation, user transmit power and flight trajectory

[26]. Xu et al. jointly optimized the computation resource

and flight trajectory to maximize the minimum secrecy ca-

pacity in the UAV-assisted secure MEC system for both the

time division multiple access (TDMA) and non-orthogonal

multiple access (NOMA) [27]. Comparing with the ground

eavesdroppers, which are deployed at the fixed locations in

the above works, UAV eavesdroppers will have much better

channel condition due to the LoS transmission. Thus, the

offloading data can be easily overheard by UAV eavesdroppers.

The major challenges for considering UAV eavesdroppers are

to consider the uncertainty of UAV eavesdroppers’ position

and anti-collision constraint between UAVs. Han and Zhou

jointly optimized the UAV’s position, transmit power of users,

task offloading ratio and UAV jamming power with the target

of maximizing the minimum secrecy capacity, when UAV

eavesdroppers overhear the offloading data [28], [29].
However, in the existing research works, the secure trans-

mission for UAV assisted MEC system is only considered

with one single UAV, while the security of multi-UAV-assisted

MEC systems is largely ignored. As a consequence, this

paper proposes two secure transmission schemes for multi-

UAV-assisted MEC based on the single-agent and multi-agent

reinforcement learning, respectively. In the proposed methods,

we first utilize the spiral placement algorithm to optimize the

deployment of UAVs, covering all the users with the minimum

number of UAVs. Then, we utilize the reinforcement learning

to optimize the secure offloading to maximize the system

utility.
The major contributions of this paper are summarized as

follows:

1) We propose a secure transmission model for multiple

UAVs assisted MEC, including multiple ground users,

Fig. 1: System model.

multiple UAVs as MEC edge servers, one eavesdropping

UAV and one jammer to send artificial jamming.

2) The spiral placement algorithm is utilized to solve the

placement problem of UAVs. Then, we formulate an

optimization problem to maximize the system utility

for the secure offloading, which considers the limitation

of the secure offloading transmission rate, computing

latency, energy consumption and task types.

3) In order to obtain the optimal secure offloading, we

transform the long-term process of offloading decision

into the Markov decision process. Then, the single-agent

and multi-agent schemes based on the reinforcement

learning are proposed to maximize the system utility.

The rest of this paper is organized as follows. Section II

introduces the system model, secure communication model

and computation model. Section III formulates the problem

to cope with. Section IV and V give the single-agent scheme

and multi-agent scheme based on the reinforcement learning,

respectively. Section VI presents the convergence performance

of the schemes and gives the simulation results in considera-

tion of different energy limitation. Section VII concludes our

works.

II. SYSTEM MODEL

In this section, we first introduce the system model. Then,

the secure communication model is given. After that, we an-

alyze the local computation and offload computation models.

Table I presents the notations in this paper.

A. System Model

We consider a multi-UAV-assisted MEC system with one

UAV as the eavesdropper (UAV E), one ground jammer (GJ)

to send the jamming signal, M UAVs as the edge servers

(UAV Ss) and K ground users (GUs) as shown in Fig. 1.

We assume that UAV Ss and the GJ belong to the legitimate

network. However, the UAV E is an eavesdropper which does

not belong to the legitimate network. Since UAV Ss have the

perfect knowledge of the jamming signal sent by the GJ via

means of synthetic aperture radar [27], [30], they can subtract

it from the received signals. However, the jamming signal sent

by the GJ can be considered as the noise for the UAV E,
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TABLE I

MAJOR NOTATIONS

Notation Description

M The set of UAV Ss

K The set of GUs

wG
k Coordinates of GUk

wJ Coordinates of GJ

wE Coordinates of UAV E

wS
m Coordinates of UAV Sm

Zm
The set of GUs
covered by UAV Sm

wGS
zm

Coordinates of GUzm

R Coverage radius of UAV S

hk,m Channel gain between GUk and UAV Sm

hk,e Channel gain between GUk and UAV E

hj,e Channel gain between GJ and UAV E

rk,m
The SINR of the received signals from GUk

to UAV Sm

rk,e
The SINR of the received signals from GUk

to UAV E

pk Transmit power of GUk

pj Transmit power of GJ

δ2m The AWGN at UAV Sm

δ2e The AWGN at UAV E

Rk,m Task offloading rate from GUk to UAV Sm

Rk,e Eavesdropping rate from GUk to UAV E

Rsec
k,m Secure offloading rate from GUk to UAV Sm

G The index, number and the set of task types

Lg
k The task of GUk

Dg Data size of type g task

Tg The maximum tolerable delay of type g task

f local
k Computing capacity of GUk

T local
k,g Local computation delay of task Lg

k

Elocal
k,g Local energy consumption of task Lg

k

T tran
k,g,m Delay of transmitting task Lg

k from GUk to UAV Sm

Wm Bandwidth of GUk

fm Computing capacity of UAV Sm

T comp
k,g,m

Computing delay for task Lg
k at UAV Sm

Ecomp
k,g,m

Computing energy consumption for task Lg
k

at UAV Sm

Tm
k,g Total delay for task Lg

k at UAV Sm

Tk,g Execution delay of task Lg
k

Eg
max The maximum usable energy of GUk

EUAV S
max The maximum usable energy of UAV Sm

Ok,m
The set of GUs that have chosen to
offload tasks to UAV Sm before GUk’s turn

Rsec
min The minimum secure offloading rate

Usys System utility

θg Preference of task Lg
k for the delay

ηg
Preference of task Lg

k for the residual energy
of computing device

because it does not have any information about the GJ and

treats all the received signals as useful ones.

In this paper, the positions of UAV Ss, UAV E, GUs and

GJ are assumed to be fixed. The coordinates of GUk (k ∈ K,

K = {1, 2, . . . ,K}), GJ and UAV E are denoted as wG
k =

(xG
k , y

G
k , 0)

T
, wJ = (xJ, yJ, 0)

T
and wE = (xE, yE, hE)

T
,

respectively, where hE is the flight altitude of UAV E. The

coordinates of UAV Sm (m ∈ M, M = {1, 2, . . . ,M})
are denoted as wS

m = (xS
m, ySm, hS

m)
T

, where hS
m is the

flight altitude of UAV Sm. The set of GUs covered by the

UAV Sm is denoted as Zm = {1, 2, . . . , Zm}, and the

Fig. 2: Illustration of the spiral algorithm.

coordinates are denoted as wGS
zm = (xGS

zm , yGS
zm , 0)

T
, where√(

xGS
zm − xS

m

)2
+

(
yGS
zm − ySm

)2 ≤ R with R being the cover-

age radius of UAV S. We consider that the UAV E has better

coverage ability than the UAV S, and thus the UAV E can

cover all the GUs in the system.

The number and coordinates of UAV Ss are determined

by the position distribution of GUs and coverage radius of

UAV S. In order to minimize the number of UAV Ss to cover

all the GUs, we formulate the optimization problem as

min
wS

m

M (1)

s.t.

√(
xGS
zm − xS

m

)2
+

(
yGS
zm − ySm

)2 ≤ R, ∀m, (2)

Z1 ∪ Z2 ∪ . . . ∪ ZM = K, (3)

in which the constraint (2) indicates the coverage limitation

of the UAV S, and the constraint (3) guarantees that each GU

can be covered by at least one UAV S.

The above optimization problem can be settled by the

spiral placement algorithm [31]. The main idea is to place

the UAV Ss in sequence along the area perimeter, which is

defined as the path connecting the extreme points (referred

to as the boundary GUs) of the convex hull of all uncovered

GUs.

Specifically, we take Fig. 2 as an example to illustrate

the steps of the spiral placement algorithm. For placing the

first UAV S, e.g., UAV S1, we randomly select a boundary

GUi0 (e.g., GU3 at the lower left corner denoted by a red

triangle) and take wG
i0

as the initial position of UAV S1. Then,

for covering as many boundary GUs as possible, we utilize

Algorithm 1 to optimize the position of UAV S1 wS
1 , which

is initialized to wG
3 . At this time, we input wS

1 , the set {GU3}
as Kprio and the set of uncovered boundary GUs as Ksec to

Algorithm 1. Noted that in step 3 of Algorithm 1, the 1-center

problem can be solved by several algorithms [32], [33]. After

that, as shown in Fig. 2, the boundary GU2 and GU4 can be

covered while ensuring that the boundary GU3 can be covered.

Then, we proceed to cover as many inner GUs as possible

through Algorithm 1 similarly while the boundary GU2, GU3

and GU4 are guaranteed to be covered first. At this time, we

input the updated wS
1 , the set {GU2,GU3,GU4} as Kprio and

the set of uncovered inner GUs as Ksec to Algorithm 1. After

that, the inner GU7 and GU8 will be covered. We use a green

pentagram to denote the final position of UAV S1 as shown
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in Fig. 2. For placing the second UAV S UAV S2, we choose

the first uncovered boundary GUi′0 counterclockwisely next to

GUi0 as the initial position of UAV S2, which in this case is

GU5. Then, repeat the above steps to find the final position

of UAV S2. The above process repeats until all the GUs are

covered.

Algorithm 1 UAV S Position Optimization Algorithm

Input: The position of the new UAV S wS
m (m ∈M) that to

be optimized, the set of GUs which must be covered fist

Kprio, the set of uncovered boundary/inner GUs Ksec.

1: while Ksec �= ∅ do
2: Update set Ksec by excluding GUs more than 2R away

from any GU in set Kprio. Update set Kprio (Ksec) by

including (excluding) GUs within distance R to wS
m.

3: Find GUi1 ∈ Ksec with shortest distance to wS
m. Add

(remove) GUi1 to (from) Kprio (Ksec) if it can be

covered by optimizing wS
m via settling the 1-center

problem.

4: end while
Output: The optimized position of the new UAV S wS

m.

B. Secure Communication Model

The channels between UAVs and GUs follow the free-space

path loss. The channel gain between GUk and UAV Sm can

be given by

hk,m =
μ

d2k,m
, (4)

where μ is the channel gain at the reference distance of 1

m, and dk,m =

√(
xG
k − xS

m

)2
+

(
yGk − ySm

)2
+ hS

m
2

is the

distance between the GUk and UAV Sm.

Meanwhile, the channel gain between the GUk and UAV E

can be defined as

hk,e =
μ

d2k,e
, (5)

where dk,e =

√(
xG
k − xE

)2
+

(
yGk − yE

)2
+ hE

2 is the

distance between the GUk and UAV E.

The channel gain between the GJ and UAV E can be

defined as

hj,e =
μ

d2j,e
, (6)

where dj,e =

√
(xJ − xE)

2
+ (yJ − yE)

2
+ hE

2 is the dis-

tance between the GJ and UAV E.

We assume that a group of M non-overlapping channels

are assigned to the UAV Ss for collecting task data from the

GUs. The GUs offloaded the data to the same UAV S will use

TDMA to avoid the co-channel interference [21]. Therefore,

the signal-and-noise ratio (SNR) of the received signals from

the GUk to UAV Sm can be given by

rk,m =
hk,mpk
δ2m

, ∀k,m, (7)

where pk is the transmit power of GUk, and δ2m is the additive

white Gaussian noise (AWGN) at UAV Sm.

As the UAV E cannot distinguish the signals released by

GUk or GJ, the signal-to-interference-and-noise ratio (SINR)

of the received signals from the GUk to UAV E can be given

by

rk,e =
hk,epk

hj,epj + δ2e
, ∀k, (8)

where pj is the transmit power of GJ, and δ2e is the AWGN

at UAV E.

Thus, the task offloading rate from the GUk to UAV Sm

can be given by

Rk,m = log2

(
1 +

hk,mpk
δ2m

)
, ∀k,m. (9)

The eavesdropping rate from the GUk to UAV E can be

given by

Rk,e = log2

(
1 +

hk,epk
hj,epj + δ2e

)
, ∀k. (10)

As a result, the secure offloading rate from the GUk to

UAV Sm can be expressed as

Rsec
k,m = (Rk,m −Rk,e)

+
, ∀k. (11)

C. Computation Model

Assume that each GU has one certain type of task to be pro-

cessed. The set of task types is denoted as G = {1, 2, . . . , G}.
If the task type of GUk is g, the GUk task is denoted as Lg

k,

Lg
k � (Dg, Tg), where Dg is the data size of type g task and

Tg is the maximum tolerable delay for this type of task. GUs

can choose to compute its task locally, or offload its task to a

connectable UAV S for computation.

1) Local Computing: If the GUk chooses to complete its task

Lg
k locally, we define T local

k,g as the local computation delay,

which only includes the computing time depending on the

GUk’s CPU. Then, T local
k,g can be expressed as

T local
k,g =

DgC
local

f local
k

, ∀k, (12)

where C local is the number of CPU cycles required by the

local device for computing one bit of task, and f local
k is the

computing capacity of the GUk’s CPU.

Assuming that the effective capacitance coefficient of GUk

is qk, the energy consumption for local computing can be given

by

Elocal
k,g = qkT

local
k,g

(
f local
k

)3
, ∀k. (13)

2) Offloading Computing: If the GUk offloads the task to

the UAV Sm, the offloading process includes three steps as

follow.

In the first step, the GUk sends the task data to the

UAV Sm. The delay of transmitting the task Lg
k from the GUk

to the UAV Sm can be expressed as

T tran
k,g,m =

Dg

WmRsec
k,m

, ∀k,m, (14)

where Wm is the bandwidth of the GUk.

In the second step, the UAV Sm computes the task data.

The computing time for executing the task Lg
k at the UAV Sm

can be expressed as

T comp
k,g,m =

DgCm

fm
, ∀k,m, (15)

Page 12 of 19

https://mc.manuscriptcentral.com/tnse-cs

Transactions on Network Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

where Cm is the number of CPU cycles required by the

UAV Sm to compute one bit of task, and fm is the computing

capacity of UAV Sm.

Assuming that the effective capacitance coefficient of

UAV Sm is pm, the computing energy consumption of

UAV Sm can be expressed as

Ecomp
k,g,m = pmT comp

k,g,m(fm)
3
, ∀k,m. (16)

In the third step, the UAV Sm sends the data back to the

GUk. Since the transmit power of UAV S is generally much

larger than that of GU and the size of task execution results

is much smaller than the input data, the delay can be ignored

[25].

Therefore, for the offloading computation process, the total

execution delay of task Lg
k can be approximated as

Tm
k,g ≈ T tran

k,g,m + T comp
k,g,m, ∀k,m. (17)

To sum up, the execution delay of task Lg
k can be given by

Tk,g =

{
T local
k,g , local computing

Tm
k,g, offloading to UAV Sm

, (18)

where Tk,g should satisfy the constraint Tk,g ≤ Tg . The total

delay for all tasks can be denoted as
K∑

k=1

Tk,g .

The offloading decision of task Lg
k for the GUk is represent-

ed as ak
g =

[
ag,k0 , ag,k1 , ag,k2 , . . . , ag,kM

]
, where ag,k0 = 1 means

that the GUk chooses to compute its task locally and ag,km = 1
means that the GUk offloads its task to the UAV Sm, which

should satisfy the constraint of
M∑
i=0

ag,ki = 1, ag,ki ∈ {0, 1}.

III. SYSTEM UTILITY FUNCTION AND PROBLEM

FORMULATION

In this section, the system utility function and the optimiza-

tion problem are formulated.

In this paper, the system utility includes the delay related

utility and the residual energy related utility, which are named

as the delay utility and energy utility, respectively.

If the GUk chooses to accomplish the task locally, the delay

utility and energy utility obtained by the local computation can

be defined as

U local,de
k,g =

Tg − T local
k,g

Tg
, (19)

U local,en
k,g =

Eg
max − Elocal

k,g

Eg
max

, (20)

respectively, where Eg
max is the maximum usable energy of

the GUk with task Lg
k.

Otherwise, if the GUk offloads the task to the UAV Sm,

the delay utility and energy utility obtained by the offloading

computation can be defined as

Ude
k,g,m =

Tg − Tm
k,g

Tg
, (21)

U en
k,g,m =

EUAV S
max − ∑

i∈Ok,m

Ecomp
i,g,m

EUAV S
max

, (22)

respectively, where EUAV S
max is the maximum usable energy of

UAV Sm and Ok,m = {1, 2, . . . , Ok,m} is the set of GUs that

have offloaded tasks to the UAV Sm before the GUk’s turn.
The system utility function can be expressed as

U sys =
K∑

k=1

[
θg

(
ag,k0 U local,de

k,g +
M∑

m=1

ag,km Ude
k,g,m

)]

+
K∑

k=1

[
ηg

(
ag,k0 U local,en

k,g +
M∑

m=1

ag,km U en
k,g,m

)]
,

(23)

where θg and ηg are the preference of task Lg
k for the delay

and residual energy of computing device, respectively.
After solving the deployment problem of UAV Ss, the ob-

jective function is to maximize the system utility by optimizing

the offloading decision ak
g . The problem can be expressed as

max
ak

g

U sys (24)

s.t.

M∑
i=0

ag,ki = 1, ag,ki ∈ {0, 1} , ∀k, (25)

Tk,g ≤ Tg, ∀k, , (26)

Rsec
k,m ≥ Rsec

min, ∀k,m, (27)

EUAV S
max ≥

∑
i∈Ok,m

Ecomp
i,g,m, ∀k,m, (28)

Eg
max ≥ Elocal

k,g , ∀k, (29)

where the constraint (25) indicates that the task can be either

fully calculated locally or completely offloaded to UAV Ss for

computing, the constraint (26) guarantees that the processing

delay of task Lg
k cannot exceed its maximum tolerable delay

Tg , the constraint (27) ensures that the secure offloading rate

cannot be smaller than the minimum secure offloading rate

Rsec
min, the constraint (28) means that the computing energy

consumption for any UAV S cannot exceed the maximum

usable energy EUAV S
max , and the constraint (29) ensures that

the locally computing energy consumption does not exceed

Eg
max for task Lg

k.
The optimization problem of (24) is non-convex, which

cannot be solved by conventional methods. Hence, the single-

agent and multi-agent schemes based on reinforcement learn-

ing are proposed to solve the problem in this paper, which are

detailed in the next section.

IV. SINGLE-AGENT SCHEME BASED ON

REINFORCEMENT LEARNING

In order to develop the optimal secure offloading scheme,

we transform the long-term process of offloading decision into

Markov Decision Process (MDP). The four basic elements of

MDP are first introduced in this section, and then the single-

agent scheme based on the reinforcement learning is proposed

to obtain the optimal secure offloading by maximizing the

system utility.

A. Basic Elements of MDP
Generally, the MDP model contains four basic elements,

including the state, action, state transition probability and re-

ward. In this paper, since the GUs can only get the knowledge
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6

TABLE II

THE RESIDUAL ENERGY RATIO OF UAV S

Uen
k,g,m (0.00, 0.25) (0.25, 0.50) (0.50, 0.75) (0.75, 1.00)

USTm 1 2 3 4

about the environment state without any prior information, the

transition probability of states is unknown. Thus, the process

of the task offloading decision is modeled as an MDP without

transition probability. The state, action, and reward function

in the model are defined as follows.

1) State: Since the system utility is affected by the change-

able residual energy of the UAV Ss, the system state is repre-

sented by S = {UST1, UST2, . . . , USTM}, where USTm is

the quantitative value of U en
k,g,m, which is carried out according

to Table II, with a total of four quantization levels [34].

Then, the system utility function in (23) can be converted

to

U sys′ =
K∑

k=1

[
θg

(
ag,k0 U local,de

k,g +
M∑

m=1

ag,km Ude
k,g,m

)]

+
K∑

k=1

[
ηg

(
ag,k0 U local,en

k,g +

M∑
m=1

ag,km

USTm − 1

3

)]
.

(30)

The corresponding optimization problem can be expressed

as

max
ak

g

U sys′ (31)

s.t. 1 ≤ USTm ≤ 4, ∀k,m. (32)

(25)-(27), (29),
2) Action: If the current task is Lg

k, the offloading decision

vector ak
g is utilized to represent the current action.

3) Reward Function: When the current task is Lg
k, the

immediate reward earned by the agent after taking action ak
g

can be expressed as

rkg =

{
θgU

local,de
k,g + ηgU

local,en
k,g ag,k0 = 1

θgU
de
k,g,m + ηg

USTm−1
3 , ag,km = 1

. (33)

B. Single-Agent Scheme Based on QL

Q-learning (QL) is one of the representative reinforcement

learning algorithms, which uses an agent to establish a Q-

table step by step. The agent can take action in the current

state according to the expected cumulative discount reward,

which is stored in the Q-table. At each step t, the agent will

observe the current state st and performs the action at. The

environment will feedback an immediate reward r (st, at) and

transform into the next state st+1. The agent will update its

Q-table based on the reward r (st, at). The Q-value in the

Q-table is updated as

Q (st+1,at+1) = (1− α)Q (st,at) + α [r (st,at)

+γmaxQ (st+1,a
′)] ,

(34)

where Q (st,at) and r (st,at) are the Q-value and immediate

reward of the agent when it takes action at in the state st,
respectively. st+1 is the next state after performing the action

at, α ∈ [0, 1) is the learning rate and γ ∈ [0, 1) is the discount

factor.

Then, the single-agent task offloading scheme based on the

QL is proposed, which is described in Algorithm 2. First, all

the GUs form one agent and their tasks form a queue. At

each decision step, the agent explores in the probability ε and

utilizes the Q-table in the probability 1 − ε. When choosing

the action according to the Q-table, the agent always takes the

action with the highest Q-value as shown in (34). If the action

cannot satisfy the constraints, the agent will choose the action

with the highest immediate reward from the actions that meet

the constraints. After taking the action, the agent will calculate

the next state and the immediate reward, and update the Q-

table. The environment will transform into the next state.

Algorithm 2 Single-Agent Task Offloading Algorithm

Input: Learning rate α, discount factor γ, exploration proba-

bility ε. The initial value in the Q-table is 0.

1: repeat
2: Reset the initial state s0.

3: while The task queue is not null do
4: The agent chooses the action using ε-greedy policy.

If the action with highest Q-value cannot satisfy

the constraints, choose the action with the highest

immediate reward instead.

5: The agent obtains its immediate reward and calcu-

lates the next state st+1.

6: Update the Q-table according to (34).

7: Let st ← st+1, remove the first task in the queue.

8: end while
9: until The Q-table converges

Output: The Q-table of agent.

V. MULTI-AGENT SCHEME BASED ON

REINFORCEMENT LEARNING

Considering the variety of task types, the multi-agent

scheme based on the reinforcement learning is utilized to

optimize the secure offloading.

A. Multi-agent Scheme Based on NQL

Nash Q-learning (NQL) is a reinforcement learning algo-

rithm applicable to multiple agents. In the NQL algorithm,

the Q-value function for the agent g can be denoted by

Qg (s,a1,a2, . . . ,aG), which is the sum of the immediate

reward and the future reward when all the agents adopt the

Nash equilibrium strategies. As a result, the Nash Q-function

of the agent g can be expressed as

Q∗g (s,a1,a2, . . . ,aG) = rg (s,a1,a2, . . . ,aG)+

γ
∑
s′∈S

p (s′|s,a1,a2, . . . ,aG)Vg (s
′, π∗1 , π

∗
2 , . . . , π

∗
G),

(35)

where rg (s,a1,a2, . . . ,aG) is the immediate reward obtained

by the agent g for performing ag in the state s under the joint

actions (a1,a2, . . . ,aG), γ is the discount factor, S is the

set of all the environment state, s′ is the possible transition

state, and p (s′|s,a1,a2, . . . ,aG) is the probability that the
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7

environment state changes to the state s′ after the joint actions

is performed in the state s. (π∗1 , π
∗
2 , . . . , π

∗
G) is the joint actions

that satisfy the Nash equilibrium, and Vg (s
′, π∗1 , π

∗
2 , . . . , π

∗
G)

is the total discounted rewards obtained by the agent g in the

next state s′ under the condition that each agent follow the

Nash equilibrium strategy.

The NQL algorithm continuously updates Q-values of the

corresponding agent according to the feedback of the envi-

ronment through the continuous interaction between multiple

agents and the environment. After observing the state of

the current state s, the system performs the joint actions

(a1,a2, . . . ,aG) according to the state. After that, the state

of the environment changes to its transition state s′, and each

agent needs to observe the joint actions and rewards of all the

agents. Then, the agent g updates the Q-values in the Q-table

by

Qg
t+1 (s,a1,a2, . . . ,aG) = (1− α)Qg

t (s,a1,a2, . . . ,aG)+

α [rgt (s,a1,a2, . . . ,aG) + γNashQg
t (s

′)] ,
(36)

where α is the learning rate, and the NashQg
t (s

′) is the Nash

equilibrium reward of the agent g in the state s′, which can

be defined as

NashQg
t (s

′) = π1 (s
′) · · ·πG (s′) ·Qg

t (s
′) . (37)

In order to calculate the NashQg
t (s

′), the agent g needs to

know Q1
t , · · · , QG

t at the same time, which is the reason of

building G Q-tables for each agent. Similar as (36), the agent

g will update the Q-value about the agent j by

Qj
t+1 (s,a1,a2, . . . ,aG) = (1− α)Qj

t (s,a1,a2, . . . ,aG)+

α
[
rjt (s,a1,a2, . . . ,aG) + γNashQj

t (s
′)
]
.

(38)

Then, the multi-agent task offloading scheme based on the

NQL is proposed, which is detailed in Algorithm 3. In the

multi-agent system, the length of the task queue in each

agent is the number of GUs with the same type task. The set

{L1, L2, . . . , LG} is utilized to denote the length of the agents’

queues. The calculation of state in the multi-agent scheme is

the same as the single-agent scheme, while the definition of

the action and reward is different.

1) Action: If the current task is Lg
k, ak

g is utilized to represent

the current action of the agent g.

2) Reward Function: When the current task is Lg
k, the

immediate reward earned by the agent g after taking action

ak
g is expressed as (33).

The multi-agent scheme adopts the ε-greedy strategy in

the same way as the single-agent scheme. However, when

choosing the joint actions according to the Q-tables, the joint

actions that satisfy both of Nash equilibrium and constraint

conditions may not be found during the learning process.

In this case, we choose the joint actions with the highest

immediate reward from the actions that meet the constraints.

B. Complexity and Convergence of Algorithm 3

In this subsection, the complexity and convergence for the

proposed multi-agent task offloading algorithm are analyzed.

In the multi-agent system, the state space and action space

of each agent are denoted as |S| and |A|, respectively. There

TABLE III

PARAMETER SETTINGS VARYING BY TASK TYPES

Type 1 Type 2 Type 3

Data size (Mbit) 40 15 2

Maximum latency tolerance (s) 0.50 0.20 0.05

Maximum usable energy of GU (J) 25.00 9.38 1.25

Preference for delay 0.8 0.4 0.2

Preference for residual energy 0.1 0.2 0.5

Algorithm 3 Multi-Agent Task Offloading Algorithm

Input: Learning rate α, discount factor γ, exploration prob-

ability ε and initial system state s0. The initial value in

each Q-table is 0.

1: repeat
2: Reset the initial state s0.

3: while (L1 �= 0 & L2 �= 0 & . . . LG �= 0) do
4: All agents take joint actions using ε-greedy policy. If

cannot find joint actions that satisfy both of Nash

equilibrium and constraint conditions, choose the

joint actions with the highest immediate reward from

the actions that meet the constraints.

5: for g = 1 : G do
6: Agent g calculates the immediate reward.

7: end for
8: Calculate the next state st+1

9: for g = 1 : G do
10: Agent g updates the Q-table according to (36).

11: end for
12: Let st ← st+1, remove the first task in each agent

queue.

13: end while
14: until The Q-tables converge

Output: Q-tables of all agents.

holds |A1| = |A2| = · · · = |AG| = |Λ| in the action set, which

means that the space capacity of each Q-table is |S| |A|G. As

a result, the space complexity of Algorithm 3 is G |S| |A|G.

The convergence of Algorithm 3 needs to meet the following

two assumptions [34].

Assumptions 1. In Algorithm 3, each agent should visit every

possible state and action during the learning process.

Assumptions 2. The joint actions (a1,a2, . . . ,aG) taken by

each agent and state s in each step t as well as the learning

rate should meet the following two conditions.

Condition 1:
0 ≤ αt (s,a1,a2, . . . ,aG) < 1
∞∑
t=0

αt (s,a1,a2, . . . ,aG) =∞
∞∑
t=0

[αt (s,a1,a2, . . . ,aG)]
2
<∞

(39)

Condition 2:
If (st,at

1,a
t
2, . . . ,a

t
G) �= (s,a1,a2, . . . ,aG),

αt (s,a1,a2, . . . ,aG) = 0.
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8

TABLE IV

SIMULATION SETTINGS

Parameter Value

Flight altitude of UAVs 50 m

Transmission bandwidth 40 MHz

Reference channel gain -40 dB

Noise power -80 dBm

Transmit power of GJ 1 W

Transmit power of GUs 1 W

CPU frequency of GUs 1 GHz

CPU frequency of UAV Ss 10 GHz

Coverage radius of UAV Ss 100 m

CPU cycles/bit for GUs 6000

CPU cycles/bit for UAV Ss 1000

Effective capacitance coefficient 10−25

Minimum secure offloading rate 5 bps/Hz

0 100 200 300

x(m)

0

100

200

300

y
(m

)

1

2

3

4

GU

UAV_S

Fig. 3: Results of UAV S deployment with UAV S coverage radius R=100
m and 30 GUs.

When the learning rate αt meets the above conditions, and

the mapping Pt : Q → Q satisfies the following conditions,

where Q is the space of all Q-functions.

There is a number γ ∈ (0, 1), and a sequence λt that

tends to 0 with the probability 1, so that ‖PtQ− PtQ
∗‖ ≤

γ ‖Q−Q∗‖ + λt is true for Q∗ = E [PtQ
∗] and all Q ∈ Q.

Then, the iterative equation Qt+1 = (1− αt)Qt + αt [PtQt]
converges to Q∗ with the probability 1. For multiple a-

gents, it always holds that
(
Q1

t , Q
2
t , ..., Q

G
t

)
converges to

(Q∗1, Q
∗
2, ..., Q

∗
G).

Interested readers can refer to [35] for the detailed proof

for the convergence of the NQL algorithm, and we omit the

details.

VI. SIMULATION RESULTS

In the simulation, 30 GUs are randomly distributed in the

area of 300 × 300 m2. The coordinates of UAV E and GJ

are fixed at (131, 114, 50)
T

and (131, 114, 0)
T

in meters,

respectively. There are three types of tasks in the multi-agent

scheme, and the number of agents G is 3 and each agent has

10 tasks. Parameters that vary by different tasks are shown in
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Maximum usable energy of UAV_S (J)
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Fig. 4: The system utility versus EUAV S
max .
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D
e
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ti
li
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MA

SA

RA

Fig. 5: The delay utility versus EUAV S
max .

Table III, and the other system parameters are shown in Table

IV. For the parameters in Algorithm 2 and 3, the learning

rate and discount factor is set to 0.01 and 0.8 respectively, the

exploration probability is set to decay from 1 to 0.01, in which

the step size of the decay is 40 episodes.

Fig. 3 plots the optimization results of the UAV S place-

ment. UAV Ss are placed in the numerical order as shown

in Fig. 3. The green pentagrams are utilized to indicate the

positions of UAV Ss. In such a case, a total of four UAV Ss

are required and their connecting line (denoted as blue line)

looks like a spiral, which is not obvious because of the small

number of UAV Ss.

To prove the superior security computation performance

of the proposed singe-agent (SA) scheme and multi-agent

(MA) scheme, we compare the performance with the random

offloading (RA) scheme in Fig. 4 to Fig. 7, in which each GU

randomly selects the action that meets the constraints without

learning process.

Fig. 4 shows the system utility versus maximum usable

energy of UAV S EUAV S
max . As shown in Fig. 4, it can be found

that the MA scheme outperforms the SA and RA schemes. It is

because that the MA scheme considers the competition among
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Fig. 6: The energy utility versus EUAV S
max .
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(c) EUAV S
max = 3500 J

Fig. 7: The number of offloading tasks with different value of EUAV S
max .

the three types of tasks, which achieves the optimal offloading

strategy in line with Nash equilibrium. We can also find in

Fig. 4 that the system utility increases with EUAV S
max , which is

mainly due to the increase in the number of offloading tasks

before EUAV S
max = 3000 J. When EUAV S

max is larger than 3000

J, the system utility of the MA and SA schemes tends to be

flat. This is because the probability that the task will choose

the offloading computation is close to 100% because of the

sufficient energy. However, when EUAV S
max is larger than 3000

J, the system utility of the RA scheme barely rises, which can

be illustrated from Fig. 7 (c). It is because that the sufficient

energy does not make all tasks choose to offload for the RA

scheme, but maintains the offloading probability at about 60%.

The delay utility versus maximum usable energy of UAV S
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Fig. 8: The system utility during the learning process using the MA and SA
schemes.
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Fig. 9: The total delay during the learning process using the MA and SA
schemes.

EUAV S
max is captured in Fig. 5. As we can see, the delay

utility obtained by the MA scheme is smaller than the SA

scheme, but larger than the RA scheme. This is because when

a single agent makes the offloading decision for a task, it often

chooses the action with higher delay utility, i.e., the offloading

computation. However, when EUAV S
max is larger than 3000 J,

almost all tasks in the MA and SA scheme choose for the

offloading computation.

Fig. 6 shows the energy utility versus maximum usable

energy of UAV S EUAV S
max . In Fig. 6, it can be seen that the

energy utility obtained by the MA scheme is always larger

than the SA and RA schemes. It is because that in the MA

scheme there are fewer tasks choosing to offload computation,

resulting in more residual energy.

The number of offloading tasks using different schemes with

different value of EUAV S
max is illustrated in Fig. 7. As shown

in Fig. 7 (a), it can be found that the number of offloading

Type-1 task in the MA scheme is smaller than the SA scheme,

and the number of offloading Type-3 task in MA scheme is

larger than the SA scheme. It is because the computing energy

consumption of Type-1 task is much larger than Type-3 task.
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(a) SA scheme
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Fig. 10: The normalized energy consumption of four UAV Ss during the
learning process using the MA and SA schemes.
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Fig. 11: The final normalized energy consumption using the MA and SA
schemes.

Offloading fewer Type-1 tasks is conducive to offload more

Type-3 tasks and obtain larger system utility when the energy

EUAV S
max is small. In Fig. 7 (b), when EUAV S

max = 1500 J,

the number of offloading Type-1 and Type-2 tasks in the MA

scheme is both smaller than the SA scheme, which will result

to larger energy utility. Meanwhile, the number of offloading

tasks in the RA scheme gets to the bottleneck. In Fig. 7 (c),

all tasks choose to offload to the UAV S in the MA and SA

schemes.

Fig. 8 shows the system utility during the learning process

using the MA and SA schemes with the maximum usable

energy of UAV S EUAV S
max = 1500 J. In Fig. 8, it can be seen

that before the first 20000 episodes, the system utility has

a tendency of increases rapidly, accompanied by oscillation.

After 20000 episodes, the system utility oscillates within

a certain range, which verifies the convergence of the two

schemes. The final system utility of the MA scheme is larger

than the SA scheme.
Fig. 9 illustrates the total delay during the learning process

using the MA and SA schemes. In Fig. 9, with the increase

of episodes, the total delay first presents a downward trend

and then gradually flattens out. The final total delay of the

MA scheme is larger than the SA scheme. It is because the

number of offloading tasks in the SA scheme is larger than that

in the MA scheme. The delay of offloading computation will

always be smaller than locally computing, which results in the

delay of the SA scheme smaller than that of the MA scheme.

However, the MA scheme achieves better performance than the

SA scheme, which can be illustrated from Fig. 6, in which we

can find that the energy utility of the MA scheme is much

larger than SA scheme.
Fig. 10 shows the normalized energy consumption of the

four UAV Ss during the learning process using the MA and

SA schemes. The normalized energy consumption refers to

the proportion of the energy consumed by the UAV S to the

maximum usable energy of UAV S EUAV S
max . By comparing

the two schemes, it can be found that the energy consumption

of UAV Ss is always larger in the SA scheme due to the

larger number of offloading tasks, which will lead to smaller

energy utility and larger delay utility. Fig. 11 illustrates the

final normalized energy consumption using the MA and SA

schemes. We can find that the UAV Ss placed closely consume

similar energy, such as UAV S1 and UAV S2, which results

larger energy utility.

VII. CONCLUSION

This paper proposes a secure transmission model for the

multi-UAV-assisted MEC system, in which the UAV Ss pro-

vide the MEC service to GUs through LoS channels, and

the GJ is used to send the jamming signal to interfere the

UAV E. We first utilize the spiral placement algorithm to

optimize the deployment of UAV Ss, which covers all users

with the minimum number of UAV Ss. Then, we formulate

a problem to optimize the secure offloading strategy by

maximizing the system utility, which considers both the delay

and residual energy of the computing device. To solve the

problem, we propose the single-agent scheme and the multi-

agent scheme based on the reinforcement learning. Simulation

results indicate that compared with the single-agent scheme

and the random offloading scheme, the multi-agent scheme

can achieve better system performance.
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