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Abstract—This paper aims to provide an introduction to
evolutionary algorithms and their three main components, i.e.,
the representation of solutions and their modification through
mutation and crossover operators. Given its introductory nature,
it is specifically designed for newcomers to this exciting research
area. We would like to note that this short paper just represents
a summary of the full paper found online. The latter provides
interactive components for a hands-on exploration of the covered
material and can be found under: https://aiexplained.github.io/

I. INTRODUCTION

Evolutionary algorithms (EA) can be used to solve plenty
of tasks using the power of evolutionary optimization. One of
the key tasks in the algorithm design process is the choice of
representation for a candidate solution. While the phenotype
describes a solution that is directly applicable to the task, the
genotype is its computational counter-part which is used during
the optimization. Given the task of optimizing a car for speed,
the phenotype is represented by the actual car on the road,
while the genotype represents the car’s configuration, e.g. the
type of motor and the tires used. During optimization, the
computer will modify a candidate’s genotype, whereas the
phenotype will be built according to the genotype’s description
for evaluation.

In this paper, we are going to review some of the most
prominent choices for mutation and crossover of matrix and
vector-based genomes. Those will be studied in the context of
the 8-Queens Puzzle to be introduced in Section II, for which
we will discuss several types of representations in Section III.
Furthermore, we will analyze how the choice of representation
guides the development of respective mutation and crossover
operators in Section IV and Section V.

II. 8-QUEEN PUZZLE

The mapping between genotype and phenotype plays an
important part in the algorithm design process. In this article,
we will present EA design concepts based on a discussion of
the 8-Queens Puzzle. This seemingly simple Chess problem
requires you to position eight queens on an 8× 8 chessboard,
so that no two queens threaten each other. Thus, no two queens
share the same row, column, or diagonal. Figure 1 shows an
exemplary solution to the puzzle. In total, there are 92 unique
solutions to the puzzle, coming down to 12 when removing
rotations and reflections.

Fig. 1. An exemplary solution of the 8-Queens Puzzle

III. REPRESENTATION

To allow for an efficient search and optimization of solutions,
we first need to define how a solution candidate should be
encoded. We have chosen the 8-Queens puzzle because it
allows for multiple simple but intuitive types of representation.
Thinking about the basic properties of our task and its likely
solution can serve as a guideline for our design process.
Therefore, we first summarize the underlying requirements:

1) a chessboard offers 64 fields arranged in an 8× 8 grid.
2) the solution consists of exactly 8 queens.
3) each row can include only one queen, otherwise, they

would threaten each other.
4) each column can include only one queen; otherwise, they

would threaten each other.
5) each diagonal can include only one queen; otherwise,

they would threaten each other.
We can create different representations of solutions by taking

a varying set of requirements into account. Just considering
the first one, we can encode a chessboard as an 8× 8 binary
matrix in which a 0 encodes an empty field and a 1 the position
of a queen. Such a simple representation would allow us to
encode all valid solutions, but also many invalid candidates of
which we already know cannot be valid due to requirements
2-5. More specifically, it allows placing more or less than 8
queens on a board. Since we already know that we need to
position exactly 8 queens, we can simply constrain the binary
matrix to include exactly 8 queens.

So far, we have incorporated the first two requirements in
our encoding. We can do even better by adding the constraints
on rows, columns, and diagonals to it. Let’s consider an even



Fig. 2. Comparing representations of the 8-Queens Puzzle.

more condensed representation using the third requirement.
Since each row can contain only a single queen, we can use a
vector of size 8 to encode the column each queen is placed
at. The same can be done by using forth the requirement, by
representing a solution in terms of a vector in which each cell
encodes the row of the respective queen. Hence, we will call
the former solution the row vector representation and the latter
the column vector representation.

Incorporating both of the former requirements yields a
permutation vector in which the column vector representation
is constrained to include every row number only once. While
each permutation vector is also a valid column vector, there
can be column vectors that are not valid permutation vectors.

As we have seen above, the type of representation defines the
search space of our optimization problem. Figure 2 and Table I
summarize introduced encodings and their resulting search
space size. By including a larger number of requirements in
our representation, we can reduce the search space to a feasible
size, and therefore, speed up the optimization process.

IV. MUTATION

Mutation is an evolutionary operator that modifies a single
individual of our population. It is often used for a local
search trying to further improve an already promising solution
candidate. This is achieved by adding small changes to a
candidate solution, such that the resulting individual is slightly
different from its parent.

For binary encodings, we can use the bit (or value) mutation,
in which we randomly flip (replace) one or multiple bits (values)
of the individual. In terms of our matrix representation, this
would either introduce a new queen at the flipped position
or removing a queen from the board, respectively. Applying
this to the constrained matrix has the potential to violate the
representation’s requirements. More specifically, we need to
assure that the number of queens on the board remains constant

To achieve this, we can make use of swapping or displace-
ment mutations in which two or more elements of the encoding
are swapped. Simple forms include swapping two positions of
the board or inverting the whole sequence.

V. CROSSOVER

The crossover is an evolutionary operator that uses two or
more candidate solutions to create a new one. The original

TABLE I
SIZE OF THE SEARCH SPACE PER REPRESENTATION TYPE.

Representation Size of an Individual Size of the Search Space

Binary Matrix 8× 8 = 64 264 ≈ 1.8 · 1019
Constrained Matrix 8× 8 = 64

(64
4

)
= 4426165368

Row Vector 8 88 = 16777216
Column Vector 8 88 = 16777216
Permutation 8 8! = 40320

candidate solutions will be called parents and the resulting
individuals will be named children, respectively. Similar to
the mutation operator, a crossover needs to fit the underlying
representation of an individual.

In terms of vector and matrix-based representation, the
1-point crossover is one of the most simple to implement.
Therefore, we first choose a cut-off point along with one of
the axes of our underlying representation. Thereafter, we swap
the two ends of the parents to produce two children, which
each consist of at least one element of their parents. The same
can be done for multiple cut-off points. Instead of choosing a
cut-off point, we can define a probability for swapping some
of the parents’ elements. This makes it especially simple to
extend the crossover to multiple parents.

Once again, individuals produced by the two previously
discussed crossover types have the potential to violate con-
straints of our representation. All the crossover methods we
have seen so far can be applied to the constrained matrix and
vector-based representations. However, they are not suitable for
permutations. Specialized methods, such as the cycle crossover
can keep permutations intact.

VI. CONCLUSION

In this paper, we introduced several representations and
their respective mutation and crossover operators for solving
the 8-Queens Puzzle. We have shown how the choice of
representation impacts the size of the search space and the
choice of genetic operators. This short paper has been limited
in the breadth and depth of the discussion. A larger selection of
mutation and crossover operators and their effects on the board
can be found in the full version of the paper online. Furthermore,
introductory literature on evolutionary algorithms [1] as well
as more detailed selections of mutation [2] and crossover
operators [3] can help to better understand the EA design
process.
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