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Abstract—In this paper, we investigate how to deploy com-
putational intelligence and deep learning (DL) in edge-enabled
industrial IoT networks. In this system, the IoT devices can
collaboratively train a shared model without compromising data
privacy. However, due to limited resources in the industrial
IoT networks, including computational power, bandwidth, and
channel state, it is challenging for many devices to accomplish
local training and upload weights to the edge server in time. To
address this issue, we propose a novel multi-exit-based federated
edge learning (ME-FEEL) framework, where the deep model
can be divided into several sub-models with different depths and
output prediction from the exit in the corresponding sub-model.
In this way, the devices with insufficient computational power
can choose the earlier exits and avoid training the complete
model, which can help reduce computational latency and enable
devices to participate into aggregation as much as possible within
a latency threshold. Moreover, we propose a greedy approach-
based exit selection and bandwidth allocation algorithm to
maximize the total number of exits in each communication
round. Simulation experiments are conducted on the classical
Fashion-MNIST dataset under a non-independent and identically
distributed (non-IID) setting, and it shows that the proposed
strategy outperforms the conventional FL. In particular, the
proposed ME-FEEL can achieve an accuracy gain up to 32.7% in
the industrial IoT networks with the severely limited resources.

Index Terms—Computational intelligence, edge computing,
federated learning, exit selection.

I. INTRODUCTION

With the advance of communication technologies and the

emergence of new communication standards such as 5G and

WiFi-6, more and more devices are connected to the Internet

through wireless access points, which is called the era of In-

ternet of Things (IoT) [1]. A large amount of data is generated

and collected by many sensors and mobile devices, promoting

the development of novel applications, including autonomous

driving, augmented reality (AR) and smart cities. However, a

mass of data at the edge of the network brings great challenges
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to the central cloud servers. Unfortunately, the conventional

paradigm of cloud computing is unfriendly to latency-sensitive

applications. To address these issues, mobile edge computing

(MEC) [2] was proposed to deploy computational resources

close to the data source. In the concept of MEC, IoT devices

can offload data and computational tasks to the edge server to

achieve a lower latency, lower energy consumption, and higher

service quality.

In recent years, artificial intelligence (AI) technologies, e.g.,

machine learning (ML) and deep learning (DL), have made

a breakthrough and even reached beyond human-level per-

formances in image recognition, natural language processing,

anomaly detection, and other domains [3]. To enhance the

abilities of information processing and analysis, AI applica-

tions are deployed on edge devices to facilitate the emergence

of edge intelligence [4], [5]. However, intelligent algorithms

are usually computation- and energy-intensive. Meanwhile,

limited computational power, battery capacity, and dynamic

channel states restrict the applications of edge intelligence.

Generally, collecting data and training models are two

critical steps to deploy edge intelligence in the IoT networks.

Due to the decentralized nature of data in the IoT networks, it

is inappropriate to apply the conventional centralized learning

in the cloud, which will increase the communication overhead.

More importantly, uploading personal data may cause the

leakage of privacy. In addition, many new and even fiercer

laws were passed to prevent storing users’ data on third-

party servers. To tackle these issues, a collaborative training

approach named federated learning (FL) was proposed to

reduce the communication overhead, storage space, and energy

consumption. In the FL, the privacy can be protected by

enabling multiple users to train a shared model by exchanging

the weights instead of the sensitive raw data. It breaks away

data islands and makes it possible to improve the performance

of the data-driven model under the cooperation of multiple

parties.

However, FL still faces some challenges in edge-enabled

IoT networks. One major challenge in the industrial IoT

networks is the large processing a latency from communica-

tion and computation, due to the limited resources such as

computational power and bandwidth. Accordingly, a latency

threshold is often used in the federated learning to coordinate

and synchronize the FL training, and avoid the unnecessary

wait time [6]–[9], as a large latency may cause many devices

fail to participate into the federated learning in time. Another

major challenge is the system heterogeneity, where there exist

different kinds of IoT devices with different computational

power and channel state. In this case, some devices with
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sufficient resources can successfully accomplish the local

training and uploading within the required latency, while the

other devices with insufficient resources fail. Intuitively, we

can choose a lightweight model for all devices. Nevertheless,

this approach may suffer a severe performance degradation

and lose flexibility when the channel state is improved. These

two major challenges may severely degrade the system per-

formance, and motivate us to design a novel and flexible

framework of FEEL which enables devices to adaptively

train a model with different scales according to the available

resources, and the server can still aggregate weights from

different devices.
Inspired by the multi-exit mechanism proposed in [10], this

paper incorporates this mechanism into FL and proposes the

multi-exit-based federated edge learning (ME-FEEL). Specif-

ically, we firstly add multiple exits in the deep model and en-

able it to output prediction from any exit. Therefore, the deep

model can be divided into several sub-models, and the devices

can choose a suitable exit. Instead of training the whole deep

model, all the devices can train parts of sub-models flexibly.

Thanks to the multi-exit mechanism, the sub-models trained by

different devices still have a practical common architecture that

can be easily aggregated together. Moreover, a self-knowledge

distilling (KD) approach is utilized to improve the performance

of those early exits that lack of feature extraction and fitting

abilities.
In further, how to choose the best exit still remains an open

problem to be solved. Although each device can choose an exit

as deep as possible without violating the latency constraint,

uploading time can not be neglected in bandwidth-limited

IoT networks, and it is usually a critical factor raising the

failure aggregation. As described in [6]–[9], it is useful to

make the server aggregate the updates as much as possible

with the given bandwidth allocation, promoting the training

performance and stability. Thus, we aim to maximize the

number of devices which successfully upload their updates

within the constrained latency. Notably, due to the use of

multi-exit mechanism, an improved optimization objective is

built to maximize the total number of exits which can upload

successfully per FL round. We hence propose a heuristic exit

selection and bandwidth allocation algorithm based on the

greedy approach to solve the optimization problem.
The practical scenarios of the proposed framework include

many applications such as visual drone inspection, self-driving

cars, automatic sorting, and intelligent safeguard system. In

these scenarios, the proposed framework can help more de-

vices with limited resources to participate into the collabora-

tive learning, promoting the system performance. In summary,

this paper makes the following contributions.

• We take into account the complicated scenario of edge

intelligence, where there are heterogeneous devices with

different computing power and channel state. The gap

of computational power among devices can even reach

tens of times, and the total communication bandwidth

is limited. All devices will train a shared deep model

collaboratively under a latency constraint.

• Inspired by the multi-exit mechanism, we propose a novel

FL training framework named ME-FEEL, where devices

with limited computational power can still participate

into the FL by training a part of the deep model. We

also modify the teacher selection of KD according to the

characteristic of the FEEL system. Moreover, a layer-

wised model average strategy is presented to aggregate

the models of different sizes. To the best of our knowl-

edge, it is the first time applying these approaches in the

federated edge learning system to overcome the limited-

resource and system heterogeneity in the industrial IoT

network and improve the flexibility of the federated edge

learning.

• Incorporating the limited bandwidth into the IoT net-

works, we aim to maximize the number of devices

which can successfully participate into the aggregation

and propose an enhanced optimization objective that

is to maximize the total number of exits per round.

We also propose a joint exit selection and bandwidth

allocation strategy based on the greedy approach to solve

the problem.

• We conduct simulations and evaluate the proposed ME-

FEEL by using a popular model and a classical dataset.

Numerical results demonstrate that the proposed ME-

FEEL can outperform the conventional strategies and it

can be flexibly deployed in the edge-enabled industrial

IoT networks.

The rest of this paper is organized as follows. Section

II briefly discusses related works on MEC and edge intelli-

gence, and then Section III presents the multi-exit FL and

the associated workflow. Section IV builds the exit selection

and bandwidth allocation problem and further provides the

optimization algorithm. Simulations are performed in Section

V to evaluate the proposed strategy. At last, the whole paper

is concluded in Section VI.

II. RELATED WORKS

The research of MEC has attracted much attention in

recent years, and there are lots of relevant works about the

offloading design and resource allocation [11]–[18]. With the

development of AI technologies, edge intelligence has become

one of the most interesting topics. The definition of edge

intelligence includes two aspects of AI for edge and AI on
edge [19], which are detailed as follows.

Firstly, AI for edge focuses on applying AI to deal with the

complicated optimization problems, such as non-convex and

NP-hard problems. For example, deep learning and reinforce-

ment learning have achieved great success in the design of

MEC networks, where a novel edge cache strategy based on

deep Q-network (DQN) was proposed in [20], and DRL and

FL could be exerted to optimize multiuser multi-CAP MEC

networks [21], [22].
Moreover, AI on edge focuses on the deployment of in-

telligent algorithms at the edge of network. To deal with

the problem of limited resources in the edge devices, effi-

cient model architecture, model compressing approach and

hardware acceleration techniques should be proposed [23]–

[25]. Many researchers have designed some novel inference

protocols from different perspectives. For example, the au-

thors in [26] studied the characteristics of deep networks

Page 2 of 17

https://mc.manuscriptcentral.com/tnse-cs

Transactions on Network Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

and presented an offloading strategy named Neurosurgeon,

which could automatically partition DNN computation be-

tween mobile devices and cloud servers. Besides, the authors

in [27], [28] proposed a framework of distributed adaptive

inference between edge devices and servers to minimize the

memory footprint and energy consumption. Overall, these

works focused on the inference stage and assumed that the

deep models were obtained from the central server. However,

it is challenging to collect massive data for training the deep

models in the practical IoT networks.

To enhance the performance of the edge-enabled IoT net-

works, researchers have made many efforts in the deployment

of FL into the system. Specifically, the authors in [9] solved

the problem of client selection in resource-constraint mobile

edge computing networks, where only the bandwidth schedule

protocol was investigated and the training latency was ignored

in the control. The authors in [29] proposed a physical-layer

quantization strategy for the uplink and downlink communi-

cations, where the strong heterogeneity in IoT networks was

ignored and little attention was paid to the local training

process. For the heterogeneous system, an intelligent schedule

approach was proposed in [30] to enable the devices to reduce

unnecessary energy consumption, where some devices were

not the bottleneck of the system. In further, the authors in

[8] studied the IoT devices powered by different batteries and

proposed a deep deterministic policy gradient (DDPG)-based

approach to prolong the battery life, where the conventional

power control approaches were used with certain limitations.

The work in [31] proposed a comprehensive optimization

method by controlling the local iteration number, sampled

devices number, and device scheduling, where the model

size/scale was still ignored in the control.

In summary, the previous works assumed that the IoT

devices trained a shared model with the same size/scale, which

is however not practical in the edge-enabled IoT networks.

Hence, this paper presents a flexible framework and enables

all devices to train their local models with different scales from

the perspective of the model architecture. Moreover, this paper

jointly incorporates the training and uploading stages into the

framework design, which can help optimize the performance

of the FEEL.

III. MULTI-EXIT BASED FEDERATED LEARNING

In this section, we investigate the FEEL system in the IoT

networks, which consists of one edge server and multiple IoT

devices. We then present the key design of the proposed ME-

FEEL by giving the formulation and working mechanism of

multiple exits. We further explore the aggregation strategy

for the models of different sizes. The main notations used

throughout the paper are summarized in Table I.

A. Federated edge learning system

Fig. 1 depicts the system model of federated edge learning

(FEEL), where there is one edge server and K IoT devices.

For IoT device k with 1 ≤ k ≤ K, it firstly collects the

local dataset Dk = {(xn, yn)|1 ≤ n ≤ Nk}, where Nk is the

number of the local training samples in device k, while xn and

 

Fig. 1. Federated edge learning system.

TABLE I
NOTATION SUMMARY

Notation Definition
Bk Bandwidth of device k
Dk Dataset of device k
e Local training times
Fk(w) Local loss function of device k
f(w) Global objective function
K Number of devices
L Number of layers in deep network
Lpre(·) Loss function of a single sample
Lkd(·) Loss function of KD
M Number of exits
Nk Size of dataset Dk

pm Output of exit m
Rk Data rate of device k
s Output logits of the students
t Output logits of the teacher
Tlocal,k Local training time of device k
Tup,k Uploading time of device k
xn Input vector of the n-th sample
yn Label of xn

X Set of input samples
wr Global weights at communication round r
wr

k Local weight of device k at communication round r
η Learning rate
τ Temperature parameter of KD

yn denote the training sample and label, respectively. These

K devices will train a shared deep model with the help of

the edge server, which aims to minimize the global objective

function f(w), given by

min
w

f(w) =
K∑

k=1

Nk

N
Fk(w), (1)

where w is the model weights, Fk(·) represents the local loss

function, and N =
∑K

k=1 Nk is the total number of samples.

For device k, it performs the training on its local dataset

in parallel, and updates the weights by the gradient descent
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Algorithm 1: FEEL procedure

1 Input K, R, η w0;

2 for Round r = 0, · · · , R− 1 do
3 Server randomly chooses a subset K from K

devices;

4 Each device k ∈ K downloads the global weights

wr from the server;

5 Each device k ∈ K obtains the weights wr+1
k by

performing SGD with a learning rate η on the

local dataset;

6 Each device uploads the weights wr+1
k to the

server;

7 The edge server aggregates the weights as

wr+1 = 1
|K|

∑
k∈K wr+1

k

8 end

algorithm,

wk ←− wk − η∇Fk(wk), (2)

where η is a learning rate. In practice, to reduce the com-

mutation overhead, the edge server randomly chooses one

device subset K in per round, where |K| � K. Then, the

chosen device k ∈ K performs the gradient descent algorithm

e times. After that, to optimize the global objective function,

the local update will be uploaded to the edge server, which

can aggregate the weights from different devices and obtain a

global update by

wr+1 =
1

|K|
∑
k∈K

wr+1
k , (3)

where r and r + 1 are the indices of the current and next

training rounds, respectively. The overall procedure of FEEL

is summarized in Algorithm 1.

However, the aforementioned FEEL system ignores the

realistic conditions in the IoT networks. Specifically, due to the

limited computing power, the SGD processing with intensive

computing in Step 5 of Algorithm 1 may cause a large latency.

Moreover, the poor channel state and limited bandwidth also

limit the uploading operation in Step 6. Accordingly, the

failure of model aggregation may occur in Step 7. Therefore,

it is of vital importance to significantly improve the system

flexibility, which can adaptively control the number of training

weights to reduce the latency of Steps 5-6 according to the

available resources.

B. Proposed multi-exit approach

To tackle the system heterogeneity in the IoT networks, we

propose a novel FEEL training framework named ME-FEEL,

which enables the chosen devices to participate into training

to the best of their abilities by setting multiple exits for the

deep models.

As shown in Fig. 2 (a), in the original deep model such as

a fully connected layer based classifier, there is only one exit

which is usually the last layer. The features of input will be

extracted by continuous convolution kernels and then be fed

Fig. 2. An example of a single exit and multi-exit architecture for deep
models.

into the classifier. The multi-exit architecture is illustrated in

Fig. 2 (b), where there are multiple exits at different depths.

In contrast, it is not necessary to wait until the computation

in the last layer is completed to obtain the prediction result.

All exits share a part of weights, and there are not many

additional parameters added in the model. This makes the

model separable and can be divided into multiple sub-models.

Obviously, deeper exits cause more resource consumption and

a larger latency. Formally, the output of the model with M
exits can be expressed as

P = {p1, · · ·pM}, (4)

where pm ∈ P denotes the output logits of the m-th exit, and

we use pm(x) to denote the mapping function from the input

x ∈ X to pm, in which X = {xn|1 ≤ xn ≤ Nk} is the set

of input samples. In practice, device k can adaptively choose

Mk ≤ M and train the continuous part p1(x), · · · pMk
(x),

depending on its computational power and channel state. Thus,

it can quickly adapt to the dynamic environment in the IoT

networks.
We further design the training framework of ME-FEEL

shown in Fig. 3, and it consists of the following pivotal steps,
1) Local training: For an arbitrary device k, it can choose

Mk exits according to its current state. Given the local dataset

Dk, the local model can output Mk results for each sample.

Thus, to train all exits and shared weights, the local loss

function on dataset Dk can be regarded as the sum loss of

all exits, which can be written as

Fk(w;Dk) =
1

Nk

Nk∑
n=1

Lpre(yn, pm(xn)), (5)

where

Lpre(y, pm(x)) =
1

Mk

Mk∑
m=1

�pre(y, pm(x)), (6)
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in which �pre(·) represents the mean square error of the

regression task and cross-entropy for classification tasks.

In general, the later exit outperforms the earlier one, because

a deeper layer can often extract more abstract features and

exhibit a stronger representational ability. In other words, the

later exits often have more knowledge than the earlier ones.

Hence, the earlier exits are hard to train well from scratch

and do not have enough ability to process difficult samples

properly. From the viewpoint of knowledge distilling (KD)

[32], the exits with more knowledge can be viewed as teachers

which can transfer their knowledge to the students with

less knowledge in order to help improve the accuracy [10].

Therefore, each device can employ the KD-based strategy to

train the multiple exits. The objective of KD is to minimize the

difference between the output distributions of the teacher and

students. Formally, we use Kullback-Leibler (KL) divergence

to describe the difference, which can be written as

�kd(s, t) = −τ2
∑
i

zi(τ) log vi(τ), (7)

where s and t are the output logits of the students and teacher,

respectively. Notation τ is the temperature parameter of KD,

and vi(τ) can be represented as

vi(τ) =
esi/τ∑
j e

sj/τ
. (8)

Analogously, notation zi(τ) is defined as

zi(τ) =
eti/τ∑
j e

tj/τ
. (9)

Note that the temperature parameter τ can be used to soften

the output of the teacher [32]. In particular, when τ = 1, (8)-

(9) degrade into the SoftMax function, and it is easy to ignore

the information from the negative samples. On the contrary, a

higher temperature with τ > 1 can avoid the overconfidence

of neural network and it can allow the output to contain more

information on the similarity of different classes. Moreover, it

is important to multiply τ2 in (7) to ensure that the change of

temperature will not affect the gradient magnitude.

However, the later exits may not always outperform the

earlier ones in the practical FEEL systems. These results lie in

that, due to the limited resources, many devices cannot choose

the later exits, and the aggregation number of later exits may

be smaller than that of the earlier ones. Besides, there is a risk

of overfitting in the later exits. Consequently, directly choosing

the later exits as teachers in [32] is unsuitable for the FEEL

systems. Inspired by the fact that the ensemble model has

more robust generalization performance than a single model,

we choose the ensemble output of all exits as the teacher t(x),
which can be written as

t(x) =
1

Mk

Mk∑
m=1

pm(x). (10)

Hence, the total KD loss can be computed as

Lkd(x) =
1

Mk

Mk∑
m=1

�kd(pm(x), t(x)). (11)

Input

Conv

Conv

Conv

Exit 3

Exit 2

Exit 1

Input

Conv

Conv

Conv

Exit 3

Exit 2

Exit 1

Input

Conv

Conv

Conv

Exit 3

Exit 2

Exit 1

Fig. 3. Training framework of ME-FEEL.

By jointly using the prediction loss and KD loss, (5) can be

rewritten

Fk(w;Dk) =
1

Nk

Nk∑
n=1

[Lpre(y, pm(xn) + Lkd(xn)] , (12)

which will be minimized by the local gradient descent.

2) Model aggregation: After each device completes the lo-

cal update in parallel, the updated weights will be uploaded to

the edge server. In the conventional FEEL, the updated weights

of different devices are of the same dimension. Therefore,

model aggregation should be modified to adapt the architecture

of ME-FEEL.

To tackle this problem, a simple but efficient strategy is to

aggregate the shared parts of different models. Although the

upload weights are of different sizes, they all have the same

sub-architecture. Specifically, each layer in the model with

fewer exits can be found in the model with more exits. Thus,

we propose a layer-wised model average strategy to obtain the

global model, namely multi-exit FedAvg (ME-FedAvg). The

edge server will take the initial global model as a reference,

and then perform the search layer by layer in the uploaded

updates. If one layer is found to exist in the model uploaded

by some devices, then the edge server will average the weights

of the layer from different devices.

Mathematically, suppose that there are L layers with param-

eters in the initial global model, and Lk is used to denote the

number of layers in the k-th device. For each layer l ∈ [1, L]
in the global model, its weight w(l) can be updated by

w(l) =

∑
c∈Cl

|Dc|wc(l)∑
c∈Cl

|Dc| , ∀l ∈ [1, L], (13)

where Cl is a subset of K. The edge server searches for devices

with the l-th layer, and then produces the device subset Cl.

This means that all the devices in Cl have layer l. In other

words, the number of layers in the device c ∈ Cl is larger than

the value of l, which can be written as

Lc ≥ l, ∀c ∈ Cl. (14)
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Algorithm 2: Multi-exit FEEL

1 Input K, T , η w0, L;

2 for Round t = 0, · · · , T − 1 do
3 The edge server randomly chooses a subset K

from K devices;

4 Each device ∈ K downloads the global weights wt

from the server;

5 Device k chooses Mk exits and the MEC

controller allocates bandwidth to the device

according to the current environment;

6 Device k obtains the weights wt+1
k by performing

SGD on (12) with the learning rate η;

7 Device k uploads the weights wt+1
k to the server;

8 for l = 1, · · ·L do
9 The edge server produces the subset of devices

Cl;

10 The edge server aggregates the weights of the

l-th layer as wt+1(l) =
∑

c∈Cl
|Dc|wc(l)

∑
c∈Cl

|Dc| ;

11 end
12 end

To summarize, we provide the procedure of the proposed

ME-FEEL in Algorithm 2. Different from the convention FL,

we set multiple exits in the deep model, and enable devices to

train the model with different sizes. We will further propose a

joint exit selection and bandwidth allocation strategy as shown

in line 5 of Algorithm 2, which is detailed in the following

section.

IV. EXIT SELECTION AND BANDWIDTH ALLOCATION

In this section, we present how to choose proper exit points

and propose a joint exit selection and bandwidth allocation

strategy, which can adapt the dynamic environment in the

IoT networks. Specifically, we firstly describe the latency

constrained model of FEEL, and then provide the problem

formulation. We further propose a heuristic algorithm based

on the greedy approach to solve the optimization problem.

A. Latency constrained model

As mentioned before, all devices train the shared model

under a latency constraint denoted by γth. The total commu-

nication bandwidth is BA, and it is managed by the MEC

controller. Therefore, for each device in K, it uploads its

weights through wireless channel within γth, i.e.,

Tlocal,k + Tup,k ≤ γth, (15)

where Tlocal,k and Tup,k are the latency of local training and

data transmission, respectively. The local latency depends on

the number of exits and the number of samples in the local

dataset Dk, which can be characterized by

Tlocal,k =
αk|Dk| · g1(Mk)

Ck
, (16)

where αk > 0 is a relative coefficient of computational power,

Ck is the batch size of device k, and g1(·) represents the

mapping from the number of exits to the training latency of

only one batch1.

According to the Shannon theorem, the transmission data

rate between device k and BS is

Rk = Bk log2

(
1 +

Pk|hk|2
σ2
k

)
, (17)

where Bk is the allocated channel bandwidth, Pk denotes the

transmit power, hk is the channel parameter, and σ2
k is the

variance of the additive white Gaussian noise (AWGN). The

size of the uploaded weights is also varying when the device

chooses different exits. Therefore, the transmission latency is

given by

Tup,k =
g2(Mk)

Rk
, (18)

where g2(·) is the mapping from the number of exits to the

number of bits, and it is only dependent on the network

architecture.

B. Problem formulation

In the FEEL system, it is useful to make the server aggregate

updates as much as possible through reasonable resource

management and scheduling, which can help improve training

performance and stability. Similarly, in the proposed ME-

FEEL, the number of exits also affects the learning perfor-

mance. Thus, we aim to maximize the number of exits that can

upload their updates without violating the latency threshold

γth.

Mathematically, we use Ks to denote the device set in which

the devices can upload their updates successfully, where Ks ⊆
K. Further, the problem formulation is give by

max
{Mk, Bk}

∑
k∈Ks

Mk (P1)

s.t. Tlocal,k + Tup,k ≤ γth, (c1)∑
k∈Ks

Bk ≤ BA. (c2)

C. Optimization strategy

Note that the problem (P1) is a variant of classical knapsack

problem (KP) and it belongs to the NP-complete problem [33].

It has been pointed out in the literature that (P1) can be solved

at the cost of pseudo-polynomial time. To solve this problem,

we propose a heuristic exit selection and bandwidth allocation

algorithm based on the greedy approach2, detailed as follows.

1Although g1(·) is strongly related to the used baseline hardware and some
differences may be caused when the baseline hardware is changed, we can set
α to a reasonable value in order to reflect the CPU capabilities of IoT devices
in the practical networks. Specifically, if the baseline hardware is powerful,
we can set α to a large value to simulate the IoT devices with limited CPU
capabilities. On the contrary, we can set α to a small value to reflect the IoT
devices with powerful CPU capabilities. In this way, we can use an arbitrary
baseline hardware and model the heterogeneous devices flexibly. The detailed
simulation settings can be found in Sec. V.

2There exist some other exit selection criteria such as the brute force
algorithm, which may outperform the proposed selection criterion in our work
at the cost of a much higher computational complexity due to exhaustive
search.
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Algorithm 3: Exit selection and bandwidth allocation

1 Input K, BA, M ;

2 for k ∈ K do
3 m = M ;

// Computing the required bandwidth
according to (20)

4 while Bk(m) ≤ 0 or m > 0 do
5 m = m− 1;

6 end
7 if m>0 then
8 Device k chooses exit Mk = m;

9 Device k sets bandwidth to Bk = Bk(Mk);
10 Add device k to Ks

11 end
12 end
// Adjust the exit selection

13 B =
∑

k∈Ks
Bk;

14 while B > BA do
15 kmin = argmink∈Ks

Mk

Bk
;

16 Mkmin = Mkmin − 1;

17 Bkmin
= Bkmin

(Mkmin
);

18 B =
∑

k∈Ks
Bk;

19 end
20 Output {Bk, Mk}

From (15)-(18), the bandwidth Bk(m) for uploading m exits

with the constraint c1 should meet the following requirement

g2(m)

Bk(m) log2

(
1 + Pk|hk|2

σ2
k

) +
αk|Dk| · g1(m)

Ck
≤ γth, (19)

where m ∈ [1,M ] is the index of exits. We then have

Bk(m) ≥ g2(m)(
γth − αk|Dk|g1(m)

Ck

)
log2

(
1 + Pk|hk|2

σ2
k

) . (20)

Therefore, we can set Bk(m) to the minimum required band-

width for the m-th exit,

Bk(m) � g2(m)(
γth − αk|Dk|g1(m)

Ck

)
log2

(
1 + Pk|hk|2

σ2
k

) . (21)

The key idea of making decision is to adjust the exit according

to the ratio of exit number Mk to the minimum required

bandwidth Bk(m). This exit-to-bandwidth ratio Mk

Bk
indicates

that whether the device can provide exits to the system

at a low bandwidth cost or not. In particular, if the total

required bandwidth exceeds the bandwidth limitation, a greedy

approach will be used to reduce the exit of the device with the

lowest exit-to-bandwidth ratio until the bandwidth limitation

is met. For example, in FEEL, different devices have different

exits and different exit-to-bandwidth ratios. If the total required

bandwidth exceeds the bandwidth limitation, the algorithm

will reduce the exit point of the IoT devices with the lowest

bandwidth utilization efficiency.

Fig. 4. Architecture of the proposed system.

In detail, as described in Algorithm 3, each device firstly

checks whether it can accomplish the training within the

latency threshold γth from the latest exit to the first one

(M to 1) by computing Bk(m) according to (21) (lines 2-

6). Specifically, Bk(m) ≤ 0 represents that the device fails

to finish the local training, due to the non-positive item of

γth − α|Dk|g1(m)
Ck

. In contrast, Bk(m) > 0 represents that the

device can accomplish the local training within the latency

threshold γth. After each device preliminarily chooses a proper

exit, it will report this information to the MEC controller and

apply for the required bandwidth (lines 7-10). Then, the MEC

controller will play a very important role, which takes charge

of global scheduling. In line 13, the MEC controller will

integrate the information from different devices and compute

the current bandwidth requirement. If the bandwidth constraint

B ≤ BA is not satisfied, the edge server will fine-tune the exit

of device in a greedy approach.

In further, as shown in lines 14-18, the edge server finds

the device kmin = argmink∈Ks

Mk

Bk
whose exit-to-bandwidth

ratio is the minimum, and then sets the exit forward as

Mkmin
= Mkmin

−1. In this way, the training latency of device

kmin is alleviated due to the decreased number of trainable

parameter and FLOPs. As well, the bit number to be uploaded

is reduced. Hence, the bandwidth demand of this device can be

substantially decreased. This process of exit adjustment will

repeat until the bandwidth constraint is satisfied.

V. SIMULATION AND DISCUSSION

In this section, we conduct simulations to evaluate the per-

formance of the proposed ME-FEEL. Specifically, we firstly

introduce the architecture of the whole ME-FEEL framework,

setting and the implementation details, and then we will

present the simulation results and discussion.

A. Architecture of the proposed system

The architecture of the proposed system is shown in Fig.

4, consisting of multiple IoT devices, one MEC operator, and

one MEC sever on the BS. Before the local training stage, the

chosen IoT devices will firstly collect their local state about

model architecture and latency threshold (Step 1). Then, the

MEC operator executes exit selection and bandwidth allocation

after it receives the report from devices (Step 2 and 3). After

that, the devices will train the local model with the help of
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FC

Fig. 5. Block architecture in the ME-ResNet.

TABLE II
MODIFIED RESNET-18 WITH 7 EXITS.

Input Operator Channels Stride Output Exit

322 × 1 Conv3× 3 64 1 322 × 64 -

322 × 64 Block 64 1 322 × 64 -
322 × 64 Block 64 1 322 × 64 �
322 × 64 Block 128 2 162 × 128 �
162 × 128 Block 128 1 162 × 128 �
162 × 128 Block 256 2 82 × 256 �
82 × 256 Block 256 1 82 × 256 �
82 × 256 Block 512 2 42 × 512 �
42 × 512 Block 512 1 42 × 512 -

12 × 512 FC - - 10 �

KD (Step 4 and 5). Finally, the MEC server will aggregate the

local updates and broadcast the global update to all devices

(Step 6 and 7).

B. Simulation Settings

1) Task and Dataset: We select the dataset of Fashion-

MNIST3 to perform the simulation in our work, as visual

intelligence is one of the most widely used technologies in the

aforementioned application scenarios, and the Fashion-MNIST

dataset is used as the benchmark in the literature of visual

intelligence and FL. The dataset has 5000 training samples and

1000 test samples, and they will be divided into 100 parts. The

training samples are partitioned with the same non-IID setting

[34]. We firstly sort the data by the index of classes and then

divide them into 200 groups of size 300, ensuring that only

two groups are assigned to one device.

2) Multi-exit FL: We use the classical ResNet-18 [35] due

to its outstanding ability of feature extraction. We modify the

first layer to make it adapt the input size. Besides, the original

3This dataset can be found through the link https://github.com/
zalandoresearch/fashion-mnist.

building block consists of two continuous 3× 3 convolutions

and one shortcut. As shown in Fig. 5, we add one exit on the

bottom of the block, where the exit includes a fully-connected

network to output the prediction. Similarly, 7 exits in total are

set in ResNet-18, and the complete model architecture named

ME-ResNet is shown in Table II. Notably, necessary activation

functions and reshape operations are omitted for simplification.

As well, all the batch normalization (BN) layers are replaced

by group normalization for improving the performance under

non-IID setting. We use Adam optimizer to update weights

with a learning rate of 0.001. Batch size Ck is 10, and

we set the temperature of KD to 3. The total number of

communication rounds is 750, and only the chosen 10 devices

will train the local model for 5 times in each round. Another

important setting is the mapping g1(·) and g2(·), where we

run practical measurement on the AMD workstation, and the

associated results are presented later.

3) Network environment: As a typical setting in the IoT

network, we set up all devices to connect to the base station

over LTE cellular networks. The available bandwidth of BS is

40MHz and the transmit power of each device is set to 1W.

The coefficient α is randomly generated subjected to a uniform

distribution U(0, 10), which can simulate the heterogeneity

in the IoT networks. To simulate the variable channel state,

|hk|2 is subject to the exponential distribution with the average

channel gain of unity. It remains the same within one round,

while varies between different rounds. The variance of AWGN

is set to 1e− 3.

C. Competitive methods

In order to verify the effectiveness of the proposed strategy,

we compare it with various methods of FEEL listed below.

• FEEL-ideal: The conventional FEEL algorithm in the

ideal IoT networks, where no constraint is considered at

all.

• FEEL: Based on the FEEL-ideal, we incorporate the

practical IoT networks under latency and bandwidth

constraint. For the limited bandwidth, we apply the

bandwidth allocation method introduced in [7], where the

MEC controller always allocates the bandwidth firstly to

the clients requiring less.

• FEEL-UB: Different from the FEEL, the edge server

allocates the bandwidth evenly among the devices.

D. Simulation results and discussion

Fig. 6 depicts the local training time versus the index of

exit of the original ResNet, ME-ResNet, and ME-ResNet with

KD technology (ME-ResNet-KD), where the number of exits

is 7 in ME-ResNet, and the batch size is 10. From this

figure, we can find that the original ResNet with only one

exit requires about 14ms to train a batch of samples. When

the exit is the last one, the training time of ME-ResNet-

KD and ME-ResNet is 16.9ms and 14.70ms, respectively.

However, when we choose some earlier exits, the training

time of ME-ResNet and ME-ResNet-KD can be reduced

significantly. In particular, compared with the ResNet, ME-

ResNet and ME-ResNet-KD can reduce the training time to
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Fig. 6. Local training time versus the index of exit.
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Fig. 7. Model size in MBytes versus the index of exit.

half when the 4-th exit is chosen. Moreover, when the ME-

ResNet and ME-ResNet-KD quit on the first exit, they both

require only 4ms to finish the training, which reduces about

10ms compared with the original ResNet. Another interesting

phenomenon is that when the model quits on the first exit,

the KD technology does not increase the latency compared to

the ME-ResNet. When the exit changes from 2 to 7, there is

at most 1ms added in latency. It should also be noted that

although applying the KD technology brings extra latency

in the worst case of choosing the last exit compared to the

conventional FEEL, , the proposed framework can reduce the

complexity in terms of latency and parameters to about 30%

and 10%, respectively, for most IoT devices which choose

the earlier exits. This indicates that the proposed framework

only exerts little extra hardware complexity at a few devices

with the powerful computational capacity to obtain a better

accuracy and flexibility.

Fig. 7 shows the model size in MBytes versus the index

of exit of ME-ResNet and the original ResNet, where the

number of exits is 7 in ME-ResNet. We can find from this

figure that the mode size of the ResNet is 44.6MB, which is

similar to 44.7MB of ME-ResNet when the exit is the last one.

However, when the ME-ResNet chooses some earlier exits,

its model size decreases drastically. In particular, when each

device chooses the first three exits, the associated model sizes

are all less than 5MB, which is ten times lower than that of the

original ResNet. This can significantly reduce the uploading

latency and system communication overhead. These results

further demonstrate that adding 7 exits for ResNet does not

cause a significant increase in the number of parameters. More

importantly, the ME-ResNet can control its size by exiting

from different depths, which enables it to reduce the model

size as needed.

Fig. 8 illustrates the test accuracy versus the communication

round, where the dataset is the Fashion-MNIST under the

non-IID setting, the total bandwidth BA is 40MHz, and the

latency threshold γth is 15s. We also compare the convergence

performance of the proposed ME-FEEL with different exits to

the convergence of FEEL and FEEL-UB in which only one

exit is available. This figure shows that the proposed ME-

FEEL outperforms the other methods in both the convergence

rate and accuracy. In particular, when the 7-th exit is chosen,

the proposed ME-FEEL has a remarkable improvement in the

test accuracy compared to FEEL and FEEL-UB. Moreover,

the training process of ME-FEEL is more stable than the other

methods. In particular, when the 4-th, 5-th, and 6-th exits are

chosen, the proposed ME-FEEL still exhibits a clear advantage

on the convergence over the other methods. Notably, early

exits usually underperform the single exit in FEEL due to the

insufficient fitting ability. However, we can find that the early

exits in ME-FEEL, such as the first, second, and third one, still

perform better than FEEL and FEEL-UB in the experiments,

although with a little degradation compared to its later exits.

These results show the effectiveness of the proposed ME-

FEEL as well as the exit selection and bandwidth algorithm,

which can perform better than the conventional methods

by aggregating more updates in each communication round.

Besides, it verifies that the later exits can transfer knowledge

to the earlier ones by the KD technology and help improve

the performance.

In addition, we present a detailed performance comparison

on the Fashion-MNIST dataset in Table III, where there are

five methods, including FEEL-ideal, FEEL, FEEL-UB, ME-

FEEL (without KD) and ME-FEEL. We show the average

accuracy of each available exit and the maximum accuracy

of different methods in this table. Except the FEEL-ideal, the

communication bandwidth BA is set to 40MHz and γth is set

to 15s for the other four methods. From this table, we can find

that the FEEL-ideal can achieve a maximum accuracy of 87%

under the non-IID setting. Notably, there is not any constraint

at all here. However, in the resource-limited environments with

aforementioned setting, the performance of the conventional

FEEL will be severely degraded. In particular, the FEEL

achieves only a best accuracy of 80.8%, which is about 7%

worse than that of the FEEL-ideal. Similarly, the FEEL-UB

faces a more serious situation, where the accuracy loss is

22%. In contrast, the proposed ME-FEEL achieves a maximum

accuracy of 84% without applying the KD technology. These

results further verify the effectiveness of the proposed ME-
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Fig. 8. Test accuracy versus the communication round for the Fashion-MNIST dataset with γth = 15s and BA = 40MHz.

TABLE III
ACCURACY COMPARISON OF SEVERAL METHODS WITH γth = 15S AND BA = 40MHZ.

Accuracy

Methods Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Exit 6 Exit 7 Maximum

FEEL-ideal - - - - - - 0.87 0.87

FEEL - - - - - - 0.8079 0.8079
FEEL-UB - - - - - 0.6542 0.6542
ME-FEEL (without KD) 0.7535 0.7735 0.7824 0.7975 0.8075 0.8374 0.8174 0.8390
ME-FEEL 0.8159 0.8185 0.8178 0.8200 0.8205 0.8205 0.8148 0.8286

FEEL framework.

Moreover, we can also find from Table III that there is about

1% accuracy loss when we apply the KD technology in ME-

FEEL, compared to the ME-FEEL (without KD). However,

the early exits of ME-FEEL, including the exits from 1
to 5, all perform better than those of ME-FEEL (without

KD). In particular, the ME-FEEL with the first exit achieves

an accuracy gain of 6%, compared to the method without

applying the KD technology. Notably, ME-FEEL with the first

exit also outperforms the conventional FEEL and FEEL-UB

with all exits in terms of a lower cost in computation and

model size. Similarly, due to the use of the KD technology,

the accuracy improvement of the exits from 2 to 5 are

4.5%, 3.53%, 2.25%, and 1.3%, respectively, compared to the

situation of not utilizing the KD technology. This is helpful

for the computation-limited devices in the edge-enabled IoT

networks. These results further verify the effectiveness of

applying the KD technology into the proposed ME-FEEL.

To further verify the robustness of the proposed ME-

FEEL, the performance comparison under different latency

thresholds4 is presented in Fig. 9, where the Fashion-MNIST

dataset is used, the total communication bandwidth BA is set

to 40MHz, and the latency threshold γth varies from 12s to

15s. We can observe from this figure that the performances of

different methods are improved with a larger γth. In detail, un-

der the loose latency thresholds such as 21s, the proposed ME-

FEEL achieves the accuracy gain of 0.5% and 5.0% compared

to those of the FEEL and FEEL-UB, respectively. Moreover,

the performance gap enlarges along with the decreased latency

threshold. For example, when γth = 15s and γth = 12s,

compared with the FEEL, the accuracy gain achieved by the

proposed ME-FEEL is 1.56% and 2.68%, respectively. In

addition, the proposed ME-FEEL can obtain the accuracy gain

4When the latency threshold is set too large, the server needs to wait for
the update from the bottleneck device and the system efficiency decreases. In
contrast, when the latency threshold is small, few devices can upload updates
successfully, which deteriorates the system accuracy. By taking into account
these two aspects, we set the latency threshold in the range of 12-21s.
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Fig. 9. Test accuracy versus the latency threshold γth for the Fashion-MNIST
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Fig. 10. Test accuracy versus the total communication bandwidth BA for the
Fashion-MNIST dataset with latency threshold γth = 15s.

up to 16.6% and 32.7% compared to the FEEL-UB. These

results indicate that the proposed ME-FEEL can adapt well

to the practical edge-enabled IoT environments by reasonable

exit selection and bandwidth allocation.

Fig. 10 shows the accuracy performance versus the commu-

nication bandwidth BA, where the Fashion-MNIST dataset is

used, the latency threshold γth is set to 15s, and BA varies

from 35MHz to 50MHz. From this figure, we can find that

the accuracy performances of all methods deteriorate along

with the decreased BA. However, the performance degradation

exhibits different sensitiveness to the decreased bandwidth.

In particular, the accuracy of FEEL-UB deteriorates from

72.7% to 59.9%, when the bandwidth varies from 50MHz to

35MHz, indicating that the FEEL-UB is significantly affected

by the decrease of total communication bandwidth. The FEEL

performs a little bit better than FEEL-UB, while its accuracy

performance is still limited by the bandwidth, where the

accuracy deteriorates from 80.6% to 77.9% when BA changes

15 20 25 30
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Fig. 11. Test accuracy versus the transmit power Pk for the Fashion-MNIST
dataset with latency threshold γth = 15s.

from 50MHz to 35MHz. Notably, the proposed ME-FEEL

outperforms the other methods, and it has a relatively minor

performance degradation. In particular, when BA = 50MHz,

the accuracy gain of ME-FEEL is 2.6% and 10.5% compared

to FEEL and FEEL-UB, respectively. Moreover, the accuracy

gain increases when the communication bandwidth decreases,

and it is up to 20.75%. This is because that the proposed

framework can reduce the exit number of devices whose

computational power is limited, which can reduce the training

latency. In this way, the proposed framework can mitigate

some dependence on the bandwidth resources. In contrast, the

competitive methods fail to do that, and the accuracy perfor-

mance deteriorates severely when the available bandwidth is

insufficient.

Fig. 11 demonstrates the test accuracy versus the transmit

power Pk varying from 15dBm to 30dBm, where the latency

threshold is 15s, and the total communication bandwidth BA

is 40MHz. From this figure, we can find that the accuracy

performances of all methods improve with a larger transmit

power. In particular, when Pk = 30dBm, the accuracy of

the proposed ME-FEEL, FEEL, and FEEL-UB is 82.88%,

80.03% and 65.41%, respectively. When the transmit power

decreases, the accuracy of FEEL-UB deteriorates significantly,

and it almost fails to obtain enough accuracy performance.

The accuracy of FEEL deteriorates from 80.03% to 76.35%

when the transmit power reduces to 15dBm. In contrast,

the proposed framework shows its robustness, and there is

only 2% decrease in the test accuracy in the same situation.

These results further indicate that the proposed framework

can surmount the limited-resource environments, and meet the

demands of practical edge-enabled IoT networks.

VI. CONCLUSIONS

In this paper, we investigated the problem of facilitating an

efficient and flexible FEEL in the edge-enabled industrial IoT

networks. We proposed a novel FL framework named FEEL

to tackle the system heterogeneity problem. The proposed

ME-FEEL employed multiple exits on the local model so
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that we could avoid training the complete model under the

latency constraint. In this case, the devices were able to

choose the best exit and train a specific part of the model

according to their needs. Since the early exits may cause

some performance degradation, we applied the KD technology

to solve the problem. Moreover, we proposed a joint exit

selection and bandwidth allocation algorithm based on the

greedy approach to maximize the expected number of exits in

each communication round. Finally, we conducted simulations

to evaluate the performance of the proposed ME-FEEL by

employing the Fashion-MNIST dataset with non-IID setting.

Simulation results showed that the proposed ME-FEEL could

outperform the conventional FEEL in the resource-limited IoT

networks.

Nevertheless, there are still some challenges regarding the

deployment of computational intelligence and federated learn-

ing in the edge-enabled industrial IoT networks. For example,

how to set the latency threshold according to the available

resources in time-varying environments is a critical challenge.

Besides, how to use the huge number of unlabeled samples in

the IoT devices and how to train a shared model when the data

is presented as a stream still remain challenging. Moreover,

a more efficient distributed inference protocol needs to be

devised to further reduce the latency and energy consumption.
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