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Abstract
Background: The incidence of constipation increases among the elderly (>65 years), 
while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and 
reduced exercise), disease and medications affecting gastrointestinal functions. 
Degenerative changes may also occur within the colo-rectum. However, most evi-
dence is from rodents, animals with relatively high rates of metabolism and accel-
erated aging, with considerable variation in time course. In humans, cellular and 
non-cellular changes in the aging intestine are poorly investigated.
Purpose: To examine all available studies which reported the effects of aging on cel-
lular and tissue functions of human isolated colon, noting the region studied, sex and 
age of tissue donors and study size. The focus on human colon reflects the ability to 
access full-thickness tissue over a wide age range, compared with other gastrointesti-
nal regions. Details are important because of natural human variability.
We found age-related changes within the muscle, in the enteric and nociceptor in-
nervation, and in the submucosa. Some involve all regions of colon, but the ascend-
ing colon appears more vulnerable. Changes can be cell- and sublayer-dependent. 
Mechanisms are unclear but may include development of “senescent-like” and associ-
ated inflammaging, perhaps associated with increased mucosal permeability to harm-
ful luminal contents.
In summary, reduced nociceptor innervation can explain diminished abdominal pain 
among the elderly. Degenerative changes within the colon wall may have little im-
pact on symptoms and colonic functions, because of high “functional reserve,” but 
are likely to facilitate the development of constipation during age-related challenges 
(e.g., lifestyle, disease, and medications), now operating against a reduced functional 
reserve.
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1  |  INTRODUC TION

The elderly experience diminished abdominal pain.1–4 Furthermore, 
the prevalence of lower bowel disorders is increased.5 For example, 
estimates of chronic constipation among elderly within the commu-
nity are >7% to >42%,6–11 rising to >50% within nursing homes.12–14 
Chronic constipation is associated with impaired quality of life and 
complications which if untreated, can lead to fecal impaction, incon-
tinence, bowel perforations, and increased healthcare costs.15–19 
Fecal incontinence, more common in older adults,20–22 may encour-
age institutionalization.23–26

Medications are often used by the elderly, including opioid re-
ceptor agonists (pain relief), drugs antagonizing at muscarinic acetyl-
choline and other receptors (e.g., antidepressants), and antagonists 
of Cav1 voltage gated calcium channels (raised blood pressure). 
These may alleviate abdominal pain and/or disrupt GI motility.27–32 
Constipation among the elderly14 can also be associated with dis-
ease (e.g., clinical depression, hypothyroidism, and long-term sur-
vival of colorectal/anal carcinoma18,33), and changed lifestyle (e.g., 
reduced calorie and fluid intake and impaired mobility34–36). The ex-
istence and influence of age-related degeneration on human bowel 
functions is less clear.

Studies on physiological changes in bowel functions among the 
elderly provide inconsistent conclusions. In healthy volunteers, age-
related impairment of rectal sensitivity to mechanical distension is 
reported by some, without changed muscle compliance and tone,37 
whereas others found no changes.38,39 Most studies suggest small 
and large intestinal motility is well-preserved during normal adult 
working lives,40,41 but evidence for declined functions among the 
healthy elderly is inconsistent. For example, movements of the small 
and/or large intestine were no different to younger adults,38,42–47 
whereas reduced contractile activity43 and transit within the small 
intestine,48 reduced migrating motor complex activity,7,49 increased 
oro-caecal transit times,50 and reduced colonic or rectosigmoid 
transit44,46,47 are reported.

Perhaps the effects of aging on the lower bowel can be bet-
ter understood by studying isolated tissues, so cellular functions 
can be investigated. Laboratory animals are often used, notably 
mice and rats. These suggest an age-dependent loss of extrinsic 
and enteric innervation, reduced ability of muscle to contract, re-
duced numbers of pacemaker cells (interstitial cells of Cajal; ICCs) 
and changes in numbers of enteroendocrine and mast cells within 
the mucosa.51–59 However, rodents have high rates of aging, high 
metabolic rates and differ significantly from humans, in gastro-
intestinal anatomy, neuronal functions, receptor pharmacology 
and molecular structures.60 This is compounded by extensive 
genetic variation between different strains of laboratory mice,61 
influencing, in a strain-dependent manner, how aging affects gas-
trointestinal innervation and functions.62,63 Thus, to understand 
how aging affects human intestinal functions it is important to in-
vestigate the human. We examine the strength and physiological 
significance of this evidence.

2  |  SCOPE OF RE VIE W

The term “elderly” defines people around 65–75 years of age and 
above,64,65 but is influenced by variables affecting biological aging 
or senescence, including culture, lifestyle, and genetics. Here, we 
compare between adults of different ages and not adults versus de-
veloping juveniles or children.

The focus is on the colon, perhaps the most readily available, “in-
tact” human gastrointestinal tissue (e.g., “macroscopically normal” tis-
sue from patients with bowel cancer, 5–10 cm away from the tumor).66 
For robust conclusions, different variables must be considered. First, 
the different regions of colon must be studied separately, given the 
differences in positioning, functions, embryonic origin, blood supply, 
extrinsic innervation, length, and gene expression.67–76 Second, the 
question “what is normal?” must be considered as it is difficult to 
fully exclude pathological changes. For example, in colonic mucosa, 
changes in gene expression can occur up to 10 cm from the tumor.77 
Nevertheless, when using tissues from the same region and removed 
for the same disorder, it is possible to compare different age groups. 
Third, individual variations mean that patient details must be recorded 
and sample sizes large enough to generate meaningful conclusions.66 
Finally, studies may be influenced by type of surgery, preparation, and 
storage of tissue.66 All this is important when weighing the strengths 
and weaknesses of data generated from human tissues.

3  |  SENSORY AFFERENT NEURONS

In human ascending and descending/sigmoid colon from patients 
aged 24–82 years (n = 20, removed mostly for bowel cancer; all 
regions considered together), a significant reduction was observed 
in the multiunit response to capsaicin and bradykinin (10–11 donors/
group, mostly males) but not the single-unit colonic mesenteric 
nerve to capsaicin (n = 5; confirming a previous study78).79 These data 

Key points

•	 Reduced nociceptor innervation can explain diminished 
abdominal pain among the elderly.

•	 Age-related changes also occur within the muscle, in the 
enteric innervation, and in the submucosa. Some involve 
all regions of colon, but the ascending colon appears 
more vulnerable. Changes can be cell- and sublayer-
dependent. Mechanisms may include development of 
“senescent-like” and inflammaging states.

•	 Constipation among the elderly is more likely to occur 
during age-related challenges (e.g., lifestyle, disease, 
and medications) affecting functions of the bowel that 
now have reduced functional capacity caused by age-
dependent degenerative changes.
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suggested an age-dependent loss of afferent innervation, because 
chemosensitivity of individual neurons was unchanged. Further 
studies must examine the effects of aging on noxious mechanical 
stimuli (reduced in mouse colon) and on pelvic afferent nerves which 
signal pain and need for defecation.79

In an earlier study,80 the power was diluted by using human ileum, 
ascending, transverse, descending and sigmoid colon, and rectum, to-
gether, removed mostly for bowel cancer but sometimes for inflam-
matory and other conditions. With increasing age, resting afferent 
nerve activity (n = 19 tissues) and spontaneous burst firing was de-
creased. In three sigmoid colons (42-, 55-, and 67-year-old donors) 
the increase in afferent nerve activity to bradykinin was thought to be 
blunted by increased age, and in 10 patients, between 50 and 80 years 
of age, the density of substance P-immunoreactive nerve fibers within 
the mucosa, a marker of afferent nerve endings, was reduced with 
increasing age.

Reduced immunoreactivity for transient receptor potential 
ankyrin-1 (TRPA1) and vanilloid-1 (TRPV1) channels, and reduced 
TRPA1 gene transcription was found within sigmoid colon biopsies 
from healthy elderly versus younger adults (respectively 65–75 and 
18–40 years, n = 48 and 52).4 Both channels are expressed by extrinsic 
neurons (TRPA1 is also elsewhere such as epithelial and enteroendo-
crine cells) and may functionally interact.81 However, others found no 
change in TRPA1 RNA expression within the mucosa of human ileum 
(n = 5) and colon (n = 15, all regions) combined, comparing <65 versus 
>65 years of age.80

3.1  |  Conclusions

Further work is needed to understand the effects of aging on 
mechano-sensitive afferent innervation, paying attention to region 
of colon and study power. Data suggesting that nociceptor innerva-
tion decreases with increasing age appears consistent. They are also 
consistent with studies among the healthy elderly, demonstrating 
reduced sensitivity to visceral pain (balloon distention in esophagus 
and rectum37,82) and abdominal pain.1–4 Perhaps as a consequence, 
the prevalence of irritable bowel syndrome (defined in part by oc-
currence of abdominal pain) is reduced among the elderly, but less 
welcome, the elderly have reduced ability to sense pain during ap-
pendicitis, delaying onset of medical care.4,79

4  |  SMOOTH MUSCLE

The thickness of sigmoid colon circular muscle was unchanged 
when healthy elderly were compared with younger adults (Table 1). 
However, such measurements do not reflect functions or changes 
in constituent parts. Recent studies suggest that total collagen con-
tent is increased within colon of the elderly (earlier studies found 
no changes but higher levels of mature cross-linked collagen, sug-
gesting increased rigidity; Table 1). For example, in ascending colon 
from the elderly without diverticulitis, increased total collagen was 

demonstrated in the muscularis externa (especially taenia coli) and 
submucosa (Table  1).83,84 Perhaps for some, this increase reflects 
diverticulosis that has not progressed to diverticulitis, with progres-
sion depending on the subtype of collagen and/or degrading matrix 
metalloproteinases.85 Functional studies using colon from patients 
with diverticulitis, report increased efficacy and potency of ligands 
causing circular muscle contraction86,87 or longitudinal muscle relax-
ation.88 By contrast, in circular muscle of ascending and descending 
colon from 15 adult and 19 elderly patients (Table  1),68 no differ-
ences were found in muscle tension generated during contraction 
or relaxation evoked by different ligands. The latter appears to 
conflict with an earlier study using sigmoid colon circular muscle, in 
which differences were found in amplitude of contractions evoked 
by different stimuli, between adult and elderly males and females.89 
However, poor definition of n-values (muscle strips, not patients),68 
compromises interpretation.

In one other study, collagen fibrils within the submucosa of de-
scending colon became smaller and more tightly packed with in-
creasing age (>60 years; n = 7), relative to ascending colon.90 A higher 
collagen content may also exist within the internal anal sphincter of 
aging incontinent patients (mean 51.5 years),91 possibly contributing 
to reduced ability of the sphincter to maintain resting pressure and 
achieve maximum squeeze pressure,92–94 although not all agree.38,39,95 
In addition to increased collagen content, suggested causes are rela-
tive reductions in smooth muscle cells and increased connective tis-
sue with age.96,97

4.1  |  Conclusions

The apparent mismatch between muscle function (no differences in 
tension generated during contraction/relaxation) and structure (in-
creased total collagen) of human colon requires investigation. How 
does aging affect:

•	 Different types of collagen in different sublayers of the colon 
wall.

•	 The distribution of elastin within the muscularis externa (a pre-
liminary study found increased elastin and collagen around the 
myenteric plexus of the elderly98).

•	 The ability of the taenia coli to contract.
•	 The ability of taenia coli and circular muscle to respond to muscle 

stretch or distension?

5  |  INTERSTITIAL CELL S OF C A JAL

In human colon, different networks of ICCs orchestrate muscle 
movements, driven by enteric and extrinsic neurons, and interacting 
with platelet-derived growth factor receptor-positive fibroblast-like 
cells, fibroblasts, and glial cells.99,100 One group of ICCs is associated 
with the myenteric plexus. This is stimulus-dependent (e.g., neu-
ronal), orchestrating high-amplitude propagating pressure waves. 
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Another is associated with the submuscular plexus and by spon-
taneously and rhythmically depolarizing (~3 cycles/min), serves as 
the dominant pacemaker. A third group, within the longitudinal and 
circular muscles, transmits pacemaker activity throughout the mus-
culature and mediates neural stimuli. Finally, an ICC network exists 
in association with the subserosa, possibly pacing the longitudinal 
muscle.

The effects of aging on each network of ICCs within human 
colon has not been conducted. However, the number and network 
volume of ICCs within the myenteric plexus and circular muscle 
have been shown to decrease with age, by ~13%/decade over 
25–70 years; the decline was similar in ascending and sigmoid colon 
and not associated with sex.101 Recently, a small study used western 
blotting to show reduced c-kit and connexin-43 protein (markers of, 
respectively, ICC and gap junction proteins) in the colon (region and 
muscle layer not specified) of elderly people (n = 4 each for 27–36 
and 72–82-year-old groups).102 Perhaps loss of ICCs during aging 

is related to increased oxidative stress-inducing cellular apoptosis, 
combined with an inability to replenish ICCs via stem cells.101

5.1  |  Conclusions

In mice, an age-dependent loss of ICCs uniformly affected all 
stomach regions and layers (myenteric and muscle layers), unlike 
disease which might affect discrete areas.103,104 For human colon 
the effect of aging on the different networks of ICCs has not been 
systematically examined and the consequences on propulsive/re-
tropulsive/segmental movements are unclear. However, since the 
tissues used were from patients with no reported motility disor-
ders, perhaps the observed changes simply make the elderly more 
susceptible to other disruptive influences (e.g., lifestyle/medica-
tions/disease); this idea is discussed later. By contrast, in sigmoid 
colon from patients with slow transit constipation (STC), loss of 

TA B L E  1 Effect of old age on muscle thickness, collagen content, and contractile ability in the human colon.

Region Ages/Patients Studied Observation Comment

Muscle thickness, collagen content

Sigmoid colon110 18 donors aged between 21 and 
94 years

No clear change in thickness of 
circular muscle

Ascending, transverse, 
descending and sigmoid 
colon172

11 and 9 patients aged, respectively, 
<60 and >60 years

No age-related changes in total 
collagen content and no differences 
between these patients and 5 others 
with diverticulosis (aged 67–80 years); 
a higher level of mature cross-linked 
collagen in colons from subjects 
>60 years compared with those 
<60 years, suggested an increase in 
rigidity

Assumed full-thickness 
tissues. Collagen 
concentration assessed 
by measurement of 
hydroxyproline content

Ascending colon83 Adult (22–60 years; 6 males, 6 
females) and elderly (70–91 years; 6 
males, 4 females)

Histochemical staining demonstrated 
an increase in total collagen content 
in submucosa and muscularis externa

Overall increase in collagen 
concentration assessed 
by measurement of 
hydroxyproline content173

Ascending and Descending 
colon84

Ascending (adults: 22–60 years; 6 
males, 6 females; elderly: 70–91 years; 
6 males, 4 females) and Descending 
(adults: 23–63 years; 6 males, 7 
females; elderly: 66–88 years; 6 
males, 4 females)

Greater occurrence of total collagen 
in the taenia coli compared with 
circular muscle

The ascending colon 
has a greater collagen 
concentration than the 
descending colon, as 
assessed by histochemical 
and biochemical methods173

Muscle contractile ability

Ascending and descending 
colon; circular muscle68

Adult versus elderly (for carbachol 
study, respectively, n = 7/7 and 8/12 
for ascending and descending colon)

No change in tension developed 
during contraction evoked by 
carbachol, or during muscle relaxation 
in response to the nitric oxide donor 
sodium nitroprusside

Largest study to date

Sigmoid colon circular 
muscle88

~60 years versus mid-late 70 s Elderly females more sensitive to 
carbachol-induced muscle contraction 
but elderly males more sensitive to 
electrically evoked cholinergically 
mediated contractions

n-values are muscle 
preparations used, not 
patients

Proximal, distal, sigmoid 
colon studied together174

Average age was 69 ± 3 years Age-dependent increase in ability of 
dissociated muscle cells to contract 
in response to different ligands, 
including carbachol

Perhaps enzyme digestion 
influences how cells respond
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ICCs (associated with myenteric and submucosal plexuses, lon-
gitudinal, and circular muscle) and myenteric neurons, has been 
reported, compared with patients without STC (respectively aged 
42–76 and 23–71 years, n = 8/6).105

6  |  ENTERIC NERVOUS SYSTEM (ENS)

Several animal studies report losses of enteric neurons during aging 
(e.g., mouse102). However, when the accompanying increase in 
length and thickness of the muscle are considered (changing den-
sity of neurons), no age-related changes were found (mice106). In 
human colon, early reports of loss of enteric neurons, based largely 
on small studies, are now contradicted by larger studies which 
found little-or-no loss (see below and Table 2). For studies on en-
teric neuronal numbers in other GI regions (human, animal).107,108

6.1  |  Myenteric plexus

In the largest study conducted (30,306 neurons within ~36 mm of 
myenteric plexus/antibody/patient from ascending colon of 8 adult 
and 9 elderly (≥70 years) and 9/10 adult/elderly descending colon), 
no age-related differences were found in the number of myenteric 
nerve cell bodies staining for the pan-neuronal marker, anti-HuC/D 
(anti-human neuronal protein C/D; labelling cell nucleus and perikar-
yon), within ascending or descending colon. Furthermore, there was 
no age-related difference in numbers of neurons expressing nNOS, 
nor a decline in neurite extension within the musculature of either 
region.68 However, the numbers of myenteric cell bodies exhibiting 
ChAT immunoreactivity was increased in ascending colon from the 
elderly, but not descending colon. Curiously, in the same study, and 
same area of colon, this change was accompanied by decreased cho-
linergic neuromuscular function (discussed in Section 7).

A study using laser-dissected myenteric plexus ganglia (50 ganglia 
from each donor) to analyze expression of multiple genes (e.g., ion 
channels, specific neuronal types, senescence, and oxidative stress), 
found significant differences between children vs. adults (48–58 years) 
and the elderly (70–95 years).109 “Adult” colon (n = 4) represented de-
scending or sigmoid colon and “Elderly,” a mix of ascending, transverse, 
descending, or sigmoid colon (n = 11), removed for different disorders. 
In distal colon, increased gene expression was observed in the elderly 
for the neurotrophin receptor p75 and for nitric oxide synthase-1. 
ChAT gene expression exhibited no age-dependent differences in dis-
tal colon but was lower in elderly proximal, compared with distal colon.

Other studies with large numbers of patients found no age-
dependent changes in several nerve markers within sigmoid colon. In one, 
nNOS, VIP and SP-immunoreactive neurons were measured over ages of 
21–94 years.110 In another, the concentrations of VIP, met5-enkephalin, 
neuropeptide Y and somatostatin were determined, following extraction 
from muscle of 28 patients <70 years old and 12 ≥70 years.111

A large study using whole-mount preparations of colon (10 days to 
91 years; all regions pooled together) found an age-dependent increase 

in proportion of ganglia containing empty spaces.112 This was associ-
ated with increased surface area of the ganglia. For these ganglia, there 
was no change in number of NADPH-diaphorase-positive neurons/
ganglion (nitrergic). Correspondingly, the number of “normal” ganglia 
(uniformly filled with neurons) declined when all ages were grouped 
together, but most clearly among the elderly (≥70 years). Others have 
looked for age-related changes in the ENS of human ascending and 
sigmoid colon, testing for linear trends (9 males, 7 females).113 A de-
cline in numbers of nerve cell bodies/mm length of myenteric plexus 
staining for HuC/D, ChAT and PGP-9.5 was observed, but not nNOS. 
Analysis as numbers of ganglia/mm length or neurons/ganglia showed 
similar but less clear trends. However, the regression lines were influ-
enced by a 99-year-old patient (tissue removed for unknown reason), 
separated by 17 years from the next oldest. Confoundingly, the volume 
of nerve fibers in circular muscle and volume of neuronal structures in 
myenteric plexus was unchanged with age.113

Smaller studies reported a loss of enteric neurons. For example, 
a 34%–38% decrease in myenteric nerve cells in small intestine and 
colon (grouped together) comparing 20–35 and >65 years (n ≤ 6 each 
age group),98,114,115 accompanied by more numerous collagen and 
elastic fibers in the ganglia.98 Another small study with human colon 
muscle (layer or region not specified) using western blotting, showed 
reduced ChAT and nNOS in the elderly (n = 4 each for 27–36 and 
72–82-year-old groups).102 Within human small intestine, no age-
dependent changes were found in surface area of enteric ganglia 
within the duodenum, but the number of neurons was smaller (~16%) 
within the elderly (65–84 years; n = 30 donors but distribution among 
different age groups not stated).116 By contrast, an increased num-
ber of NOS-expressing myenteric neurons were reported in terminal 
ileum of the elderly (78–86 years; n = 8 vs. n = 7 younger adults; all 
with cancer of ascending colon117).

6.2  |  Submucosal plexus

A study in which the numbers of myenteric neurons were thought 
to decline in human colon with increasing age (see above), found no 
changes in submucosal plexus.113

Perhaps specific subpopulations of neurons are vulnerable to 
age-related changes. In a preliminary report, the density of calretinin-
immunoreactive neurons and fibers were decreased in the sub-
mucosal plexus of ascending colon from the elderly (range of ages: 
22–91 years) but not clearly in descending colon. In the mucosa, 
the decrease in density was greater in ascending versus descending 
colon.118 Others reported colocalization of calretinin-immunoreactive 
neurons with vasoactive intestinal peptide.119

6.3  |  Conclusions

First, all studies need to be properly powered and small n-values 
treated with caution. Second, different regions of colon must be 
studied. Third, aging has little-or-no effect on overall numbers 
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of enteric nerve cell bodies in ascending or descending colon, al-
though in the ascending colon myenteric cholinergic neurons may 
be damaged.

Work is needed to look for possible changes in neuronal sub-
populations. A notable omission is the lack of discrimination 
between cell bodies for enteric motor- and inter-neurons, and in-
trinsic primary afferent neurons (IPANs). Motor neurons projecting 
to the muscle appear unaffected by aging (no change in density of 
neurite extensions within the muscle), but the effects of aging on 

interneuron varicosities and on IPAN projections into the mucosa 
(or their functions) are unknown. IPANs detect mechanical and 
chemical stimuli from the lumen and help initiate propulsive/retro-
pulsive movements.

Finally, the recent identification of age-dependent changes in lin-
eage composition of the ENS (decline in neural-crest derived neurons 
and replacement by mesoderm- derived neurons) opens new avenues 
for research. In mice, the change may be related to loss of enteric 
neurons. In humans, the consequences are unclear.120

TA B L E  2 Effect of old age on the numbers and densities of enteric neurons and subpopulations in the human colon.

Region Patients Studied/ages Enteric nerve populations Plexus/sublayer Age-related change

Ascending, transverse, 
descending, sigmoid 
colon98

No known digestive 
pathologies; separated into 
20–35 and >65-year groups, 
n = 6 each; sex not stated

Total (Giemsa stain)/area Myenteric plexus Mean 37% loss with increasing age; 
no differences between regions

Colon; regions not 
specified112

Colon removed for different 
disorders; 168 males and 
females; 10 days to 92 years

Different stains used, 
including NADPH-
diaphorase (NADPH-d) 
as a marker of neurons 
expressing nitric oxide 
synthase

Myenteric plexus When all ages considered 
together, the proportion of ganglia 
containing empty spaces increased 
with age, associated with increased 
surface area of the ganglia, without 
change in number of NADPH-
diaphorase-positive neurons/
ganglion

Descending & sigmoid 
colon113

Removed for bowel cancer (one 
unknown); 9 males, 7 females; 
33–99 years

Total neuron population 
(HuC/D, PGP 9.5) and 
neurons staining for ChAT 
and nNOS

Myenteric and 
submucosal 
plexus, and 
circular muscle

Myenteric plexus: Loss of HuC/D- 
and ChAT-IR neuron numbers 
with age; no change in number of 
nNOS-IR neurons
Submucosal plexus: No age-related 
change in number of HuC/D-IR, 
ChAT or nNOS-IR neurons
Muscle: No age-related change in 
volume of PGP 9.5-IR nerve fibers

All regions of Colon109 Removed mostly for bowel 
cancer but also diverticulitis; 19 
males and females; 4 months to 
95 years

Laser dissection of 
myenteric ganglia; studied 
by qPCR, and whole-mount 
staining with β-nicotinamide 
adenine dinucleotide 
phosphate (β-NADPH) and 
Senescence β-galactosidase

Myenteric plexus Increased gene expression in 
the elderly for the neurotrophin 
receptor p75 and a subpopulation 
of nitric oxide synthase in distal 
colon (~16.6% loss)
No age-dependent change in ChAT 
gene expression in distal colon 
but expression smaller in elderly 
proximal, compared with distal 
colon

Ascending & descending 
colon68

Removed for non-obstructive 
bowel cancer; 36 males and 
females separated into 35–60 
and ≥70-year groups

Total neuron population 
(HuC/D, PGP 9.5) and 
neurons staining for ChAT 
and nNOS

Myenteric plexus 
and circular 
muscle

Numbers of HuC/D and NOS-IR 
enteric neurons unchanged with 
age
ChAT-IR neurons increased in 
elderly ascending colon but 
unchanged in descending colon
Density of PGP9.5 staining 
unchanged in ascending colon of 
the elderly; in descending colon the 
density was reduced only in deep 
circular muscle of the elderly

Ascending & descending 
colon118

Removed for non-obstructive 
bowel cancer; 48 males and 
females separated into 22–60 
and ≥70-year groups

Calretinin-IR enteric neurons Mucosa Density of calretinin-IR enteric 
neuronal fibers in the ascending 
and descending colon were 
reduced in the elderly

Abbreviations: ChAT, choline acetyltransferase; IR, immunoreactive; NADPH, nicotinamide adenine dinucleotide phosphate; nNOS, neuronal nitric 
oxide synthase; NOS, nitric oxide synthase; PGP9.5, protein gene product 9.5; qPCR, quantitative polymerase chain reaction.
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    |  7 of 15BAIDOO and SANGER

7  |  NEUROMUSCUL AR FUNC TIONS

A large study concluded that aging impairs cholinergic function in 
circular muscle of ascending, not descending colon.68 Thus, elec-
trically evoked, cholinergically mediated contractions of ascending 
colon from the elderly were smaller versus younger adults (respec-
tively n = 25 and 14), whereas the ability of the muscle to contract 
in response to acetylcholine was unchanged. The change corre-
sponded with an increase, in the same region of colon, in number of 
cell bodies staining for ChAT (Section 6.1). The link between these 
two observations is unclear. However, evidence derived from aging 
cholinergic neurons of the central nervous system (CNS),121 makes it 
possible to speculate that reduced cholinergic function was related 
to impaired transport of ChAT to the nerve terminals for synthesis of 
acetylcholine.68 Further work is needed.

Another study found that the amplitude of inhibitory junction po-
tentials in circular muscle of descending colon (evoked by electrical stim-
ulation and largely mediated by ATP from purinergic neurons acting at 
P2Y receptors122,123) declined with increasing age (n = 16; 49–84 years) 
with no change in resting membrane potentials. A decline in women 
may precede that in men, although the numbers studied (respectively 9 
and 7) were small. The physiological consequences are unclear.

7.1  |  Conclusions

Changes in neuromuscular functions during aging may make 
human ascending colon more susceptible to stool retention. One 
study examined the distribution of fecal loads and stool retention 
in 71 patients aged ≥65 years.124 The majority (52.1%) with high 
fecal load scores (significant stool retention) had this within the 
ascending colon, the remainder being distributed approximately 
equally between transverse and descending colon and rectosig-
moid region.

8  |  NEUROSECRETORY FUNC TIONS

Ussing chamber experiments with human small and large intestine 
found no age-related changes in mucosal basal resistance, basal 
short-circuit current, or current evoked by neuronal stimulation.125 
This was a large study (435 donors) using duodenum, jejunum, ileum, 
ascending, transverse, descending and sigmoid colon, and rectum, 
obtained mostly from bowel cancer patients but also from other 
non-inflammatory disorders. No obvious differences were noted be-
tween the different regions or between tissues removed for differ-
ent disorders, so data were pooled.

8.1  |  Conclusions

The authors125 noted that earlier studies on intestinal ion transport 
in human intestine were small, possessed methodological issues, 

and had not examined the effects of age. Their findings suggested 
a lack of age-dependent changes in basal functions. However, more 
detailed investigations into neuronal-mucosal functions are war-
ranted, given the changes observed in neuronal-muscle functions 
and the potential for loss of calretinin-immunoreactive neurons (see 
Section 6.2).

9  |  ENTERIC GLIAL CELL S (EGC)

EGCs surround myenteric and submucosal nerve cell bodies are 
within intramuscular layers and mucosa, surround nerve pro-
cesses and interact with enteroendocrine cells and the epithelial 
layer.126,127 They provide structural, metabolic and trophic support 
to enteric neurons, participate in neurotransmission, help regulate 
GI motility,128 and provide immunological support and potentially, 
form new neurons.129–132 Studies into EGCs are complicated by dif-
ferent morphometric and functional characteristics between spe-
cies, gender, region of gut wall, and by the absence of pan-glial cell 
markers.133–135 In myenteric ganglia of human descending colon, one 
study found no differences in expression of the gene for the EGCs 
marker S100 calcium-binding protein β (S100β), between adults 
(48–58 years) and the elderly (70–95 years).109 Another found no dif-
ferences in expression of S100β by muscle layers of human ascend-
ing and descending colon from “adult” and “elderly” populations.136 
By contrast, loss of S-100β-immunoreactive EGCs density was re-
ported within the myenteric ganglia and circular muscle of descend-
ing colon from the elderly (6 males, 4 females), compared with adult 
(6 males, 7 females).137 In a similar analysis the number of SOX-10-
immunoreactive EGCs were unchanged.137

9.1  |  Conclusions

The functional consequences of reduced S100β-immunoreactive 
EGCs within human colon are unclear. Others have associated loss of 
EGCs with enteric neurodegenerative disorders.138 Ablation of EGCs 
in mice induced changes in neurochemical coding of enteric neurons 
and altered intestinal motility.139,140 However, in human colon the 
maintained numbers of enteric neurones within the elderly suggests 
a different function.

10  |  MUCOSAL MAST, ENTEROCHROMAFFIN,  
AND ENDOCRINE CELLS

A regression analysis suggested that the density of mast cells in mu-
cosa of distal ileum and ascending colon increased over the range of 
58–80 years (n = 5 and 14 patients respectively), as was the number 
of enterochromaffin cells in the ileum, but not colon (n = 10 and 16 
respectively).80 With advancing age, mast cells were increasingly 
found in close apposition to extrinsic nerve terminals suggesting po-
tential compensation for sensory neurodegeneration.80 By contrast, 
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8 of 15  |     BAIDOO and SANGER

in rectal biopsies from subjects below and above 55 years (n = 20 
each), the mast cell count was reduced in the more elderly, whereas 
there was no change in numbers of enteroendocrine cells containing 
5-HT and peptide YY.141

10.1  |  Conclusions

Further studies are required, which must consider potential region-
dependent differences.

11  |  PATHWAYS OF CHANGE

These are well-reviewed.59 Here, brief summaries are provided, 
highlighting where human intestine was used.

11.1  |  Inflammaging

Chronic, low-level inflammation occurs in many tissues with advanc-
ing age, including the gut.142 This is often called inflammaging. A 
possible driver is continuous stimulation of macrophages by imbal-
anced production and clearance of “molecular waste” during aging. 
This is debris from dead/damaged cells and organelles (including the 
intestinal microbiome), leading to inflammation when detected by 
pattern recognition receptors.143 Cytokines such as interleukin (IL)-
6, IL-1β, and TNFα are often linked with inflammaging, and the aging 
phenotype. In mice, an age-related increase in expression of pro-
inflammatory cytokines was associated with increased incidence of 
post-operative ileus.144 Age-related changes in “pro-inflammatory” 
status of macrophages have also been associated with increased cy-
tokines and immune cells in the ENS, and increased loss of ganglionic 
cells.145 Any effects of inflammaging on colonic chemosensitive af-
ferent neurons are likely to be blunted by an age-dependent loss of 
afferent innervation (Section 3).

11.2  |  Mucosal permeability

Luminal contents are prevented from crossing into the intestinal 
wall by epithelial cells within the mucosa, sealed by tight junctions 
(transcellular proteins, including occludins and claudins). The latter 
prevent pericellular leakage of luminal solutes, microorganisms and 
their toxins, digestive enzymes, and undigested food. Tight junc-
tions can break down in the elderly.146–148 Permeability to solutes, 
but not macromolecules were increased in terminal ileum biopsies 
from the elderly, accompanied by elevated expression of IL-6 which 
may modulate claudin-2 expression and solute permeability in the 
epithelium.149 Studies on different regions of human colon are now 
needed. However, a note of caution is provided by Valentini et al,150 
who did not observe increased permeability of the small intestine of 
the elderly in vivo (215 non-smoking healthy male/female adults, 84 

aged between 60 and 82 years), suggesting that low grade inflamma-
tion together with relatively minor disease such as Type 2 diabetes, 
are needed to significantly increase permeability.

11.3  |  Microbiome

The gut microbiota, which differs between ascending and descend-
ing colon,151 is an important modulator in inflammaging.152 The 
colon has the densest population and richest diversity of microor-
ganisms.153 Older people have reduced diversity in microbiota spe-
cies and phyla.154–157 For example, a genomic study demonstrated 
loss of bacteria genes involved in producing short chain fatty acids 
(SCFAs) via fermenting dietary polysaccharides.154 SFCAs are an 
energy source for the microbiota and intestinal epithelial cells, with 
regulatory and signaling functions in the gut (e.g., increasing mucus 
production by goblet cells, enhancing intestinal barrier integrity, 
anti-inflammatory activity).158 Reduced SCFAs can therefore pro-
mote gut inflammation.154,159 In addition, other bacteria flourish in 
an inflammatory environment to release effectors which help sus-
tain inflammation.160

11.4  |  Oxidative stress and senescence

Aging is associated with reduced autophagy and mitophagy, and in-
creased oxidative stress, which can increase inflammation.161 This 
combination can induce senescence. Senescence is characterized by 
exit from the cell cycle, and a senescence-associated secretory phe-
notype, which includes cytokines and pro-inflammatory agents.162 
Senescent cells are normally rapidly cleared by the immune system. 
However, with increasing age clearance becomes less efficient. 
Senescent cells remain, enter a state of chronic senescence, con-
tinue to secrete pro-inflammatory molecules, and contribute to 
inflammaging and the aging phenotype.163,164 An increased expres-
sion of the chronic senescence marker, CDKN2A,165 was recently 
identified in the muscularis externa of ascending and descending 
colon of the elderly.136 Small upregulations of expression of several 
other genes were also identified, which in ascending colon were 
more positively associated with increased CDKN2A expression than 
with temporal age. These included genes involved with inflamma-
tion, oxidative stress, autophagy, axonal transport, and apoptosis.

Immunofluorescence for p16, encoded by CDKN2A, showed 
strong staining within the cytoplasm of enteric neurons of ascend-
ing, not descending colon (5710 neurons examined in 52 “adult” [30–
60 years] and “elderly” [70+ years] patients)136; these data coincide 
with reduced cholinergic function in this area of colon.68 Interestingly, 
minimal p16 co-expression occurred within enteric glial cells (stained 
by S100β). In summary, these data were surprising for two reasons. 
Firstly, unlike proliferative glial cells, enteric neurons are post-mitotic. 
Secondly, as a cell cycle regulator, p16 expression is usually found 
within the cell nucleus, not cytoplasm. Nevertheless, precedent ex-
ists within other cell types, with suggested roles in non-cell cycle 
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    |  9 of 15BAIDOO and SANGER

functions (e.g., protection against DNA damage136). The causes of 
this “senescence-like” activity are unclear but could be related at least 
partly to inflammaging and oxidative stress pathways. Perhaps, since 
enteric neurons are post-mitotic, cellular debris cannot be “diluted” 
into daughter cells during mitosis, promoting accumulation of lipofus-
cin and a senescence-like state.166

11.5  |  Interactions between the endoplasmic 
reticulum and mitochondria

Within the CNS, such interactions help regulate neuronal functions 
and changes are linked with neurodegenerative disorders. A recent 
study described similar interactions and changes within the colonic 
ENS of healthy and a senescence-accelerated strain of mouse.167 
Implications for the human bowel must now be explored.

12  |  CONCLUSIONS

Age-associated changes in structure and functions of the colon are 
summarized in Figure 1. These include a decline in myenteric cholin-
ergic neuromuscular function in ascending colon, perhaps caused by 
dysfunctional nerve axon transport, and expression of the chronic 
senescence marker p16 within nerve cell cytoplasm. Other changes, 
in both regions of colon, include reduced numbers of ICCs, increased 
collagen within the muscle and submucosa, and a decline in nocic-
eptive function. Reduced numbers of EGCs (S100-immunoreactive) 
have been observed in descending colon (other regions not studied). 
What does not change are the total numbers of myenteric and sub-
mucosal neurons, the ability of circular muscle to contract and relax, 
and ability of the mucosa to generate current.

12.1  |  Aging and abdominal pain

Loss of nociceptive afferent innervation of human colon may explain 
why healthy elderly people have reduced sensitivity to visceral pain.

12.2  |  Region-dependent aging within the 
colon wall

Age-dependent changes can occur throughout the colon (e.g., loss of 
ICCs), but there is greater vulnerability of myenteric (cholinergic) and 
submucosal (calretinin-immunoreactive neurons) innervation within the 
ascending colon (Table 3). The causes are unclear. Speculation involves 
loss of epithelial barrier function, allowing harmful material to enter.

12.3  |  Functional reserve

A high reserve capacity of the ENS is suggested for laboratory 
animals.52 This means that the ENS tolerates some degeneration 
without generating symptoms. A similar physiology is suggested in 
humans.68,101,168 For example, age-related degenerative changes are 
identified in “macroscopically normal” colon from patients with non-
obstructive bowel cancer, but these patients were not diagnosed 
with chronic constipation or other motility disorders.68 Thus, func-
tions may be maintained by the remaining cells.

A reduced functional reserve may, nevertheless, increase the likeli-
hood of achieving a “tipping point,” at which symptoms develop when 
intestinal functions are reduced by other factors (e.g., medications and 
disease). Similarly, a small, age-related denervation of anal sphincter 
musculature reduces its functional reserve, promoting incontinence 
when looseness of stool or depression of cerebral function, co-exist.169 

F I G U R E  1 Summary of major structural and functional changes within elderly human colon.

Ascending Colon
• Greater increase in collagen within taenia coli
• Reduced cholinergic neuromuscular function
• Increased number of ChAT-immunoreactive myenteric 

cell bodies
• Increased staining for p16 within cytoplasm of myenteric 

nerve cell bodies
• [Increased density of mast cells in ascending colon 

mucosa; other regions not studied]

• [Loss of S-100-
immunoreactive 
glia density in 
descending colon; 
other regions not 
studied]

All regions
• Decreased nociceptor innervation
• Increased total collagen in muscularis externa and submucosa
• Decreased number of interstitial cells of Cajal
All regions: No consistent changes
• Number of myenteric/ submucosal neuron cell bodies or NOS-immunoreactive cell bodies
• Tension generated during muscle contraction
• Mucosal basal resistance, short-circuit current, or current evoked by neuronal stimulation

See text for details
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10 of 15  |     BAIDOO and SANGER

Complications during childbirth may be exacerbated by age-related 
changes in how the pudendal nerve impacts anal sphincter functions 
in women.93,170 In addition, age-related changes in intestinal permea-
bility may have little importance until compromised by disease such as 
Type 2 diabetes.150

12.4  |  Gaps

What are the effects of aging on:

•	 Mechano-sensitive afferent nerve functions (e.g., low threshold 
mechanosensitivity).

•	 The muscle response to stretch, especially for taenia coli (not 
studied).

•	 The different networks of interstitial cells of Cajal.
•	 Different neuronal phenotypes of the ENS, especially within the 

submucosal plexus.
•	 Mucosal permeability and functions.
•	 Numbers of mast/endocrine cells in different regions of colon.
•	 Numbers and activity of enteric primary afferent sensory neurons 
(not studied).

•	 Males versus females in sufficiently powered studies.
•	 Pathways leading to damage.
•	 Mechanisms which make the ascending colon relatively more vul-

nerable to change.

Consideration needs to be given to the relationships between 
changed cellular structures and functions, and the pathophysiology 

of the intact lower bowel. Many reports a greater incidence of 
chronic constipation and related symptoms among the elderly (see 
Introduction) so it seems reasonable to suppose that these are at least 
partly, caused by degenerated functions. However, a Rome IV anal-
ysis highlighted a decline in gut–brain disorders among the elderly, 
including irritable bowel syndrome, functional dyspepsia and func-
tional constipation.171 Perhaps the mismatch is explained by reduced 
pain sensitivity and by differences between constipation that is “func-
tional” or related to degenerative changes.

13  |  LESSONS

RNA expression does not necessarily translate to changes in pro-
tein expression. This is not a new understanding but for the aging 
colon, it is illustrated by data on S100-immunoreactive glial cells and 
the increased staining for p16 within the ascending, not descending 
colon, predicted by RNA expression to increase in both regions.

Given the natural variation among the human population and 
“life experiences,” the size of the study matters. For example, 
small studies claim differences in number of enteric neurons in 
“adult” and “elderly” populations, but larger studies report little-
or-no change.

Different regions of colon must be studied separately as each has 
different functions and potential to age differently.

AUTHOR CONTRIBUTIONS
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TA B L E  3 Region-dependent vulnerabilities of the human colon during aging.

Observation Potential functional consequence

Laser-dissected myenteric plexus ganglia: Reduced expression of ChAT 
and greater expression of Ret receptor, in aging human proximal colon, 
compared to distal109

May reflect reduced cholinergic function in this area of colon, 
somehow linked with increased ChAT protein staining within nerve cell 
bodies and compromised transport to nerve terminals68

Aging of the human colon significantly increases the risk of stool 
retention in ascending colon compared with descending colon124

Provides insight into vulnerability of aging human ascending colon

Although there was no age-related change in number of myenteric 
nerve cell bodies staining for the pan-neuronal marker, anti-HuC/D, 
within ascending or descending colon, an increase in ChAT immuno-
positive myenteric nerve cell bodies was observed in ascending, not 
descending colon. The latter was linked with a reduced cholinergic 
neuromuscular function in elderly ascending, but not descending 
colon68

Suggests age-dependent region-specific loss of cholinergic function. 
Hypothesized age-dependent decrease in axon transport of ChAT from 
the cell bodies to the cholinergic nerve terminals and hence, a loss of 
function

Increased staining for p16, a marker of chronic senescence, within the 
cytoplasm of myenteric nerve cell bodies in aging ascending but not 
descending colon136

Suggests a region-dependent, post-mitotic cellular senescence-like 
activity involved with aging of enteric neurons

Total collagen content and concentration higher within muscularis 
externa of the ascending and descending colon from the elderly, but 
within the taenia coli this was higher in the elderly ascending compared 
with descending colon83,84

Suggests a loss of tensile strength for the muscularis externa of all 
regions of the elderly human colon, but a greater vulnerability of the 
tenia within the ascending colon, compared with descending colon

Age-related change in the loss of calretinin-immunoreactive enteric 
neurons in the submucosal plexus of the ascending colon, but not 
clearly in descending colon118

Indicates a need to examine the effects of age on specific enteric nerve 
populations, and in particular, on enteric intrinsic primary afferent 
neurons, about which nothing is known

Abbreviations: anti-HuC/D, anti-human neuronal protein C/D; ChAT, choline acetyltransferase.
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