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Abstract—Device fingerprinting can be used by Internet Ser-
vice Providers (ISPs) to identify vulnerable IoT devices for early
prevention of threats. However, due to the wide deployment of
middleboxes in ISP networks, some important data, e.g., 5-tuples
and flow statistics, are often obscured, rendering many existing
approaches invalid. It is further challenged by the high-speed
traffic of hundreds of terabytes per day in ISP networks. This
paper proposes DeviceRadar, an online IoT device fingerprinting
framework that achieves accurate, real-time processing in ISPs
using programmable switches. We innovatively exploit “key
packets” as a basis of fingerprints only using packet sizes and
directions, which appear periodically while exhibiting differences
across different IoT devices. To utilize them, we propose a
packet size embedding model to discover the spatial relationships
between packets. Meanwhile, we design an algorithm to extract
the “key packets” of each device, and propose an approach that
jointly considers the spatial relationships and the key packets to
produce a neighboring key packet distribution, which can serve
as a feature vector for machine learning models for inference.
Last, we design a model transformation method and a feature
extraction process to deploy the model on a programmable data
plane within its constrained arithmetic operations and memory
to achieve line-speed processing. Our experiments show that
DeviceRadar can achieve state-of-the-art accuracy across 77 IoT
devices with 40 Gbps throughput, and requires only 1.3% of the
processing time compared to GPU-accelerated approaches.

Index Terms—IoT, fingerprinting, programmable data plane.

I. INTRODUCTION

Recent years have witnessed the rapid deployment of the
Internet of Things (IoT). Meanwhile, insecure IoT devices are
considered to remain one of the major concerns in networks
over the foreseeable future [1]. As IoT devices typically
lack sufficient security protection, they have become a key
target of botnet malware (e.g., Bashlite [2], Mirai [3]). This
situation makes Internet Service Providers (ISPs) increasingly
concerned with vulnerable IoT devices connected to their
networks. Take Mirai as an example: the compromised IoT
devices were once used to launch large-scale DDoS attacks
over 600 Gbps, wasting massive resources and sabotaging core
ISP services such as DNS [3].
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To avoid being penetrated by malicious IoT devices, device
fingerprinting can be utilized by network administrators as a
defense, which can identify the types of devices within its
domain. This knowledge can then facilitate flexible precautions
against high-risk devices (e.g., with explicit vulnerabilities
on CVE [4]) before they get compromised or involved in
malicious activities, e.g., by throttling, quarantining, limiting
access to core infrastructures, or informing the users of the
high-risk devices existing in their residence [5, 6]. Further, as
the amount of IoT devices is surging (about 127 new devices
per second in 2017 [7]), it becomes necessary to do this with
faster processing speed. For example, in 2020, researchers
observed over 300 million login attempts by Mirai on 7500
IoT honeypots in 6 weeks [8] (on average, each host receives
40 attacks per hour), suggesting that vulnerable IoT devices
are in danger of being compromised at any time. Online device
fingerprinting can mitigate this situation by timely identifying
vulnerable devices and then preventing potential malicious
activities in advance. For example, if an LG SuperSign TV
known to be vulnerable to CVE-2018-17173 is detected, it
can be protected by a rule of checking HTTP requests to port
9080 that exploit remote code execution. Such a method can
also provide prior knowledge to other security systems like
IDS/IPS to increase their efficacy.

However, achieving effective and efficient online device
fingerprinting is challenging in ISP networks for two rea-
sons. First, most existing works only investigate ideal lo-
cal networks (LANs), where traffic can be easily separated
by each device [9–12]. In reality, traffic in ISP networks
could originate from diverse gateways and middleboxes that
hamper traffic analysis, e.g., Network Address Translation
(NAT) gateways, Virtual Private Network (VPN) gateways,
and The Onion Routers (Tor) nodes. Due to traffic fusion and
possible encryption and encapsulation, popular features used
by existing approaches, including 5-tuples and various traffic
statistics (e.g., packet counts, flow duration), could become
unavailable or unreliable. Second, today’s ISP networks need
to handle hundreds of terabytes of traffic per day. Even if ISPs
have sufficient server resources to accelerate the identification
process, the overhead of data exchange is severe, such as
data from network devices (i.e., data plane) to servers (i.e.,
control plane) and flow rules in the opposite direction. The
delay that such communications introduce could be over tens
of seconds using conventional Software Defined Networking
(SDN), which is non-trivial considering how much traffic must
be forwarded. Achieving real-time device fingerprinting is
necessary yet challenging in the face of such high throughput.
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In this paper, we propose DeviceRadar, a novel device fin-
gerprinting framework that achieves high-speed processing in
ISP networks with middleboxes. Through analyzing the traffic
of multiple IoT devices, we observe that they periodically
generate some bursts of traffic with cloud servers or IoT hubs,
e.g., for data synchronization. These bursts typically contain
a set of “key packets”, which have stable sizes and are likely
to appear in neighboring locations. Since these key packets
exhibit differences among devices and can be characterized
only by packet sizes and directions, which are reliable in
middlebox scenarios, in DeviceRadar, we utilize them as a ba-
sis of fingerprints for accurate device identification. However,
due to inevitable packet loss, disorder and retransmission in
ISP networks, simply matching the sequences of these packets
to the online traffic might fail. For example, retransmission,
duplicate ACK and out-of-order packets account for 5.4% in
one-day trace of WIDE backbone [13].

To utilize key packets for fingerprinting, we first propose a
packet embedding model that brings packet sizes to a high-
dimensional space where correlated packets are in closer po-
sitions. With this model, we can predict the probability of key
packets appearing in the neighboring position of given packets
using the spatial distances between the embeddings. The result
of predicted probabilities does not require precise matching
of packet sequences like other signature-based approaches
(e.g., [14]); instead, it forms a feature vector as fingerprints for
simple ML classifiers to identify the target devices. As it only
uses packet sizes and directions, DeviceRadar can be applied
to handling complex middlebox scenarios.

To address the challenge of runtime overhead, we exploit P4
programmable switches [15], which open up the possibility of
in-network computing. As P4 switches suffer from arithmetic
operation limitations (e.g., not supporting loops, division or
float-point operations), we design a method of transformation
from our models (i.e., packet embedding, ML classifiers) to
P4 match-action tables to realize line-rate ML inference within
the pipeline of packet processing. Moreover, to mitigate the
memory constraint of P4 switches (e.g., TCAM, SRAM), we
develop an incremental feature construction process using P4
stateful registers for online traffic. With these designs, we
manage to bypass the restrictions of programmable switches
and deploy DeviceRadar fully on the data plane, which can
achieve the line-rate processing speed for online use.

We prototype DeviceRadar on a physical P4 switch. For
evaluation, we construct a real-world IoT testbed and collect
a three-month traffic dataset, and use three public IoT datasets
as benchmarks and a backbone trace as background traffic. We
demonstrate two common but challenging middlebox scenar-
ios: NATs and VPNs. The experiments show that DeviceRadar
can achieve high identification accuracy across 77 IoT devices
with 40 Gbps throughput and only 1.3% of the processing time
compared to the GPU-accelerated methods.

The contributions of this paper are summarized as follows.
We present 1) A novel in-network device fingerprinting frame-
work for ISP networks, which achieves high accuracy, high
throughput and low processing time; 2) A packet embedding
model that predicts the packet sizes in the neighboring posi-
tion, which promotes the efficacy of traffic analysis; and 3) A

prototype of DeviceRadar on physical hardware, and a real-
world IoT testbed for realistic evaluation.

II. BACKGROUND AND RELATED WORK

A. IoT Device Fingerprinting by ISPs

IoT device fingerprinting identifies a specific set of device
types by passively sniffing network traffic. Many IoT device
fingerprinting approaches have been proposed for various
scales of networks, such as public Wi-Fi networks [6], wireless
sensor networks [16, 17], and home networks [9, 18, 19].
Some studies describe their works from the view of an
adversary for privacy sniffing [10, 14, 20]. Different layers
of information have been used for device identification. For
example, Radhakrishnan et al. introduce a technique that can
fingerprint types of wireless devices by utilizing physical-layer
information [17]. Franklin et al. develop a wireless device
driver fingerprinting method based on the data link layer [16].
In contrast, this paper focuses on IoT device fingerprinting by
ISPs who can only monitor network traffic on the links and
network devices with the ISP domain. Note, sniffing wireless
IoT packets over the air is impractical for ISPs, as this can
only be done close to the signal emitters (e.g., at the WiFi
access point). As such, prior techniques based on lower-layer
information are unavailable for our scenario.

Though there have been works on IoT device identification
for large-scale networks by offline analysis [21, 22], this paper
mainly explores its benefit to online network management –
given the insecurity of IoT, high-risk devices in the network
can be timely pinpointed so that their communications can be
constrained in advance according to their known vulnerabili-
ties. The identification result can also facilitate downstream
systems (e.g., anomaly detection/prevention) by providing
prior knowledge of device labels, simplifying their working
logic. We argue that IoT device fingerprinting by ISPs in an
online manner should satisfy the following requirements:
R1) High accuracy. The target IoT devices should be pre-
cisely identified even if the non-IoT traffic (i.e., background
traffic) might dominate the volume of data.
R2) Real-time processing. The identification result should be
timely so that prompt actions could be taken before substantial
malicious traffic has flowed into the network.
R3) High throughput. Given the high rate of ISP networks
(e.g., tens of Gbps), an online system should quickly process
and forward a huge amount of traffic data.

However, achieving the above requirements faces two major
challenges:

1) Middleboxes: Middleboxes are devices widely deployed
in autonomous systems and across various networks including
ISPs [23], such as firewalls, load balancers, DPI boxes, NATs,
VPNs, onion routers. As they can not only inspect but manip-
ulate traffic, the difficulty of accurate identification (i.e., R1)
has markedly increased as many useful traffic features can
be obscured. For IoT connections, we mainly consider two
types of middleboxes: NATs and VPNs. Table I summarizes
the traffic features modified by NATs and VPNs.

NATs are commonly used to relieve the exhaustion of
public IP addresses. As the source address is multiplexed,
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host-level traffic statistics (e.g., statistics of packet sizes and
inter-arrival time per host) can be fused by the traffic of
multiple devices. In addition, the typical Network Address Port
Translation (NAPT) maps the source port of devices to a new
port for address translation. These characteristics aggravate the
difficulty of device fingerprinting for ISPs.

VPNs have been commercialized for decades both as stan-
dalone products and as integrated parts of firewall products
(e.g., [24]). They are usually located on the boundaries of
networks to provide secure data transmission and remote
access. When traffic passes through VPNs, the source and the
destination are replaced by a uniform tunnel between two VPN
endpoints. Furthermore, most mainstream VPN protocols can
encrypt and encapsulate the original packets, rendering most
of the header fields unavailable. For example, the entire L3
packet is encrypted and encapsulated in the payload of an
IPSec ESP packet; for SSL/TLS VPNs (e.g., OpenVPN), the
destination port is set to 1194 and the layer 4 is encapsulated
with a new TCP/UDP header.

In summary, we argue that only packet sizes and packet
directions are reliable features that can be generalized across
different middlebox scenarios.

TABLE I
TRAFFIC FEATURES MODIFIED BY NATS AND VPNS.

Feature NAT VPN
IPSec SSL/TLS

src-IP NAT’s external IP VPN’s external IP
dst-IP/domain - VPN remote endpoint

src-port translated encrypted VPN’s src-port
dst-port - encrypted service port

L4 protocol - encrypted encapsulated
host-level stats mixed mixed mixed
flow-level stats - mixed mixed

2) Runtime Overhead: Achieving device fingerprinting as
an online system is challenging in an ISP network in view of
its high-speed traffic. We illustrate two common deployments
in Fig. 1. One approach is to copy the raw traffic by port mir-
roring to a server that runs the device identification algorithm
(e.g., [5, 25–27]). Though this approach is practical for small
networks like home networks, the generic server is difficult
to process the high-throughput online traffic of ISP networks
that can reach tens of gigabytes per second (i.e., R3).

Another approach is based on the SDN paradigm, where
an SDN switch processes the traffic and uses OpenFlow
to send traffic statistics to and accept flow rules from the
controller (e.g., [9, 28]). This approach can obviously reduce
the load of the controller server. However, it still suffers from
the inherent drawback of the long control loop in off-path
deployments, making the real-time processing unrealistic (i.e.,
R2). Specifically, a round of processing consists of:
1) Time window to collect traffic features and calculate
statistics for one inference (①), typically seconds to minutes;
2) Communication latency, including statistics uploading (②)
and flow rule issuing (④), typically tens of milliseconds and
even more under high load;
3) Inference time that the identification algorithm consumes,
typically tens of milliseconds (③).

In summary, these deployments introduce much runtime
overhead that may increase as networks grow in capacity. For
security in ISP networks, the latency of seconds to minutes be-
fore the installation of the defense rules can drastically devalue
the identification of vulnerable devices, since a huge amount
of potentially malicious traffic may have been forwarded.

RX TX

1
2

3

Switch/Router

Server

4

(a) Raw traffic by port mirroring

RX TX

1

SDN Switch

Controller

2

3

4

(b) SDN with OpenFlow

Fig. 1. Runtime overhead of two off-path deployments.

B. Limitations of Existing Work

According to the key features and techniques, we categorize
existing methods into three types as explained in Table II.

Signature-based methods. Traditional signatures, including
MAC addresses/OUI [29] and DHCP messages [30], achieve
real-time device identification in a LAN but are mostly in-
feasible for ISPs. Many studies use the set of destination IP
addresses and domains via DNS queries as distinguishable IoT
signatures [10, 11, 20–22, 31]. Though these approaches are
effective, it has been pointed out that they can be invalidated
if the DNS is encrypted or different vendors use the same
public cloud services [5, 27]. Besides, collecting the full set
of DNS queries needs a long time window and is often hit-and-
miss. For instance, we observe that a TP-Link camera in our
testbed only has one DNS query per hour on average; among
its 11 domains, 5 are only queried immediately after network
connection and never queried again. It naturally hinders timely
and reliable device identification (i.e., R1 & R2). Trimananda
et al. [14] discover a packet-level signature that contains pairs
of packets with predictable lengths. However, it only supports
device fingerprinting over TCP connections and cannot handle
UDP-based devices, which limits its practical usage.

ML-based methods. Machine learning (ML) algorithms en-
able device fingerprinting to utilize multi-dimensional feature
vectors for inference, including packet header fields [9, 26, 32]
(e.g., protocol, port, timestamp, TCP flag, option) and traffic
statistics [16, 17, 28, 33] (e.g., mean/maximum/minimum/vari-
ance of count/size/inter-arrival time/duration). For example,
Meidan et al. propose an approach using header features and
the LGBM algorithm [26]. DarkSide [33] adopts 16 traffic
statistics to infer IoT devices. Compared to signature-based
methods, these approaches are more flexible and usually do not
rely on specific protocols. However, due to the middleboxes
that obscure header fields and fuse the IoT traffic with other
non-IoT traffic, many of these approaches can be inaccurate in
ISP networks (i.e., R1). Besides, obtaining traffic statistics may
require a long time window, such as the default 30 minutes for
active flows in NetFlow, which greatly reduces the real-time
nature of the detection result (i.e., R2).
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DL-based methods. More recent approaches adopt state-of-
the-art deep learning (DL) algorithms that can better discern
the sequential patterns among packets. For example, Dong
et al. propose HomeMole based on bidirectional LSTM to
leverage the temporal relationship between packets, which
shows to be effective in NAT scenarios but relatively weak
in VPN scenarios [25]. Ma et al. design a system via spatial-
temporal traffic fingerprinting and a CNN to identify IoT
devices hidden behind NATs [5]. Though achieving better
accuracy, this type of method may not be suitable for online
use in high-speed ISP networks, given that their inference time
(e.g., milliseconds on GPUs) is much greater than the average
packet inter-arrival rate (e.g., microseconds). In addition, they
need a long window to better capture the spatial/temporal
relationships, such as several minutes in [5], which further
degrades the timeliness of the results (i.e., R2).

Besides, none of the previous works consider the require-
ment of throughput in realistic ISP networks (i.e., R3). In
summary, there is no prior work that addresses the need for
online device fingerprinting in ISP networks which meets the
aforementioned requirements.

TABLE II
EXISTING METHODS VERSUS OURS IN ISP NETWORKS.

Method Key feature
& technique

Accurate w/
middlebox Real-time High-

throughput

Signature

MAC/DHCP
[29, 30] % ! %

IP/domain
[10, 20–22] ✓∖ % %

packet pair
[14] ✓∖ % %

ML

header field
[9, 32] % % %

traffic statistic
[16, 17, 28, 33] % % %

DL
spatial/temporal

relationship
[5, 25]

✓∖ % %

Ours embedding +
P4 switch ! ! !

C. Programmable Data Plane and In-network Intelligence

Recent research has extended the conventional SDN ar-
chitecture from the programmable control plane to the pro-
grammable data plane. A programmable switch enables packet
processing in arbitrary formats and protocols defined by users.
As such, many tasks like load balancing [34], RTT mea-
surements [35] and firewalling [36] can be offloaded directly
to the data plane. Exploiting the on-path deployment with
microsecond-level processing latency (i.e., R2) and Tbps-level
throughput (i.e., R3) on programmable switches sheds new
light on the implementation of online network tasks.

This versatility and efficiency are realized by a pro-
grammable Application-Specific Integrated Circuit (ASIC) for
networking (e.g., Intel Tofino [37]). It follows the Protocol
Independent Switch Architecture (PISA), as illustrated in
Fig. 2. PISA consists of a programmable parser, a series
of match-action stages and a programmable deparser. The
match logic uses a mix of SRAM and TCAM for lookup
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Fig. 2. Protocol Independent Switch Architecture (PISA).

tables, registers, hash tables and other data structures. The
action logic uses ALUs for standard boolean and arithmetic
operations, header modifications, hashing operations, etc. A
network-specific programming language, P4 [15], is available
to write and load custom programs for processors of PISA.

However, to guarantee high-speed processing, most P4
switches are designed with the constraints of 1) operations
that only support simple instructions like integer additions
and bit shifts, but do not support loop, division or floating-
point operations; and 2) resources that have limited match-
action stages (e.g., 4 pipelines of 12 stages in Tofino) and
memory. It means that most ML/DL models are difficult to
be executed on P4 switches, implying the dilemma between
high accuracy (i.e., R1) and low runtime overhead (i.e., R2
& R3). Recently, Xiong et al. first explore the potential of
mapping specific ML models, including decision tree, Naı̈ve
Bayes, K-Means and SVM, to match-action pipelines in a
P4 switch for deployment [38]. Among these models, tree-
based models (e.g., decision trees) are more suitable as their
rule-based decision process naturally aligns with the match-
action pipelines. Several studies have proposed in-network
intelligence solutions using tree-based models [39–41].

Nevertheless, prior studies [42] have shown that tree-
based models may suffer from accuracy problems, as they
are not good at learning spatial/temporal relationships within
sequential data, which is the key information used by some
approaches [5, 25] to resolve the traffic mixing issue of
middleboxes. Thus, a model that uses reliable traffic features to
unearth the relationship among packets and can fit the obtained
relationship to tree-based models for deployment is needed.

III. THREAT MODEL

This paper focuses on IoT device fingerprinting from the
view of an ISP. We propose a security and management tool for
identifying the types of IoT devices within its administration
domain. We use the term “device type” to indicate devices with
the same manufacturer and functions (e.g., “Xiaomi-plug”).
From the perspective of security, this granularity is sufficient to
pinpoint the behavior profile and vulnerability of these devices
(since they typically share a similar set of firmware). Note
that there is a difference between our objective and individual
device identification which is out of the scope of this paper.

The adversary considered in this paper is the owner of IoT
botnet who seeks to attack, compromise and control large
numbers of IP-enabled IoT devices. The existence of com-
promised IoT devices poses a threat to an ISP’s infrastructure,
services and clients, e.g., DDoS attacks on DNS services, high-
profile websites and even national Internet infrastructure in the
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incident of Mirai in 2016 [3]. We assume that the adversary
targets a limited number of device types. For example, Mirai
typically only targets IP cameras, DVRs and routers [3].

As most consumers do not have expert knowledge to prevent
such attacks, an ISP must take the responsibility to identify
those vulnerable IoT devices before they are exploited by
attackers. Unlike the device fingerprinting in a LAN [9–12], in
ISP networks (where traffic through middleboxes is prevalent)
we assume that traffic from different devices cannot be reason-
ably separated by IP addresses (e.g., the upstream comes from
a NAT gateway) nor by 5-tuples (e.g., the upstream comes
from a VPN gateway). For the sake of generality, this paper
assumes that an IP address could carry the traffic of multiple
devices, including both IoT and non-IoT traffic. Further, in
most cases, we assume IoT traffic is sparse compared to
background traffic. Except inside the LANs (e.g., homes,
enterprises), the links that ISPs can monitor are assumed to
be arbitrary, such as access/aggregation switches and core
switches. Besides, ISPs can read the header fields of packets
but do not tend to use DPI on payloads due to encryption or
privacy policies. Lastly, we assume ISPs can arbitrarily obtain
traffic samples of the target IoT devices by purchasing these
devices and setting up a private testbed.

IV. OVERVIEW

A. Observation of IoT Key Packets as Fingerprints

As discussed in Section II-B, accurate device fingerprinting
in ISP networks is challenging due to information loss by mid-
dleboxes. In such circumstances, packet sizes and directions
are the only reliable packet features available: packet sizes
suggest data transmission load, and directionality differentiates
packets sent from either IoT devices or IoT clouds, indicating
communication patterns between clients and servers.

To further exploit the usefulness of the limited available
features, we analyze the traffic of 14 IoT devices of different
types and brands in our testbed, and observe some common
characteristics among them. We present the results of a Xiaomi
plug and a TP-Link camera collected over 10 days in Table III
as an example. We observe that bursts of packets with specific
sizes appear periodically. For example, every 30 minutes four
packets with the size and direction of 543, -143, 431 and -
399 appear in the traffic of the Xiaomi plug, even though they
may not follow the exact order due to packet reordering and
retransmission. We refer to these packets the key packets with
respect to sizes and directions.

We also observe that the key packets of different device
types are different. It is in line with our further investigation

TABLE III
CASE STUDY: TWO DISTINCT DEVICES DEMONSTRATE PERIODIC AND

DIFFERENTIAL BURSTS OF PACKET SIZES AND DIRECTIONS (MINUS SIGN
INDICATES THE DIRECTION FROM WAN TO LAN).

Xiaomi plug Period TP-Link camera Period

74, -74 30s 167, -151, 66 30s
111, -111, 60 40s 321, 145, -145 5min

175, -447, 191 5min 251, -393, -123 15min
543, -143, 431, -399 30min 136, -871, -1486 15min

Packet
Embedding

Packet Neighboring
Probability Matrix

Key Packet
Extraction

Neighboring Key
Packet Distribution

Decision Tree
Classifier

Key Action

ingress_port set_lan_ps

Key Action

packet_size set_prob

Key Action

ip_addr regs.apply()

Key Action

feat_vec set_class

Direction Table Probability Table

Stateful Update Table Inference Table

Reg2,1

Reg1,1

Reg2,2

Reg1,2

Reg2,2

Reg1,2

Register Array

Metadata Parsing

state start {
pkt.extract(ig_intr_md);
transition parse_port;
transition parse_ipv4;

}

Control Plane

Data Plane

Training
Data

Online
Traffic

Transform & Deploy

Fig. 3. System architecture of DeviceRadar.

on the IoT firmware development platforms (e.g., Xiaomi [43],
SmartThings [44]), which reveals that these packets are typ-
ically for periodic property synchronization, such as status,
power and sensor data. They vary among device types due to
different properties (e.g., electricity usage for plugs, temper-
ature for thermostats), formats (e.g., bool, int, float, string)
and protocols (e.g., HTTP, MQTT). It means that, even if
two devices may use some common public services, their key
packets will not completely coincide as long as they are with
either different manufacturers or different functions. Besides,
this type of periodic traffic always exists no matter if the device
is in an idle or active state. This characteristic makes device
identification possible at any given time. As such, we exploit
the key packets as the basis of device fingerprints.

However, considering that packet disorder and retransmis-
sion are common in ISP networks, directly matching the
arriving packets with the sequences of key packets like [14]
may often fail. Besides, these bursts of packets are easily
hidden by high-speed background traffic, making them nearly
impossible to be identified one by one.

B. Overview of DeviceRadar

We propose DeviceRadar, a novel framework for IoT device
fingerprinting in ISP networks. To the best of our knowledge,
it is the first implementation of online device identification that
can handle complex traffic scenarios (like NATs and VPNs),
achieve real-time processing, and support high throughput in
one system. Fig. 3 shows its architecture, which is built on
an SDN paradigm divided into control plane and data plane.

Control Plane. The control plane is responsible for gener-
ating the fingerprinting models and issuing policies to the data
plane. Inspired by our observation in Section IV-A, we exploit
key packets as the base of IoT fingerprints, which just require
packet sizes and directions, i.e., the limited reliable features
in middlebox scenarios. Specifically, we propose a packet size
embedding model to discover the spatial relationships between
packets, which can be further transformed into a packet neigh-
boring probability matrix for each target device. Meanwhile,
we design an algorithm to extract the “key packets” of each
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device that exhibit sufficient frequencies and periodic patterns.
By combining the packet probability matrix and the list of
key packets, DeviceRadar can obtain a neighboring key packet
distribution for a certain time window, which can then be used
as a feature vector for a decision tree classifier to accurately
tell the existence of target devices.

Data Plane. At runtime, DeviceRadar eliminates the long
communication loop with the control plane and can be com-
pletely offloaded to the data plane, which is the programmable
switch ASIC with microsecond-level processing latency and
Tbps-level throughput. It is because we find a way to transform
the entire working flow and the models generated on the
control plane to switch-compliant match-action pipelines and
tables, and compile them as a P4 program that can be deployed
on the data plane. To achieve this, we manage to overcome
the restraint of operations and resources of the programmable
switches during the transformation and deployment. With
these efforts, DeviceRadar can fully take advantage of the
high performance of switch ASICs and achieve real-time
identification and high throughput.

V. DEVICERADAR CONTROL PLANE

The control plane is responsible for the offline training of
the models, including the construction of a packet embedding
model to amplify the correlation among packet sizes and
directions within target IoT traffic, the acquisition of a packet
neighboring probability matrix which depicts the probability
of certain packets co-occurring in bursts of traffic, the ex-
traction of key packets of target IoT devices, and finally the
formation of neighboring key packet distribution as feature
vectors to train a decision tree classifier for accurate inference
and further online deployment on the data plane.

A. Packet Embedding
Our intuition is to automatically discover co-occurrence

relationships between directional packet sizes in traffic. With
this knowledge, we can predict surrounding packets being key
packets cumulatively, assisting in detecting target IoT devices.
To fulfill this, we exploit word embedding techniques from
Natural Language Processing (NLP), and build a deep learning
model for packet embedding. The goal of word embedding is
to transform a word into a high-dimensional encoding space
where the context-dependent words have a higher similarity.
Thus, the most likely neighboring words can be predicted by
the spatial distance. Formally, for a packet with size s and
direction r, we encode direction into packet size by:

p =

{
s, r = 0

s+ 1500, r = 1
, (1)

where r = 0, 1 indicates the direction from LAN to WAN and
from WAN to LAN, respectively. The embedding is essentially
represented by a lookup table A ∈ RK×d, where K is the
number of all possible directional packet sizes and d is the
dimension of the embedding. For IP packets, K := 1500 +
1500, where 1500 is the maximum transmission unit (MTU)
of Ethernet. A packet1 p can be converted into a d-dimensional

1During the introduction to DeviceRadar, we use “packets” to refer to
packet sizes encoded with directions for short.

embedding vector e by simply retrieving the p-th row of the
array, i.e., e = A[p, :]. For a target device D, we use the pure
traffic of the device, denoted by PD, and the skip-gram model
to train the embedding, as illustrated in Fig. 4.

The training process is in an unsupervised manner. For each
packet pDt ∈ PD, we consider the c adjacent packets that arrive
before and arrive later in a burst the relevant packets, meaning
that they are more likely to co-occur with the packet p. For
each relevant packet, we employ the unigram distribution to
sample k packets from the background traffic. We denote these
irrelevant packets as PB. The empirical equation to calculate
the probability of being sampled is:

Psample(p
B
i ) =





f(pB
i )∑3000

j=1 f(pB
j)
, pBi /∈ {pDt−c, ..., p

D
t+c}

0, pBi ∈ {pDt−c, ..., p
D
t+c}

, (2)

where f(·) is the packet frequency in PB. It means that, for
all possible values of packets from 1 to 3000, packets with
higher frequency in the background traffic are more likely to
be sampled (first case), but packets equal to any of the relevant
packets will not be selected (second case). The training goal
is to minimize the loss function:

L(eDt ) = −
c∑

i=−c
i̸=0

k∑

j=1

(log σ(eDt ·eDt+i)+log σ(−eDt ·eBj )), (3)

where σ(·) is the sigmoid function, and e denotes a d-
dimensional embedding corresponding to a packet p. For the
embedding eDt of pDt , it means to maximize its similarity with
the embeddings of its (2c−1) relevant packets (i.e., the former
term from eDt−c to eDt+c), and minimize its similarity with the
embeddings of the k ·(2c−1) irrelevant packets (i.e., the latter
term). Consequently, the trained embedding tends to place the
packets more likely to appear together in a closer position. We
provide theoretical proof of this claim in the Appendix.
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Fig. 4. Training process of packet embedding model.

B. Packet Neighboring Probability Matrix

The packet embedding model can be further transformed
to a packet probability matrix, which contains the probability
of the neighboring packets, i.e., neighboring probability. For-
mally, given a packet p, we denote the neighboring packet by
variable X and the probability of X that appears near p in
the traffic of device D by P(X|p;D). Since packets that are
more likely to occur together tend to have higher similarity
between their embedding vectors, we use the similarity in the
packet embedding table to estimate this probability. Suppose
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there are n possible packet sizes with frequencies not less than
ϵ in the traffic data PD. We calculate the cosine similarities
between the embedding of each packet and those of the other
packets to obtain similarity matrix SD, which is given as:

SD =




p1·p1

|p1||p1|
p1·p2

|p1||p2| ... p1·pn

|p1||pn|
... ... ... ...

pn·p1

|pn||p1|
pn·p2

|pn||p2| ... pn·pn

|pn||pn|


 . (4)

For cosine similarities in the range of [−1, 1], those values
in SD lower than a threshold λ ≥ 0 are truncated to zeros to
obtain the packet neighboring probability matrix MD:

MD[i, j] =

{
SD[i, j] SD[i, j] ≥ λ

0 SD[i, j] < λ
, (5)

as they indicate that the packets have highly different di-
rections in the embedding space and thus are considered
irrelevant. We empirically set λ = 0.4 in our implementation.
Given a packet pi in the traffic of device D, we denote the
probability of a different packet pj appearing near pi by:

P(X = pj |pi;D) = MD[i, j]. (6)

C. Key Packet Extraction

Formally, we define key packets as packets satisfying the
following characteristics: 1) they frequently appear in a burst
of device traffic; and 2) they have a stable period. We design a
key packet extraction algorithm as summarized in Algorithm 1.
First, we split the traffic by the tuple of destination IP,
destination port and L4 protocol, which is likely for the same
purpose. For each subset of the traffic, we extract the bursts
by a threshold of burst intervals Tb, and record each burst with
its start timestamp and list of packets (line 4∼11). Then we
calculate the intervals between every two adjacent bursts and
find if they have a stable period by the Coefficient of Variation
cv of the burst intervals, which is the mean divided by the
standard deviation and represents the normalized divergence of
data (line 12∼16). If these bursts have a sufficient frequency
and a low cv (i.e., stable period), the packets in these bursts
are extracted as a batch of the result, i.e., the key packets.

D. Neighboring Key Packet Distribution and Decision Tree

DeviceRadar uses the packet neighboring probability matrix
and the set of key packets to form a feature vector for device
identification. To reduce the complexity of the feature vector,
we only use the first N key packets sorted by their periods in
ascending order, as more frequent key packets are more helpful
for timely identification. Suppose a series of packets from one
IP address are observed during a time window Tw, and v is
the feature vector of the neighboring key packet distribution.
Given the key packets [x1, x2, ..., xN ], the generation of such
a feature vector consists of the following steps:

i. Initialize a vector v of N zeros.
ii. For each packet pi, obtain the probability P(X =

xj |pi;D) from the matrix MD.
iii. Add the probability to the corresponding position of the

vector, i.e., v[j] = v[j] + P(X = xj |pi;D).
iv. Iterate step iii for all the N key packets.

Algorithm 1: Key Packet Extraction
Input: Device packets PD and their timestamps ID

1 Initialize an empty key packet set S;
2 Split traffic by the tuples of destinations;
3 for P , I in PD, ID do
4 Initialize an empty burst list LB and tprev ← 0;
5 for p, t in P , I do
6 if t− tprev > Tb or tprev = 0 then
7 B ← {ts : t, pkts : []};
8 LB .append(B);
9 B.pkts.append(p);

10 tprev ← t;
11 end for
12 Initialize an empty list H of burst intervals;
13 for B, Bnext in LB do
14 H.append(Bnext.ts−B.ts);
15 end for
16 cv ← std(H)/mean(H);
17 if cv < η and |LB | > ϵ then
18 S′ ← [B.pkts for B in LB ];
19 S.union(S′);
20 end for
21 return S;

v. Iterate step ii and step iii for all the observed packets
during the time window.

This feature vector meets the typical input of simple ML
models like tree classifiers [42]. Furthermore, it includes the
implicit semantics learned from the embedding space, which
enable simple ML models to sense spatial relationships even
though these models may not naturally have this ability.
We choose the decision tree of CART (classification and
regression tree) as the final classifier because of its good
deployability on the data plane. A per-device classifier is
trained for each target device. Each training sample on a node
N can be denoted by (v, y), where y ∈ {0, 1} is the label for
the presence of the device. The impurity I of N is calculated
by the proportion of labels in N , e.g., using Gini impurity:

I = 1−
∑

i∈{0,1}
P2
i , where Pi =

1

|N |
∑

(v,y)∈N
I{y = i}. (7)

The training process iterates to maximize the impurity de-
crease by finding a decision that splits the node into two nodes.
After the training and during the inference, a sample (v, y) will
go through decision paths and fall into a leaf node T , and the
predicted label is determined by:

ŷ = argmax
y

1

|T |
∑

(v,y)∈T
I{y = i}. (8)

E. Analysis of Computational Complexity

We theoretically analyze the computational complexity of
each step in DeviceRadar, as outlined in Table IV. It can
be seen that the computational complexity of DeviceRadar
is proportional to the target device packet number |PD|, the
number of extracted key packets N , and the number of feature
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TABLE IV
COMPLEXITY OF DEVICERADAR; V IS THE SET OF FEATURE VECTORS

FROM EACH TIME WINDOW Tw FOR TRAINING DECISION TREES.

Component Complexity

Packet Embedding O(2 · c · k · |PD|)
Packet Neighboring Probability Matrix O(1)

Key Packet Extraction O(|PD|)
Neighboring Key Packet Distribution O(N)

Decision Tree Classifier Training: O(N · |V | log |V |)
Inference: O(tree depth)

vectors |V | as training data. Importantly, DeviceRadar does
not involve operations with complexities exceeding quadratic
terms concerning traffic volume. This result supports the prac-
tical implementation of DeviceRadar in high-speed networks.

VI. DEVICERADAR DATA PLANE

In this section, we elaborate on the transformation and
deployment of the device fingerprinting components from the
control plane to the data plane. Particularly, the components
are transformed into programmable switch-compliant data
structures for online use on the data plane.

A. Metadata in P4 Program

To deploy DeviceRadar on the data plane, we write a P4
program to implement a complete suite of components for
device fingerprinting generated on the control plane, as de-
scribed in Section V. These will be used at runtime, including
1) the acquisition of directional packet sizes; 2) the packet
neighboring probability matrix; 3) the maintenance of a feature
vector; and 4) the decision tree.

A PISA programmable switch parses no protocols unless
they are explicitly defined by the installed P4 program. In our
program, we parse the IPv4 header with three fields:

• Source address: ip4Addr_t srcAddr
• Desination address: ip4Addr_t dstAddr
• IP packet size: bit<16> totalLen
The programmable switch offers some intrinsic metadata

about the switch. We mainly use the ingress port field
ingress_port, which is either LAN or WAN, to decide
the packet direction.

Besides, a P4 program allows a packet to carry some user-
defined metadata through the match-action pipeline. We define
the following metadata in our P4 program:

• Directional packet size: bit<16> dir_size
• Neighboring packet probability: bit<32> prob_x;
x = 1, 2, ..., N for each key packet

• Value of a feature vector: bit<32> v_x; x =
1, 2, ..., N for each dimension of a feature vector

• Packet timestamp: bit<32> tstamp
• Timeout sign of a time window: bit<8> timeout
• Device identification result: bit<32> label

B. The Match-Action Pipeline

A packet will go through the match-action pipeline defined
by the P4 program. We design four match-action tables, which
transplant the complete function of models constructed on the

control plane to the data plane, and bypass the operation and
resource constraint of programmable switches. In particular,
we manage to handle the unsupported floating-point num-
bers of the probability matrix by P4-compliant data types.
Moreover, our match-action tables utilize the P4 registers to
realize the incremental construction of feature vectors, which
guarantees the high throughput of processing at line rate.

Direction Table (Listing 1). This table achieves the acquisi-
tion of directional packet sizes by identifying the ingress port
and applying the logic of Equation (1). Only two rules for the
two directions will be written in this table.

action set_lan_packet_size() {
meta.dir_size = hdr.ipv4.totalLen + 1500;

}
action set_wan_packet_size() {

meta.dir_size = hdr.ipv4.totalLen;
}
table directional_packet_size {

key = {ig_intr_md.ingress_port: exact;}
actions = {

set_lan_packet_size;
set_wan_packet_size;

}
}

Listing 1. Sample P4 code of direction table.

Probability Table (Listing 2). This table realizes the packet
neighboring probability matrix. Given a directional packet
size, it adds the probability of neighboring packets being the
N key packets into the metadata. For a target device D, the
number of rules written in the table equals the total number
of directional packet sizes in the traffic PD, and the number
of parameters for the action equals N . However, the item of
the probability matrix MD is a floating-point number in the
range of [0, 1], which is not supported in P4. To resolve this
problem, we scale the values in MD to the range of [0, 255]
and round down to integers, which can be assigned to the first
8 bits of the P4-compliant data type bit<32>.

Analysis of accuracy loss: The numerical space after scaling
and rounding has 256 distinct values. The accuracy loss of
mapping the original numerical space (real number between
0 and 1, suppose uniformly distributed) to this space can be
approximated by (1−0)/256 = 3.906×10−3, which is trivial
compared to the original numerical space.

action set_meta_prob(bit<32> prob_1, ...) {
meta.prob_1 = prob_1;
...

}
table packet_size_to_prob
{

key = {meta.dir_size: exact;}
actions = {

set_meta_prob;
}

}

Listing 2. Sample P4 code of probability table.

Stateful Update Table (Listing 3). A feature vector is
obtained by observing and aggregating the packets within a
time window. However, in P4 switch ASICs, the parsed header
and metadata inside a packet are immediately re-instantiated
when the packet is sent out of the switch and cannot be
reaccessed. To deal with it, one approach is to store the parsed
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header and metadata for every packet, which is obviously
resource-consuming. Hence, we realize an approach to the
incremental construction of feature vectors using P4 registers
that support stateful storage. In line 1 of the sample code, a 3D
register array is declared. It can maintain an N -dimensional
feature vector for each of IP_SIZE IP addresses at most.
The action of the table is to add each of the N neighboring
probabilities, obtained by the previous table and stored in the
metadata, to the corresponding positions of registers, and store
the updated feature vector in the metadata. Once a window
Tw is timed out, which can be identified by the timestamp
metadata tstamp, the last packet carries the feature vector
of this window in the metadata v_x and sets the metadata
timeout to 1. This timeout sign will trigger the inference
table for the final result of device identification.

A register may encounter overflow with the accumulation
of metadata before being emptied at the end of a time window.
Given that prob_x occupies 8 bits, in an extreme case that all
packets are from one IP address, a 32-bit register can support
the accumulation of at least 232/28 = 224 ≈ 16 million
packets without overflow. According to the statistics [45], the
average packet rate in a backbone network is about 600 Kpps.
It means that a register is guaranteed to be safe even if the
time window is set to tens of seconds.
Register<bit<32>, bit<N>>(IP_SIZE) reg1;
RegisterAction<bit<32>, bit<N>, bit<32>>(reg1)
reg1_prob_update = {

void apply(inout bit<32> reg_data, out bit<32>
rtn) {

reg_data = reg_data + meta.prob_1;
rtn = reg_data;

}
};
action action_update_register1() {

meta.v_1 = reg1_prob_update.execute(0);
}
table stateful_update_1 {

actions = {
action_update_register1;

}
}

Listing 3. Sample P4 code of stateful update table.

Inference Table. A sample of the inference code is shown
in Listing 4. This table implements the final model, i.e., the
decision tree, for device identification. For a decision tree
trained on the control plane, we write a script that extracts
each path from the root to a leaf node as a decision rule, in
which the label on the leaf can be determined by the range
of certain features. Thus, we design the inference table on the
data plane using the P4 range match for each dimension of
feature vectors and using the P4 exact match for the timeout
sign. We also use the pruning technique to empirically set the
maximum number of leaf nodes to 500, which guarantees that
the rules fit in a single stage and also prevents overfitting. The
inference result is stored in the metadata and can be used as
prior knowledge by subsequent actions, such as redirecting,
throttling or filtering the traffic from the high-risk devices.
action set_label(bit<8> label) {

meta.label = label
}
table node {

key = {

meta.timeout: exact;
meta.v_1: range;
meta.v_2: range;
...
meta.v_N: range;

}
actions = {set_label;}

}

Listing 4. Sample P4 code of inference table.

VII. EVALUATION

We evaluate DeviceRadar by answering the following ques-
tions:
1) Can DeviceRadar accurately identify target devices within
traffic that middleboxes have modified? (Section VII-C)
2) Can DeviceRadar achieve real-time processing and high
throughput in high-speed networks? (Section VII-D)
3) Is there any use case to highlight the advantage of DeviceR-
adar as a part of a defense system? (Section VII-E)

A. Implementation and Testbed

We prototype the complete framework for evaluation. The
control plane components are mainly implemented by Python
3.6 with over 500 lines of code, and the data plane components
are implemented by P416 with over 1300 lines of code.

Control Plane. The controller is a general computing server
with two CPUs (Intel(R) Xeon(R) Gold 5117, 28 cores), two
GPUs (NVIDIA GeForce RTX 2080 SUPER GPUs, 8GB),
128GB memory and Ubuntu 18.04.1 (Linux 5.4.0-80-generic).
The packet embedding is implemented by PyTorch 1.10.1, and
the decision tree is implemented by scikit-learn 0.24.1. The
server is installed with Intel P4 Studio to control the switch.

Data Plane. We use a Wedge100BF-65X data center switch
with a programmable Tofino programmable switch ASIC [37],
supporting 4 × 10 GbE switching via breakout cables. To
evaluate the processing speed and throughput of DeviceRadar,
we employ a commercial network tester (Keysight XGS12)
to generate high-speed traffic at a given rate. This setting
simulates the realistic switching rates in an ISP network.

IoT Testbed. We configure a real-world IoT testbed for
traffic collection, including 14 types of off-the-shelf devices
that cover most mainstream IoT manufacturers in China (e.g.,
Huawei, Xiaomi, Skyworth) and popular types of devices (e.g.,
camera, plug, sound box). The devices are placed in an open
laboratory where staff (usually 4∼6 people) are free to use the
devices2. To collect the traffic that can be actually seen by ISPs
(i.e., traffic modified by middleboxes), we use an enterprise
router to function as middleboxes like NAT and VPN, and
employ a personal computer connected to the router as the
traffic collector. Specifically, we use NAPT and OpenVPN in
our evaluation. More information about the IoT devices and
the testbed is available in the Appendix.

2Staff were informed about the experiment; we only capture traffic data but
do not save any privacy-related data, such as video recordings.
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B. Experimental Setup

Baselines. To measure the improvement of DeviceRadar,
we establish three types of methods as baselines:
1) Signature-based method: We use the state-of-the-art ap-
proach, PingPong [14], that considers NAT and VPN scenar-
ios. It extracts the predicted sizes of TCP packet pairs (i.e.,
device to cloud and cloud to device) as signatures to detect
IoT devices. Some other approaches inherently not for online
and real-time use (e.g., based on DNS queries) are excluded.
2) ML-based method: For those using traffic statistics, we
utilize DarkSide [33] that calculates 16 statistics for packet
sizes and inter-arrival time in a window of 180 packets, and
uses a Random Forest classifier for device identification. For
those using header fields, we employ DeNAT [26], which
parses 9 header fields by NetFlow such as network portion of
IP, port, protocol, timestamp, TCP flag and ToS. The LGBM
algorithm is selected for the best accuracy in its evaluation.
3) DL-based method: We use HomeMole [25], a state-of-the-
art IoT device identification approach from the view of ISPs.
It leverages a deep learning model of bidirectional LSTM to
learn the temporal relations in every 100 packets. It claims to
be effective in complex networks including NATs and VPNs.

All the baseline methods are reproduced according to their
published paper or released code, except for PingPong, which
has a small modification. Given that PingPong is to identify
an IoT event (e.g., light bulb turning ON/OFF) when the
event occurs, and both our dataset and public datasets do not
precisely record the time of the events, we use a sliding time
window of 10 seconds to split the consecutive packets into
sequences as traffic samples for device identification.

Datasets. We use four IoT traffic datasets and one back-
ground traffic dataset in total.

Self-built IoT dataset: Collected by our own IoT testbed
with 14 distinct devices. Specifically, it is composed of three
10-day traffic datasets, collected in March, June and September
in 2021, each of which contains about 10 GB PCAP data. In
the rest of the paper, “Self-built” refers to the dataset of March,
and “March”/“June”/“September” indicates the three datasets
in specific experiments.

We further use three public IoT traffic datasets as bench-
marks. Their devices are purchased and placed in the U.S.,
U.K. and Australia, respectively. These datasets supplement
the IoT manufacturers and cloud providers of IoT devices in
different countries to improve the generality of the experi-
ments. Note that some of the devices are not used in our ex-
periments either because their traffic data are somehow empty
or contain very few packets or we find they are so frequently
disconnected that the packets for device initialization, such as
DHCP, DNS and NTP, dominate their traffic. To summarize,
the public datasets are as follows:
1) NEU [46]: Collected by Northeastern University (U.S.),
containing 1.8 GB PCAP files of traffic from 26 devices
collected in 3 days.
2) ICL [46]: Jointly collected by Imperial College London
(U.K.) and NEU, containing 488 MB PCAP files of traffic
from 22 devices collected in 3 days.

3) UNSW [47]: Collected by the University of New South
Wales (Australia), containing 2.7 GB of PCAP files of traffic
from 15 devices collected in 10 days.

As a result, our experiments have covered 77 IoT devices
from 4 regions in total, including cameras, speakers, hubs,
plugs, bulbs, thermostats, and even microwaves and fridges.
The full list of devices is available in the Appendix.

To reflect the diversity of real-world traffic for ISPs, we
add a public dataset as the background traffic [13], which is
collected by the MAWI Working Group at the transit link of
WIDE backbone to the upstream ISP. The WIDE project offers
a series of 15-minute real-world traces in a continuous period
of time, and each of them occupies 3.35 GB to 17.07 GB
of PCAP files. The average rate ranges from 175.76 Mbps to
1099.08 Mbps at different time. We use the dataset of April in
2022 that demonstrates an up-to-date view of networks. The
statistics of packet size distribution and protocol breakdown
are illustrated in Fig. 5, qualifying the diversity of the traffic.
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Fig. 5. Real-world ISP background traffic statistics.

Trace Filter and Mixture. For IoT traffic datasets, we filter
the traffic that an ISP will not see, including DHCP, ARP,
DNS resolved by local servers, local broadcasting traffic like
SSDP, and the traffic between devices in the same LAN. For
background traffic, we retain all the packets.

An issue in some of the trace mixture settings (e.g., in [5])
is that, though the IoT traffic of various devices is fused by
a middlebox (e.g., with a uniform source IP by NAT), the
background traffic is not well mixed and can be easily stripped
out by its original network artifacts, such as totally different IP
addresses. It can be interpreted as a situation where only IoT
traffic goes through a middlebox but is not aggregated with
other background traffic by the next-hop device, which can
also be a middlebox. Without loss of generality, we consider a
more challenging setting by assuming all traffic from a specific
link is modified by a middlebox. We replay both the IoT traffic
and background traffic simultaneously through the middlebox
in our testbed (by NAT or VPN) and use the modified mixed
traffic for the subsequent experiments.

Packet Labelling. We refer to the method in [25] to obtain
the ground truth labels of the modified packets after the replay
(i.e., which device it belongs to). We simultaneously collect
the traffic before and after the middlebox, and label a modified
packet by finding another packet before the middlebox that
satisfies three conditions: 1) they have the same direction;
2) the timestamp difference of two packets is less than 0.02
seconds; and 3) in the VPN scenario, the length of the packet
before the middlebox is slightly smaller than the one after
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the middlebox due to encryption. We manually check 1% of
random samples of the packets labeled by this method and the
correctness rate is over 98%.

Data Splitting and Labelling. We follow the data split-
ting strategy of each method to generate data samples (i.e.,
feature vectors) for training and testing, including host-level
packet window for DarkSide, flow-level packet window for
HomeMole, Netflow records for DeNAT, and time window
for PingPong and DeviceRadar. We empirically set the time
window of DeviceRadar to 1 second and discuss its impact
later in Section VII-C. A data sample is labeled by a target
device if it contains at least one packet of the device (except
for HomeMole that labels every packet in a window, as its
paper describes), or labeled as negative if it only contains
background traffic. Due to traffic fusion by middleboxes, a
data sample is likely to contain more than one target device.
The entire data samples are randomly separated by a ratio of
4:3:3 for training, validation and testing.

Metrics. Due to the imbalance of the mixed dataset, to
express the accuracy of identification, we use 1) precision,
i.e., the number of true positives divided by the number of
predicted positives; and 2) recall, i.e., the number of true
positives divided by the number of real positives. Given the
vastly larger number of non-target devices in ISP networks, we
also measure the false positive rate (FPR) to explore the impact
of the base-rate fallacy [48]. For runtime performance, we
measure the processing time, throughput and runtime resource
consumption of our framework.

C. Identification Accuracy

The result of device identification accuracy is shown in
Fig. 6, which illustrates the average metric value and the
standard error in the four datasets.

In the NAT scenario, we find that DeviceRadar achieves
remarkable average precision and recall over 90% in all the
datasets. Among the baselines, approaches like DeNAT and
HomeMole also obtain good accuracy as they are specifically
designed for the NAT scenario. Nonetheless, they use many
more features than DeviceRadar, which can be unavailable
in other middlebox scenarios like VPN. DarkSide shows the
lowest accuracy, implying that the traffic statistics can be di-
luted by the high-speed background traffic in ISP networks and
become unreliable for device identification. As for PingPong,
though effective in identifying some of the devices, it shows a
large fluctuation of accuracy across devices, mainly because it
can only identify TCP-based devices but cannot identify purely
UDP-based devices (e.g., an outlet in our testbed). In contrast,
DeviceRadar exhibits the best stability of identification by the
lowest standard errors in all the datasets.

In the VPN scenario, DeviceRadar achieves the highest
precisions and the highest recalls in all the datasets with even
greater advantage over baseline methods. Compared to the
effectiveness in the NAT scenario, DeNAT and HomeMole
suffer from a degradation of over 60% in the metrics. This is
due to the unavailability of many useful features in the VPN
scenario (e.g., addresses used by DeNAT, port numbers used
by HomeMole). In contrast, approaches like DeviceRadar and

PingPong show almost no decline in accuracy as they only use
the packet size and direction as features. In summary, we show
that DeviceRadar can achieve higher and more stable accuracy
of device identification than other methods when dealing with
modified traffic by middleboxes like NAT and VPN.

We evaluate the influence of different base rates, i.e., the
ratio of IoT traffic to background traffic, which can vary among
links in ISP networks, on the metrics of precision, recall and
FPR. As shown in Fig. 7, all three metrics exhibit no signifi-
cant changes with the increase of the base rate. Specifically, the
FPR of DeviceRadar remains at a low level of 0.1%, meaning
that DeviceRadar has a low probability of misidentifying non-
IoT traffic as IoT traffic of target vulnerable devices. It shows
the good generality of DeviceRadar that can perform well at
different links and networks of ISPs.

We are also curious about the effectiveness when the target
devices are in the active state where specific functions are
manually triggered via IoT apps. Based on the way of being
activated, we categorize IoT devices into toggle devices (e.g.,
plugs-on/off) and stream devices (e.g., cameras-watch). We
write a script to continuously trigger certain functions of the
devices in our testbed and collect the traffic mixed with the
background traffic (details are described in the Appendix).
In Fig. 8, we find that DeviceRadar retains good accuracy
in both the device states, though the recall slightly drops in
the active state, especially for stream devices. It is because
stream devices typically generate a large number of packets
that may not be key packets but are similar to the packets of
large sizes in the background traffic (e.g., over 1000 bytes).
Nonetheless, continuously using IoT apps is infrequent in real
use, as most of the current IoT devices do not heavily rely on
manual interactions but stay in a stable state most of the time.

We believe the packet embedding is an important reason
behind the high accuracy of DeviceRadar. To explore its
effectiveness, we calculate the average cosine similarity be-
tween the packet embedding vectors from the same device
and other devices. Fig. 9 illustrates the matrix of packet
embedding similarity between devices in each of the four
datasets. We observe that the values on the diagonal, i.e.,
the packet embedding similarity within the same device is
the largest for all the datasets and columns. This means that
our embeddings effectively predict the neighboring packets of
the same device. In addition, we find that different devices of
the same manufacturers show slightly higher similarities than
devices of different manufacturers but are still distinguishable,
such as device 3 (TPLink-camera) and device 6 (TPLink-plug)
in UNSW, device 3 (MiAI-soundbox) and device 11 (Xiaomi-
plug) in our testbed. It is because they share some of the
general services among the devices of a brand, such as device
access to the cloud (e.g., devs.tplinkcloud.com:443). Despite
this, different types of devices have many other bursts of traffic
for their specific functions (e.g., streaming of IP cameras),
making our packet embedding still effective for distinguishing
devices of the same brand.

We also conduct a sensitivity experiment on an impor-
tant hyperparameter of DeviceRadar: the time window size.
Typically, an overly short window cannot capture sufficient
information, while an overly long window is not suitable for
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Fig. 6. Device identification accuracy comparison (bar – average metric value; red line – standard error).
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real-time use and also contains too many background packets
that may dilute the traffic of the target devices. The results
are shown in Fig. 10. The precision decreases after 1 second
except for on the dataset of UNSW; the recall grows or remains
nearly unchanged with the increase of the time window, except
for on the dataset of NEU in which the recall drops after 1
second. Overall, DeviceRadar can obtain a relatively better
accuracy when the time window is set to 1 second. The result
also suggests that DeviceRadar can conduct an inference on
the existence of target devices for every second, which lays a
foundation for realizing real-time device identification.

Finally, to assess identification differences across device
categories, we employ a more comprehensive benchmark [49],
featuring 45 smart home devices. It includes 10 cameras, 7
TVs/media devices, 7 speakers, 6 hubs, 2 home routers, 2
appliances, and 11 home automation devices such as plugs,
smoke alarms, and garage openers. We utilize the same
preprocessing steps as in prior experiments and include the
baseline PingPong for comparison. Table V presents the recall,
precision, and FPR across these categories. DeviceRadar ex-
hibits improved recall for most categories and better precision
and FPR across all categories, except for TVs and speakers.
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Fig. 10. Sensitivity experiment on time window size.

The results of the baseline with these categories are due to
its treatment of their frequent streaming packets of MTU size
as signatures, which are also common in background traffic
(see Fig. 5), leading to numerous false positives. DeviceRadar,
relying on the proposed key packets, maintains much higher
precision and lower FPR, highlighting its better usability.

D. Runtime Performance

To test the runtime performance of DeviceRadar, we use the
network tester to send our mixed traffic at rates of 1 Gbps,
10 Gbps and 40 Gbps. These rates simulate the real-world
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TABLE V
IDENTIFICATION ACCURACY ACROSS VARIOUS CATEGORIES.

Category PingPong DeviceRadar
Rec Prec FPR Rec Prec FPR

Automation 0.488 0.541 0.266 0.851 0.925 0.0070
Camera 0.629 0.231 0.726 0.883 0.880 0.011

TV/media 0.960 0.152 0.767 0.586 0.757 0.0038
Speaker 0.987 0.242 0.705 0.866 0.872 0.0055

Hub 0.843 0.335 0.595 0.888 0.945 0.0013
Appliance 0.0021 0.604 0.0002 0.750 0.800 0.0001

Router 0.919 0.509 0.378 0.952 0.918 0.0061
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Fig. 11. Processing latency and throughput of DeviceRadar.

traffic speeds on an ISP edge switch, an ISP aggregation/core
switch and a high-speed ISP core switch under the stress of
line rate, respectively. We illustrate the results in Fig. 11. We
observe that, when the traffic rate is set to 1 Gbps and 10 Gbps,
DeviceRadar is able to process packets at a very high speed
of under 2 microseconds (1 microsecond = 1× 10−6 second).
When the traffic rate is set to the line speed (40 Gbps), the
processing latency increases to 380 microseconds on average
(which is still suitable for line speed). Compared to the time
window for one inference (1 second), this processing latency
is trivial and is qualified for real-time device fingerprinting.
As for throughput, thanks to the high performance of the pro-
grammable switch, DeviceRadar can achieve nearly no packet
loss and realize high throughput no matter how the traffic rate
varies. These results show that, by managing to deploy the
device fingerprinting components on the programmable data
plane, DeviceRadar achieves real-time and high-throughput
device identification in ISP networks.

To measure the runtime overhead of the baselines, we adopt
the SDN deployment shown in Fig. 1, where the SDN switch
is implemented by a server running Open vSwitch (OvS) and
the controller runs the baseline approaches, and they are placed
within the same local network. As these approaches are not
specific for online use, to simulate the online testing, we use
the OvS server to report the extracted feature vectors to the
controller one by one; on the controller, the testing batch size
of the baseline approaches is set to 1. The ML-based method
DarkSide is measured on a CPU, and the DL-based method
HomeMole is measured on both a CPU and a GPU.

Table VI shows the window size for one inference (i.e.,
one time of device identification), communication latency
and inference time. First, because of the fully in-network
implementation, DeviceRadar completely eliminates the com-
munication latency, which highlights its advantage for online
deployment. Further, as the inference process of DeviceRadar
is directly embedded in the pipeline of packet processing
(i.e., by the inference table introduced in Section VI-B), its

TABLE VI
COMPARISON OF PROCESSING TIME.

Attribute DarkSide
(ML-based)

HomeMole
(DL-based) DeviceRadar

Running
device CPU CPU GPU Switch

ASIC

Window
size

0.3 ms
(180 pkts)

0.167 ms
(100 pkts)

0.167 ms
(100 pkts) 1 sec

Comm.
latency (ms) 3.81 6.53 6.53 0.0

Inference
time (ms) 10.2 45.3 0.152 1.97 ×10−3

Online
practical? No No No Yes

inference time is equal to the packet processing latency, which
is in microseconds. It is far less than the inference time of the
baselines, which is in milliseconds even with the acceleration
of GPUs. As for the window size, DeviceRadar can make an
inference to identify target devices for every one second. Com-
pared to some existing approaches discussed in Section II-B
that require hours of analysis for one inference (e.g., DNS-
based approaches), the identification result of DeviceRadar
is much more timely and thus more valuable to subsequent
prompt responses. Other baselines may use a spatial window
of packets. For example, the window size of DarkSide is 180
packets. Given the rate in the background traffic of 600 Kpps
on average, it needs to have the ability to make an inference
every 0.3 milliseconds. As the window is even shorter than
the communication latency or inference time, it suggests that
the inference process will never catch up with the online
traffic. In summary, DeviceRadar significantly outperforms
other methods in terms of online overhead, showing its great
practicality for online device fingerprinting in ISPs.

The resource consumption on the data plane (or runtime
resource consumption) is measured by the computing re-
sources, including the exact match crossbar (eMatch xBar,
used by match processes), VLIW (Very Long Instruction
Word, used by action processes), and memory resources in-
cluding logical table ID, map RAM and SRAM. We compare
the resource consumption of basic switching functions with
the combination of DeviceRadar and these functions. The P4
program for basic switching functions derived from Tofino
supports L2 switching, IPv4 switching, IPv6 switching, VLAN
port mapping, and Segment Routing over IPv6 (SRv6). The
results, depicted in Fig. 12, reveal that the resource overhead
introduced by DeviceRadar is relatively modest. The overall
resource usage remains within acceptable limits, supporting
both switching functions and DeviceRadar. This demonstrates
the feasibility of deploying DeviceRadar on the data plane.

E. Use Case

Given the high accuracy, real-time detection and high
throughput, DeviceRadar provides timely knowledge about the
existence of certain IoT devices in the network, which can be
conveniently integrated with other network tasks. We highlight
this by presenting a use case – the integration with the
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mitigation of DDoS attacks in IoT. There are existing works
on the efficient detection of malicious traffic including IoT
botnets and DDoS attacks, of which the typical defense logic
is to take actions (e.g., throttling, blocking) after detecting the
ongoing attack traffic. In contrast, DeviceRadar makes a new
solution possible, which is to timely identify the vulnerable
devices before they are compromised and being utilized to
launch DDoS attacks. These vulnerable devices can be found
on well-established resources like CVE [4] which describe
their exploits and behaviors, so that we can actively prevent
them immediately when they are identified.

To demonstrate this use case, we use a Raspberry Pi to
behave as a bulb that periodically synchronizes its property
with a cloud, which can be implemented by the virtual device
of AWS IoT Greengrass [50]. Its normal behavior is to send a
packet of 107 bytes out and receive a packet of 40 bytes per
second (rate: 1.15 Kbps on average). We assume it is known to
be vulnerable to IoT malware like Mirai that exploits bots to
launch DDoS attacks, which should be paid attention to. First,
we let DeviceRadar treat this “bulb” as a target device. Once
the device is identified, a rule is deployed for protection in
advance: limiting the rate of this device to a very low level of
10 Kbps. Then we simulate a quick attack scenario, in which
after three seconds of connecting to the network, the “bulb”
gets compromised and starts to send flooding traffic at 20,000
packets per second. For comparison, we employ Kitsune [51],
a state-of-the-art lightweight intrusion detection system. Once
the attack traffic is detected, Kitsune uses the same rule of
traffic throttling for mitigation.

As shown in Fig. 13, DeviceRadar can identify the device
in real-time (using about 1 second) so that the mitigation
policy is timely pre-set before the attack. In contrast, Kitsune
has to wait for the attack reaching to a significant level that
can be detected (using about 1 second) and then process the
inference (using 0.54 seconds). As such, there are almost 2
seconds in which the attack reaches its peak of 4.27 Mbps.
Do not underestimate its impact: if we consider a large-scale
botnet like Mirai that controls over 145,000 devices to flood
one victim [3], such a DDoS attack can reach a peak of over
604.63 Gbps for seconds, sufficiently resulting in disastrous
consequences. It shows that a real-time device fingerprinting
method like DeviceRadar is greatly helpful to the promotion
of the integrated defense system.

We also test the feasibility of deploying such massive per-
device defense rules for identified vulnerable devices in terms
of resource costs. Among the 48 stages of a Tofino switch,
we leave only one stage for applying per-IP rules. Our result
shows that the SRAM resources of a stage can support the
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installation of up to 360,000 per-IP rules. In comparison, the
number of source IP addresses in our WIDE backbone trace is
86,255, suggesting that the resource of one stage is adequate to
maintain over 4 rules even for each host at a vantage point in
an ISP network. Therefore, it is practical to deploy sufficient
defense rules with a trivial memory overhead.

F. Discussion

Scalability. Another constraint of P4 switches is the limited
number of match-action stages. For example, a Tofino switch
supports a maximum of 48 stages by concatenating 4 pipelines
of 12 stages each. Since DeviceRadar generates match-action
tables per target device type, the number of device types to
be identified in our implementation is limited to 32 on a
switch. For better scalability, we can use a technique called
recirculation that re-sends the egress packet to the ingress port
to utilize more match-action stages. As Fig. 14 shows, it can
linearly increase the supported number of device types up to
160. Though the processing latency also increases, it is still
at a level of microseconds, which is sufficient for online use.
Besides, an ISP typically only needs to focus on a small set of
device types that 1) are found vulnerable to prevalent attacks
and 2) have a large use percentage. For example, Torabi et
al. [52] find that no more than 4 IoT device types account for
99.4% of all of the compromised consumer IoT devices.

Stability to IoT updates. Due to possible updates of
firmware, software and servers of IoT, the efficacy of device
fingerprinting may suffer from the issue of concept drift and
becomes unstable over time. Thus, we use the datasets of
March, June and September to assess the impact. During this
period, we observed that most of the devices have received at
least one update. The datasets are mixed with the background
traffic to evaluate the original model constructed in March.
Fig. 15 illustrates the result. We see that the decline in
accuracy is trivial even after six months. In view of such a
long period, DeviceRadar has good stability over time.

Newly added devices. False alarms may occur when unseen
devices, such as brand-new products, join a network and
are misidentified by models. To test this, we perform an
experiment assessing this scenario. We remove one device
from the training dataset to simulate an unseen device, and
train models for the remaining devices as targets. We then
test the model on a test set including the unseen device, and
evaluate the false alarms on the removed device for each
model. The average false alarm rate is 0.0201 ± 0.0071. While
this rate is low, it indicates the potential for false positives
in such situations, suggesting a limitation of our approach.
To address this concern, it is necessary to perform periodic
retraining by incorporating new devices.
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Packet padding. As DeviceRadar handles middlebox sce-
narios by only using packet sizes and directions as features, it
is naturally susceptible to packet padding techniques such as
padding to MTU [53]. However, we do not observe any IoT
devices in any of the datasets using such padding techniques,
possibly because the introduced overhead departs from the
general design principle of IoT (that prioritizes lightweight
and stable connections). Besides, packet padding can also be
implemented on home gateways by users, typically because
the users do not trust the ISPs and are reluctant to release any
of their device information [10]. As a security framework for
ISPs, DeviceRadar respects their willingness but meanwhile
cannot provide any related services, such as notifying the
users of high-risk devices in their residences. For IoT botnet
adversaries, given that one of their main purposes is to launch
high-speed DDoS attacks, the benefit of using the padding
techniques will not outweight the loss of attack effectiveness
due to considerable network delay.

Potential adversaries. Our approach only uses limited
available features in the middlebox scenarios. Thus, adver-
saries may command their IoT bots to mimic untargeted
devices (e.g., modifying packet sizes) to avoid detection. How-
ever, we argue that such adversaries may encounter difficulties
in practice. As our framework can identify target devices
in real-time and promptly deploy defense rules, adversaries
will find it difficult to compromise an IoT device using a
known vulnerability. This makes it difficult to command the
device to mimic other devices. In other cases, a vulnerable
device may have been compromised before DeviceRadar is
installed. Despite this, we emphasize that adversaries cannot
control packets sent from the IoT cloud. This feature is a key
part of our device fingerprinting, enabling us to still detect
compromised devices even if they are trying to hide their
activity. Besides, tampering with the packet sizes may harm
the integrity of the packets verified by the cloud side and affect
normal device functions. In this case, IoT users may reboot or
disconnect the devices, causing the adversaries to lose control.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes DeviceRadar, an online IoT device
fingerprinting framework for ISP networks. We realize accu-
rate device identification even when the traffic is modified by
middleboxes like NATs and VPNs, and deploy the proposed
models on a programmable switch for online use with line-
speed processing. Our evaluation reveals that DeviceRadar
achieves over 90% identification accuracy with middleboxes
for various IoT device types at a throughput of 40 Gbps, using
microsecond-level processing latency. This accounts for only
1.3% of GPU-based solutions. For future work, we plan to
evaluate DeviceRadar on more middleboxes, such Tor nodes
and other VPN protocols like L2TP. From a more practical
point of view, we wish to explore ways of porting DeviceRadar
to a multi-switch environment. One possible way is to deploy
DeviceRadar on each switch and detect IoT devices separately.
This would need an additional algorithm that monitors the
characteristics of the links and properly integrates the detection

results from multiple switches. Another solution is to deploy
one detection model in a distributed manner by splitting a
decision tree into multiple sub-trees. In this way, selecting
the best switches for deployment is an open issue, for which
we may explore service chain optimization approaches to
determine the organization of the switches.
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Supplementary Material: Appendix

I. PROOF OF CLAIM

The training objective of the packet embedding can also
be interpreted as to maximize the probability of predicting
the context for semantically similar packets. For ei, ej that
are embedding vectors of neighboring packets, ei and ej are
trained to predict similar contexts denoted by c. We use ϵ to
denote the similarity of two similar vectors and we have the
following equation:

eTi · c− eTj · c = ϵ

⇐⇒ (ei − ej) · cT = ϵ

⇐⇒ (ei − ej) · cT · c · (eTi − eTj ) = ||ϵ||2

⇐⇒ (eTi − eTj ) · (ei − ej) =
||ϵ||2

||c||2

⇐⇒ ||ei||2 + ||ej ||2 − 2eTi · ej =
||ϵ||2

||c||2

(1)

The cosine similarity between ei and ej can be calculated
by the following equation:

cosine(ei, ej) =
eTi · ej
||ei|| · ||ej ||

=
||ei||2 + ||ej ||2 − ||ϵ||2

||c||2

2||ei|| · ||ej ||
(2)

We set ϵ ← 0, which means the context of ei and ej is
sufficiently similar, and we have:

cosine(ei, ej)←
||ei||2 + ||ej ||2
2||ei|| · ||ej ||

≥ 1 (3)

Since the value of the cosine similarity is in [−1, 1], we
have cosine(ei, ej) = 1, which means their cosine similarity
is theoretically maximized.

II. TESTBED INFORMATION

We use two wireless routers as access points (AP) to
avoid the excessive connections on a single AP that may
cause disconnection. Note that these two APs do not enable
any routing or DHCP functions; they just function like L2
switches. The two APs are connected to an enterprise router
that assigns IP addresses to each connected device and also
supports middlebox functions like NAT and VPN. We mirror
the traffic of the two ports connected with the two APs to
another port connected with a computer, which runs a tcpdump
script to capture the traffic. External hard drives are used for
the storage of collected traffic.

For the idle/active experiment, to continuously activate the
device functions, we employ an Android emulator installed
with the IoT apps of the devices in the testbed to trigger
their functions. To automate this process, we use the Android
Debug Bridge (ADB) that allows to monitor and control of
the emulator. With this tool, we manually analyze the UI
of the apps and record the operations to trigger a function.

(a) Off-the-shelf IoT devices

(b) Access point, collector and middlebox

Fig. 1. IoT testbed photos.

For example, tapping the app of a camera at certain pixel
coordinates will start the live streaming. Then we can write a
Bash script to for each app to automatically trigger its recorded
functions. Listing 1 gives an example of activating the live
streaming of a Philips camera. We make the script run for 10
days for traffic collection.

The controlling scripts and part of our IoT traces in PCAP
files have been released on https://github.com/Ruoyu-Li/
IoT traffic dataset. For the complete dataset, please send
an email to huangyc20@mails.tsinghua.edu.cn/liry19@mails.
tsinghua.edu.cn for inquiry.
# open app by tapping at pixel coordinates
((x=2d7));((y=554))
adb shell input tap x y
# wait for 20 seconds to guarantee app is open
adb shell sleep 20
# stream live for 5 minutes
((x=21c));((y=2bc))
adb shell input tap x y
adb shell sleep 300
# press home button and return to main page
adb shell input keyevent 3
adb shell sleep 1
# kill the app in the background
adb shell am force-stop com.philips.ipcamera

Listing 1. Sample Bash script to activate the live streaming of a Philips
camera.
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III. IOT DATASET STATISTICS

TABLE I
IOT DATASET STATISTICS (SELF-BUILT).

No. Device Num. of packets Num. of flows

0 xiaomi-camera 1362212 77408
1 aqara-gateway 148056 2
2 skyworth-camera 91284 422
3 miai-soundbox 1371918 136119
4 honyar-outlet 81450 1512
5 hichip-camera 33867 2025
6 ihorn-gateway 65436 154
7 mercury-wirecamera 363547 49435
8 360-doorbell 466782 354
9 ezviz-camera 256319 16798

10 philips-camera 414182 1632
11 xiaomi-plug 92436 157
12 tmall-genie 267424 2240
13 gree-gateway 22145 7

TABLE II
IOT DATASET STATISTICS (UNSW).

No. Device Num. of packets Num. of flows

0 Smart-Things 391901 4904
1 Amazon-Echo 893171 58751
2 Netatmo-Welcome 402668 12537
3 TP-Link-camera 258557 2567
4 Samsung-SmartCam 258655 21555
5 Withings-Baby-Monitor 513013 9431
6 TP-Link-plug 22945 1071
7 NEST-smoke-alarm 3221 149
8 Netatmo-weather-station 38537 4024
9 Withings-scale 4238 3

10 Blipcare-Blood-Pressure-meter 124 6
11 Withings-sleep-sensor 273948 5738
12 Triby-Speaker 102369 330
13 PIX-STAR-Photo-frame 35409 2231
14 HP-Printer 41785 90

TABLE III
IOT DATASET STATISTICS (ICL).

No. Device Num. of packets Num. of flows

0 samsungtv-wired 91199 10220
1 smartthings-hub 42244 7476
2 google-home 55211 12237
3 wansview-cam-wired 230827 98452
4 blink-security-hub 20122 226
5 netatmo-weather-station 3864 330
6 wemo-plug 1392 8
7 bosiwo-camera-wifi 2175 34
8 philips-hub 9209 572
9 lightify-hub 16612 10
10 tplink-bulb 5887 378
11 sengled-hub 11568 336
12 sousvide 494631 60
13 tplink-plug 1345 114
14 charger-camera 2854 559
15 xiaomi-cam 146335 30
16 ring-doorbell 3994 42
17 magichome-strip 33725 9
18 smarter-coffee-mach 3992 6
19 honeywell-thermostat 3026 2
20 nest-tstat 29777 1784

TABLE IV
IOT DATASET STATISTICS (NEU).

No. Device Num. of packets Num. of flows

0 tplink-bulb 6155 67
1 lightify-hub 3514 8
2 google-home-mini 57577 12764
3 yi-camera 23522 492
4 appletv 8418 530
5 smartthings-hub 57135 7772
6 wansview-cam-wired 240919 98943
7 magichome-strip 4505 18
8 amazon-echodot 38702 6117
9 blink-security-hub 18536 405
10 nest-tstat 11289 586
11 wemo-plug 10002 162
12 amcrest-cam-wired 22358 4663
13 behmor-brewer 31091 10
14 xiaomi-bulb 10229 14
15 amazon-cloudcam 611172 2173
16 samsung-fridge 49254 10407
17 smarter-ikettle 5266 4
18 insteon-hub 47539 1020
19 cortana-invoke 99935 2057
20 lefun-cam-wired 6976 75
21 microseven-camera 10392 114
22 ge-microwave 37997 156
23 sengled-hub 11076 11
24 wink-hub 17022 230
25 zmodo-doorbell 10379 52


