Page 1 of 51

oNOYTULT D WN =

Under review for possible publication in

Inter-cell Interference Mitigation for
Cellular-connected UAVs using MOSDS-DOQN

Liyana Adilla binti Burhanuddin, Student, IEEE, Xiaonan Liu, Student, IEEE,, Yansha Deng, Member, IEEE,
Maged Elkashlan, Member, IEEE, Arumugam Nallanathan, Fellow, IEEE.

Abstract—In 5G and beyond, UAVs are integrated into cellular
networks as new aerial mobile users to support many applications
and provide higher probability of line-of-sight (LoS) transmission
to base stations (BSs). Nevertheless, due to limited frequency
bandwidth and spectrum resource reuse when BSs serving
terrestrial users (TUEs) and UAVs, it causes severe downlink
interference to TUEs, especially when the network has a heavy
load. Thus, in this paper, we study the performance of radio
connectivity of UAVs and TUEs in an urban area and introduce
a downlink inter-cell interference coordination mechanism. Then,
we propose adaptive cell muting interference and resource
allocation scheduling schemes. A value function approximation
solution (VFA), Tabular-Q, and Deep-Q Network (DQN) are
proposed to maximize the long-term network throughput of TUEs
while guaranteeing the data rate requirements of UAVs. With
increasing number of UAVs and TUEs and dynamic wireless
environment, we further propose a Muting Optimization Scheme
and Dynamic time-frequency Scheduling (MOSDS) algorithm to
increase throughput and satisfactory level for both UAVs and
TUEs. Simulation results show that the proposed algorithms
achieve 80% performance improvement of throughput of UAV
and TUE networks and mitigate the interference among them.
Also, the proposed MOSDS-DQN shows 18% improvement
compared to the DQN algorithm.

Index Terms—Interference Management; UAV; Cellular Net-
works; Dynamic scheduling; Deep Reinforcement Learning.

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) is becoming an important
solution in the future cellular-connected networks to increase
coverage of base stations (BSs) and support many applications,
e.g., video streaming [1,2]. Studies show that in 2029, the
worldwide commercial UAV market will achieve 14 billion
dollars [3] and these will lead to traffic congestion of commu-
nication between UAVs and cellular-connected ground users.
Compared to ground users, the flying UAVs have higher
altitudes and the channels between UAVs and BSs are usually
line-of-sight (LoS) channels [1].

Current regulations in most countries limit UAV operations
to the case in which there is Visual-Line-of-Sight (VLOS)
between a UAV and its pilot. However, it is expected that
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Beyond-Visual-Line-of-Sight (BVLOS) operations will be al-
lowed for extended range, if there is a reliable Command and
Control (C2) link to the UAV. The C2 link is critical to safe
operations for UAVs. Moreover, in cellular networks, the BS’s
inter-site distance (ISD) is designed according to ground level
channel models and the density of Terrestrial users (TUEs)
[2]. However, ISD is not optimized for UAVs in different
propagation environments. As a result, the transmission perfor-
mance of UAVs and TUE:s is severely affected by interference
among them, when BSs serving them in the same frequency
simultaneously [4]. Using the model in [5], the study in [6]
showed that highly loaded scenarios decreased UAV coverage
due to high interference. In addition, the authors in [7] gave
theoretical interference analysis of cellular-connected UAV
networks with TUEs based on radio characteristics, including
UAVs’ heights, ISD and signal-to-interference ratio level.

Consequently, authors in [4,8-11] considered interference
mitigation schemes between TUEs and UAVs, by considering
power control [8—11], reducing UAV height [11], and antenna
beam selection [4]. Although decreasing power allocation,
reducing UAV height, and selecting proper antenna beams can
mitigate interference and improve throughput, they can result
in low coverage of UAVs and increase outage probability when
BSs serving UAVs and TUEs simultaneously. To address this
issue, authors in [3, 12] designed a cooperative beamforming
technique to effectively suppress inter-cell interference (ICI)
to the UAV, and authors in [2] deployed a muting scheme to
mute the cells with high interference to decrease interference
between UAVs and TUEs.

Furthermore, when large number of moving TUEs and
UAVs exist in 5G networks, there will be high interference
when BSs serving them. In [13-15], the authors considered
cell muting and traditional optimization methods to miti-
gate the ICI. Specifically, authors in [13] optimized UAV
resource allocation based on their cell association to maximize
throughput performances of TUEs and UAVs, and considered
inter-cell interference coordination (ICIC) based on Release-
10/11 to mitigate strong interference to TUEs. However, only
a single UAV was considered in [13] and the UAV could
only access to the resource block (RB) that had not been
occupied by any TUEs, thus, the approach in [13] could not be
adapted to the scenario with multiple UAVs. Authors in [14,
15] used the cell range expansion (CRE), enhanced inter-cell
interference coordination (eICIC), and further-enhanced ICIC
(feICIC) schemes to improve the overall spectral efficiency.
However, the optimization methods in [14] and [15] aimed
at optimal solutions in each time slot with high computation
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complexity and were not designed for long-term optimization
problem.

To solve the problems in [13—15], authors in [16] pro-
posed an interference-aware path planning scheme for cellular-
connected UAV. Through deep reinforcement learning (DRL),
each UAV is required to make a trade-off between maximizing
energy efficiency and minimizing wireless latency and inter-
ference. With increasing number of devices in future terrestrial
networks, the interference problem between UAVs and TUEs
becomes more complicated. Therefore, efficient ICIC designs
are required for enabling efficient spectrum sharing between
UAVs and TUEs in future cellular-connected networks, in
which, the resource allocation can be designed to mitigate
interference and improve throughput of UAVs and TUEs.
Based on the previous RB allocation and traffic patterns,
authors in [17] proposed a deep Q-network (DQN) to select
proper RBs for UAVs and TUEs to perform transmission with
low interference. Authors in [8] deployed DRL algorithms,
including DQN and actor-critic (AC), to co-design the video
resolution, movement, and power control of UAV-BS and
UAV-UEs to maximize the quality of experience (QoE) of real-
time video streaming.

Although 5G helps improve data rate performance, it has
some drawbacks. Therefore, more SG BSs are built to support
5G connectivity in multiple areas and brought BSs closer to
users [18]. With the increase in the number of 5G BSs and
TUEs, the interference among them increases, and with the in-
crease in transmission opportunity, the situation becomes more
complex to reduce interference while guaranteeing high quality
of service (QoS) of UAVs and TUEs. To mitigate interference
in complex scenarios, the DRL algorithm is considered.

To the best of our knowledge, none of these studies inves-
tigated multiple UAVs and TUEs’ coordination in the cellular
network and deployed dynamic RB scheduling to maximize
long-term throughput performance. In practice, the control
signal reception of UAVs is not only affected by the link
quality of the communication channel, but also susceptible
to interference. Thus, the control links between the BS and
TUEs and UAVs are important, especially when the spectrum
resources are constrained. To effectively solve the aforemen-
tioned problems, UAVs and TUEs require high-level coordina-
tion to ensure all users meet their minimum requirements and
optimize their data-rate performance, especially in a highly
dynamic environment. Therefore, in this paper, we propose a
dynamic muting and RB allocation scheme to maximize the
throughput of TUEs via DRL algorithms. The interference is
decreased by muting the cells with the strongest interference
and RBs are properly shared and scheduled to UAVs and
TUEs, with the aim to satisfy high QoS requirements of UAV's
and TUEs. The main contribution of this paper is that we
propose dynamic cell muting by using DQN algorithm to max-
imize long-term reward of downlink transmission with moving
UAVs and TUE:s in a downlink scenario of a connected-cellular
UAV network. Our results show that our proposed MOSDS-
DQN improves the throughput performance of TUEs and
reduce overall interference, compared with the downlink inter-
cell interference coordination mechanism proposed in [2]. The
contributions of this paper are summarized as follows:

2

e We propose a dynamic muting scheme for moving UAVs
and terrestrial users (TUEs) in a downlink scenario of
a cellular network. The UAVs and TUEs are uniformly
distributed in the communication environment, and the
dynamic requests from them follow Poisson process in
each time slot.

o To guarantee excellent service among TUEs in a dynamic
network, we formulate a long-term problem to mitigate
the interference level of each UAV by muting cells, which
can satisfy QoS requirements of TUEs and UAVs over
time and maximize sum-rate of TUEs.

e To further increase the throughput of downlink transmis-
sion based on cell muting technique, we propose a dy-
namic muting and time-frequency scheduling algorithm.
The muting scheme mutes proper number of interfering
cells, and the time-frequency scheduling scheme allocates
proper physical resource blocks (PRBs) to TUEs and
UAVs.

e To solve the aforementioned problem, we deploy value
function approximation solution (VFA), Tabular-Q, Deep
Q Network (DQN), and MOSDS-DQN. Learning al-
gorithms help the agent to select actions to maximize
the long-term throughput of downlink transmission. The
linear muting scheme from [2] is set as a benchmark
as it using traditional optimization muting scheme to
mitigate the inter-cell interference. Simulation results
show that our proposed DQN approach outperforms the
linear muting scheme in terms of higher throughput and
lower interference. Furthermore, the proposed MOSDS-
DQN guarantees the throughput performance of TUEs
with increasing number of UAVs.

The rest of this paper is organized as follows. The system
model and problem formulation are given in Section II. The
optimization problem via deep reinforcement learning is
presented in Section III. Simulation results and conclusions
are presented in Sections IV and V, respectively.

II. SYSTEM MODEL

We assume that C base stations (BSs) with M antennas are
deployed at the centre of C cells, using Orthogonal Frequency
Division Multiple (OFDM) to serve their associated users, as
shown in Fig. 1. OFDM has been used for over a decade
and proved its robustness in multi-carrier technologies. In
OFDM, the available frequency band is divided into multiple
subcarriers, each of which is assigned to a specific TUE or
UAV in a specific time slot. This allows multiple users to
transmit or receive data simultaneously over different subcar-
riers without interfering with each other. OFDM uses multiple
smaller subcarriers to avoid the Inter-Channel Interference and
Inter-Symbol Interference over wireless networks, and adds a
Cyclic Prefix (CP) to demodulate the signal effectively on the
receiver side [19].

According to [20-22], as shown in Fig. 2, the antenna
element pattern A(6,¢) for the mth antenna array is given
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Fig. 1. [Tllustration of UAV-cellular network model and resource block
scheduling. The solid green lines denote the signal links between BSs and
their associated UEs, while the dashed red lines denote (strong) interference
links between adjacent UAV/UEs.

by

A(f,¢) = —min< — [Apv(0) + Apu(P)|, Am ¢,

)
where Apy(0) and App(¢) are vertical and horizontal
radiation patterns of antenna elements, respectively. Agy(6)
is denoted as

2

—ono
690 SLAy 5. (2

3dB

AE,V(Q) = —minK 12

CIn Eq. (1) and (2), 0 is the vertical angle, 03,5 is the vertical
3dB beamwidth [20], SLAy is the side-lobe level limit, and
Ag H(¢) is denoted as

2

Api(¢) = —mind 12[ 2= | , Ay 5. 3)
¢34

In (3), ¢ is the horizontal angle, ¢3;p is the horizontal 3dB
beamwidth, and A, is the front-back ratio [20]. Based on (2)
and (3), the 3D antenna element gain for each pair of angles
(6, ) is calculated as

AG(Qr ¢) = Gpax —min { — AE,V(Q) + AE,H(¢) JAm ¢,

“4)
where Gy is the maximum directional gain of the antenna
element [20,22,23]. The above equations (1) - (4) provide
the dB gain experienced by a ray with angle pair (6,¢)
based on the effect of the element radiation pattern. The cth
BS (¢ € C) operates in a single-user mode serving either a
terrestrial UE (TUE) with DL data or an UAV with Command
and Control (C2) data. Both TUEs and UAVs are assumed
to be equipped with a single antenna. Each cell consists of [
uniformly distributed TUEs, while the total number of UAVs
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Fig. 2. Illustration of antenna pattern.

is | and they are uniformly distributed over the entire network
with radius Rypy. The UAV in a cell is prioritized and assigned
with PRBs, as it requires critical C2 data transmitted in a
required data rate [21]. The distribution of TUEs is modelled
as Poisson Process and the remaining available PRBs should
be allocated to all TUEs.

A. Mobility Model

In the 3D environment, we assume that the UAV flies at
a fixed height with a fixed speed. Thus, the 3D environment
for the UAV is mapped into a 2D image with W x W grids.
We assume that the length of the side of each grid is a, and
the UAV moves along the centre of each grid, which creates a
finite set of possible paths. Also, the moving latency between
two grids is the same because of the fixed speed. The UAV
moves with four directions, right, left, forward, and backward.

B. Channel Model

We adopt two different 3GPP standards to model the chan-
nels for TUEs and UAVs, respectively [21] [22]. Here, the
UAV is assumed to be flying at a height where a line-of-sight
(LoS) link is ensured. The small-scale channel gain of the
UAV is modelled as Rician channel, while for TUEs, they are
modelled as Rayleigh channels [16, 22, 24]. The pathloss from
the uth UE to the BS is written as

15.3 4-37.6log;,(d3p), 1.5m < hl, < 225m
28.0 + 221o0g;, (d3p) +201log,, (fc) ,
22.5m < hi, < 300m
%)
where f. is the carrier frequency, and d4,(t) is the distance
between the uth user and the BS. Next, we assume that each
BS uses the same transmit power and each user has perfect
knowledge of its channel state information (CSI), so that the
signal to interference plus noise ratio (SINR) ., ; between the
cth BS and the jth UAV is written as

t -
R LLoS,u -

2

PCth] g VC’]'

: (6)
Nc,j + ZkeC\c PC”h]I(_,Iu * Viu HZ

'Yc,j =
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mpjzw Ac(0,¢), and Pp; is the downlink

transmit power per PRB. In (6), h. ; € CMx1 denotes the
channel vector between the cth BS and the jth UAV, and hy ,,
is the channel between the kth BS and the uth user in the
kth cell. The channel model h includes both the small-scale
fading and large-scale fading calculated by h = g. ,81/ 2 where
g and B are small-scale fading and large-scale fading parame-

H H\ !
ters, respectively. In (6), v, = (gk u) ggku (gku) )

represents the transmit zero-forcing precoding vector of the
uth user in the kth BS [25], and Sku € € CM*1 g the channel
vector between the kth BS and the uth user in the kth cell. In
addition, N, ; is the additive white Gaussian noise at the jth
user.

where P, =

C. User Association

According to [6], we consider the maximum Reference
Signal Receive Power (RSRP) in the user association policy.
The RSRP is the average power of Resource Elements (RE)
that carries cell specific Reference Signals (RS) over the entire
bandwidth [2,25], thus, the RSRP is only measured in the
symbols carrying RS and is denoted as

RSRP.; = Pe — PL1os g 7

In the maximum RSRP-based user association, the UAV
is connected to the BS that provides the maximum RSRP.
Specifically, the associated BS is chosen by the UAV via

u; = {u | max RSRP,,,,¥j € J} . ®

Based on (6), the achievable rate of the jth UAV is calcu-
lated as

RUAV B: log,(1+ ¢, ), 9)

where B. is the bandwidth of the cth BS.

D. Inter-Cell Interference Coordination (ICIC) for Macrocell
Muting

To improve received SINR of the UAV, the BSs coordinate
PRBs among TUEs and UAVs. The interfering BS ¢ € C’
leaves the PRBs blank/muted, allowing the UAV-serving BS
to schedule its transmission within the same frame shared with
TUEs. Therefore, Eq. (6) is rewritten as

PCHhc,j : Vc,j”z
N, j+ Crecrerge Pl - Vil

where C' C C is the set of BSs being muted, and the second
term in the denominator is the total interference from other
BSs. The SINR between the cth BS and TUE is given by

Yo = 7 (0

Pc||h5u ) Vc,u”zr
Ne,u + Lkechekger Pellbg,
In (11), ke, € CM*1 denotes the channel vector between the

cth BS and the uth user. Based on Eq. (10) and (11), the date
rate of the uth TUE is defined as

Ye,u = (11)

: Vk,u”z.

4
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Fig. 3. Modelled antenna beam configurations for the UAV.
TUE
Rc u = B 10g2(1+7c u) (12)

where B, is the bandwidth of the cth BS and the data rate of
the jth UAV is defined as

RUAY = B, j logy(1+ 7, )- (13)

In (13), B is the fraction of bandwidth allocated to user j at
cth BS, with respect to the available bandwidth.

E. Antenna Beam Selection

When assuming the antenna elements are mounted on
the UAV at the right spacing and angle/orientation, antenna
selection with two or more directional antenna elements is
equivalent to a simple beam selection [2]. For example, the
UAV rotates its fuselage in the azimuth plane while keeping
the right direction, then 1 or 2 antenna elements are sufficient
to generate a ‘beam’ towards the serving BS. If degrees of
freedom of the UAV are more restricted, at least 4 antenna
elements need to be mounted to provide four beams in the
azimuth plane. Thus, we assume that antenna beam selection
of the UAV is applied only in the azimuth plane, and an
omnidirectional elevation radiation pattern is considered. An
antenna beam radiation pattern is modelled as a sinc()?
function, with -3 dB beam-widths of approximately 90°, or
50° in the azimuth plane with six beams [2]. The modelled
beam patterns provide +6.6 dBi gain in the main direction
and -3 dB gain in the front-to-side lobe attenuation according
to [2], which can be used to compensate for the non-ideal
orientation and shape of beams [2]. As shown in Fig. 3, a
simple setup with a grid of 2, 4 or 6 fixed beams is used (fixed
relative to the UAV fuselage) to emulate a practical antenna
selection mechanism.

FE. Downlink Resource Block Scheduler

LTE transmission is segmented into frames, each one con-
sists of 10 subframes, and each subframe is further divided into
two slots. Each slot is 0.5 ms, so that the total time for each
frame is 10 ms. Each time slot on the LTE downlink system
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consists of 7 OFDM symbols. The flexible spectrum allows
the LTE system to use bandwidths ranging from 1.4 MHz to
20 MHz, where higher bandwidths are used for higher LTE
data rates. The physical resources of the LTE downlink can
be illustrated as a frequency-time resource grid, as shown in
Fig. 4. A Resource Block (RB) has a duration of 0.5 ms (one
slot) and a bandwidth of 180 kHz (12 sub-carriers). Each RB
has 84 resource elements in the case of a normal cyclic prefix
and 72 resource elements for extended cyclic prefix.

In the RB scheduler technique, there are several types of
scheduling algorithms, such as Round Robin (RR) [26] and
proportional fairness (PF) [27]. RR scheduling is a non-aware
scheduling scheme that allows users to take turns in using the
shared resources (time-RBs), without taking the instantaneous
channel conditions into account. The radio resources in RR
are assigned equally among all users, which compromises the
throughput performance of the system. While PF is defined
as the ratio of the average data rate to all users to maintain
the equality of fairness [27]. To solve the problem, dynamic
scheduling is introduced to schedule the available data for
each Transmission Time Interval (TTI), which maximizes the
scheduling gains. As shown in Fig. 4, PRBs are allocated to
sub-bands according to their channel and resource allocation
models. However, the challenge is that it requires frequent
coordination for exchanging control signals between cells,
which increases the overhead among cells.

G. Problem Formulation

The objective is to maximize the throughput of TUE net-
works by selecting optimal actions in A? subject to the UAV’s
QoS requirements (i.e., reliability). Thus, the optimization
problem is formulated as

co C U

(P1): max Y2 ) 3 pUUREEGF) a4
(At|5t i=tc=1u=1
F
S.t. P <P, pr >0, (15)
f—l
RTUE (i, f) }E,?E, Yuel (17)
€[0,1]. (18)

where pi [O,l) is the discount factor determining the
performance accumulated in the future reward. When ﬁi =0,
the agent only concerns about the immediate reward. Eq.
(15) guarantees the maximum transmit power threshold at
the BS in each (7, f), where f is the selected sub-frames
of F sub-frames and Eq. (16) and Eq. (17) guarantee the
transmission rate threshold for UAVs and TUEs, respectively.
The optimization problem aims at maximizing the total long-
term reward in continuous time slots with respect to the policy
7t that maps the current state information s; to the probabilities
of selecting possible actions in Af. The state S* contains the
set of instantaneous and cumulative data rates of both UAVs
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Fig. 4. Dynamic PRB scheduling for UAVs and TUEs.

and TUEs, and the agent selects a specific action A® € A(S")
that determines the index of cell(s) being muted.

To solve the problem, we consider muting schemes using
reinforcement learning (RL), which are introduced in detail in
the next section.

III. MUTING OPTIMIZATION SCHEME USING
REINFORCEMENT LEARNING

Since the channel and locations of UAVs and TUEs change
over time, different muting and dynamic scheduling schemes
are required in continuous time slots. Therefore, the problem
in P1 is a long-term problem and cannot be solved by a
traditional optimization method.Therefore, in this section, we
design several Reinforcement Learning (RL) algorithms to
solve the problem in P1. The RL agent learns the optimal
mapping from the input states to select the resource allocation
action to maximize the long-term throughput.

A. Tabular Q-Learning

Consider a Q-agent deployed at the central unit to optimize
the service provision for both UAVs and TUEs. To optimize
the long-term reward, the agent first explores the environment.
Lets € S,a € A, and r € R denote the state, action, and
reward, respectively.

1) State Representation: The current state S' corresponds
to a set of current observations. The state of the system is
denoted as S = [Y_ Rryg, Y Ryav], where Rpyg is a set of
data rate of TUEs and R4y is a set of instantaneous rate of
UAVs.

2) Action Space: Q-agent selects action A from set A.
The action is denoted as A" = {N,,}, where N, is the
index of muting cells. To ensure the balance of exploration
and exploitation actions of the agent, e-greedy (0 < € < 1)
exploration is deployed. In the tth TTI, the agent randomly
generates a probability pé to compare with €. If the probability
pL < €, the algorithm randomly selects an action from
the feasible actions to improve the value of the non-greedy
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action. However, if pé > €, the algorithm exploits the current
knowledge of the Q-value table to choose the action that
maximizes the expected reward.

3) Rewards: At the beginning of each TTI, the Q-agent
observes the current state St and selects a specific action Af €
A. After performing the selected action A, the agent receives
areward R‘*1 and observes a new state S'™1. The optimization
goal is to maximize the long-term throughput of TUEs while
guaranteeing the quality of service (QoS) of UAVs, which is
defined as:

u
Reward™ = Y R, -1 [Ru,j > RTh] , (19)

u=1

where,

1[Ryj > Ry =1[Ry > Rpy] N1 [R; > Ry | (20)

In Eq. (20), 1[x] is the indicator function, 1[x] = 1 when x
is true, otherwise, ll[x} =0, and N is a logical and operation
function. In the logical and operation function, 1[x] N1[y] =1
as x and y are true, otherwise, 1[x] N1[y] = 0 [28].

In tabular Q, the state to action mapping is learned through
value function Q(s,a), which consists of a scalar value for
all state and action spaces. The action that has the maximum
value is selected from 4. To dynamically optimize the number
of muted cells, the function learns the optimal policy 77* and
optimizes the Q-table. The agent updates its Q-table using
the immediate reward R!*! and the next state-action value
Q(S**1,a), which is given by

Q(s', A') = Q(s", A"+

21
« Rt+1 + ma(Q(St+1,a) o Q(St,At) . @n
ac

In Eq. (21), « € (0,1) is the learning rate, and v € [0,1) is
the discount rate that determines how much the current reward
affects the future value. In each TTI, the agent selects the
action with the highest probability with probability p, > e,
or vice versa. The learning rate &, most importantly, is set
to be a small constant to guarantee stable convergence, as
the reward can be biased due to unknown and unpredictable
distribution of the observed states. The implementation of
cell muting using tabular-Q method is shown in Algorithm 1.

B. Linear Value Function Approximation

However, the Tabular-Q requires large space to store state-
action value, and needs to update each parameter to achieve
convergence. To address these issues, we consider a linear
value function approximation (VFA) method. VFA uses a
‘Value Function’ approximator to obtain a sub-optimal policy,
but its efficiency depends on the deployed approximation
function, such as Linear Approximator (LA), Deep Q-Learning
(DQN), and decision trees.

LA approximates the value function Q(S!, A?) by

6

Algorithm 1 : Tabular Q-Learning/Linear VFA to optimize
cumulative terrestrial users’ throughput
Algorithm hyperparameters: « € (0,1],y € [0,1),e €
(0,1]
Tab-Q: Initialize Q-table Q(s, a)
for Iteration <— 1 to I do
Initialize s! by executing a random action AY;
UAVs identify the BS with the highest RSRP and
associate with it.
fort < 1toT do

VFA: Initialize w

if pe <e
Randomly select an action At from A;
else
Tab-Q: select A" = argmaxQ (St, A);
AcA
VFA: select A" = argmaxQ (St, A,,w);

AcA
The agent performs A’ and mutes the selected cells.

The agent observes S'*1 and calculates R'*! using
Eq. (19).
Tab-Q: Update Q(S, A) according to Eq. (21).

VFA: Update w according to Eq. (29).
end for

Determine all active UEs (TUEs and UAVs) using
Bernoulli process.

Determine associate cell UEs and active UEs matrices.
Update the queue matrices.

Ctalculate SINR and transmission rate.
end for

Q(s!, AH) =~ Q(s!, Af, wh), (22)

where w! is the weight vector. The objective is to minimize
the mean-squared error between these two values, given by

J(wh) =E=[(Q(S", A") — Q(S!, A", wh))Y.  (23)

To obtain the optimal policy, w! is updated by stochastic
gradient descent (SGD), which is calculated as

S Vul(w) =[QS, A — Qs A, W]

(24)
vWQA(Si‘/ At, Wt)/
and
vw' = a[Q(s!, AT) — Q(S', AT, W]V Q(S, A, wh).
(25)

In LA, Q(S!, A', w!) is represented as a dot product
of feature vector x(Sf, A’) and weight vector w', which is
denoted as

K
Q(s!, AL, wh =xT(s!, Ahw' = ¥ x(S!, Ahwh, (26)
k=1
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x1(St, A
x5 (S, At
x(st, ahy = |2 @7

XK(St, At)

where x(Sf, A?) corresponds to the entire state-action space.
The current action is selected from the vector Q(St, A, Wt)
in Eq. (26), following the e-greedy policy, which is the same
as that of tabular Q-learning. The gradient descent in Eq. (25)
is calculated as

VwQ(S!, AL, wh) = V[T (S, Ah)w'] =x(S!, A"), (28)
and
Vw = a[Q(S!, AY) — Q(S!, Af, wh)x(S!, AD).  (29)

The implementation of cell muting using the VFA method
is shown in Algorithm 1. However, the basic linear tabular-
Q is not suitable, as the state-action space is so large and
are increasing with the number of cells, and also function
approximation technique is unable to train and get the optimal
solution. Therefore, we consider DQN in our scenario.

C. Deep Q-Network

When large number of cells, TUEs, and UAVs exist in the
network, the state-action space increases exponentially. To ad-
dress this issue, DQN is used to update the network’s weights.
Just like LA, it also changes the value function Q(S, A) into
Q(S, A,0), and 6 is the weight matrix of the multi-layer Deep
Neural Network (DNN). DNN is used to approximate the state-
action value function [29]. S! is the state observed by the
agent and acts as an input to DNN. The outputs are selected
actions in A. Furthermore, the intermediate layer contains
multiple hidden layers and is connected to Rectifier Linear
Units (ReLu) via using a f(x) 4+ max (0, x) function, and the
output layer performs the linear activation to select actions
from A. In the tth time slot, the weight vector is updated by
SGD and Adam Optimizer, which is expressed as

0+ = 0 — A - VL(0), (30)

where Aapam is the Adam learning rate, and Aapam - V£ (6")
is the gradient of the loss function £(8"). In (30), V.L(6') is
denoted as

Vﬁ(et) = ]Esi,Ai,Rei+1,Si+1 [(Qtar - Q(Si, Ai}

6')- VQ(S', A%;6')].
In (31), the expectation is calculated with respect to
a so-called minibatch, which is ‘ randomly selected in
previous samples (Sl,Al,Re’H,S‘“) for some i €
{t—M,, t— M, +1,...,t}, with M, being the replay mem-
ory. The minibatch sampling is able to improve the con-

vergence reliability of the updated value function [30]. In
addition, the target Q-value Qy,y is denoted as

Qtar = rei+l + 'Yraneziﬁ)l( Q(Si+11 a, ét)r (32)

3D
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Algorithm 2 : DQN to optimize cumulative terrestrial users’
throughput
Algorithm hyper-parameters: « € (0,1],y € [0,1),¢ €
(0,1
Initialize replay memory M, primary Q-network 6, and
target Q-network 0
fore< 1tol do
Initialize s' by executing a random action a°;
UAVs identify the BS with the highest RSRP and
associate with it.
fort < 1toT do
If pe < € : Randomly select action at from A;

else select a' = argmaxQ (St,a, 6);

Agent performs the selected A and mutes cells.
Agent observes S'T! and calculates R
Store transitions (Sf, Af, Rf, S'T1) in replay
memory, and sample random minibatch of
transitions (Sf, Af, RY, S'*1) from M.
Calculate QA(StH, a, 0) according to Eq. (32).
Calculate gradient descent using Eq. (29).

Update 8 every K steps.
end for

Determine all active UEs (TUEs and UAVs) using
Bernoulli process.

Determine associate cell UEs and active UE matrices.
Update the queue matrices.

Calculate SINR and transmission rate.
end for

where 8 is the weight vector of the target Q-network to
estimate the future value of the Q-function for the next state-
action pair, and it is updated as 8 < 6. This parameter
is periodically updated from the current value 6" and kept
fixed for some episodes. The DQN algorithm is a value-based
algorithm, which can obtain an optimal strategy. This is due
to the experience replay mechanism and randomly sampling
in DQN, and DQN uses the training samples efficiently to
smooth the training distribution over previous behaviours. Not
only does this massively reduce the amount of interactions
needed with the environment, but also reduce the variance of
learning updates. The DQN algorithm creates a sequence of
policies whose corresponding value functions converge to the
optimal value function, when both the sample size and the
number of iterations tend to infinity. The DQN algorithm is
presented in Algorithm 2.

D. Muting Optimization Scheme and Dynamic time-frequency
PRB Scheduling (MOSDS)

In this section, solutions on solving interference among
TUEs and UAVs while maximizing the TUEs’ capacity is
proposed. Dynamic requests from both TUEs and UAVs can
cause higher interference, especially in a high dense urban
area. To deal with this issue, we consider a MOSDS-DQN to
maximize the total capacity of TUEs, mitigate the interference,
and mute the cell causing high interference.

The effect of blank subframes is modelled by assuming
that the downlink transmission from the corresponding cells is

IEEE Transactions on Cognitive Communications and Networking
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Fig. 5. The dynamic scheduling design for MOSDS-DQN.

muted in the corresponding frequencies. The main component
is to suppress the blank sub-frames of the interfering cell,
and the Almost Blank Sub-frames (ABS) scheme is applied
according to ICIC Release 10 [14]. However, to reduce
interferences, further-enhanced ICIC (felCIC) solutions are
implemented in the system, which pre-allocate the packet in
frequency and time domain for UAVs and TUEs as visualized
in Fig. 1 and Fig. 4.

In this model, the available frequency bandwidth for the DL
transmissions is divided into F sub-frames indexed by f =
1,2,...,F and the time interval is slotted into transmission
time intervals (TTIs) indexed by i = 1,2,..., N as shown in
Fig. 4. The time-frequency resource grid consists of F X N
RBs. Therefore, the date rate of the uth TUE is defined as

where Bf ; is the bandwidth of the RB (i, f) at the cth cell
and the data rate of the jth UAV is defined as
R = B ; logy(1+ 7c, ). (34)
For dynamic resource scheduling, we mainly consider ef-
ficient dynamic scheduling, where different data sizes and
requirements are considered in this scenario. As proposed in
[21], the UAV data rate and latency requirements need to
satisfy 60-100Kbps and 50ms. Specifically, for the resource
allocation problems with different time and frequency require-
ments, quantized time-frequency resource block allocation
scheme is considered, as shown in Fig. 5. First, the controller
classifies different services with the specific QoS requirements
according to the service characteristics and the current network
congestion. Second, according to the admission control policy,
the resource block of each scheduled UAVs and TUEs are con-
tinuously mapped to the specific time and frequency domain.
Finally, based on the current muting scheme, data sizes, and
previous learning experience, dynamic resource scheduling for
UAVs and TUEs are considered to reduce interference. Thus,
to maximize TUE throughput and guarantee the reliability and
latency of UAVs, optimizing both of the scheduling policies
and cell muting selection are considered.

8

In addition, the omnidirectional antenna [2] is utilized in
the algorithm to help mitigate the interference efficiently
while maximizing the capacity of both TUEs and UAVs. It
is assumed that each UAV transmits 1250B every 100ms
[2]. Authors in [2] showed that TUEs could achieve the
lowest capacity loss when the UAVs were scheduled to send
information at every 10th and 50th TTI. However, the results
are different when they have different number of UAVs in
different scenarios, i.e., high load scenario. In real scenarios, it
is difficult to predict the number of users. Thus, the main focus
in this section is to jointly optimize the number of muting cells
and UAVs’ scheduling schemes, and the optimization problem
is formulated as

(P2) :  max ZZ iﬁ(l HRIUE (i) (35)

"(At|5t i=tc=1u=

S.t.NBu ﬂNBj =0, VYu#j, (36)
Ly

Y N, £Q, V(ul), (37)
1=1

RCT g“f (i, f) ;,?E, Yuel, (39)

€ [0,1]. (40)

where p [0,1) is the discount factor determining the
performance accumulated in the future reward. If ,Bi =0,
it means that the agent only concerns the immediate reward.
Eq. (36) shows a RB should always be allocated to one user.
The scheduler length N, in Eq. (37) should allocate no more
than the maximum queue length Q. Next, Eq. (38) and Eq. (39)
ensure a good service rate for UAVs and TUEs, respectively.
As the arrival of UAVs cause a trade-off between available
PRBs and interferences among all users, it is important to
consider an optimal trade-off among the RSRP, the group of
UAV’s RB, and muting scheme, which further motivates us
to use the learning algorithms to jointly optimize long-term
throughput of all users. The DRL agent then learns the optimal
mapping from the input states to select the resource allocation
action.

1) State Representation: The current state of the system
includes commutative throughput of TUEs and UAVs, given
by Sh = {ZNTUE RTuE Y RHAVY where Ry is a set of
data rates of TUEs and Ryjay is the instantaneous rate of
UAVs.

2) Action Space: Q-agent will choose an action a from set
A. The dimension of the action set is calculated as A =
N, - ts. The action is denoted as Affl = {Npu, ts}, where
N, is the number of muting cells and s is the slice time
allocation for UAVs to transmit data.

3) Rewards: After performing the selected actions, the
accumulated reward function is given as

u
Reward{* = Y R, -1 [Ru,]- > RTh} ) 41)
u=1

The MOSDS-DQN algorithm is shown in Algorithm 3.
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Algorithm 3 : MOSDS

Initialization «, €, M, 0, and 6.
UAV identifies the highest RSRP and associate with it.
Receive muting cell ID from Algorithm 2 and the packet
scheduling.
Determine all active UEs (TUEs & UAVs) using Bernoulli
process and time packet scheduling.
Determine associate cell UEs & active UEs matrices.
fore<+ 1tol do

Initialize s! by executing a random action a

fort < 1toT do

If pc < € : Randomly select action al from A;

0.

else select a’ = argmaxQ (St,a, 9);

aeA
for PRB; <— 1toI do
for activecell. < 1 to C do
Update the queue matrices.
Calculate pathloss.
Calculate Antenna Gain.
Calculate received power.
Calculate the channel states.
Calculate SINR and transmission rate.
eP for
endeﬁg' or
end for

Fig. 6 shows the proposed network architecture, where the
current state is input into the neural network for the DQN
algorithm. Next, an RNN-based GRU network is used to
approximate the value function of the DRL algorithm. The
GRU can capture the correlation between the state and action
over time, and helps DRL to select the optimal actions.

E. Computational Complexity Analysis

In this section, we evaluate the computational complexity
of one iteration of our proposed algorithm with respect to
the size of the network, namely, the number of UEs and
available resources. The computational complexity of the DQN
algorithm, including DQN learning architecture, the action
selection of the agent, and the downlink transmission, is given
by O(mlogn +24 + N;Ny), where m is the number of layers,
n is the number of units per learning layer, and A is the
number of actions [8, 31].

IV. NUMERICAL RESULTS AND EVALUATION

In this section, we examine the effectiveness of our proposed
muting optimization schemes using DQN algorithm. The net-
work consists of 7 cells covering 1500m x 1500m area. In
the simulation, the UAVs are distributed with a fixed flying
height. The height of all TUEs is 1.5m, and the height of all
UAVs is assumed to be of 120 m following UK regulations
[32]. Both TUEs and UAVs are assumed to equipped with a
single antenna. The TUEs and UAVs in each cell are uniformly
distributed and the maximum number of UAVs in the entire
network is 10. We assume that all users move within their
corresponding cells. When a TUE reaches the boundary, it
turns back and moves in a random direction. The network

Under review for possible publication in
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Fig. 6. The learning network architecture for MOSDS-DQN

TABLE I

SIMULATION PARAMETER
Parameters Value
Transmission power, P, 30 dBm
Bandwidth, B 3 MHz
Noise power N, -142.39 dBm
Center frequency, f. 2 GHz
0345 657 [20]
Pads 65" [20]
SLAy 30dB
Ay 30dB
B 3.4 (2]
Antenna Gain, G,y 8dbi
UAV Threshold, R¥AY | 1Mbps [35]
UAV Threshold, R7;'F | 20 bps [36]
Alpha, « 0.001
Gamma, 7y 0.999
Learning Rate 0.1, 0.01
Discount Rate 0.8
Replay memory 1000

parameters for the system are shown in Table I, and follow
the 3GPP specifications in [21], [33], and [34]. All results are
obtained by averaging over 100 episodes, with each episode
containing 100 TTIs.

In the downlink, the TUE traffic pattern is modeled as File
Transfer Protocol (FTP) sessions [2], where both packet size
and arrival time follow Poisson distribution. The downlink
scheduler prioritizes the UAV transmission and C2 traffic over
the FTP traffic, meaning that the BS schedules the UAV
transmission first, and then the remaining TUEs and resources
are divided equally among the connected TUEs that have FTP
data to receive. If there is no downlink data to be transmitted,
users are assumed to be in an idle mode. Otherwise, the user
switches from the idle mode to a connected mode. Once the
data buffer is clear, the user returns to the idle mode.

A. Muting Optimization Scheme using Deep Q-Learning

Fig. 7 shows the reward of a dynamic muting scheme for
different learning algorithms. From the simulation results, it

IEEE Transactions on Cognitive Communications and Networking
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Fig. 8. Dynamic actions influence the rate for all TUEs and UAVs over time.

is clearly shown that DQN outperforms both VFA and Tab-
Q. The convergence of both VFA and Tab-Q are slightly
faster than DQN, but unable to obtain the maximum reward
as that of DQN. Tab-Q fails to perform exploitation of each
action in continuous time slots as it is fixed in a suboptimal
strategy [37]. In addition, the VFA’s target network might
not fully works due to features and high number of state-
action, which causes VFA cannot perform better exploration
over time. DQN can explore and exploit actions, which enable
it to obtain the maximum state-action value. Moreover, the
convergence analysis of the reinforcement learning algorithms
has been proven in [28], [38], so that the agent of the Q-
learning algorithm can converge to the optimal Q value.

Fig. 8 shows how dynamic muting actions affect the total
throughput for all TUEs and UAVs via DQN muting scheme
over time. In Fig. 8, “Reward” represents the cumulative
reward, “UAV” represents the total throughput for all UAVs,
“TUE” represents the total throughput for all TUEs, and “Mute
Cells” represents the number of muting cell in each time slot.
At the early stage of learning, DQN learns to be adapted to
the environment based on the observations, and the reward
continues increasing. When t+ = 155,156,189, and 21617,
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Fig. 9. Average TUEs’ throughput comparison between DQN-based muting
scheme and linear muting.

the rewards drop to zero due to the difficulties in choosing
the correct muting number that suits the current environment,
which leads to the transmission rate of UAV not satisfying
the threshold in Eq. (16). As time passes, DQN can predict
and learn how to maximize the reward. However, the system
can become unstable when the epsilon-greedy parameter is
less than the threshold, namely, p. < €, as it directly selects
a random action and decreases the performances of TUE.
When the algorithm converges, the performance of all TUEs
and UAVs maintain at the maximum value with an optimized
number of muting cell.

Fig. 9 plots the convergence performance of DQN with
different mitigation schemes [2]. For simplicity, ‘“Highest
benchmark” represents the linear muting scheme with 3
strongest interfering neighboring cells muted to allow UAVs
to transmit their data without interference from TUEs, and
“Lowest benchmark” shows the performance of the linear
muting scheme when the system mutes a single neighboring
cell with the highest interference, which can mitigate the inter-
ference between UAVs and TUEs. The “Highest benchmark™
and “Lowest benchmark™ use linear mitigation schemes in
[2]. In [2], the “Highest benchmark” muted a maximum of 3
strongest RSRP interference signals to cancel the interference
following the 3GPP Release-13 model [2,39]. The DQN-
based muting scheme shows 48% improvement compared to
the “Highest benchmark™. It is proved that the DQN scheme
can adequately select the correct number of muting cells to
reduce interference, even though the proposed system changes
dynamically. In addition, DQN is able to perform in a dynamic
scenario with a varying number of UAVs and TUEs, and select
proper actions for the agent to maintain a higher data rate
of TUEs. Compare to the lowest benchmark scheme, they
are limited by the fixed set of rules it using and mute the
fixed number of cells over time. In addition, the benchmark
algorithm may not be able to find the optimal solution if the
environment or condition is changing and DQN shows 80%
improvement in overall data rate.

Fig. 10 plots the interference comparison analysis for DQN-
based muting and linear muting schemes in [2]. It can be
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seen that the proposed DQN muting scheme outperforms the
Highest benchmark scheme. The result proves that the DQN
muting scheme can accurately choose the cell muting index to
reduce the interference in dynamic environments, and further
maximize the average throughput.

Fig. 11 and Fig. 12 show the throughput performance of
TUEs and UAVs in different situations, respectively. From Fig.
11, we observe that when the number of TUEs increases, the
interference increases, and more number of TUEs and UAVs
cannot satisfy their minimum transmission requirements. From
Fig. 12, we can obtain that when the number of TUEs is
small, UAVs achieve high throughput. However, when the
number of TUEs increases up to 70, the average capacity of
UAVs decreases because of high interference, and more UAVs
cannot satisfy their minimum transmission requirements. It is
because the muting schemes try to decrease the number of
muting cells to let a high number of TUEs transmit their data,
which leads to the UAVs being unable to satisfy their minimum
requirements of transmission rate. Also, high number of TUEs
causes less bandwidth allocated to UAVs, which further leads
to lower throughput of UAVs. In addition, the performance
of the UAV with the Tab-Q algorithm decreases dramatically
when the number of TUEs increases. This is because Tab-Q
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Fig. 13. Rewards performance comparison between different schemes.

with high dimensional state space requires large memory, and
has difficulty in selecting proper actions to achieve optimal
results.

B. Muting Optimization Scheme and Dynamic PRB Schedul-
ing (MOSDS-DQN)

This section evaluates the proposed muting optimization
scheme and dynamic PRB scheduling with MOSDS-DQN
algorithm. Fig. 13 shows the convergence performance of the
MOSDS-DQN muting scheme. For instant, “MOSDS-DQN”
represents DQN muting optimization scheme and dynamic
PRB scheduling. It is observed that the MOSDS-DQN algo-
rithm performs better than the DQN muting scheme. However,
the MOSDS-DQN scheme shows a lower convergence speed.
It is because MOSDS-DQN muting scheme has larger state
and action space, and needs to select more proper actions to
mute cells and allocate PRBs to UAVs and TUEs.

Fig. 14 shows the throughput performance of dynamic ac-
tions over time. In Fig. 14, “Reward” represents the cumulative
reward, “UAV” represents the total throughput of all UAVs,
and “Mute Cells” represents the number of muting cells each
time slot. Fig. 14a shows the muting cell action selected to
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Fig. 14. Dynamic actions influence the reward for all UAVs in each episode.

maximize the overall throughput. At the beginning of the
learning process, the reward continues increasing, it is because
the algorithm is learning the environment based on previous
experience. When the learning algorithms converge,F proper
number of muting cells is selected to decrease the interference
and improve the throughput. However, in some time slots, the
performance of the UAV severely decreases and cannot satisfy
the minimum QoS because of some factors, such as the data
size of UAYV, time allocation, and bandwidth allocation.

Fig. 14b shows how the BS sends data to the UAV in 100m:s.
The network environment condition and the location of UAV
play important roles in MOSDS-DQN to plan the number of
data pack of UAV transmission. For example, if the UAV is
far from the cell, the frequency of sending UAV’s data pack
should be reduced to decrease the transmission failure. Thus,
less data pack of the UAV is transmitted, and less PRB is
allocated to the UAV, which decreases the interference and
improve the throughput performance of TUEs.
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Fig. 15. Comparison of average capacity rate for all TUEs based on different
number of UAVs.

In the early phase of Fig. 14c, the high-frequency range is
used frequently, and it causes the performance of both UAVs
and TUEs to decrease because of high interference. When the
learning algorithms converge, proper frequency range for each
PRB is selected to satisfy the QoS requirement. Therefore, the
MOSDS-DQN algorithm is able to provide an effective way
to select proper number of cells to mute and allocate proper
PRBs to TUEs and UAVs, especially in different scenarios.

Fig. 15 plots the average capacity rate for all TUEs with
different number of UAVs based on muting schemes via DQN
and MOSDS-DQN. It is observed that when the number of
UAVs is less than 4, both algorithms increase average capacity
rate. However, when the number of UAVs increases from
4 to 5, the DQN algorithm is unable to increase average
capacity. It is because it cannot select proper actions in a large
action space. When the scenario becomes more complex, the
algorithms need to balance the performance between UAVs
and TUEs. In the simulation, UAVs have higher priority, thus,
the performance of TUEs decreases tremendously when a high
number of UAVs exist. Furthermore, when the number of
UAVs increases, the performance of MOSDS-DQN is higher
than that of DQN.

V. CONCLUSION

In this paper, a downlink inter-cell interference coordination
mechanism was developed to mitigate the interference between
BSs and TUEs while satisfying the rate requirements of UAVs.
Then, adaptive muting optimization scheme and dynamic
scheduling of PRBs were proposed to maximize the through-
put of all users, and mitigate the interference by muting the
cell(s) that caused high interference. Simulation results showed
that our proposed learning-based schemes achieved 80% and
48% performance improvement of throughput compared to
the lowest and highest linear muting algorithms, respectively.
Furthermore, the proposed MOSDS-DQN also showed 18%
improvement compared to DQN algorithm. In addition, the
coordination of multiple agents in the MOSDS algorithm
should be considered in the future work.
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