
Measurement Challenges for Cyber Cyber Digital Twins:
Experiences from the Deployment of Facebook’s WW

Simulation System
K. Bojarczuk
Facebook Inc.

UK

I. Dvortsova
Facebook Inc.

UK

J. George
Facebook Inc.

UK

N. Gucevska
Facebook Inc.

UK

M. Harman
Facebook Inc.

UK

M. Lomeli
Facebook Inc.

UK

S. Lucas
Facebook Inc.

UK

E. Meijer
Facebook Inc.

UK

R. Rojas
Facebook Inc.

UK

S. Sapora
Facebook Inc.

UK

ABSTRACT
A cyber cyber digital twin is a deployed software model that exe-
cutes in tandem with the system it simulates, contributing to, and
drawing from, the system’s behaviour. This paper outlines Face-
book’s cyber cyber digital twin, dubbed WW, a twin of Facebook’s
WWW platform, built using web-enabled simulation. The paper
focuses on the current research challenges and opportunities in the
area of measurement. Measurement challenges lie at the heart of
modern simulation. They directly impact how we use simulation
outcomes for automated online and semi-automated offline decision
making. Measurements also encompas how we verify and validate
those outcomes. Modern simulation systems are increasingly be-
coming more like cyber cyber digital twins, effectively moving from
manual to automated decision making, hence, these measurement
challenges acquire ever greater significance.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Extra-functional properties.

KEYWORDS
Simulation, Social Media, Digital Twin, Software Measurement
ACM Reference Format:
K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli,
S. Lucas, E. Meijer, R. Rojas, and S. Sapora. 2021. Measurement Challenges
for Cyber Cyber Digital Twins: Experiences from the Deployment of Face-
book’s WW Simulation System. In ACM / IEEE International Symposium

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEM ’21, October 11–15, 2021, Bari, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8665-4/21/10.
https://doi.org/10.1145/3475716.3484196

on Empirical Software Engineering and Measurement (ESEM) (ESEM ’21),
October 11–15, 2021, Bari, Italy. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3475716.3484196

1 INTRODUCTION
This paper is concerned with challenges in measurement of simula-
tion systems. Measurement questions are essential for simulation
since these have direct importance and impact on the decisions
made from simulation outcomes.

Simulation is acquiring increasing importance due to the wide-
spread application domains, and far-reaching impact of the critical
decisions taken based on simulation results. These decisions af-
fect diverse areas of human endeavour ranging from economics
[50] and traffic safety [5], through to profound questions about the
health of our species [1] and of our planet [30]. Without reliable,
replicable, interpretable and soundly-based measurement, all of
these important application areas become compromised.

At Facebook, we are building a digital twin, called WW [2], of
all Facebook platforms. WW simulates Facebook user community
behaviour, but uses the real Facebook platforms, as well as offline
versions of them, thereby making simulations highly realistic [4].
WW is a cyber cyber digital twin, because it simulates virtual (i.e.,
cyber-based) systems; the Facebook WWW platforms in particular.
[4]. The ability to execute simulations of user behaviour on the real
software platforms is a unique property of cyber cyber digital twins,
distinguishing them from their cyber physical cousins [4].

The ‘cyber cyber’ nature of the simulation also has implications
for measurement, because we can deploy the same measurements
that the real platform computes for real users, when computing
values for simulated users (bots). However, as we shall see, despite
this apparent advantage for measurement, there remain many im-
portant open challenges and research questions for measurement
of cyber cyber digital twins in particular, and of modern software
simulations in general.

https://doi.org/10.1145/3475716.3484196
https://doi.org/10.1145/3475716.3484196
https://doi.org/10.1145/3475716.3484196


ESEM ’21, October 11–15, 2021, Bari, Italy K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora

This position paper outlines some of the open research chal-
lenges, highlighting the potential impact on software measurement
theory and practice. We hope that the paper generates further in-
terest amongst the scientific research community, in tackling some
of these challenging, impactful, and intellectually stimulating prob-
lems.

2 WHAT IS MEASURED
Measurement is important, not only in deciding all the low-level sig-
nals to monitor but also plays a role in determiningwhich high-level
features or summaries to produce. The very essence of simulation is
to produce measurements in the simulated world that are relevant
to future real-world executions. Because our simulation is web-
enabled [2], the measurements are taken from the execution of bot
behaviours on the real platform. This allows us to base decisions
on measurements taken directly from the execution of simulated
behaviours on the real platform and not on simulated values from
some model of the real world.

In order to support measurement, WW has an extensive set of
monitoring facilities that can be selectively enabled to report a
variety of signals including:

• Details of each action taken by each bot/user, whether it
succeeded or failed and any exceptions it raised

• The observations provided to each bot/user
• The exact timestamp per action and observation (in both
real-time and simulation-time)

• The changes or mutations made to the WW social graph as
a result of the simulation

These measurements provide a rich set of signals from which to
draw test-related inferences. In our definition of measurement, we
include logging all the required low-level details of a run together
with the higher-level signals we abstract from these. For example,
we log exactly when each bot action was triggered and the reac-
tion it produced. Subsequently, this raw output is processed and a
meaningful summary needs to be extracted from it.

One of the advantages of the measurements we take from WW
simulations is their realistic nature but there remain open prob-
lems and challenges in interpreting the measurement signal from
simulations, more details of which are included in the next section.

3 FOUNDATIONS OF SIMULATION
MEASUREMENT

A run from a simulation process encodes the entire emergent be-
haviour of the whole community of users on the WWW platform.
It is of interest to determine whether two or more simulation runs
come from the same underlying process. This can be done using a
decision rule based on one or more shared attributes of each run.
This boolean outcome is what constitutes our simulation measure-
ment in this section. The task of determining whether two sets of
runs 𝑋 and 𝑌 are generated by the same underlying distribution,
called simulation testing, gives us a form of software testing that lies
above all other testing approaches in the test abstraction hierarchy,
such as integration testing and unit testing. It has a greater fault
revealing potential, since the simulation encodes the entire emer-
gent behaviour of the whole community of users on the platform,
rather than testing a specific aspect of the infrastructure.

As a consequence, simulation-based testing is able to find sub-
tler bugs that might otherwise make their way into production. It
achieves this greater fault revelation potential at the cost of greater
computational effort than any other testing approach.

Figure 1: Some possible actions performed by users/bots that
are part of the simulation output: bot A messaged bot C,
posted video on bot’s B profile, bot A reshared a URL link,
bot B liked a page, bot A joined a group, bot B requested
friendship to bot C.

The set of simulation runs used for simulation testing could
include runs with underlying differences that need to be detected.
These differences could be due to bugs or to infrastructural changes
that indirectly affect the bot behaviour. An example of a given
simulation output of a single run with 𝑛+1 steps from a community
of three users 𝐴,𝐵 and 𝐶 is:

𝑆𝑛 =

{(
𝐴𝑏
0 , . . . , 𝐴

𝑏
𝑛

)
𝑏∈{𝐴,𝐵,𝐶 }

,

(
G𝑡
𝐴,𝐵,𝐶

)𝑛
𝑡=0

,
(
𝑄𝑡
𝐴, 𝑄

𝑡
𝐵, 𝑄

𝑡
𝐶

)𝑛
𝑡=0

}
(1)

where𝐴𝑏
𝑡 is the action performed by bot 𝑏 at time 𝑡 , G𝑡

𝐴,𝐵,𝐶
denotes

the friendship graph for bots 𝐴,𝐵 and 𝐶 at time t, 𝑄𝑡
𝑏
denotes the

content of the action performed by bot 𝑏 at time 𝑡 , 𝑄 = ∅ if there
is no content. We can either select the number of steps in the
simulation or select the maximum number of actions. The latter is
useful whenwemove from virtual to real time. The initial friendship
graph, G0

𝐴,𝐵,𝐶
, is specified in advance. Nevertheless, it can evolve

during the simulation, for example when one bot becomes friends
with another bot that joins the platform at 𝑡 > 0. In the next section
we construct tests based on attributes extracted from this simulation
output.



Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System ESEM ’21, October 11–15, 2021, Bari, Italy

3.1 Deterministic Simulation-based testing for
WW at Facebook

In general, when we construct tests, we do so with respect to a
set of attributes that we can observe from a simulation. These
attributes are ‘measured’ as a byproduct of simulation, and form
the connection between simulation and software measurement. We
test WW using a software testing infrastructure called MIA (the
Metamorphic Interaction Automaton) [3].

In this section, we review three types of deterministic simulation
testing:

(1) Social testing [2] consists of verifying that the whole sys-
tem meets social properties required of the system. It simu-
lates the actions of an entire community of users, interacting
with one another.

(2) End-to-end testing consists on verifying that the different
parts of the system are working as intended, it simulates
the actions of a single user of the system. An end-to-end
test is usually regarded as having a successful outcome if
there were no exceptions raised during the execution of the
simulation. It is therefore, primarily concerned with whether
the software system breaks when used by one of its users.
However, this is a very rudimentary success criterion; equiv-
alent to the default (aka implicit [13]) oracle. By contrast,
social testing can reveal bugs where one user can harm an-
other through the system under test; traditional end-to-end
testing cannot do this because it concerns only a single user
experience, and because it seeks bugs caused by the system
not through its use.

(3) Regression testing [55] compares two or more executions
of the system under test, typically comparing the current ver-
sion with some previous ground truth. In previous work [3],
we showed that regression testing is a special case of meta-
morphic testing, an observation we used to simplify the
deployment of our MIA test system for social, end-to-end,
regression and metamorphic testing.

Importantly, and unlike traditional simulation, themeasurements
are taken directly from the execution on the real software system
under test. We call this “web-enabled” simulation [2], because the
deployment of software systems on web-based platforms enables
us to simulate user communities’ behaviour on the real platform
itself, rather than a mere simulation of that platform. This has the
important implication that our measurements are taken directly
from the engineering artefact simulated, thereby imbuing them
with greater realism, and consequently actionability, compared to
traditional simulations.

Based on the attributes we measure, we define properties that we
expect to hold irrespective of the specific details of the simulations.
For example, a simple property to verify is, if we create a new
community of 𝑁 bots, then at least 𝑁 new user accounts have
been created. We can therefore augment end-to-end testing with
property testing, allowing the simulation developer to test that
any changes they may make to the platform respect the properties
of interest. In particular, end-to-end property testing in WW at
Facebook is used to help us catch social bugs [2]. We use this form
of simulation-based testing to identify integrity bugs; social bugs
that affect the integrity of our user community.

We called this “property testing” rather than “property-based
testing”, because property-based testing typically involves sim-
plifying fault-revealing test sequences [18]. Currently, we do not
perform the simplification step, although there is no reason why, in
future, we could not extend our test infrastructure to perform such
simplifications, thereby making it fully property-based testing.

Property testing can be very powerful to measure expected out-
comes in the simulation. Consider the scenario in which the social
media platform needs to give certain guarantees about the deletion
of offensive content. All three forms of simulation-based testing
could be used to identify integrity bugs; social bugs that affect the
integrity of our user community.

For example, we can check whether there exists a bug that breaks
the part of the infrastructure responsible for deleting content. If
we suppose further that the changes made in part of the code that
is unrelated to content deletion have a subtle transitive effect on
the deletion framework such that it can occasionally fail to delete
content. Property testing would be the option of choice since the
specific property – deletion of content – can be tested in all versions
of the code to hold true.

A property or set of properties captures aspects of the social
media system that should be preserved throughout any and all
scenarios captured by the simulation. We can verify the following
proposition: for all ordered tuples O, which contain a set of prop-
erties computed from the simulation output, and an ordered tuple
O∗, which contains the expected property, then

ER(O,O∗)

where ER denotes the conjunction of point-wise equality relation-
ships.

One can test whether a simulation run contains a specific piece
of content or whether a given action or set of actions has been
completed. In the latter case, due to the stochasticity of simulations,
testing that exactly 𝑛 actions happened can lead to a false positive
test failure so we instead test for the typicality per action. The
statistical testing task is described in the next section, it consists
on determining whether two sets of runs X and Y are generated by
the same underlying distribution.

3.2 Statistical simulation testing
A simulation is an example of a randomized algorithm [10], since
running it twice usually produces different output. For this reason,
instead of testing whether a given property is present in all simula-
tion runs, we can test whether it is typically present in a proportion
of runs.

This is because there exists inherent stochasticity arising from
both the bots’ behaviours and infrastructural changes. Many sys-
tems, not just simulation systems, exhibit high degrees of non-
determinism, arising from a diverse set of reasons, including:

• Remote Procedure Call (RPC)-related variability, arising from
network delays and variable host performance and loads

• Parallel, multi-threaded and/or asynchronous execution
• Use of random number generators
• Dependence on real-world sensors

If we rely on measurements from such non-deterministic execu-
tions it could lead to flaky tests [28, 36].



ESEM ’21, October 11–15, 2021, Bari, Italy K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora

Figure 2: Two distinct runs of a simulation where we specify
the proportion of users of a given age and sample the users
age independently with a given probability. In the first run,
the probability of a user being aged in their 50s is 0.2 and
the probability of being aged in their 20s is 0.8. In the second
run, users have a higher probability of being in their fifties.
The average age of profiles visited during the second run is
higher than the average age of visited profiles on the first
run.

We also face this problem, in arguably its most pernicious form,
with WW simulation outcomes, and the measurements and tests
we extract from them. To continue the example of content deletion,
a property test can check whether borderline content is removed
from social networks. The property – deletion of content – could be
checked to be typically fulfilled (rather than always fulfilled) since
the classifiers might reasonably be expected to missclassify the
content in a small number of scenarios. The typicality of the bots’
behaviour can be assessed indirectly by analysing the frequency of
the bots’ actions per type.

This requires appropriate statistical tests to be properly analyzed
in a sound manner [10]. Detailed surveys concerning the conduct
of statistical testing can be found elsewhere [9, 27]. In the following
two sections we review how these inferential statistical concepts
apply to simulation measurement for cyber cyber digital twins.

3.2.1 Type I and Type II errors in Different Simulation Use Cases.
In two sample tests, it is of interest to reject the null hypothesis of
two probability distribution 𝑃 and 𝑄 being equal. This is denoted
by 𝐻0 : 𝑃 = 𝑄 vs 𝐻1 : 𝑃 ≠ 𝑄 . There are two possible types of errors
when performing statistical testing: (I) reject the null hypothesis
when it is true (i.e., claiming that there is a difference between two
sets of outcome when actually there is none), and (II) 𝐻0 is not
rejected when it is false. The 𝑝-value of a statistical test denotes
the probability of a Type I error. The significance level, 𝛼 , of a test
is the highest 𝑝-value that would lead to a rejection of 𝐻0.

Naturally, a balance has to be struck between risk of committing
each of these two types of error. Typically, because scientific ad-
vances ideally build on the most certain foundations, there has been
a tendency to shift the balance in favour of not committing a Type I
error. The ritualistic statistical behaviours this has introduced have
been the subject of much discussion in the scientific community,
for instance, the problem with common ‘𝑝-value fallacies’ [23]. For
simulation applications, this subtle balance needs to be determined
differently depending on the use case sensitivity.

For example, when we are simulating whether a new feature
might lead to a privacy violation, we would want an extremely
high confidence before deploying the feature. For this scenario, we
would much rather commit a Type II error and miss an opportunity
to deploy the new feature.

However, when we are experimenting with a positive feature
that may possibly reduce prevalence of harmful behaviour online,
and which has no other risks, we would be much more concerned
about committing a Type I error.

Clearly then, we cannot set an arbitrary threshold for the statis-
tical confidence required of a simulation. Instead, we need to adapt
the way in which we deploy inferential statistical analysis to each
of the use cases to which we put simulation.

Non-deterministic behaviours, although varying between runs,
typically do respect certain statistical properties of interest that can
be expressed over multiple simulation runs. For example, consider
Figure 2, which compares the results of two simulations according
to the average age of profiles visited. Comparing the results of two
or more executions is typically known as ‘metamorphic’ testing
[17], although traditional end-to-end testing has been shown to be
a special case [3].

For non-deterministic simulations, we are typically interested in
statistical metamorphic testing, which caters for non-determinism
and with which we can incorporate all the expressive power and
conceptual framework of inferential statistical testing.

3.2.2 Parametric and non-parametric testing. There exist paramet-
ric two sample tests that rely on parametric assumptions about
the data generation mechanism and non-parametric tests that do
not have any distributional assumption. Parametric tests usually
check whether certain moments of the two samples are the same,
for example, the F-test checks for equality in variances, denoted by
𝐻0 : 𝜎21 = 𝜎22 vs 𝐻1 : 𝜎21 ≠ 𝜎22 .

Two-sample non-parametric tests directly compare the empirical
observations of the probability distributions 𝑃 and 𝑄 . Nonparamet-
ric tests are less prone to model miss-specification but require more
samples to accurately estimate the empirical counterparts of the
distributions.

In order to determine whether the two simulation outcomes
can be considered to be ‘equal’, one also requires a divergence
measure in the space of probability distributions 𝐻0 : 𝐷 (𝑃,𝑄) < 𝛾

vs𝐻1 : 𝐷 (𝑃,𝑄) > 𝛾 , where𝛾 is a threshold that needs to be selected.
Specifically, to compute the test threshold, the null distribution can
be simulated via permutation or bootstrapping of the samples[6].

There are many well-known discrepancy measures between two
probability distributions, such as the Kullback–Leibler divergence,
the Hellinger and total variation distances, which belong to the
class of f-divergences [19].

Alternatively, the class of integral probability metrics [41] has
also been used to construct two sample tests, for instance, the max-
imum mean discrepancy [14, 46] is a kernel-based integral proba-
bility metric. Two sample tests based on metrics or divergences are
available for different data types. For instance, for non-Euclidean
data such as the friendship graph part of the simulation output, a
two sample test has been proposed in [22]. A complete overview
of both parametric and non-parametric two sampled tests is out of
scope of the present paper.



Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System ESEM ’21, October 11–15, 2021, Bari, Italy

In the next section, we outline our use of the Jensen-Shannon
distance together with a classification approach as an illustration of
how we can experiment with a statistically-based test and measure-
ment approach. The motivation behind using a classifier approach
is that a training set can be used to learn the regular variations
present in the data. This helps us to account for natural simulation
outcome variations and reduces the chance of wrongly rejecting
the null hypothesis. The relationship between classifiers and two
sample tests has been explored [16, 35]. Indeed, Kim et al. [31]
formally demonstrated that classification accuracy is a proxy for
two-sample testing.

3.3 Case Study: Using Jensen-Shannon
Distance Measurement in Simulations

In this section we illustrate the use of the Jensen-Shannon distance
for statistical metamorphic tests, based on the distributions of bot
actions taken during simulation runs. The Jensen-Shannon distance
is appropriate for more nuanced variations in behaviour. It provides
a testing approach which does not require a particular deterministic
property to be specified.

3.3.1 Setup. The setup involves:
• A change request under test: In Facebook parlance, pull
requests are called ‘diffs’. Diffs undergo code review in the
normal continuous execution system deployed at Facebook,
based on Phabricator [21].

• A simulation story to run: In this illustration, we use a
story called CommunityBuilder, which creates a community
of bots that then take actions within the community, such
as creating posts, liking posts, sending 1-to-1 messages, up-
loading photos etc. At the time of writing there are over 60
individual actions in which bots can engage, a number that
is regularly increasing as more simulations come on stream.

• Selecting parameters: Parameters include the number of
users or bots, the community friendship graph, and the max-
imum total number of actions to execute.

• Definition of the aspects of the simulation to be ob-
served: In this simple illustration, we count the total num-
ber of actions of each type that successfully executed during
a simulation. This is returned as a dictionary of key-value
pairs, for example MobilePhotoUpload:23, ShareURL:533,
...). We model these as drawn from an underlying multino-
mial distribution.

• A set of simulation runs from which to collect obser-
vations: These runs necessarily include those with known
differences that need to be detected so that we can tune
and test the test infrastructure itself. We create these differ-
ences by varying parameter choices. We also use mutation
testing [29] in order to test the test system itself.

3.3.2 Statistical Distance Solution. In this section, we address how
to detect anomalies in the distribution caused by bugs or by in-
tended changes in the behaviour of the bots, compared to differ-
ences caused by “natural or regular” variations. More precisely,
we want to estimate the probability that the action distributions
represent a significant change in the underlying behaviour of either
the platform or the community of bots.

A sample of pairs of runs, denoted by 𝑃𝑁 , is collected from the
action distribution where each run in the pair was made on the
same diff with no known confounding platform effects. 𝑃𝐷 is a
sample of pairs where each run in the pair is drawn from different
diffs that led to an expected difference in the action distribution
between the pairs.

3.3.3 Jensen Shannon Distance (JSD). While any distance measure
between two probability distributions can be used within our frame-
work, we chose the JSD since it has some attractive features such
as:

(1) JSD is simpler to implement that other distance measures
which could have non-analytic forms

(2) JSD conforms to the requirements for a distance metric i.e.
symmetry and triangle inequality

(3) JSD is bounded by 0.0 (the two distributions have nothing
in common) and 1.0 (they are identical).

We use a frequentist approach to compute probabilities for each
bot action type. That is, we count the number of each type of action
successfully executed during a run, and normalise this by the total
number of successful actions, thereby estimating the probability of
each action. An alternative way to estimate action probabilities is
to use a Bayesian method, where the the observation of each action
is used to update a prior distribution (e.g. see [37], chapter 2). We
could also adopt standard n-gram language modelling estimation
techniques such as Laplace smoothing to include joint distributions
as well as marginal distributions.

3.3.4 Threshold and Probability Estimation from Data. The JSD
condenses the differences between two probability distributions
into a single number. We need to set a threshold in order to deter-
mine the pass/fail outcome of the test. Alternatively, we can also
calculate the probability that the distance between distributions
signifies an underlying issue.

For each case, provided we have enough data in the test pair sets
𝑃𝑁 and 𝑃𝐷 , we proceed as follows:

(1) For each pair 𝑝𝑖 we calculate the distance 𝑑 (𝑝𝑖 ) and record
whether it is a positive (𝑃𝑁 ) or negative (𝑃𝐷 ) example.

(2) We sort the entire list in increasing order of 𝑑 (𝑝𝑖 ).
(3) Given an incoming run pair, we estimate the probability that

it is a failed test by finding the proportion of negative pairs
with a distance greater than or equal to 𝑑 (𝑝𝑖 ).

If the list of pairs is ordered, this can be calculated directly in
O(log(n)) time or compiled into a look-up table for constant-time
computation. The Receiver Operator Characteristic Area Under
Curve (AUC) metric1 can be computed. The AUC gives us a single-
figure summary of the power of the overall combined method setup
(i.e. the simulation story, story parameters, action distributions
extracted, distance measure used). The set up can be used to directly
test alternatives.

When testing new product features or other counter-factual
situations, we may not have sufficient existing negative run pairs
from previously collected data. However, even in this data-scarce
situation, there are two techniques we can employ to interpret the
results from our analysis, to which we now turn.
1See https://developers.google.com/machine-learning/crash-course/classification/roc-
and-auc for concise description.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc


ESEM ’21, October 11–15, 2021, Bari, Italy K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora

Figure 3: Visualising the JSD matrix; run number 4 broke
and this clearly stands out compared to the normal back-
ground variations.

Figure 4: Histograms showing typical variations in action
distributions (D1, D2) together with an anomalous run (D3).
See Table 1 for distances between each of these distributions.
For ease of visual inspection the most frequent action (Re-
act) is removed from these plots, but the JSD values are cal-
culated on the true data.

3.3.5 Eyeballing Data Visualisations. For a small-scale trial across
twelve individual runs (0 to 11 in the matrix in Figure 3) we com-
puted the JSD between the action distributions of each run. Note
that these were run at different times of day (hence different plat-
form loads) and on different versions of the codebase, which are
among the reasons why the action distributions naturally differ to
this extent even on normally working versions of the platform.

Run number 4 clearly stands out as broken, and this was due to
a problem with the Thrift RPC definitions becoming out of sync.
This test can help us find and fix this kind of bug.

3.3.6 Synthetic Distributions and Differences. Another approach to
gainmore intuition regarding how values of JSD relate to differences
in distributions is to study examples.

Figure 4 shows three different action distributions, with two
being from normal runs and the third being from a run where a
deliberate bug was introduced to test our method using mutation
testing [29]. The mutant disables the normal follow-up actions
available to a bot that has sent a 1-to-1 message.

On visual inspection it may be hard to pick out the clearly differ-
ent distribution, but the differences are clearly exposed by the JSD.
Table 1 shows these together with some everyday distribution pairs
for comparison and their JSD values. 𝐷1 . . . 𝐷3 are the distributions
from Figure 4.

We also did an ablation test on 𝐷1 and compared it with copies
of itself but with each key:value pair removed. This synthesizes
the case where a simulation runs normally, except for one type of
action not functioning, and that failed function having no knock-
on effects. 𝐷 ′

𝑚𝑎𝑥 is the same as 𝐷1 except with the most frequent
action set to zero, and similarly for 𝐷 ′

𝑚𝑖𝑛
(least frequent action set

to zero).
The dice example is the JSD between the sum of dots when

rolling two fair six-sided dice compared to a uniform distribution,
and the coin example compares a fair coin to one with a biased
𝑃 (𝐻 ) = 0.6.

Table 1: JSD Examples

Pair Distance
𝐷1, 𝐷2 0.048
𝐷1, 𝐷3 0.133
𝐷2, 𝐷3 0.128
𝐷1, 𝐷′

𝑚𝑎𝑥 0.43
𝐷1, 𝐷′

𝑚𝑖𝑛
0.01

𝐷𝑑𝑖𝑐𝑒 , 𝐷𝑢𝑛𝑖𝑓 𝑜𝑟𝑚 0.22
𝐷𝑐𝑜𝑖𝑛 , 𝐷0.6 0.09

4 IMPLICATIONS FOR SOFTWARE TESTING
In Sections 3.1 and 3.2 we described deterministic and statistical
testing of simulations, the latter using the Facebook MIA test infras-
tructure. MIA has proved to be useful technology for finding bugs
in the simulation infrastructure, and helping us to build the WW
simulation system itself. Statistical hypothesis testing provides a
unified framework that caters for non-determinism over multiple
runs, while retaining the traditional interpretation of a test that it
either passes or fails; software testing’s ‘law of the excluded middle’.
However, increasingly, we face the challenge of testing systems that
are unavoidably stochastic in nature, as explained in Section 3.2.

Both MIA and statistical testing adopt the widely-accepted cur-
rent approach to testing, used in all current testing tools and sys-
tems: a test signal is essentially pass or fail, often visualised as an
unambiguous two-colour traffic light system (with red and green,
for failing and passing tests respectively).

However, many underlying test outcomes are, in fact, neither red
nor green but orange. The problems with current testing approaches
lie in the following three assumptions, that the test process has to

(1) be entirely automated
(2) non interactive
(3) yield a simple boolean response. We call this assumption the

‘boolean straight jacket’.



Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System ESEM ’21, October 11–15, 2021, Bari, Italy

These assumptions are appropriate for unit testing, which resides
at the lowest level of the test abstraction hierarchy. However, as
we move up the hierarchy we encounter more expensive forms of
testing and also tests with less certain outcomes. Over time, we
aim to develop a more interactive approach to testing, better suited
to simulation. We believe that such an approach to testing may
benefit non-simulation based testing scenarios too. In this section,
we outline the vision for this potentially new form of software
testing. We envisage that our test technology will evolve into a bot
that plays the role of a reviewer, interacting with other reviewers
and code authors. In this way, test technology will yield much more
nuanced and sophisticated signals than merely a simple boolean
response.

To motivate the long term need to escape the boolean straight
jacket, consider the current tip of the test abstraction hierarchy,
where we encounter traditional end-to-end tests. End-to-end tests
seek to mimic the behaviour of the whole system, as seen by a real
user. At this level of testing, the test is computationally expensive,
because it involves execution of the entire system. Social testing
using simulation, lies at an even higher level of abstraction [2]. And
it is even more computationally expensive.

As systems become increasingly non-deterministic, such high
level tests also become increasingly flaky. One can remedy this by
choosing an acceptable tolerance for Type I errors. However, it is
not clear what this ‘sensible’ significance level should be a priori.
The test flakiness problem has been highlighted previously, in both
research [36] and practice [28, 40]. The research community has
attempted to overcome the test flakiness problem by identifying,
controlling and removing flaky tests [39]. However, an alternative
is to live with a world in which “all tests are assumed to be flaky” [28].
This shift in perspective allows us to escape the boolean straight
jacket. Such a non-boolean testing approach is clearly better suited
to measurement challenges set out in the previous section. We
also believe it may be forced on the wider software engineering
community by increased non-determinism, whether or not the
system under test is a simulation.

The boolean straight jacket is problematic from both a practical
and a theoretical point of view:

• Theoretical problemswith the boolean straight jacket:
From a theoretical standpoint, the boolean straight jacket
transforms an enormous amount of information into a single
bit (pass/fail). It means that all testing systems have the
worst possible domain to range ratio [8, 52], an observation
which, perhaps, accounts for the difficulty of testing the test
infrastructure itself; high domain to range ratio programs
are the least testable [52]. From an information theoretic
perspective [47], the boolean straitjacket also denotes a huge
loss of information; why throw away all of that valuable test
signal, especially when obtaining it was computationally
expensive?

• Practical problems with the boolean straight jacket:
From a practical perspective, there are mounting challenges
in tackling test flakiness that come from unavoidably increas-
ing non-determinism. Simulation resides at the vanguard
of this trend, because it involves users’ behaviour, which is
typically highly stochastic.

However, other software technologies, unrelated to simula-
tion, are increasingly interconnected are thereby becoming
increasingly non-deterministic. For instance, some of the first
automated web based testing tools already encountered this
problem; even the weather can affect test coverage achieved
[7]. Taking account of this non-determinism in a testing
process inherently involves making context sensitive and
well-informed decisions about statistical thresholds, that bal-
ance false positives and false negatives. One cannot simply
determine a threshold up front and adopt a ‘one size fits all
approach’.

Of course, it is undoubtedly heartening to receive a test signal
which simply gives a green light or a red light. The old-fashioned
testing approach is simple, intuitive, reassuring when green, and
hopefully actionable when red. Sadly, as any practising software
engineer will attest, the green signal can so easily give a false sense
of security. Arguably worse, the red signal may prove to be a false
positive, wasting developer effort on some of the most tedious and
frustrating intellectual activities known to humankind.

Any test infrastructure that survives and thrives while respecting
the boolean straight jacket can do so only by significantly reducing
the chance of wasted developer effort. A test infrastructure that
fails to achieve this will tend to be weeded out by natural selection;
developers will simply abandon or ignore a system that wastes too
much of their time.

As a result of this underlying evolutionary adoption process, the
most pernicious effect of the boolean straight jacket lies not the
wasted developer effort itself, but rather, it lies in the potentially
valuable test signal that we lose by attempting to ensure developer
effort is not wasted. In the presence of highly non-deterministic
execution environments, testing systems resort to passing on a red
signal to a developer, only when there is a high degree of certainty.
What about those situations where the signal indicates there may
be some problem, but an automated decision needs to be taken not
to bother the developer?

4.1 Foggy Traffic Light Testing
What if we could give the developer a foggy traffic light signal
instead of a crisp one?

Of course there is a lot to be sacrificed by migrating from sharp
to foggy traffic lights, and this is why it has proved difficult to
achieve. However, we need to rethink the fundamentals of testing
and in particular, the software engineering workflows in which
testing is deployed. Failure to do so will result in testing becoming
ever more expensive, while simultaneously yielding ever poorer
assurance of software correctness.

How can we go further than simply replacing a clear (actionable)
signal with a foggy (vague and unactionable) signal?

The answer lies in code review: Instead of thinking of testing
as a fully automated process that acts as a final gatekeeper on
deployment, we should think of it as an extra member of the code
review team, in the sense of modern code review [11]. Ever since
the introduction of Fagin inspections [20], code review has proved
to be one of the most effective practical techniques available for
ensuring code quality and correctness [45].



ESEM ’21, October 11–15, 2021, Bari, Italy K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora

Modern code review provides infrastructural support, whereby
many software engineering tools become bots themselves [49].
However, despite increasing sophistication of test technology, the
automated test tool is typically not thought of as an interactive bot.

Suppose we think of the automated test tool as a fully interactive
member of the review team that comments on code changes, just
as a human reviewer does. Such a ‘test tool as a team member’
approach shares its motivation with related approaches such as the
automated statistician [48] and the robot scientist [32].

Let us even give this testing tool a name, ‘Pat’, to respect the
fact that Pat truly is part of the team. Pat could be a Three-Letter
Acronym for ‘Practical Automated Tester’, but let us anthropomor-
phise further, and imagine that Pat is a real person. What does
Pat bring to the overall code review process? Quite a lot, it turns
out. Pat is an exceptionally gifted member of the team, who never
complains. Pat always responds, in a timely fashion, to questions
and follow-up requests from other reviewers and the author of the
proposed code change. Let us review Pat’s unique attributes:

(1) Anytime followup: Pat knows they have to respond quickly.
If they are not the first one to comment on the diff, then the
other human reviewers might accept, or reject based on sup-
position, bias or misinformation. This time pressure means
that Pat typically cannot perform all the experiments they
would like to undertake. Instead, Pat has to comment in
a limited time window in order to ensure that they are a
first responder. This time pressure forces Pat to choose a
prioritised subset of test signal with which to initially com-
ment. Fortunately, this subset prioritisation problem has
been tackled in an extensive literature on test case selection
and prioritisation, so there are many well-studied algorithms
and techniques [34, 44] from which Pat can choose.
Furthermore, Pat is always willing, if asked by human re-
viewer, to “go away and perform extra experiments and
checks, and come back to the review process with extra
signal”. Automated testing is an ‘any time’ algorithm; with
additional computational resources we can run more test
cases. Notice how making Pat and interactive reviewer, like
a human reviewer, creates a natural and intuitive interface
to help us efficiently find the necessarily context-aware bal-
ances required by test case selection and prioritisation prob-
lems [55].
In a foggy traffic light test system, Pat would offer a Ser-
vice Level Agreement (SLA) in which their initial comment
would arrive before that of any human tester. To achieve
their SLA, Pat would adapt their test resources to compute
this initial signal, based on observation of current human
reviewer response times. When Pat’s initial signal causes
doubt as to the software correctness among the human re-
viewers, they can ask Pat to perform further testing. This is
a process well-suited to a non-deterministic world; get the
initial signal, make a human judgement, potentially ask for
further signal, or decide to go ahead and deploy the code
change anyway. Making Pat a natural part of the normal
code review process creates natural and intuitive workflows
that enable testing to be iterative and interactive.

(2) Diligent Experimenter: Pat can perform many tedious ex-
periments to understand the precise implications of a code
change. If one of the human reviewers requires Pat to do
so, then Pat can perform experiments to provide follow-up
signal, answering reviewer questions such as:

(a) Unrelated infra failures: Could the test failures Pat re-
ported be the result of recent (apparently) unrelated changes
that landed into the code base? (Pat goes away to ex-
perimentally and locally revert the apparently unrelated
changes and re-run the tests to check)

(b) Increased confidence and reducedflakiness: couldwe
wait a moment while Pat checks (apparently) flaky signal
regarding property 𝑃 for more evidence? (Pat goes away
and runs further tests to gain greater statistical confidence
wrt 𝑃 )

(c) Counterfactual experimenter: What if failing test 𝑇
were to be run in an initial state where property 𝑃 does not
hold? Would it still fail (Pat goes away and checks). This
ability to do counterfactual experimentation could form
a natural jumping off point from testing into debugging.
Notice how making Pat a team member establishes a very
natural and seamless test-and-debug blend, rather than
enforcing an arbitrary and abrupt step change (that would
otherwise have come from the boolean straight jacket).
Debugging technology has evolved little in the last 40
years; it is time for a change. Pat can help.

(d) Popperian Scientist: Pat’s follow-up need not focus only
on deep diving on failing test signal. Pat can also play the
role of ‘Popperian scientist’ [43]; attempting to falsify the
claim that the software is correct, perhaps initiated by the
doubts expressed by a human reviewer.
For example, suppose the human reviewer feels queasy
about a particular aspect of the system, perhaps due to a
code smell [54], or maybe simply that awkward feeling
that a corner case has been missed.
Currently, the anxious human reviewer may have to do a
lot of work to follow up. Depending on their temperament,
they will either reject the code with too little explanation,
or accept it while “holding their nose”. How much misun-
derstanding and avoidable engineer conflict could have
been averted if we had only had a thirdmember of the team
who was willing devote that extra effort to investigate ap-
parently green signal? (Pat goes off and runs more tests
on aspects with currently passing tests, in an to attempt
to find a failing case and reports back).

(3) Final Gate Keeper: When Pat is sure that the code changes
are incorrect, they can dig in their heels by demanding a fix.
In this regard, adding Pat to the review team discards none
of the existing properties of testing systems; foggy traffic
light testing subsumes sharp traffic light testing. However,
once again, there are interesting scientific challenges. How
can Pat learn, from historical data, which parts of the code
base are more likely to fail given the change introduced in
the new code? This is a question already tackled by work on
fault prediction [15, 25].



Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System ESEM ’21, October 11–15, 2021, Bari, Italy

What human member of the review team is prepared to go to
such lengths to help support the code review process? Why, for
so long, have we ignored the very special characteristics a team
member like Pat could bring to our team? Pat has so much to tell us,
yet we are currently forcing this exceptionally gifted team member
to forget all they know and to simply give us a pure and simple
‘yes’ or ‘no’ answer. As we all know, “the truth is rarely pure and
never simple” [53].

Software testing workflows have to change to accommodate Pat.
Ultimately, with further research and development, Pat may evolve
beyond the confines of testing, to become a software engineer,
able to suggest repairs [24, 38, 51], to recommend code transplants
[12, 57], improvements and optimisations [42], and even to explore
new features [26]. The first step on this exciting journey would be
to make Pat a proper member of the review team, as a way to adapt
software testing for a highly non-deterministic world.

5 OPEN CHALLENGES FOR THE SCIENTIFIC
COMMUNITY
• Non-boolean testing: As outlined in Section 4, we need
to rethink software testing for a world in which the devel-
oper gets recommendations during code review rather than
merely a boolean pass or fail. Section 4 is part proposal and
part polemic, setting out a possible vision of future software
testing technology as a full member of the code review team,
rather than it being merely a final gatekeeper. Much more
work is required to realise this vision. Tackling it will un-
doubtedly surface many interesting scientific questions and
challenges.

• Statisticalmetamorphic testing: As outlined in Section 3.2,
we need techniques to incorporate statistical inference into
the simulation system itself, the measurements we take from
it, and the decisions and optimisations it recommends. Cur-
rent deployment of A/B testing in many organisations [33]
already involves sophisticated inferential statistical analy-
sis, to support decision-making, based on the outcomes of
the A/B test. We anticipate simulation will require similar
statistical sophistication. However, the paradigm is more
challenging than A/B testing, because simulation typically
encompasses counterfactual scenarios.

• Trade offs between simulation speed andprecision: For
offline simulation modes [4], in which the simulation is not
run directly on the real infrastructure, we need techniques
to understand the trade-off between speed and fidelity of
measurement.

• Scalable fitness computation: Measurements from simu-
lation can used to guide optimisation, such as for mechanism
design [2]. Mechanism design has huge potential to turn sim-
ulation into a technique for automated product improvement,
using techniques such as genetic improvement[42]. However,
the computational expense of simulation will raise scalabil-
ity challenges. To tackle scalability, we need techniques that
more closely integrate the optimisation algorithm with the
simulation-based measurement process.
We need a kind of ‘lazy fitness computation’, which would
perform as much of the simulation as required, but no more,

in order to determine an actionable fitness value. For earlier
exploratory phases of the optimisation process we may need
faster lightweight simulation, possibly using offline modes.
For later optimisation stages in which exploitation of promis-
ing solution spaces requires higher fidelity, we will deploy
more computationally expensive fitness computation, that
can yield this higher fidelity.
Methods such as early stopping are applicable here and are
widely used in automated hyper-parameter optimisation for
training neural networks. They aim to make the most of the
available computation budget by terminating runs that are
unlikely to provide good solutions [56].
How ever we choose to tackle these scalability challenges, it
is clear that the optimisation process cannot treat simulation
merely as a black box that delivers fitness, but needs to have
a white box approach to simulation in order to scale.

ACKNOWLEDGEMENTS
Author order is alphabetical. Mark Harman’s scientific work is part
supported by European Research Council (ERC), Advanced Fellow-
ship grant number 741278; Evolutionary Program Improvement
(EPIC) which is run out of University College London, where he is
part time professor. He is a full time Research Scientist at Facebook.
Simon Lucas is currently a full time Research Scientist at Facebook
and also a part time professor at Queen Mary University of London.

REFERENCES
[1] David Adam. 2020. Special report: The simulations driving the world’s response

to COVID-19. Nature (April 2020).
[2] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna

Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Laemmel,
Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. WES: Agent-based
User Interaction Simulation on Real Infrastructure. In GI @ ICSE 2020, Shin
Yoo, Justyna Petke, Westley Weimer, and Bobby R. Bruce (Eds.). ACM, 276–284.
https://doi.org/doi:10.1145/3387940.3392089 Invited Keynote.

[3] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled
Simulation at Scale Using Metamorphic Testing. In International Conference on
Software Engineering (ICSE) Software Engineering in Practice (SEIP) track. Virtual.

[4] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Lucas, Erik
Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, Jie M. Zhang, and Norm
Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins. In 25th
International Conference on Evaluation and Assessment in Software Engineering
(EASE 2021). Virtual.

[5] Saif Al-Sultan, Moath M. Al-Doori, Ali H. Al-Bayatti, and Hussien Zedan. 2014.
A comprehensive survey on vehicular Ad Hoc network. Journal of Network and
Computer Applications 37 (2014), 380 – 392.

[6] V. Alba Fernández, M.D. Jiménez Gamero, and J. Muñoz García. 2008. A test for the
two-sample problem based on empirical characteristic functions. Computational
Statistics and Data Analysis 52, 7 (2008), 3730–3748. https://doi.org/10.1016/j.
csda.2007.12.013

[7] Nadia Alshahwan and Mark Harman. 2011. Automated Web Application Testing
Using Search Based Software Engineering. In 26𝑡ℎ IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011). Lawrence, Kansas, USA, 3
– 12.

[8] Kelly Androutsopoulos, David Clark, Haitao Dan, Mark Harman, and Robert
Hierons. 2014. An Analysis of the Relationship between Conditional Entropy and
Failed Error Propagation in Software Testing. In 36𝑡ℎ International Conference
on Software Engineering (ICSE 2014). Hyderabad, India, 573–583.

[9] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In 33𝑟𝑑 Inter-
national Conference on Software Engineering (ICSE’11) (Waikiki, Honolulu, HI,
USA). ACM, New York, NY, USA, 1–10.

[10] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,

https://doi.org/doi:10.1145/3387940.3392089
https://doi.org/10.1016/j.csda.2007.12.013
https://doi.org/10.1016/j.csda.2007.12.013


ESEM ’21, October 11–15, 2021, Bari, Italy K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman, M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora

Verification and Reliability 24, 3 (2014), 219–250. https://doi.org/10.1002/stvr.1486
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1486

[11] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 712–721.

[12] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015. 257–269.

[13] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (May 2015), 507–525.

[14] Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter
Kriegel, Bernhard Schölkopf, and Alex J. Smola. 2006. Integrating
structured biological data by Kernel Maximum Mean Discrepancy.
Bioinformatics 22, 14 (07 2006), e49–e57. https://doi.org/10.1093/
bioinformatics/btl242 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/22/14/e49/616383/btl242.pdf

[15] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan Wu.
2016. Mutation-Aware Fault Prediction. In International Symposium on Software
Testing and Analysis (ISSTA 2016). 330–341.

[16] Haiyan Cai, Bryan Goggin, and Qingtang Jiang. 2020. Two-sample test based
on classification probability. Statistical Analysis and Data Mining: The ASA
Data Science Journal 13, 1 (2020), 5–13. https://doi.org/10.1002/sam.11438
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.11438

[17] Tsong Yueh Chen, Jianqiang Feng, and T. H. Tse. 2002. Metamorphic Testing
of Programs on Partial Differential Equations: A Case Study. In 26𝑡ℎ Annual
International Computer Software and Applications Conference (COMPSAC’02).
IEEE Computer Society, 327–333.

[18] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming. 268–279.

[19] I. Csiszar. 1967. Information-type measures of difference of probability distribu-
tions and indirect observation. Studia Scientiarum Mathematicarum Hungarica 2
(1967), 229–318. https://ci.nii.ac.jp/naid/10028997448/en/

[20] Michael E. Fagan. 1976. Design and code inspections to reduce errors in code
development. IBM Systems Journal 15, 3 (1976), 182–211.

[21] Dror G. Feitelson, Eitan Frachtenberg, and Kent L. Beck. 2013. Development and
Deployment at Facebook. IEEE Internet Computing 17, 4 (2013), 8–17.

[22] Han Feng, Xing Qiu, and Hongyu Miao. 2021. Hypothesis Testing for Two Sample
Comparison of Network Data. arXiv:2106.13931 [stat.ME]

[23] StevenGoodman. 2008. A dirty dozen: twelve p-valuemisconceptions. In Seminars
in hematology, Vol. 45. Elsevier, 135–140.

[24] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current Chal-
lenges in Automatic Software Repair. Software Quality Journal 21, 3 (2013),
421–443.

[25] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012.
A Systematic Literature Review on Fault Prediction Performance in Software
Engineering. IEEE Transactions on Software Engineering 38, 6 (2012), 1276–1304.

[26] Mark Harman, William B. Langdon, and Yue Jia. 2014. Babel Pidgin: SBSE
can grow and graft entirely new functionality into a real world system. In 6𝑡ℎ
Symposium on Search Based Software Engineering (SSBSE 2014). Springer LNCS,
Fortaleza, Brazil, 247–252.

[27] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2012.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In Empiri-
cal software engineering and verification: LASER 2009-2010, Bertrand Meyer and
Martin Nordio (Eds.). Springer, 1–59. LNCS 7007.

[28] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportu-
nities and Open Problems for Static and Dynamic Program Analysis (keynote
paper). In 18𝑡ℎ IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2018). Madrid, Spain, 1–23.

[29] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[30] Gregory L Johnson, Clayton L Hanson, Stuart P Hardegree, and Edward B Ballard.
1996. Stochastic weather simulation: Overview and analysis of two commonly
used models. Journal of Applied Meteorology 35, 10 (1996), 1878–1896.

[31] Ilmun Kim, Aaditya Ramdas, Aarti Singh, and Larry Wasserman. 2021. Classifi-
cation accuracy as a proxy for two-sample testing. The Annals of Statistics 49, 1
(2021), 411 – 434. https://doi.org/10.1214/20-AOS1962

[32] Ross D. King, Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser, Christo-
pher H. Bryant, Douglas B. Kell Stephen H. Muggleton, and Stephen G. Oliver.
2004. Functional genomic hypothesis generation and experimentation by a robot
scientist. Nature (01 2004), 247–252.

[33] Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and
A/B Testing. Encyclopedia of machine learning and data mining 7, 8 (2017),
922–929.

[34] Zheng Li, Mark Harman, and Rob Hierons. 2007. Search Algorithms for Regres-
sion Test Case Prioritization. IEEE Transactions on Software Engineering 33, 4
(2007), 225–237.

[35] David Lopez-Paz and Maxime Oquab. 2017. Revisiting Classifier Two-Sample
Tests. In ICLR.

[36] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In 22𝑛𝑑 International Symposium on Foundations
of Software Engineering (FSE 2014), Shing-Chi Cheung, Alessandro Orso, and
Margaret-Anne Storey (Eds.). ACM, Hong Kong, China, 643–653.

[37] David J. C. MacKay. 2002. Information Theory, Inference and Learning Algorithms.
Cambridge University Press, USA.

[38] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE)
Software Engineering in Practice (SEIP) track. Montreal, Canada.

[39] Atif M. Memon and Myra B. Cohen. 2013. Automated testing of GUI applications:
models, tools, and controlling flakiness. In 35𝑡ℎ International Conference on
Software Engineering (ICSE 2013), David Notkin, Betty H. C. Cheng, and Klaus
Pohl (Eds.). IEEE Computer Society, San Francisco, CA, USA, 1479–1480.

[40] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob
Siemborski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
39𝑡ℎ International Conference on Software Engineering, Software Engineering in
Practice Track (ICSE-SEIP). IEEE, Buenos Aires, Argentina, 233–242.

[41] Alfred Müller. 1997. Integral Probability Metrics and Their Generating Classes
of Functions. Advances in Applied Probability 29, 2 (1997), 429–443. http://www.
jstor.org/stable/1428011

[42] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(June 2018), 415–432. https://doi.org/doi:10.1109/TEVC.2017.2693219

[43] Karl R. Popper. 1959. The logic of scientific discovery. London: Hutchinson and
Co. (Publishers) 480 p. (1959)..

[44] Gregg Rothermel, Roland Untch, Chengyun Chu, and Mary Jean Harrold. 2001.
Prioritizing Test Cases For Regression Testing. IEEE Transactions on Software
Engineering 27, 10 (Oct. 2001), 929–948.

[45] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. 181–190.

[46] Dino Sejdinovic, Arthur Gretton, Bharath Sriperumbudur, and Kenji Fukumizu.
2012. Hypothesis testing using pairwise distances and associated kernels (with
Appendix). Proceedings of the 29th International Conference on Machine Learning,
ICML 2012 2 (05 2012).

[47] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication.
Bell System Technical Journal 27 (July and October 1948), 379–423 and 623–
656. http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html,http:
//cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.ps.gz,http:
//cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf,http:
//djvu.research.att.com/djvu/sci/shannon/index.html

[48] Christian Steinruecken, Emma Smith, David Janz, James Lloyd, and Zoubin
Ghahramani. 2019. The Automatic Statistician. Springer International Publishing,
Cham, 161–173. https://doi.org/10.1007/978-3-030-05318-5_9

[49] Margaret-Anne D. Storey and Alexey Zagalsky. 2016. Disrupting developer
productivity one bot at a time. In Proceedings of the 24th International Symposium
on Foundations of Software Engineering (FSE 2016), Seattle, WA, USA, November
13-18, 2016. ACM, 928–931.

[50] Sergio Terzi and Sergio Cavalieri. 2004. Simulation in the supply chain context:
a survey. Computers in Industry 53, 1 (2004), 3–16.

[51] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How
to Design a Program Repair Bot? Insights from the Repairnator Project. In 40th
International Conference on Software Engineering, Software Engineering in Practice
track (ICSE 2018 SEIP track). 1–10.

[52] Jeffrey M. Voas and Keith W. Miller. 1995. Software Testability: The New Verifi-
cation. IEEE Software 12, 3 (May 1995), 17–28.

[53] Oscar Wilde. 1895. The Importance of Being Earnest.
[54] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?

An exploratory survey. In 2013 20th working conference on reverse engineering
(WCRE). IEEE, 242–251.

[55] Shin Yoo andMarkHarman. 2012. Regression TestingMinimisation, Selection and
Prioritisation: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67–120.

[56] Tong Yu and Hong Zhu. 2020. Hyper-Parameter Optimization: A Review of
Algorithms and Applications. arXiv:2003.05689 [cs.LG]

[57] Tianyi Zhang andMiryung Kim. 2017. Automated transplantation and differential
testing for clones. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 665–676.

https://doi.org/10.1002/stvr.1486
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1486
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1093/bioinformatics/btl242
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/22/14/e49/616383/btl242.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/22/14/e49/616383/btl242.pdf
https://doi.org/10.1002/sam.11438
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.11438
https://ci.nii.ac.jp/naid/10028997448/en/
https://arxiv.org/abs/2106.13931
https://doi.org/10.1214/20-AOS1962
http://www.jstor.org/stable/1428011
http://www.jstor.org/stable/1428011
https://doi.org/doi:10.1109/TEVC.2017.2693219
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.ps.gz, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, http://djvu.research.att.com/djvu/sci/shannon/index.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.ps.gz, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, http://djvu.research.att.com/djvu/sci/shannon/index.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.ps.gz, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, http://djvu.research.att.com/djvu/sci/shannon/index.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.ps.gz, http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, http://djvu.research.att.com/djvu/sci/shannon/index.html
https://doi.org/10.1007/978-3-030-05318-5_9
https://arxiv.org/abs/2003.05689

	Abstract
	1 Introduction
	2 What is Measured
	3 Foundations of Simulation Measurement
	3.1 Deterministic Simulation-based testing for WW at Facebook
	3.2 Statistical simulation testing
	3.3 Case Study: Using Jensen-Shannon Distance Measurement in Simulations

	4 Implications for Software Testing
	4.1 Foggy Traffic Light Testing

	5 Open Challenges for the Scientific Community
	References

