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criteria. The results also suggest that the proposed network achieves significant performance gains over

the non-orthogonal multiple access (NOMA) and full offloading networks.

Index Terms

Internet-of-Things (IoT), short-packet, execution uncertainty, mobile edge computing (MEC)

I. INTRODUCTIONS

The proliferation of intelligent devices within Internet-of-Things (IoT) networks has revolu-
tionized various applications, such as autonomous driving and tactile Internet, providing extensive
services [1], [2]. However, these intelligent devices face limitations in terms of computational
capacity, which hinders their ability to meet the growing demands of applications. To address this
challenge, mobile edge computing (MEC) has emerged as a promising solution. MEC allows
devices with limited computational capabilities to offload computationally intensive tasks to
access nodes equipped with powerful servers, through wireless links [3].

In the context of MEC networks, minimizing latency and energy consumption while ensuring
the successful execution of computations is a crucial concern. Given the constrained battery
capacity of intelligent devices and the inherent uncertainty associated with wireless channels, sub-
stantial challenges arise. Therefore, it becomes imperative to devise strategies that can effectively
reduce latency and energy consumption while maintaining high computation success rates. Hence,
extensive research efforts have been dedicated to optimizing task offloading and computational
resource allocation. These efforts aim to strike a balance between computational efficiency and
resource utilization, considering factors such as task characteristics, network conditions, and user
requirements. Several studies [4]-[6] have proposed algorithms and frameworks for efficient task
offloading and resource allocation, aiming to achieve improved performance in terms of latency
and energy consumption.

However, it’s worth noting that the influence of communication resources represents an equally
important role in the broader MEC research landscape. Consequently, a significant body of
research has been dedicated to scrutinizing the ramifications of communication resources on
overall system performance. In this vein, several studies [7]-[9] have specifically explored the
effects of diverse communication techniques, including multi-access schemes and transmission

protocols, on the overall performance of MEC networks. The objective of these studies is to
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optimize communication resources in order to improve the likelihood of successful task execution
and facilitate dependable and efficient task offloading.

Overall, the field of MEC is a rapidly evolving area of research, addressing the challenges of
low-latency computational tasks in IoT networks. Through the optimization of task offloading,
resource allocation, and communication strategies, MEC offers promising solutions to meet the

computational demands of IoT applications while ensuring efficient and reliable execution.

A. Literature

Short-packet communication scheme was proposed to provide ultra-low latency services for
IoT networks. Compared with traditional communications with infinite-blocklength coding, block
decoding errors may occur in short-packet communications due to the utilization of finite-
blocklength coding. Therefore, plenty of work has been devoted to overcoming this drawback
of short-packet communications [10]-[17]. Specifically, Sun et al. optimized the transmit power
and data rate to maximize the effective throughput for a two-user non-orthogonal multiple access
(NOMA) network with short-packet communications, and their work showed the superiority of
NOMA to orthogonal multiple access (OMA) [12]. Furthermore, the authors of [14] extended
to study the short-packet NOMA networks with multiple carriers, and solved the effective
throughput maximization problem by using the block coordinate descent (BCD) and concave-
convex procedure (CCCP) methods. Later, Chen et al. maximized the total effective throughput
and minimized the transmission time for short-packet OMA networks, by alternately optimizing
the block error rate (BLER) and blocklength for each device [15]. Moreover, Ren et al. devised
joint power and blocklength allocation algorithms to minimize the BLER and maximize the
secure sum rate for multi-user networks [16]-[18].

Besides, the deployment of short-packet communications in MEC networks boosts the devel-
opment of low-latency applications in IoT scenarios, which raises research interest [19]-[23].
In specific, She et al. in [19] considered the queuing delay of tasks, and their works analyzed
the BLER for orthogonal frequency division multiple access (OFDMA) MEC networks with
short-packet communications and further optimized the allocation of tasks and sub-channels to
minimize the BLER. To enhance the transmission efficiency while maintaining low latency, Liu
et al. in [20] proposed to leverage the NOMA short-packet communications in MEC network,

and the reliability of network has been improved by optimizing the channel use and power
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allocations factors. In [21], Zhou et al. managed to adjust the request rate for communication
and computation, and jointly optimized the allocation of channel use, spectrum and computational
resource, which breaks a balance between the effective amounts of information and the consumed
energy. Moreover, to improve the freshness of data, Li ef al. in [22] analyzed the average age of
information for a short-packet edge computing network, and alternately optimized the offloading
ratio of task and the blocklength with the aid of successive convex approximation (SCA) method.
In addition, the utilization of hybrid automatic repeat request (HARQ) enhances the transmission
reliability, and Zhu et al. in [23] exploited the benefit of HARQ and developed an optimal solution
to minimize the energy consumption in short-packet MEC networks.

Most of the works in the field of MEC considered deterministic computational tasks with
fixed workloads, and therefore, the required computational resources, e.g., central processing
units (CPU) cycles, can be perfectly estimated and well allocated. However, information on
computational resources and tasks becomes difficult to acquire with low-latency requirements,
especially in IoT networks, which causes execution uncertainty [24]-[26]. To address this prob-
lem, the impact of execution uncertainty on the execution failure probability has been evaluated
and modeled in [26]. Owing to the results in [26], Zhang et al. further optimized the computing
speed to lower consumed energy with given execution failure probabilities in [27]. In practice,
execution uncertainty may cause excessive energy consumption and result in power-consumption
outages, and Yang et al. took notice of this phenomenon and analyzed the outage probability of
power-consumption in multiple-input-multiple-output (MIMO) Gaussian channels [28].

However, it is not practical to propose short-packet communication without considering the oc-
currence of execution uncertainty. Specifically, in IoT applications, requires considering execution
uncertainty due to the inherent complexity and variability of IoT devices. Recognizing execution
uncertainty can significantly improve IoT system reliability. In the realm of MEC, the rate of
successful computations becomes crucial. To address this, a new nonlinear function, including
the gamma function, is developed to estimate the success probability of computations, taking into
account factors like sub-task size and blocklength. This approach introduces fresh challenges for
researchers. Additionally, while there is extensive research on execution uncertainty in standard
MEC networks, the specific dynamics in short-packet MEC networks remain under-explored.

This gap highlights the need for thorough research and analysis, which is the focus of this
paper.
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B. Contribution

The objective of this paper is to address the challenge of execution uncertainty in the context
of short-packet MEC networks. Furthermore, the paper aims to mitigate the limitations posed by
both short-packet communications and execution uncertainty within the constraints of latency.
Specifically, we consider a short-packet MEC network, where a mobile terminal divides the
computational task into multiple sub-tasks, and offloads parts of sub-tasks to edge computing
nodes (ECNs). Moreover, the offloading and computing of the task are subject to latency
constraints, and execution failure may occur due to the randomness of the number of CPU
cycles required for each bit of task and the block decoding error. The main contributions of this
paper are summarized as follows.

« Taking into account the impacts of communication and execution uncertainties, we formulate
the execution failure probability minimization problem with the aim of optimizing the
transmission time and the length of the sub-task for each ECN. In addition, an optimal
solution for the execution failure minimization problem is provided.

« Moreover, since the objective function involves () function and incomplete Gamma function,
the execution failure minimization problem is complicated and the optimal solution is un-
traceable when the number of ECN is large. To cope with that, we develop a low-complexity
alternating algorithm using the majorization-maximization (MM) method. Specifically, the
second-order approximation based MM (MM-2) method is applied in the design of the algo-
rithm, which provides semi-closed-form solutions and helps to obtain the results efficiently.

o As the time division multiple access (TDMA) scheme is considered, the mobile terminal
offloads the sub-tasks to each ECN sequently, and we propose two sorting criteria for the
sub-task offloading order, relying on the computing speeds of ECNs and the channel gains
of transmission links, respectively.

o Numerical results show the effectiveness of the proposed alternating-MM algorithm and
sorting criteria. Furthermore, the comparisons with NOMA networks and full offloading

networks also demonstrate the superiority of the proposed TDMA network.

C. Structure

The rest of this paper is organized as follows. The system model and execution failure

probability minimization problem are illustrated in Section II. To solve the problem, we provide
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an optimal solution in Section III and develop a low-complexity algorithm in Section IV. In
Section V, two sorting criteria for task offloading are presented. We present the numerical results

in Section VI and conclude our paper in Section VII.

()
o
/ ()

ECN D,

()
ECN Dy

Fig. 1. Mobile edge computing network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a latency-limited edge computing network, where user Dy
attempts to execute the computational task of length N, bits and maximum latency yr s, with
the aid of K ECNs {D;|1 < k < K}. ' Analogously to the partial offloading utilized in [5]
and [6], the computational task is divided into K + 1 sub-tasks, which are executed locally or

offloaded to the ECNs. In specific, D, executes the sub-task of N, bits locally, and offloads the

'"The work in this paper provides a preliminary study, which can be easily extended to multiuser networks, with techniques

such as ECN selection, ECN allocation or power allocation [30].
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sub-task of N bits to Dj with blocklength m; channel uses, utilizing the TDMA scheme.? In
addition, the computing speeds of Dy and Dy are gy and gy, respectively.

In practice, the number of CPU cycles required for each bit of task, i.e., 7, may be difficult
to estimate, while the statistical characteristic of 7, can be utilized to improve the system per-
formance in the presence of execution uncertainty.> Taking into consideration this circumstance,
we assume 1), varies randomly, and 7, can be modeled by a Gamma distribution as follows

[26]-{28]

™8

- ()

where k is the shape parameter, /3 is the scale parameter and (k) = / e 't"1dt is the Gamma

function. The estimation of distribution parameters depends on the nagure of the application, e.g.,
the complexity of the algorithms [26]. It is assumed that each computational task consists of
different files, thus {n;|1 < k < K} are assumed to be approximately independently identically
distributed [26]—[28]. We can easily find that the expectation of 7, equals to the product of x and
B, i.e., E(nx) = kB. Therefore, with larger values of x or (3, the expected computation burden
increases.

In the following, we illustrate the communication and computation models, and then detail the

impacts of short-packet communication and execution uncertainty on the system performance.

A. Communication Model

Due to the use of TDMA, the offloadings of sub-tasks are arranged in chronological order.

We assume the offloading of sub-task executed by D), starts earlier than that executed by Dy 1,

For the OMA-based scheme, we see that the frequency division multiple access (FDMA)-based scheme costs the same
transmission time for the offloading to each ECN. However, for the TDMA-based scheme, the ECN finishing the transmission
earlier can start the computation of the task without waiting for the later ones. Therefore, the TDMA-based scheme can
significantly reduce the latency compared with the FDMA-based scheme. Thus TDMA is considered in this paper.

*For instance, the data processing of acoustic streams or images, e.g. speech analysis or object recognition, poses different
task burdens with various scenario, and it is easier to execute the task in a simple scenario with less distraction or noise [29].

However, we can estimate the statistical characteristic of 7y, e.g., the expectation and variance of 7y, through the collected data.
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hence the total transmission latency for Dy is
k
Lpx=Y_ my,T, )
n=1

where T' = é and B is the channel bandwidth.

To meet the low-latency requirement, short-packet communications are utilized for offloading,
and the successful offloading of sub-task cannot be guaranteed. Let Ps represent the transmission
power, o represent the variance of the additive white Gaussian noise, and hj;, represent the
channel from Dj to Dj. Hence, the received SNR for Dy is given by

Pg|hy|?
= 5'2’“', 3)

Yk
o
and the corresponding successful transmission probability of the sub-task for D is given by

Ppi =1 — ®(vk, N, my), 4)

where ® (v, N, m) represents the transmission error probability, which can be expressed as

(v, N,m) = Q(A(y,N,m)), (5)

A(vy, N,m) is defined as
A(y. N.m) = (C() = N/m) - (V(3)/m) "%, (©)
C() = logy(1 + ) denotes the channel capacity, V () = (log, €)*(1 — (1 + v)?) denotes the
channel dispersion, and Q(z) = L h e_édt is the Gaussian () function. In this paper, we

V21 Ja

use normal approximation in (5) for the transmission error probability, and (5) becomes accurate
in practice when the transmission error probability is higher than 10~ [10]. In the context of
long-packet MEC networks, the successful transmission probability for D becomes 1, if the

transmission data rate, i.e., Ny /my, is smaller than channel capacity C'(7x).

B. Computation Model

Suppose the offloading of sub-task for Dj succeeds. In this case, D; starts to execute the

offloaded sub-task. The computing latency for Dy is

Loy = "KM ()
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9
From (2) and (7), for given 7y, the total latency for Dy, is
Ly = Lcy+ Lpy
=Mm+im£ )

Ik —
which consists of transmission latency Lp ; and computing latency L¢ ;. When the total latency
for Dy does not exceed latency threshold v, then Dy succeeds to finish its own sub-task. Due to
the randomness of 7, there exists the computation success probability for Dy, which is denoted

as Pc . By using (1) and (8), P, can be formulated as
Pey, =Pr(Ly <r)

g = 3opy maT)

=P <
i ne > A
k
9k = Yo i)

=, L , ®)

! N
where y(k,x) = ﬂ / t"le~tdt is the lower incomplete Gamma function. Also, vy >

TK) Jo

Z m., T should hold to keep the number in incomplete Gamma function positive *.
n=1

If the transmission and computing of sub-tasks for all ECNs and the local computing at N,
are completed successfully, the execution of computational task succeeds. Following (4) and (9),

the overall execution success probability of the computational task can be obtained as

K
Ps(N,m) = [ [ PoiPoy, (10)
k=0
where N = [Ny, Ny, -+, Ng] and m = [mq, ms,--- ,mg|. Accordingly, the execution failure
probability is
Peit(N,m) = 1 — Py(N,m). (11)

*Other research has proposed different computation failure models, i.e., [31], whose computation failure is resulted from
the shared computing resource. where failures arise from shared computing resources. However, this paper focuses on a more
practical scenario, where task computation failures are attributed to the intrinsic nature of the content. Specifically, it deals with

the variability in the number of CPU cycles required, which can fluctuate randomly.
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C. Problem Formulation

In this paper, we aim to minimize the execution failure probability, or equivalently maximize
the execution success probability, by optimizing the lengths of sub-tasks for the user and ECNs
and the blocklengths for the offloading to ECNs. From (10) and using the monotonicity of the

logarithm function, the execution failure probability minimization problem can be formulated as

follows

max In Py,s(IN, m) (12a)

K
st > Np> Ny, (12b)

k=0
Ng < Niot, k€K, (12¢)

k
o=y m,T >0, keK, (12d)
n=1

Nip,mp eN, ke, (12e)
where N is the set including all non-negative integers, = {0,1,---, K'}. Constraint (12e)

ensures the number of bits and the number of channel uses for each sub-task are non-negative
integer, as we consider bit-wise level partial offloading and short-packet communications. It is
readily to find that Problem (12) is non-convex due to the nonlinear functions in (12a) and
the integer constraints in (12e), and the solution to Problem (12) is challenging to obtain. °
In the sequent sections, we provide an optimal solution and a low-complexity alternating-MM

algorithm to solve Problem (12).

III. OPTIMAL SOLUTION

In this section, we provide an optimal solution to Problem (12), based on the interior point
method and K -dimension search. The detailed procedure is illustrated as follows.

By using the K-dimension search over N, we can accordingly determine the optimal m by

SWhen considering the long-packet MEC network, we see that the execution failure probability minimization problem is

convex, by setting Pp r = 1 and Ni/mi < C(yx) for k € K and relaxing constraint (12e).
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solving the following problem

max In Py,s(IN, m)

s.t. (12d), (12e). (13)

To find the optimal solution for Problem (13), we first relax the integer constraints in (12e) to

my, > 0, for k£ € IC, and the relaxed Problem (13) is written as

max In Py,s(N, m) (14a)
st. (12d),
my >0, kek. (14b)

According to the following theorems, we show that Problem (14) is convex.
Theorem 1: In(1 — Q(x)) is an increasing concave function.
Proof: See Appendix A. [ ]
Theorem 2: A(y, N,m) is an increasing concave function with respect to (w.r.t.) m.
Proof: See Appendix B. [ |
Theorem 3: In Pcy, is a concave function of m.
Proof: See Appendix C. [ ]
From Theorems 1-2 and (4), it is trivial to find that In Ppj is a concave function of m. In
addition, utilizing Theorem 3, we can further conclude that In P, is a concave function of
m. As such, Problem (14) is a convex optimization problem, and we can obtain the optimal
m(N) = [m;(N), me(IN), - - - ,mg(N)] for Problem (14) via the interior point method in [35].
Furthermore, using the exhausting search over the rounding integers of 1, (IN), we can obtain

the optimal solution to Problem (13), as follows

m*(N) = arg mkerggxkelc In Pos(N, m), (15)
(12d),(12¢)

where By = {[m(N)], [mi(IN)]} is the set containing the rounding integers of 7y (N), |x]
denotes the floor function, and [z] denotes the ceiling function. Moreover, we can easily see
that the intersection of m;, € By, for k € K, and (12d) includes all the possible optimal solutions

to Problem (13), since In P, is a concave function of m.
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Furthermore, using the K-dimension search over N and comparing the values of In Pj,s with

m = m*(N), the optimal N* for problem (12) can be obtained as

N* = arg(lgcn)?fge) In Pyus(IN, m*(N)). (16)

In this way, the optimal solution to Problem (12) can be obtained by the K-dimension search

over N and interior point method.

Algorithm 1 Proposed Optimal Solution

1: Using K-dimension search to list all possible compositions of N in [Ny, Ny, --- N].
2: Set l =0, N* = Nj.

3: while [ < L do

4: Set N = N;.

5: Solve Problem (14) and obtain m(N).

6: Solve Problem (15) and obtain m*(IN;) using exhausting search method.
7: if In Pos(IN;,m*(N;)) > In Py (N*, m*(IN*)) then

8: Set N* = IN;.

9: end if

10 l:=1+1.

11: end while

K

Computational Complexity Analysis: For the K-dimension search over N with Z N = N,
k=0

the computational complexity is O (Ntffl). Moreover, for the optimization of m, from [32],

the computational complexity is O (K*® - log,(1/€)), where € is the numerical accuracy. Hence

we can conclude that the overall computational complexity for the optimal solution is

O (NET'K?P - logy(1/e)) . (17)

tol

We see that the proposed optimal solution is suitable for small value of K, e.g. K < 3.

IV. ALTERNATING-MM ALGORITHM

The computational complexity of the proposed optimal solution becomes obnoxious when K

is large, therefore we develop a low-complexity algorithm in this section. Analogously to the
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works in [22] and [33], we leverage the alternating optimization method in [34] and optimize N
and m alternately, where the integer constrainta in (12e) are relaxed to my, N, > 0, for k£ € K.
In specific, given N, we solve Problem (14) in Section III. With fixed m, we solve the following

problem
max In Pys(IN, m) (18a)

s.t. (12b), (12¢),

N, >0, kek. (18b)

However, Problem (18) is still non-convex owing to the involvement of non-linear functions, i.e.,
Q(z) and ~y(z,y). Leveraging the MM method in [36], [37] and the second-order approximation,
we develop an MM-2 method to solve Problem (18). The core idea of the MM method is to
find a sequence of surrogate functions of the original objective function, and solve the problem
with surrogate functions iteratively [36], [37]. To construct valid surrogate functions for Problem
(18), we propose the following theorems.

Theorem 4: The second-order derivative of ()(x) function is lower-bounded by

(NI

Q"(z) > —(2me) 2. (19)

Proof: See Appendix E. [ ]
Theorem 5: The second-order derivative of In~y (Ii, wtfl) w.rt. t > 0 is lower-bounded by

0 Iny (k, ¥t~
ot

> Bi(v, k), (20)

where By (1, k) is given in (70).
Proof: See Appendix F. [ ]
Based on Theorem 4, we apply the second-order Taylor series expansion at Ny, and obtain

the following inequality

Ppj > pDk(Nk) = Qk,lng + @i 2Nk + Qe 3, (21)
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where

[ NI

k1 = — 87V (y)mye) 2, (22)

Gro =(Nge™2 — e N CeNem)/2) (91 (7, )my) 72 | (23)

N|=

Qo3 =1 — (i, Ny ) + Nigra
Ny N ORNem) /2 (971 (4, )my ) ™ (24)

As we can see, Pp (V) is a concave function of Nj.
From Theorem 5 and using the second-order Taylor series expansion at N, we can obtain

the following inequality

In Poj > Po(Ni) = 51 NZ + skaNi + Sp3, (25)
where
k
¢k :gk(f)/T - zﬁ:nzl mnT)’ (26)
Skt ZW’ 27
o B\ Bor Uy,
sk2 =NipBr (i) — fn( ) 2 1( Nk> (28)
B % 51/% B 4 % <o
(e ) () o

Accordingly, PCk(Nk) is a concave function of Ny, since sj; is non-positive from (27) and
(70).
In the (/+1)-th step of the proposed MM-2 method, we replace In Pr ;, Pp ;, with po,k(Nk,l) +

In pD’k(NkJ) and obtain a valid surrogate function for Problem (18), then solve the following

problem
K ~ A
max ; Pog(Nig) +In Pp o (Nyy) (30a)
s.t. (12b),
Npiw < N, < Nyg, kek, (30b)
where N; = [Ny, N1, -+, Nk,| is the optimal solution to Problem (30) in the I-th step of the

proposed MM-2 method. In addition, we set

Np i =max(0, Noy), Nyg = min(Ny, Nog), (31)
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where

No = (g2 — 4%,1%3)% — Qi) - (2%,1)71, (32)

Nok = —((aFo — 4qk1ar3)% + ara) - (2ak1) " (33)

are the solutions to ]ADDJg(N 1) = 0. Constraints in (30b) ensure the numbers in logarithm function
are positive.
As the objective function of Problem (30) is a concave function of N, from [35], we can

rewrite (30) into the following equivalent problem

K
spax kz_o Pek(Niy) +In Pp i (Nii) + 1Nk — ptNeol
st (30D), (34)

where 1 is the dual variable.
To proceed, we use the water-filling method and decompose Problem (34) into multiple convex
sub-problems. With fixed u, the objective function is separable regarding Vi, therefore we can

respectively solve

max In f’D,k(NkJ) + pC,k(Nk,l) + Ny
k

s.t. (30b), (35)

with optimal solution Ny ;41(x). To lower the computational complexity, we have the following
theorem.
Theorem 6: The closed-form solution to Problem (35) can be determined with Cardano’s
formula in [38].
Proof: See Appendix G. [ ]
Furthermore, since the second-order derivative of In }Spjk(Nk,l) + f’c,k(Nk,l) w.r.t. Ny is nega-
tive, Nk 4+1(p) is a non-decreasing function of 4. Therefore, we use the bisection search method

to find the optimal & for Problem (34), which satisfies

K
> Ny () = Niat. (36)
k=0

In the next step of the MM-2 method, we set Ny ;11 = Ni41(f). In this way, we solve Problem
(18) with locally optimum Ny, for k € K.
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Remark 1: As a comparison, we can leverage the first-order approximation based MM (MM-
1) method, which has been widely used in the field of short-packet communications to deal with
the difference-of-convex (DC) problems [11], [14], [15]. Based on Theorem 1 and Lemma 1,
we can use the MM-1 method to solve Problem (18) in a manner analog to the proposed MM-2
method. However, the MM-1 method for Problem (18) requires a double bisection search in each
step to obtain the optimal Ny ;.(x) and p*. Different from the MM-1 method, the developed
MM-2 method provides semi-closed-form solutions and requires one bisection search only in
each step.

Algorithm and Convergency: To summarize, we provide the following Algorithm 2 to ex-
plain the procedure of the developed alternating-MM algorithm for Problem (15) with relaxed
my, N > 0, for £ € K. The convergency of the developed alternating-MM algorithm can be
proved in a way similar to the work in [22], which can be summarized as follows.

In the ¢-th step of the alternating optimization method, we have

(@)
In P, o(N*, m') < In P (Nt m"*)

(b)
< In Py (N@D 'm

9

D) (37)

where step (a) corresponds to Problem (14) with given N, and step (b) corresponds to Problem
(18) with given m’. Step (a) hold since Problem (14) is convex and the objective value of

Problems (14) is non-decreasing. Moreover, step (b) holds since for Problem (18) we have

K
In Paws(No,m) = > P i(Nio) + In Pp (N o)

k=0

IN
=

pC,k(Nk,l) +1In pD,k(Nk,l>
-0

S In -PsuS(Nla m)7 (38)

x>

that is the objective value of Problem (18) is non-decreasing. We see that (37) indicates the
objective value of Problems (14) and (18) is non-decreasing after each iteration in alternating
optimization method, hence the convergency of Algorithm 2 is proved.

Finally, applying the exhausting search with the rounding integers of 7i;, and N, for k € K ,

we solve Problem (12).
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2

2 Algorithm 2 Proposed Alternating-MM Algorithm

5 1: Initialize m(o), N(O), t=1.

6

- 2: repeat

g 3 Set N = NV and solve Problem (14) with m®.

10 4: Set N() = [NLO? N270, s ,N}go] = N(til), = 0, m = m(t)

1

12 5: repeat

12 6: Solve Problem (18) and obtain N;;; using MM-1 or MM-2 methods.

15 7: l:=1+1.

16

17 8: until N; converges.

o 9. Set N¥ =N

19 : et = 1.

20 . -

. 10: t:=1t+1.

22 11: until Converge.

23 _

24 12: Output (m’, N) as (m, N).

25

26

27

2

Zg Computational Complexity Analysis: For the optimization of my, from [32], the computational
2(1) complexity is O (K™ -log,(1/€)), where € is the numerical accuracy. For the optimization of
32 Ny, the computational complexity of the MM-2 method is O (L(K + 1) - logy(1/€)), where Ly is
33

34 the number of iterations for the convergence of the MM-2 method. Therefore, the computational
22 complexity of the proposed alternating-MM-2 algorithm is

37

38 O (L ((Ly- (K + 1)+ K*°) -log,(1/e€))) . (39)
39

2(1) However, for the alternating-MM-1 algorithm, the computational complexity is

42 35

43 O (L (Li(K +1)logy(1/€) + K?) - logy(1/e)) , (40)
44

45 where L, is the number of iterations for the convergence of the MM-1 method. The results in
46

47 (39) and (40) indicate that the computational complexity of the alternating-MM-2 algorithm is
48

49 significantly lower than that of the alternating-MM-1 algorithm.

50

51

52 V. SORTING CRITERION FOR SUB-TASK OFFLOADING ORDER

53

54 The TDMA scheme is employed for sub-task offloading in this paper, making the order of
gg offloading a crucial consideration in the proposed system and its optimization. Accordingly, we
57
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introduce two sorting criterion for determining the order of sub-task offloading in this section.
It is evident that the total number of potential sorting orders is K'!, an exponential increase with
the growth of ECNs’ number K, which can become infeasible for larger K values. To address
this computational complexity, we propose two sorting criteria for order arrangement.

1) Criterion 1: The sub-task offloading order is determined in a descending manner w.r.t.
computing speed g, i.e., g1 > ¢a,...,gx. Due to the diversity of the computational capacity
of ECNs, the performance of criterion 1 is no worse than the ECN selection based on the
computational capacities of ECNs.

2) Criterion 2: The sub-task offloading order is determined in a descending manner w.r.t.
channel gain |h.|?, i.e., |hi| > |hol, ..., |hx|. Due to the diversity of the transmission links, the

performance of criterion 2 is no worse than the ECN selection based on channel gain.

VI. NUMERICAL RESULTS

In this section, simulation results are carried out to validate the effectiveness of the proposed
algorithms and criteria. In the simulation, the shape and scale parameters of the distribution of
M. are set to k = 30 and S = 300, respectively. In addition, we consider the NB-IoT scenarios
in [39] and [40], and set the channel bandwidth to B = 100 KHz and the corresponding time
duration for each channel use is 7' = 10™° s. The computation speeds for Dy and D;, are set
to go = 0.5 GHz and g, = 2 GHz, respectively. The maximum latency is v = 1072 s. If not
specified, the normalized channel gains from user to ECNs are ordered as |hy|? = 1.2 — 0.2k,
and we select the first X' ECNs for simulation. For instance, when K = 2, we have \h1|2 =1
and |hy|* = 0.8.

Fig. 2 illustrates the convergence behavior of the proposed alternating-MM algorithm, which
has been employed to optimize the computational task offloading in the considered scenario.
The experimental setup involves specific parameters, including N, = 2500bits, K = {2,3}
and Pg/o? = {15,20} dB, which are indicative of the system’s characteristics and perfor-
mance evaluation metrics. To provide a comprehensive analysis, the results obtained from the
optimal solution, alternating-MM-1 algorithm, and alternating-MM-2 algorithm are presented
for comparative purposes. In the legend, the proposed optimal solution, alternating-MM-1, and
alternating-MM-2 algorithms are denoted as "OP,” "AO-MM-1,” and ”AO-MM-2,” respectively.
The convergence analysis reveals that both the alternating-MM-1 and alternating-MM-2 algo-
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rithms achieve convergence within approximately ten iterations, leading to results that are identi-
cal to those obtained from the proposed optimal solution. This convergence behavior showcases
the effectiveness and reliability of the proposed algorithms in determining the optimal offloading
strategy and resource allocation scheme. It is worth noting that the computational complexity
of the alternating-MM-2 algorithm is significantly reduced compared to the alternating-MM-1
algorithm. This advantage arises from the fact that the MM-1 method necessitates a double
bisection method at each MM step, while the MM-2 method only requires a single bisection
search. The reduced computational complexity of the alternating-MM-2 algorithm contributes to

its computational efficiency and practical feasibility in real-world implementations.

107 88 N e T e 2 —

— — %—- K=2,P (/0?=15 dB, AO-MM-1

—%—K=2,P /0?=15 dB, AO-MM-2
% K=2,P (/0?=15dB, OP
— O~ K=2,P (/0?=20 dB, AO-MM-1
—6—K=2,P /0°=20 dB, AO-MM-2
0+ K=2,P (/0?=20dB, OP
— O—- K=3,P (/0°=15 dB, AO-MM-1

— K=3,P /0?=15 dB, AO-MM-2
Q- K=3,P (/o?=15dB, OP

<>

.................................

Execution failure probability
=

— O K=3,P (/0°=20 dB, AO-MM-1
—8— K=3,P /0?=20 dB, AO-MM-2
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1 1 1
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Fig. 2. Execution failure probabilities versus the number of iterations, where K = 3.

Figs. 3 presents a comprehensive comparison among the proposed TDMA network, the syn-
chronous TDMA network and the NOMA-assisted MEC network described in [20]. In this

comparison, all networks are equipped with two ECNs, and the parameter Pg/c? is set to 15
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Execution failure probability

107

—A— NOMA
—<&— TDMA: Synchronous
—©— TDMA: Proposed

A 1
1000 1500 2000 2500 3000 3500
Task length N toI(bits)

1 1

Fig. 3. Comparison on the performance between NOMA, FDMA and TDMA, where task length N varies from 1000 to 3500
bits, K = 2 and Ps/o” = 15 dB.

dB, which characterizes the power-to-noise ratio. In the synchronous TDMA network, both
ECNs start to compute synchronously, and the optimization results can be easily obtained based
on the works in this paper. To optimize the performance of the NOMA network with two
ECNs, a systematic optimization process is employed, which involves alternating optimization
of power allocation factors, sub-task lengths for each ECN, and the number of channel uses for
offloading. Theorems 1-3 and Lemma 1 provide theoretical foundations for efficiently obtaining
locally optimal solutions through the utilization of bisection search methods. Analyzing the
results depicted in Fig. 3, it becomes evident that the proposed TDMA network outperforms the
synchronous TDMA network and the NOMA network in terms of execution failure probability.
This superiority can be attributed to the inherent characteristics of the proposed TDMA scheme,

which enables the earlier offloaded ECN to initiate the computation of the task without being
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constrained by the subsequent transmissions from other ECNs. Conversely, in the NOMA scheme,
both ECNs commence task offloading and task computation simultaneously. Consequently, by

assigning a larger proportion of the task to the earlier offloaded ECN, the proposed TDMA

oNOYTULT D WN =

9 network achieves a lower probability of execution failure compared to the NOMA network.
Similar reason results in higher execution failure probability of the synchronous TDMA network
12 than the proposed TDMA network. This comparative analysis substantiates the effectiveness of
14 the proposed TDMA network and highlights its advantages over the NOMA network in mitigating
16 the risk of execution failure. The ability to allocate tasks more efficiently to the earlier offloaded
ECN contributes to the enhanced performance of the TDMA network in terms of execution
19 success probability, ultimately promoting reliable and efficient task execution in mobile edge

21 computing scenarios.
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Fig. 4. Comparison on the performance with different values of task lengths Nio1 and numbers of users K, where Ps/ o =15

53 dB.

In Figs 4-6, we compare the execution failure probabilities of the proposed network and the
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Fig. 5. Comparison on the performance with different values of shape parameter x and numbers of users K, where Pg/ o? =15

dB.

full offloading network. In specific, Fig. 4 illustrates the impact of the task length, denoted
as Ny, on the execution failure probability in the system. The simulation settings are such
that PS/O'2 is set to 15 dB, and the number of ECNs, denoted as K, varies from 1 to 3.
Analyzing the results depicted in Fig. 4, several observations can be made. Firstly, as the task
length increases, the system performance in terms of execution failure probability deteriorates.
This can be attributed to the increased complexity and resource requirements associated with
longer tasks, which make them more susceptible to failures. Furthermore, it is evident that as the
number of ECNs (K) increases, the system performance is significantly enhanced. The presence
of multiple ECNs allows for task parallelization and distributed computation, which improves
the overall reliability and efficiency of task execution.

Fig. 5 and Fig. 6 demonstrate the effects of the shape parameter, ~, and the scale parameter,

B, on the system’s execution failure probability. Specifically, in Fig. 5, x ranges from 10 to 100
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Fig. 6. Comparison on the performance with different values of scale parameter 8 and numbers of users K, where Pg/ o =15

dB.

with a constant § of 300, while in Fig. 6, 3 varies from 100 to 1000, maintaining ~ at 300. As the
expected number of CPU cycles required per bit of task, E(n;) = /3, increases, higher values
of k or [ lead to greater computational burden and, consequently, an elevated execution failure
probability. The outcomes depicted in Fig. 5 and Fig. 6 corroborate this analysis. Crucially,
the network model proposed in this study offers a marked improvement in execution failure
probabilities compared to networks relying solely on full offloading. The reduced failure rates in
the proposed network underscore its efficacy in addressing the inherent risks of full offloading,
where tasks are entirely transferred to the ECNs. This improvement is largely due to the optimized
distribution of sub-tasks and resources within the proposed framework, which effectively balances
offloading with local processing, thereby enhancing overall system performance.

Fig. 7 demonstrates the execution failure probabilities for the proposed sorting criteria, with

different numbers of ECNs K and task lengths N, where Pg/ 0% = 15 dB. For comparison, the
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Fig. 7. Comparison on the performance between Criterion 1 and Criterion 2, where Pg /02 =15 dB.

results of the optimal offloading orders are also provided and denoted as “Optimal” in the legend.
The results are obtained by averaging 100 realizations, where we set the channel parameters for
each transmission link with hy ~ CN(0,1) and the computing speeds for each ECN with
gr ~ U(1,5) GHz. As evident from the figure, Criterion 2 exhibits superior performance
compared to Criterion 1. Moreover, the results achieved using Criterion 2 closely approach
those attained by the optimal offloading order. The underlying reason for this phenomenon lies
in the fact that Criterion 2 facilitates a more significant offloading of the task to the ECNs.
This approach offers substantial benefits in terms of system performance, particularly when the
computational capability of the mobile user is limited. Conversely, Criterion 1 does not consider
the channel gains of the transmission links, and as a result, the execution failure probability

increases significantly under unfavorable transmission conditions.
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VII. CONCLUSION

In this paper, we studied a MEC network with short-packet communications, where the success
execution of the computational task was degenerated due to the uncertainties from communication
and computation. The execution failure probability has been improved by jointly optimizing the
blocklength and the length of sub-tasks for each ECN. We also developed a low-complexity algo-
rithm based on the alternating optimization method and the MM method. Moreover, two sorting
criteria for sub-task offloading order were proposed to lower the implementation complexity,
depending on the computational speeds and transmission links respectively. Numerical results
were given to validate the effectiveness of the proposed algorithm and criteria. In addition, the
results also showed the superiority of the proposed network over NOMA and full offloading

networks.

APPENDIX A

PROOF OF THEOREM 1

Note that In(1 — Q(z)) = In Q(—=z). Therefore, we can compute the first-order derivative of

InQ(—x) as

2
xT
1 5

8lngx(—x) — gix >0, (41)
and the second-order derivative of In Q(—x) as
PInQ(—r) *InQ(x)
dx? T 0z
which indicates that the convexities of In Q(—x) and In Q(z) are identical. From [35], we see

~—

(42)

that In () is a concave function w.r.t. z. Thus based on (41) and (42), we can conclude that

In(1 — @Q(z)) is an increasing concave function of x.
APPENDIX B
PROOF OF THEOREM 2

The first-order and second-order derivatives of A(v, N, m) w.r.t. m are respectively given as
O3, N,m)  C(y)m~/2 4+ N2

I = W) >0, (43)
O?A(y, N, m) C(y)m=3/2 + 3Nm~=>/?
Lo - Voo <0. (44)

As we see from (43) and (44) that A(, N, m) is an increasing concave function w.r.t. m.
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APPENDIX C
PROOF OF THEOREM 3
From Theorem 2, we find that for [ > k or d > k, there exists

82 In PC,k

8mlamd B 07 (45)

and when [ < k£ and d < k, there exists

0*In Po g, B PInvy(k,ry) [ gpT 2 46)
8m58md B 87‘% N, kﬁ ’
where
k
a(r — > —1 m,T)
; n (47)
’ Ny
Therefore, from (45)-(47) the Hessian matrix of In Pr;, w.r.t. m can be expressed as
0*In P, A0
g nrok _ : (48)
Om? 0 0

921 T\°
where A is a k& x k matrix, and all elements in A equal to ny(f LN It s

trivial to find that the eigenvalues of the Hessian matrix of In Po; w.rt. m are equal to

kaQ 1H’7(Ii,7"k) ng 2
or Ig N, k ﬁ

Lemma 1: In~(k,x) is a non-decreasing concave function w.r.t. z.

or 0. Furthermore, we also have the following theorem.

Proof: See Appendix D. [ |
From Lemma 1, we know that the eigenvalues of the Hessian matrix of In Pr ) w.r.t. m are

non-positive, thus In Pr, is a concave function of m [35].

APPENDIX D

PROOF OF LEMMA 1

The first-order derivative of Iny(k,z) w.r.t. z is

Olny(k,z)  Bfy(Bz)
ox B 7(H7$>

) (49)

which is non-negative with = > 0, and thus Iny(k, ) is a non-decreasing function of z. Further,

the second-order derivative of In~y(k,z) w.r.t. x is
*Iny(k,x) 7(/43’93)5% — B2 f2(Bx)

- 50
0z? V2 (K, ) (°0)
%155—26—:1:
AN
- PA(kE) oD
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where
0fy(Br) "2 (k—1-2) _
= e, (52)
Oz By (k)
" z
=vy(k,x)(k —1—2x) — e ’. (53)
¢ =7(k, z)( )=
We see from (52) that 87(2 ?) < 0 holds when ( is negative. The first-order derivative of
¢ wrt. x is
a¢
oo = By (Bx) = y(r,2) <0 (54)
P Invy(k, )

0x? =0

when x > 0. Thus, Invy(k,x) is a non-decreasing concave function of z, and the proof is

which is non-positive when = > 0. From (53) and (54), we have ¢ < 0 and

completed.

APPENDIX E

PROOF OF THEOREM 4

The second-order derivative of ()(z) w.r.t.  can be calculated as
" T _z?
x) = e 7. 55
Q') = = (59

It is difficult to determine the monotonicity of the second-order derivative of Q(z) to x in (55),

thus we turn to compute and set the third-order derivative of Q(z) w.r.t. z to 0, i.e.,
? 1—a? .2
Q) _1-7 5 _ (56)
dx3 V2

and the solutions to (56) is © = +1. Therefore, Q"(z) is a decreasing function in the regions of

(—o0,—1) and (1,0), and an increasing function in the region of (—1,1). Thus, the minimum
values of Q"(x) can be obtained by setting z = —1 or x = +00.

Moreover, from L'Hospital’s rule, we have

lim Q"(x) = —2me™2 <0, (57)
rz——1
and
lim Q"(z) =0, (58)
T—>+00

.. . _1 .
thus the minimum value of Q”(x) is —2me™ 2. Therefore, we can prove that Q" (z) is lower-

bounded by

[N

Q"(r) > —2me™ 2. (59)
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APPENDIX F

PROOF OF THEOREM 5

Firstly, we can calculate the second-order derivative of In (ﬁ, wt_l) w.r.t. t as

921 41 —v, k42 —v,k
nylmytT) et Y ikt (60)
o Py (m0) \ 7 (% 0)
—v,.k
where v = ¢t and v > 0 since ¢ > 0. It is trivial to verify that ¢ ( Y ] is a decreasing function
YK,V
of v, thus we have
-1 —v,,k+2 —v,k
Olny (k, Yt )Z e v e k1
ot ¢27 ("@ U) Y (lﬁ U) v=0
€_v7)k+2
= S5y =v), (61)
U2y (K, v) =)
where p = (1 —v(k))(k + 1).
—v, k+2
In the following, we provide a proper lower bound of ﬁ (p — v). Assume there exists
v (K, v
a number M which satisfies
e—vvk+2
e (p—v) > M, (62)
2y (K, 0) =)
and we also define
Uv) = e "2 (p —v) — My*y (k,v), (63)

then (62) holds if U(v) > 0. Also, since U(0) = 0, if U'(v) > 0, then (62) holds. Thus, we
turn to find M that satisfies U’'(v) > 0, and obtain a proper lower bound of the second-order
derivative of Iny (k,1t™") w.rt. t.

To proceed, we calculate the first-order derivative of U(v) as

U'(v) = e 0" 'G(v), (64)
where
G) =v" = (k+ 3+ p)v° + (k + 2)pv® — MY*y(k). (65)
The first-order derivative of G(v) is
G'(v) =v (40® = 3(k+ 3+ p)v+2p(k + 1)) , (66)
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which is a cubic function of v, and we can determine the minimum value of G(v) with v > 0.

Define
A=3Kk+3+p) —32p(k+2), (67)

then if A < 0, G'(v) > 0 holds for v > 0, which indicates U(v) > 0 with M < 0. If A > 0,

we define
Ul:B(/@%—S—;p)—\/Z’ 68)
v2=3<“+3+8”)+ﬂ, (69)

with 0 < v; < v9, and the minimum value of G(v) can be obtained when v = 0 or v = vs.
Therefore, we can find M satisfying min (G(0), G(v2)) > 0 from (65), and U(v) > 0 holds.
9°1 et

ny(r 9t) > Br(¢, k), and B (1, k) is given by

In conclusion, we have

ot?
0, A <0
Br(v,6) = vd — (5 + 3+ p)vd + (s + 2)pv3 Aso (70)
Y2y (k) LT
APPENDIX G

PROOF OF THEOREM 6

Taking the first-order derivative of the objective function of Problem (35) w.r.t. N to 0, we
have

2qk,1 Nk + qr.2
QA NE + @eaNk + Qs

+ 28k71Nk + Sk,2 +u= 0, (71)

and (71) can be rewritten as the following cubic equation

aNP 4+ bNZ 4+ cNy +d =0, (72)
where
a4 =2Gk,15k,1, (73)
b =pqr1 + 2qk25k1 + Qi15k2, (74)
C =Uqr2 + Qr25k2 + 2qr 35k + 2qk1, (75)
d =pqr3 + qr2563 + Qi2- (76)
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Applying Cardano’s formula in [38], the roots to equation (72) are given by
€ = —% + 21 + 29, (77)
€y = —% + wz1 + wzo, (78)
€3 = —3% + wlz + w2, (79)
where
Ll J; \/§z" (80)
. 3a:c))a—2 b2’ 1)
. 27ad —25793360 + 2b2’ 82)
N
2 = —g+<i—2+§—i>2 N (83)
¢ (], P %
2=(—5- (z + 2—7) ' A

There are three closed-form solutions to (72). Since the objective function of Problem (35) is

concave, there is at most one solution to (72) that satisfies (30b). If none of the solutions to (72)

satisfies (30b), we can substitute Ny, ; and Ny, into the objective function of (35), and the one

with larger value is the solution to (35) .

(1]

(2]

(3]

(4]

(3]
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