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WELL-POSEDNESS FOR A CLASS OF PSEUDO-DIFFERENTIAL
HYPERBOLIC EQUATIONS ON THE TORUS

DUVÁN CARDONA, JULIO DELGADO, AND MICHAEL RUZHANSKY

Abstract. In this paper we establish the well-posedness of the Cauchy problem
for a class of pseudo-differential hyperbolic equations on the torus. The class consid-
ered here includes a space-like fractional order Laplacians. By applying the toroidal
pseudo-differential calculus we establish regularity estimates, existence and unique-
ness in the scale of the standard Sobolev spaces on the torus.

Contents

1. Introduction 1
1.1. Outline 1
1.2. Periodic vs Euclidean models 2
1.3. State-of-the-art 3
1.4. Main result and organisation of the paper 3
2. Pseudo-differential operators on the torus 5
2.1. Scalar-valued classes on the torus 5
2.2. Matrix-valued classes on the torus 8
3. Pseudo-differential hyperbolic equations on the torus 10
References 16

1. Introduction

1.1. Outline. In this work we analyse the well-posedness for hyperbolic periodic
problems associated to positive elliptic pseudo-differential operators on the torus Tn ∼=
[0, 1)n. Although the analysis carried out here can be extended to general compact
Lie groups, here we concentrate our attention to the commutative case, namely, the
case of the torus, due to the simplified formulation of the pseudo-differential calculus
in this context, established in terms of the periodic Fourier analysis as developed in
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[26, 27]. The case of general compact Lie groups will be considered in a subsequent
work with the periodic case as a fundamental model.
To precise the notation, let P (x,D) be an elliptic positive pseudo-differential oper-

ator of order ν > 0 on the torus. In terms of the periodic pseudo-differential calculus
developed in [26, 27], to the operator P (x,D) one can associate a symbol p := p(x, ξ)
globally defined on the phase space Tn × Zn, allowing the integral representation

P (x,D)f(x) =
∑

ξ∈Zn

∫

Tn

e2πi(x−y)·ξp(x, ξ)f(y)dy, f ∈ C∞(Tn). (1.1)

We have used the notation x · ξ = x1ξ1 + · · ·+ xnξn for the standard inner product.
In this setting the ellipticity condition means that the symbol satisfies the estimate

C1|ξ|
ν ≤ |p(x, ξ)| ≤ C2|ξ|

ν, ξ ∈ Z
n, ξ 6= 0, x ∈ T

n, (1.2)

for some positive constants C1, C2 > 0. Then, with the notation above, for a given
time T > 0, our main goal is to establish the well-posedness for the following Cauchy
problem :





∂2v

∂t2
= −P (x,D)v + ω, (in the sense of D′(]0, T [×Tn))

v(0) = f,
∂v

∂t
(0) = g,

(1.3)

where f ∈ Hs(Tn), g ∈ Hs− ν
2 (Tn), and ω ∈ L2([0, T ], Hs− ν

2 (Tn)), for some s ∈ R.
We clarify the contributions of this note in Theorem 1.1 below, but first, we discuss
the main differences between the Euclidean diffusion operators and the ones in the
periodic setting. For instance, a first look at the models of the form (1.3) could give
the impression that their analysis can be carried out by the standard periodisation
techniques, however, this is not the case as we will explain in the simplest case of
the fractional Laplacian on the torus. Then, the situation changes dramatically if
one considers non-local perturbations of this operator even of lower order as well as
perturbations with variable coefficients. For the main aspects about the periodisation
of Euclidean models we refer the reader to [26, 27].

1.2. Periodic vs Euclidean models. Our setting includes the case of the fractional
Laplacian P (x,D) = (−∆)

ν
2 . Let us observe that the toroidal quantization formula in

(1.1) and the pseudo-differential calculus developed in [26, 27] will allow us to consider
the diffusion operator (−∆)

ν
2 as a pseudo-differential operator for any ν > 0. Indeed,

the functional calculus for the Laplacian on the torus implies the integral formula

(−∆)
ν
2 f(x) =

∑

ξ∈Zn

∫

Tn

e2πi(x−y)·ξ(2π)ν |ξ|νf(y)dy, f ∈ C∞(Tn). (1.4)

From this formula one can deduce the non-locality of the operator if e.g. ν /∈ 2N0.
This “global pseudo-differential representation” is not available for the fractional
Laplacian on Rn, where it is only a pseudo-diferential operator when ν is an even
integer, due to the lack of smoothness of the symbol at the origin.
One reason to emphasize about the role of the fractional Laplacian on the torus as

a crucial model in the analysis of the hyperbolic problems as in (1.3) came from the
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following fact. One may think that the analysis of non-local operators like the power
(−∆)

ν
2 can be obtained by periodisation techniques of the results for the fractional

Laplacian on Rn. However, the analysis of periodic models changes dramatically due
to the non-locality of the operators. Another obstruction came with the structure
of distributions on the torus. Indeed, observe that the class of smooth functions, as
well as the class of Lp-functions on Tn, cannot be identified with the Schwartz class
or with the Lp-spaces on Rn, respectively, even with assumptions of extensions from
the torus to the real line under the periodicity condition.
On the other hand, a more distinctive fact arises with the behavior of the singular-

ities of conormal distributions. Indeed, the kernel of the fractional Laplacian on the
Euclidean space is not an integrable function. Then, as it was pointed out in [24], its
“periodisation” in principle has just a formal meaning. It is not clear that the frac-
tional Laplacian acting on periodic functions coincides with the fractional Laplacian
on the torus as defined as a Fourier multiplier of Fourier series. We refer the reader
to Roncal and Stinga [24] for the analysis of the fractional Laplacian on the torus
and for its properties in comparison with the ones of the fractional Laplacian on the
Euclidean space.

1.3. State-of-the-art. The research in evolution equations governed by the frac-
tional Laplacian and other elliptic pseudo-differential operators on different struc-
tures has been intensive in the last decades. However the literature on the fractional
hyperbolic case is less known compared with the ones involving models of fractional
diffusion. Fractional hyperbolic equations have been treated for instance in [12] within
the framework of Weyl-Hörmander calculus. We refer the reader to Remark 1.2 for a
discussion about hyperbolic problems for pseudo-differential terms in the Euclidean
space as well as in the periodic setting. For the analysis of boundary value problems
for the Euclidean fractional Laplacian we refer to Grubb [17].
On the other hand, the wide variety of applications of the fractional diffusion

is spread throughout fluid mechanics [9], [22], mathematical finance [10], fractional
dynamics [18], [21], strange kinetics and anomalous transport, see [19],[11],[3] and
the references therein. Also, drift-diffusion equations with fractional diffusion have
intensely attracted the interest during the last 12 years starting with the works of
Caffarelli and Vasseur in [3] and their subsequent developments. In a particular
but crucial setting, the fractional Laplacian, which is the model of the operators
considered in this work, is an interesting object in its own, and on the torus it
has been studied in [24]. Several aspects of the harmonic analysis of the fractional
Laplacian on lattices also have been investigated in [7] and in [8]. Recent works on
the fractional Laplacian and its different generalizations can be found in [16], [4], [2],
[17], [14], [28] and the references therein. An accessible presentation of the fractional
Sobolev spaces and the fractional Laplacian can be found in [29].

1.4. Main result and organisation of the paper. We will apply the point of view
of the global quantisation for pseudo-differential operators on the torus as developed
in [26, 27]. In order to present our main result we will employ the following additional
notation.
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• In the periodic hyperbolic model (1.3), the symbol p := p(x, ξ) of the operator
will be considered in the Hörmander classes Sν

ρ,δ(T
n × Zn), see Section 2 for

the definition of these classes.
• The class of pseudo-differential operators Ψν

ρ,δ(T
n ×Zn) denotes the family of

pseudo-differential operators with symbols in the toroidal class Sν
ρ,δ(T

n×Zn).
We refer to this class as the toroidal/periodic (ρ, δ)-Hörmander class of order
ν.

• We will denote by Hs(Tn) the standard Sobolev space of order s ∈ R, on the
torus Tn, see Remark 2.14 for details.

Our main theorem can be stated in the following way.

Theorem 1.1. Let ν > 0, a given time T > 0, and let 0 ≤ δ < ρ ≤ 1. Let
s ∈ R, f0 ∈ Hs(Tn), f1 ∈ Hs− ν

2 (Tn) and let ω ∈ L2([0, T ], Hs− ν
2 (Tn)). Let P (x,D) ∈

Ψν
ρ,δ(T

n×Zn) be a positive elliptic pseudo-differential operator in the (ρ, δ)-Hörmander
class of order ν.
Then, there exists a unique solution u ∈ C([0, T ], Hs(Tn)) of the Cauchy problem





∂2u

∂t2
= −P (x,D)u+ w, (in the sense of D′(]0, T [×Tn))

u(0) = f0,
∂u

∂t
(0) = f1,

(1.5)

satisfying the following energy estimate

‖u(t)‖2Hs(Tn) ≤ CeCt


‖f0‖

2
Hs(Tn) + ‖f1‖

2

Hs− ν
2 (Tn)

+

t∫

0

‖w(τ)‖2
Hs− ν

2 (Tn)
dτ


 . (1.6)

Consequently, if w ∈ C∞([0, T ] × Tn) and every fi ∈ C∞(Tn) is smooth, then the
solution u belongs to the class C∞([0, T ]× Tn).

Remark 1.2. Fractional hyperbolic equations have been treated for instance in [12],
where in particular a version of Theorem 1.1 has been proved within the framework of
the Weyl-Hörmander calculus. In particular, such a result provides the well-posedness
for hyperbolic equations in the Euclidean Hörmander classes. However, in view of
the discussion above, our main Theorem 1.1 cannot be recovered from its Euclidean
analogue just by periodisation techniques, see Subsection 1.2 for details.

Remark 1.3. In order to prove the energy estimate in Theorem 1.1, the hyperbolic
problem is simplified to a vector-valued diffusion model. In this context, we will
employ a matrix-valued version of the toroidal calculus developed in [26, 27], see
Subsection 2.2 for details. The energy estimate obtained from Theorem 1.1 applied
to the fractional Laplacian on the torus can be found in Corollary 3.7. In this case
we use the property (−∆)

ν
2 ∈ Ψν

1,0(T
n × Zn). However, other examples in the (ρ, δ)-

setting appear e.g. if δ = 0 with oscillating multipliers

P (x,D) = (−∆)
ν
2 ei(−∆)

1−ρ
2 ∈ Ψν

ρ,0(T
n × Z

n), (1.7)

with the oscillating parameter ρ satisfying the inequality 0 < ρ ≤ 1.
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Remark 1.4. We also observe that when localising the Hörmander classes from the
Euclidean space to the torus one can construct the localised classes Ψν

ρ,δ,loc(T
n) but

due to the structure of the asymptotic expansions on these classes, the conditions
0 ≤ δ < ρ ≤ 1, and ρ ≥ 1 − δ arise. In particular these two restrictions imply
the inequality ρ > 1/2. Our Theorem 1.1 operates below the range ρ ≤ 1/2, where
the construction under local coordinate systems is not available. For instance, our
approach allow the analysis of the operators in (1.7) when ρ ≤ 1/2.

This work is organised as follows:

• in Section 2 we give a brief review of basic preliminaries on periodic pseudo-
differential operators.

• In Section 3 we develop our analysis for the proof of our main result. We first
obtain energy estimates for first-order systems, see Theorem 3.5. Then, this
analysis is used in the proof of Theorem 1.1.

2. Pseudo-differential operators on the torus

In this section we review some basic elements of the pseudo-differential calculus on
the torus. For a comprehensive study on this theory we refer to [26, 27] and to [26]
for the quantisation on the torus.

2.1. Scalar-valued classes on the torus. The use of global representations by
Fourier series instead of local representations in coordinate charts as it is more cus-
tomary when working on manifolds has some advantages. In particular, it will lead
us to improve some results regarding the range of the exponent in the fractional
Laplacian on the torus.
For our further analysis let us fix the required notation. Let Tn = Rn/Zn be the

n-dimensional torus. As it is well known, the Schwartz space S(Rn) is convenient to
define the Euclidean Fourier transform. In the periodic setting, its counterpart is the
corresponding Schwartz space S(Zn) with respect to the dual variable. We introduce
it as follows.

Definition 2.1. Let S(Zn) denote the space of rapidly decaying functions ϕ : Zn →
C. That is, ϕ ∈ S(Zn) if for any M > 0 there exists a constant Cϕ,M such that

∀ξ ∈ Z
n, |ϕ(ξ)| ≤ Cϕ,M〈ξ〉−M

for all ξ ∈ Zn. The topology on S(Zn) is given by the seminorms pk, where k ∈ N0

and pk(ϕ) := sup
ξ∈Zn

〈ξ〉k|ϕ(ξ)|.

We can now define the toroidal or periodic Fourier transform.

Definition 2.2. We denote by FTn the toroidal Fourier transform FTn : C∞(Tn) →

S(Zn), φ 7→ φ̂ by

(FTnϕ)(ξ) =

∫

Tn

e−i2πx·ξϕ(x)dx, ξ ∈ Z
n.

Remark 2.3. Note that the notion of Fourier transform is related to the spectral
decomposition of L2(Tn) with respect to the collection {e2πix·k}k∈Zn, which is an
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orthonormal basis of L2(Tn). Also, we sometimes write φ̂(ξ) instead of (FTnϕ)(ξ).
The toroidal Fourier transform is a bijection and its inverse F−1

Tn : S(Zn) → C∞(Tn)
is given by

∀x ∈ T
n, φ(x) =

∑

ξ∈Zn

ei2πx·ξφ̂(ξ).

Thus, for every h ∈ S(Zn) we have

∀x ∈ T
n, (F−1

Tn h)(x) =
∑

ξ∈Zn

ei2πx·ξh(ξ).

A fundamental notion for introducing the Hörmander classes on the torus is the
one of difference operators. It will allow us to “differentiate” symbols with respect
to the discrete variable ξ ∈ Z. We record this notion as follows.

Definition 2.4. (Finite differences ∆α
ξ ). Let σ : Zn → C and 1 ≤ i, j ≤ n. Let

δj ∈ Nn
0 be defined by

(δj)i :=

{
1, if i = j
0, if i 6= j.

(2.1)

We define the forward partial difference operator ∆ξj by

∀ξ ∈ Z
n, ∆ξjσ(ξ) = σ(ξ + δj)− σ(ξ),

and for α ∈ Nn
0 define

∆α
ξ := ∆α1

ξ · · ·∆αn

ξ .

Proposition 2.5. (Formulae for ∆α
ξ ) Let φ : Zn → C. We have

∀ξ ∈ Z
n, ∀α ∈ N

n
0 , ∆α

ξ φ(ξ) =
∑

β≤α

(−1)|α−β|

(
α

β

)
φ(ξ + β). (2.2)

We now recall the definition of the toroidal symbol classes. We define the discrete
Japanese bracket 〈ξ〉 := (1+ |ξ|2)

1

2 for ξ ∈ Zn, with |ξ|2 = ξ21 + · · ·+ ξ2n, denoting the
Euclidean norm.

Definition 2.6. Letm ∈ R, 0 ≤ δ, ρ ≤ 1. Then the toroidal symbol class Sm
ρ,δ(T

n×Zn)
consists of those functions a := a(x, ξ) which are smooth in x ∈ Tn, for all ξ ∈ Zn,
and which satisfy the toroidal symbol inequalities

|∆α
ξ ∂

β
xa(x, ξ)| ≤ Cαβ〈ξ〉

m−ρ|α|+δ|β| (2.3)

for every x ∈ Tn, ξ ∈ Zn and for all α, β ∈ Nn
0 .

Remark 2.7. The family of seminorms

pα,β,ρ,δ,m(a) := sup
(x,ξ)∈Tn×Zn

〈ξ〉ρ|α|−δ|β|−m|∂β
x∆

α
ξ a(x, ξ)| < ∞, (2.4)

defines a Fréchet structure on every toroidal class Sm
ρ,δ(T

n × Zn).

Definition 2.8. Let m ∈ R and let 0 ≤ δ, ρ ≤ 1. The toroidal quantisation associated
to a symbol a ∈ Sm

ρ,δ(T
n × Zn) is the densely defined operator

A = a(x,D) := Op(a) : C∞(Tn) → C∞(Tn), (2.5)
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defined by

Af(x) =
∑

ξ∈Zn

e2πix·ξa(x, ξ)f̂(ξ), f ∈ C∞(Tn), x ∈ T
n.

Remark 2.9. Note that if one has a continuous linear operator A : C∞(Tn) →
C∞(Tn), its symbol a := a(x, ξ) can be recovered from the following formula

a(x, ξ) = e−i2πx·ξAeξ(x), (2.6)

where for every ξ ∈ Zn, eξ(x) = ei2πx·ξ, x ∈ Tn, is the canonical trigonometric
polynomial.

Definition 2.10. The family of pseudo-differential operators defined by the toroidal
quantisation formula in (2.5) corresponding to the class of symbols a ∈ Sm

ρ,δ(T
n×Zn)

will be denoted by OpSm
ρ,δ(T

n × Zn).

The toroidal quantisation has been extensively analysed in [26, 27] for the general
case of Tn and on compact Lie groups. For the toroidal Hörmander class of order
m ∈ R, one has Ψm(Tn, loc) = {σ(x,D) : σ ∈ Sm(Tn × Zn)} (cf. [26, 27]) for the
class of symbols Ψm(Tn, loc) defined by local coordinate systems.

Remark 2.11. The family of seminorms

pα,β,ρ,δ,m(A) := sup
(x,ξ)∈Tn×Zn

〈ξ〉ρ|α|−δ|β|−m|∂β
x∆

α
ξ a(x, ξ)| < ∞, A = Op(a), (2.7)

defines a Fréchet structure on every class Op(Sm
ρ,δ(T

n × Zn)).

The following proposition gives the equivalence between Euclidean Hörmander’s
symbols and toroidal symbols. It corresponds to Corollary 4.6.13 in [26, 27].

Proposition 2.12. For m ∈ R, 0 ≤ δ ≤ 1 and 0 < ρ ≤ 1 we have

Ψm
ρ,δ := OpSm

ρ,δ(T
n × R

n) = OpSm
ρ,δ(T

n × Z
n),

i.e., classes of 1-periodic pseudo-differential operators with Euclidean (Hörmander’s)
symbols in OpSm

ρ,δ(T
n × Rn) and toroidal symbols in OpSm

ρ,δ(T
n × Zn) coincide.

In the next theorem we describe some fundamental properties of the calculus of
pseudo-differential operators on the torus.

Theorem 2.13. Let 0 6 δ < ρ 6 1, and let m ∈ R. Then:

- the mapping A 7→ A∗ : Ψm
ρ,δ → Ψm

ρ,δ, that assigns to each operator A its formal
adjoint A∗, is a continuous linear mapping between Fréchet spaces and the
symbol σA∗(x, ξ) of A∗, satisfies the asymptotic expansion,

σA∗(x, ξ) ∼
∑

α

∆α
ξ ∂

α
x (σA(x, ξ)), (x, ξ) ∈ T

n × Z
n.

This means that, for every N ∈ N, and for all ℓ ∈ N,

∆αℓ

ξ ∂β
x


σA∗(x, ξ)−

∑

|α|6N

∆α
ξ ∂

α
x (σA(x, ξ))




∈ S
m−(ρ−δ)(N+1)−ρℓ+δ|β|
ρ,δ (Tn × Z

n),

where αℓ ∈ Nn
0 is such that |αℓ| = ℓ.
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- The mapping (A1, A2) 7→ A1 ◦ A2 : Ψm1

ρ,δ × Ψm2

ρ,δ → Ψm1+m2

ρ,δ is a continuous
bilinear mapping between Fréchet spaces, and the symbol of A = A1 ◦ A2

satisfies the asymptotic formula

σA(x, ξ) ∼
∑

α

(∆α
ξ σA1

(x, ξ))(∂α
xσA2

(x, ξ)),

which, in particular, means that, for every N ∈ N, and for all ℓ ∈ N,

∆αℓ

ξ ∂β
x


σA(x, ξ)−

∑

|α|6N

(∆α
ξ σA1

(x, ξ))(∂α
xσA2(x, ξ))




∈ S
m1+m2−(ρ−δ)(N+1)−ρℓ+δ|β|
ρ,δ (Tn × Z

n),

for all αℓ ∈ Nn
0 with |αℓ| = ℓ.

- For 0 6 δ 6 ρ 6 1, δ 6= 1, let us consider a continuous linear operator
A : C∞(Tn) → D

′(Tn) with symbol σ ∈ S0
ρ,δ(T

n × Zn). Then A extends to a

bounded operator from L2(Tn) to L2(Tn).

Remark 2.14. We now recall the definition of the Sobolev space of order s ∈ R on
the torus. For u ∈ D′(Tn) we define the norm ‖ · ‖Hs(Tn) by

‖u‖Hs(Tn) :=

(
∑

ξ∈Zn

(1 + |ξ|2)s|û(ξ)|2

)1/2

.

The Sobolev space Hs(Tn), is the space of the 1-periodic distributions u such that
‖u‖Hs(Tn) < ∞.

2.2. Matrix-valued classes on the torus. In order to study our problem (1.3),
we will reduce it to a first-order system with respect to the time variable. For this
reduced system, we will require the notion of a matrix-valued symbolic calculus on
the torus which we introduce it as follows:

Definition 2.15. Let ℓ ∈ N. An ℓ× ℓ-matrix symbol

a := [aij ]1≤i,j≤ℓ, aij : T
n × Z

n → C, (2.8)

belongs to the matrix-valued class Sm
ℓ×ℓ;ρ,δ(T

n × Zn) if each one of its entries aij
is a symbol in Sm

ρ,δ(T
n × Zn). The ℓ × ℓ-matrix-valued pseudo-differential operator

A := Op(a) associated to the symbol a, is defined via

Op(a) := [Op(aij)]1≤i,j≤ℓ, Op(aij) ∈ Ψm
ρ,δ(T

n × Z
n). (2.9)

Remark 2.16. We will use the notation

Ψm
ℓ×ℓ;ρ,δ(T

n × Z
n) := Op(Sm

ℓ×ℓ;ρ,δ(T
n × Z

n)),

for the class of operators Op(a) with a symbol a belonging to the matrix-valued class
Sm
ℓ×ℓ;ρ,δ(T

n × Zn).

Remark 2.17. The family of seminorms

pα,β,ρ,δ,m(a) := sup
(x,ξ)∈Tn×Zn

sup
1≤i,j≤ℓ

〈ξ〉ρ|α|−δ|β|−m|∂β
x∆

α
ξ aij(x, ξ)| < ∞, (2.10)
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defines a Fréchet structure on every class Sm
ℓ×ℓ;ρ,δ(T

n × Zn). Moreover, the family of
seminorms

pα,β,ρ,δ,m(Op(a)) := pα,β,ρ,δ,m(a), A = Op(a), (2.11)

defines a Fréchet structure on every class Op(Sm
ℓ×ℓ;ρ,δ(T

n × Zn)).

Remark 2.18. The basic properties of the calculus for Sm
ρ,δ(T

n ×Zn) also hold for the
matrix-valued classes Sm

ℓ×ℓ;ρ,δ(T
n ×Zn). Indeed, the classes of symbols Sm

ρ,δ(T
n ×Zn),

m ∈ R, are closed under the addition

a1 + a2 = [a1,ij + a2,ij]
ℓ
i,j=1, ak = [ak,ij]

ℓ
i,j=1, k = 1, 2,

of matrix-valued symbols. Indeed, note that

Sm1

ℓ×ℓ;ρ,δ(T
n×Z

n)×Sm2

ℓ×ℓ;ρ,δ(T
n×Z

n) ∋ (a1, a2) 7→ a1+a2 ∈ Sm1+m2

ℓ×ℓ;ρ,δ (T
n×Z

n). (2.12)

Is clear that, in this case,

Op(a1 + a2) = Op(a1) + Op(a2) ∈ Ψm1+m2

ℓ×ℓ;ρ,δ (T
n × Z

n).

Also, observe that if we define on L2(Tn;Cℓ) the inner product

(u, v)L2(Tn;Cℓ) =
ℓ∑

i=1

(ui, vi)L2(Tn), u := (u1, · · · , uℓ), v := (v1, · · · , vℓ) ∈ L2(Tn;Cℓ),

we have that

(Op(a)u, v)L2(Tn;Cℓ) =
ℓ∑

i=1

((Op(a)u)i, vi)L2(Tn) =
ℓ∑

i=1

ℓ∑

k=1

(Op(a)ikuk, vi)L2(Tn)

=

ℓ∑

k=1

ℓ∑

i=1

(uk,Op(a)∗ikvi)L2(Tn).

So, defining
Op(a∗)ki := Op(a)∗ik (2.13)

the formal adjoint Op(a)∗ of Op(a) is determined by the entries

Op(a)∗ = [Op(a∗)ki]
ℓ
k,i=1. (2.14)

Indeed, observe that

(Op(a)u, v)L2(Tn;Cℓ) =

ℓ∑

k=1

ℓ∑

i=1

(uk,Op(a)∗ikvi)L2(Tn) =

ℓ∑

k=1

ℓ∑

i=1

(uk,Op(a∗)kivi)L2(Tn)

=
ℓ∑

k=1

(uk, (Op(a∗)v)k)L2(Tn;Cℓ)

= (u,Op(a∗)v)L2(Tn;Cℓ).

The previous analysis also proves that if Op(a) ∈ Ψm
ℓ×ℓ;ρ,δ(T

n × Zn) then Op(a)∗ ∈
Ψm

ℓ×ℓ;ρ,δ(T
n × Zn).

In view of the previous remark and as a direct consequence of Theorem 2.13 the
calculus for matrix-valued pseudo-differential operators can be summarised in the
following result.
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Theorem 2.19. Let 0 6 δ < ρ 6 1, and for every m ∈ R. Then:

- the mapping A 7→ A∗ : Ψm
ℓ×ℓ;ρ,δ(T

n × Zn) → Ψm
ℓ×ℓ;ρ,δ(T

n × Zn), that assigns to
each operator A its formal adjoint A∗, is a continuous linear mapping between
Fréchet spaces.

- The mapping (A1, A2) 7→ A1 ◦ A2 : Ψm1

ℓ×ℓ;ρ,δ(T
n × Zn) × Ψm2

ℓ×ℓ;ρ,δ(T
n × Zn) →

Ψm1+m2

ℓ×ℓ;ρ,δ (T
n × Zn) is a continuous bilinear mapping between Fréchet spaces.

Remark 2.20. Consider the positive Laplacian LTn = −
∑n

i=1 ∂
2
xi

on the torus Tn. In
view of the functional calculus for elliptic operators one has that

Λs := (1 + LTn)
s
2 ∈ Ψs

1,0(T
n × Z

n), s ∈ R. (2.15)

Note that on C∞(Tn,Cℓ) the operator

Λs
ℓ×ℓ := [Λsδij ]

ℓ
i,j=1, (2.16)

where δij is the Delta-Kronecker, defines an operator in the class Ψs
ℓ×ℓ;1,0(T

n × Zn).

Since, for any u = (u1, · · · , uℓ) ∈ C∞(Tn,Cℓ) one has that

Λs
ℓ×ℓu = (Λsu1, · · · ,Λ

suℓ),

in order to simplify the notation we will always write Λs := Λs
ℓ×ℓ omitting the sub-

index ℓ× ℓ.

Now, the simplified notation above allows us to introduce the vector-valued Sobolev
space Hs(Tn,Cℓ), defined by the 1-periodic distributions u such that

‖u‖Hs(Tn,Cℓ) = ‖Λsu‖L2(Tn,Cℓ) =

(
ℓ∑

i=1

‖Λsui‖
2
L2(Tn)

) 1

2

< ∞.

3. Pseudo-differential hyperbolic equations on the torus

In this section we establish the well-posedness for the problem (1.3). We first recall
the notions of ellipticity and strong ellipticity in the setting of the Sm

ρ,δ(T
n × Zn)-

classes. We then obtain energy estimates and the corresponding consequences on the
well-posedness for first order systems and its consequence on Fractional hyperbolic
equations. Some aspects on the the fractional Laplacian are briefly reviewed. For
a comprehensive study on this theory we refer to [26, 27] and for a more detailed
discussion on the fractional Laplacian on the torus we refer to [24].

The classical notion of ellipticity for pseudo-differential operators on Rn extends
into the toroidal setting in an analogous way. We point out that some further restric-
tions on ρ, δ have to be imposed in order to obtain an useful definition.

Definition 3.1. Let m ∈ R, 0 ≤ δ < ρ ≤ 1 and σ be a symbol in σ ∈ Sm
ρ,δ(T

n × Zn).

• We say that the corresponding pseudo-differential operator σ(x,D) is elliptic
of order m, if σ satisfies

∃n0 ∈ N, ∀(x, ξ) ∈ T
n × Z

n : |ξ| ≥ n0 =⇒ |σ(x, ξ)| ≥ C0〈ξ〉
m, (3.1)

for some constants n0, C0 > 0.
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• We will also say that σ(x,D) is a strongly elliptic operator if σ satisfies:

∃n0 ∈ N, ∀(x, ξ) ∈ T
n × Z

n : |ξ| ≥ n0 =⇒ Re σ(x, ξ) ≥ C0〈ξ〉
m, (3.2)

for some constants n0, C0 > 0.

Remark 3.2. We now specialize into the case of the fractional Laplacian. We first
state a basic property of this interesting operator on the torus that distinguish it
from the case of Rn. As a consequence of this fact and the above theorem we obtain
some corollaries for the fractional diffusion.
Let ν be a strictly positive real number, the fractional Laplacian (−∆)

ν
2 on the

torus Tn is defined as the Fourier multiplier corresponding to |ξ|ν, that is

̂(−∆)
ν
2u(ξ) = (2π)ν |ξ|νû(ξ), (3.3)

for every ξ ∈ Zn and u ∈ C∞(Tn). The Fourier inversion formula on the torus also
allows the integral representation in (1.4) for (−∆)

ν
2 . Other alternative definitions

are possible as in the case of Rn. We refer the reader to [20] for a recent review
on the most common ones and the equivalence between them on Rn. We point out
that on Rn, the fractional Laplacian (−∆)

ν
2 has not a symbol in a class of pseudo-

differential operators unless ν
2
be an integer, however in our toroidal setting the

fractional Laplacian will be a pseudo-differential operator for every ν > 0. We first
state a mild lemma on the torus clarifying such property.

Lemma 3.3. Let ν > 0. Then (−∆)
ν
2 ∈ OpSν

1,0(T
n × Zn).

Proof. We should show that the function σ : Zn → R defined by σ(ξ) = |ξ|ν belongs
to Sν

1,0(T
n × Zn). We choose a function χ ∈ C∞(Rn) such that

χ(ξ) :=

{
1, if |ξ| ≥ 1,
0, if |ξ| ≤ 1

2
.

(3.4)

We observe that σ̃(ξ) := χ(ξ)|ξ|ν is smooth on Rn and σ̃ ∈ Sν
1,0(T

n × Rn). Hence
σ̃(x,D) ∈ OpSν

1,0(T
n × Rn) and by Proposition 2.12 we obtain that σ̃(x,D) ∈

OpSν
1,0(T

n × Zn). On the other hand we have that χ(ξ)|ξ|ν = |ξ|ν = σ(ξ) for all
ξ ∈ Zn, and therefore σ ∈ Sν

1,0(T
n × Zn). �

Remark 3.4. The fractional Laplacian (−∆)
ν
2 is an element of the class OpSν

1,0(T
n ×

Zn) for any ν > 0. Then it is clear that it is also a strongly elliptic operator of order
ν. This property is an advantage over the classical case of the fractional Laplacian
on Rn where one can only refer to it as a pseudo-differential operator when ν is an
even integer.

In the following theorems we will write K(t, x, ξ) ∈ Sm
ℓ×ℓ(T

n × Zn), which should
be understood in the sense that for each t ∈ R fixed, K(t, ·, ·) ∈ Sm

ℓ×ℓ;1,0(T
n × Zn).

We will also require of the spaces

H+∞ := C∞(Tn) =
⋂

s∈R

Hs and H−∞ := D
′(Tn) =

⋃

s∈R

Hs.

The following theorem establishes a fundamental energy estimate is the toroidal
version within the setting of the pseudo-differential calculus as introduced in [26, 27].
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Theorem 3.5. Let m > 0 and K(t, x, ξ) ∈ Sm
ℓ×ℓ;ρ,δ(T

n × Zn) depending smoothly

on t. Assume that K∗(t, x,Dx) + K(t, x,Dx) ∈ OpS0
ℓ×ℓ;ρ,δ(T

n × Zn), where for t
fixed, K(t, x,Dx) = K(t) denotes the pseudo-differential operator corresponding to
K(t, x, ξ). Let s ∈ R, T > 0. Let

v ∈ C([0, T ], Hs+1(Tn;Cℓ))
⋂

C1([0, T ], Hs(Tn;Cℓ))

and Q := ∂t −K(t). Then v ∈ C∞(Tn,Cℓ) satisfies

‖v(t)‖2Hs(Tn,Cℓ) ≤ eCt


‖v(0)‖2Hs(Tn,Cℓ) +

t∫

0

‖ω(τ)‖2Hs(Tn,Cℓ)dτ


 (3.5)

for all t ∈ [0, T ]. Moreover, we can replace v(0) by v(T ) on the right-hand side of
(3.5). The same conclusion holds for the operator Q∗.

Proof. For any s ∈ R, let us write Hs := Hs(Tn,Cℓ). We set Λs be the Fourier
multiplier given by Λ(ξ) = (1 + |ξ|2)

s
2 . Let us follow the notation in Remark 2.20. It

is clear that u belongs to Hs(Tn,Cℓ) if and only if Λsu ∈ L2(Tn,Cℓ). We assume that
v ∈ C([0, T ], Hs+1)

⋂
C1([0, T ], Hs) and write ω = Qv. Since ∂tv = (∂t − K(t))v +

K(t)v = Qv +K(t)v = ω +K(t)v, we observe that

d

dt
‖v(t)‖2Hs =

d

dt
〈Λsv,Λsv〉

= 2Re〈Λsvt,Λ
sv〉

= 2Re〈Λs(K(t)v + ω),Λsv〉

= 2Re〈ΛsK(t)v,Λsv〉

− 2Re〈K(t)Λsv,Λsv〉

+ 2Re〈K(t)Λsv,Λsv〉

+ 2Re〈Λsω,Λsv〉

= 2Re〈[Λs, K(t)]v,Λsv〉

+ 2Re〈K(t)Λsv,Λsv〉 (3.6)

+ 2Re〈Λsω,Λsv〉.

We note that the term (3.6) can be written in the following way

2Re〈K(t)Λsv,Λsv〉 = 〈K(t)Λsv,Λsv〉+ 〈K(t)Λsv,Λsv〉

= 〈K(t)Λsv,Λsv〉+ 〈Λsv,K(t)Λsv〉

= 〈K(t)Λsv,Λsv〉+ 〈K(t)∗Λsv,Λsv〉

= 〈(K(t) +K(t)∗)Λsv,Λsv〉.

Now, we get A(t) = [Λs, K(t)] ∈ OpSs
ℓ×ℓ;ρ,δ(T

n × Zn). Indeed, observe that

A(t) = [Λs, K(t)] = [A(t)ij ]
ℓ
i,j=1

where

A(t)ij = ([Λs, K(t)])ij

= [ΛsK(t)]ij − [K(t)Λs]ij
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=
ℓ∑

k=1

ΛsδikK(t)kj −
ℓ∑

k=1

K(t)ikΛ
sδkj

= ΛsK(t)ij −K(t)ijΛ
s

= [Λs, K(t)ij].

The commutator properties of the scalar-valued calculus on the torus implies that
any entry [Λs, K(t)ij ] belong to the class OpSs+1−1

ρ,δ (Tn × Zn) = OpSs
ρ,δ(T

n × Zn).
Consequently, we have that A(t) = [Λs, K(t)] ∈ OpSs

ℓ×ℓ;ρ,δ(T
n × Zn) as claimed.

Since we also have K(t) +K(t)∗ ∈ OpS0
ℓ×ℓ;ρ,δ(T

n × Zn), it follows that

d

dt
‖v(t)‖2Hs ≤

≤ ‖A(t)v‖L2‖v‖Hs + C1‖v‖
2
Hs + C2‖ω‖Hs‖v‖Hs

≤ C‖v‖Hs‖v‖Hs + C1‖v‖
2
Hs + C2‖ω‖Hs‖v‖Hs

≤ C‖v‖2Hs + C‖ω‖2Hs.

An application of the Gronwall inequality gives us the energy inequality

‖v(t)‖2Hs ≤ eCt


‖v(0)‖2Hs +

t∫

0

‖ω(τ)‖2Hsdτ


 . (3.7)

We can also prove an analogous estimate with v(T ) instead of v(0) on the right-hand
side of the inequality (3.7). The conclusion for Q∗ follows analogously. �

We now obtain a consequence regarding the existence, uniqueness and regularity
as an application of the above estimates.

Theorem 3.6. Let m > 0 and K(t, x, ξ) ∈ Sm
ℓ×ℓ(T

n × Zn) depending smoothly on t.
Assume that K∗(t, x,Dx) + K(t, x,Dx) ∈ OpS0

ℓ×ℓ;ρ,δ(T
n × Zn). Let s ∈ R, T > 0,

f ∈ Hs, ω ∈ L2([0, T ], Hs). Then, there exists a unique v ∈ C([0, T ], Hs) such that
{

∂v

∂t
= K(t)v + ω, (in the sense of D′(]0, T [×Tn)

v(0) = f.
(3.8)

Moreover, the solution v satisfies the energy estimate (3.5). If ω ∈ C∞([0, T ], H+∞)
and f ∈ H+∞ then v ∈ C∞([0, T ], H+∞).

Proof. We will now prove the existence of a solution v of (3.8) in C([0, T ], Hs). The
proof is an adaptation of the corresponding part in the proof of Theorem 4.5 in [6]. We
write Q = ∂

∂t
−K and we introduce the space E = {ϕ ∈ C∞([0, T ], H−∞) : ϕ(T ) = 0}.

We will see that we can define a linear form β on Q∗E by

Q∗ϕ → β(Q∗ϕ) =

T∫

0

(ω(t, ·), ϕ(t, ·))dt+
1

i
(f, ϕ(0, ·)).
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We note that the energy estimate (3.5) holds for −s for the Cauchy problem (3.8)
corresponding to the operator Q∗ with ‖v(T, ·)‖Hs on the right hand side of (3.5).
Thus, for ϕ ∈ E we have

‖ϕ(t, ·)‖2H−s ≤ C

T∫

0

‖Q∗ϕ(t′, ·)‖2H−sdt′, t ∈ [0, T ] ,

so that

|β(Q∗ϕ)|2 ≤ C ′

T∫

0

‖Q∗ϕ(t′, ·)‖2H−sdt′.

We deduce that β is well defined and continuous with respect to the topology induced
on Q∗E by L2([0, T, ], H−s). An application of the Hahn-Banach theorem implies the
existence of an element v ∈ (L2([0, T, ], H−s)′ = L2([0, T, ], Hs) such that

(v,Q∗ϕ) =

T∫

0

(ω(t, ·), ϕ(t, ·))dt+
1

i
(f, ϕ(0, ·)) (3.9)

for all ϕ ∈ E. In particular, if ϕ ∈ C∞(]0, T [×Tn), (3.9) implies that Qv = ω in
D′([0, T ] × Tn)). Thus ∂

∂t
v = Kv + ω ∈ L2([0, T, ], Hs−1). An integration by parts

with respect to t in (3.9) implies that (v(0, ·), ϕ(0, ·)) = (f, ϕ(0, ·)) for all ϕ ∈ E and
consequently v(0) = v(0, ·) = f .
Now, if ω ∈ C∞([0, T ], H+∞) and f ∈ H+∞, the above argument shows that

v ∈ C([0, T ], H+∞). Moreover, since ∂
∂t
v = Kv+ω, one can deduce step by step that

v ∈ Ck([0, T ], H+∞) for all k ≥ 0. Consequently v ∈ C∞([0, T ], H+∞).
We will now prove that v ∈ C([0, T ], Hs) and that it satisfies the energy estimate

(3.5). Suppose we have sequences (ωj) in C∞([0, T ]× Tn) and (fj) in C∞
0 (Tn) such

that ωj → ω in L2([0, T, ], Hs) and fj → f in Hs. Let vj ∈ C∞([0, T ], H+∞) be the
solution of Qvj = ωj, vj(0, ·) = fj . The inequality (3.5) applied to the vj − vk shows
that vj is a Cauchy sequence in C([0, T ], Hs) so that vj → ṽ in C([0, T ], Hs). In the
limit, we have Qṽ = ω, ṽ(0, ·) = f ; consequently, the uniqueness shows that ṽ = v.
The corresponding inequality (3.5) for v is obtained passing to the limit in this

inequality applied to vj . In this way we conclude the proof of the Theorem. The
uniqueness of the solution v follows from the energy inequality (3.5). �

We can now establish the well-posedness for the Cauchy problem (1.3) as a conse-
quence of Theorem 3.6. We are ready to prove our main theorem.

Proof of Theorem 1.1. In order to apply Theorem 3.6, we define first

A = (I + P )
1

2 .

Observe that
∂

∂t

∂u

∂t︸︷︷︸
v2

= −P (x,D)A−1 Au︸︷︷︸
v1

, (3.10)
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with v1 = Au, v2 = ∂u
∂t
. In view of the functional calculus for elliptic operators we

have that A ∈ OpS
ν
2 (Tn × Zn). Hence, we have the matrix identity

∂

∂t

[
v1
v2

]
=

[
0 A

−P (x,D)A−1 0

] [
v1
v2

]
+

[
0
w

]
.

Indeed, the identity in the first component is reduced to the fact that

∂

∂t
v1 =

∂

∂t
Au = A

∂

∂t
u = av2,

where we have used that A is independent of t, and then the operators A and ∂
∂t

commute. On the other hand, the identity in the second component is consequence
of the fact that ∂

∂t
v2 = utt, and the decomposition in (3.10).

It is clear that K(t) ∈ OpS
ν
2

2×2,ρ,δ(T
n × Zn), where K(t) is the constant in t, 2× 2

matrix-valued operator:

K(t) =

[
0 A

−P (x,D)A−1 0

]
.

On the other hand, observe that K(t)+K(t)∗ ∈ OpS0
2×2(T

n×Zn). To prove this, let
us compute K(t)∗ as follows

K(t)∗ =

[
0 (−P (x,D)A−1)∗

A 0

]
.

Since the operator A−1 commutes with P , we have that

(−P (x,D)A−1)∗ = −P (x,D)A−1,

in view of the positivity of P (x,D). Note also that

K(t) +K(t)∗ =

[
0 A− P (x,D)A−1

A− P (x,D)A−1 0

]
.

Indeed

A∗A = I + P (x,D),

and

A∗ = A−1 + P (x,D)A−1 = P (x,D)A−1 +R,

with

R = A−1 ∈ OpS
− ν

2

ρ,δ (T
n × Z

n) ⊂ OpS0
ρ,δ(T

n × Z
n).

Since A is positive, we have that

A− P (x,D)A−1 = A∗ − P (x,D)A−1 ∈ OpS0(Tn × Z
n),

and so, we have proved that K(t) +K(t)∗ ∈ OpS0
2×2;ρ,δ(T

n × Zn). Now, since Af0 ∈

Hs− ν
2 and applying Theorem 3.6 to

v(0) = f =

[
Af0
f1

]
∈ Hs− ν

2 , ω =

[
0
w

]
∈ L2([0, T ], Hs− ν

2 ), (3.11)

we obtain that v ∈ C([0, T ], Hs− ν
2 ). Since u = A−1v1 ∈ Hs we deduce that u ∈

C([0, T ], Hs). The uniqueness of u follows from the uniqueness of v and the invert-
ibility of A since u = A−1v1. The inequality (3.13) is an immediate consequence of
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the inequality (3.5) applied to the data (3.11). The last conclusion of the theorem
also follows from the analogous part of Theorem 3.6. �

Observe that in view of Theorem 1.1 applied to the fractional Laplacian P (x,D) =
(−∆)

ν
2 we have the following energy estimate.

Corollary 3.7. Let ν > 0, T > 0. If s ∈ R, f0 ∈ Hs, f1 ∈ Hs− ν
2 , ω ∈ L2([0, T ], Hs− ν

2 ).
Then, there exists a unique solution u ∈ C([0, T ], Hs) of the Cauchy problem





∂2u

∂t2
= −(−∆)

ν
2u+ w, (in the sense of D′(]0, T [×Tn))

u(0) = f0,
∂u

∂t
(0) = f1.

(3.12)

Moreover, the solution u satisfies the following energy estimate

‖u(t)‖2Hs ≤ CeCt


‖f0‖

2
Hs + ‖f1‖

2

Hs− ν
2
+

t∫

0

‖w(τ)‖2
Hs−ν

2
dτ


 . (3.13)

Moreover, if w ∈ C∞([0, T ], H+∞) and f ∈ H+∞ then u ∈ C∞([0, T ], H+∞).
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