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Abstract

We consider the varifold associated to the Allen—Cahn phase transition problem in
R"*+(or n + 1-dimensional Riemannian manifolds with bounded curvature) with inte-
gral L9° bounds on the Allen—Cahn mean curvature (first variation of the Allen—Cahn
energy) in this paper. It is shown here that there is an equidistribution of energy between
the Dirichlet and Potential energy in the phase field limit and that the associated vari-
fold to the total energy converges to an integer rectifiable varifold with mean curvature
in L9, go > n. The latter is a diffused version of Allard’s convergence theorem for
integer rectifiable varifolds.

1 Introduction

Let Q C (M"t!, g) be an open subset in a Riemannian manifold with bounded
curvature. Consider u € W27 (Q) satisfying the following equation

LECDIrY (1.1)

eAug —

where W(t) = # is a double-well potential. The Eq. (1.1) can be viewed as a
prescribed first variation problem to the Allen—Cahn energy

elVue > W(ue)
E.(ug) Zf < > + )dx.
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For any compactly supported test vector field n € C2°(£2, R"*1), we have a variation
us(x) = u (x + sn(x)) and the first variation formula at uy = u, is given by

E; (uy) = / (—eAug + M) (Vug, n)dx
5s=0 Q €

ds|._
fa 2
=— ,me|Vue|“dx,
/Q<5|Vu5| (v, melVue|“dx

is a unit normal to the level sets at non-critical points of u.

d

(1.2)

Vug

where v =
[Vuel

By [5, 6, 9] using the framework of [3], the sequence of functionals E, I"-converges
to the n-dimensional area functional as ¢ — 0. This shows that minimizing solutions
to (1.1) with f; = 0 converge as ¢ — 0 to area minimizing hypersurfaces. For general
critical points (f; = 0) a deep theorem of Hutchinson-Tonegawa [4, Theorem 1]
shows the diffuse varifold obtained by smearing out the level sets of u converges to
limit which is a stationary varifold with a.e. integer density. The main result of this
paper is to prove Hutchinson—Tonegawa’s Theorem [4, Theorem 1] in the context of
natural integrability conditions on the first variation of E,. Under suitable controls
on the first variation of the energy functional E, (the diffuse mean curvature) we can
show comparable behaviour for the limit. In the case where n = 2, 3 Roger—Schiitzle
[8] have shown under the assumption

. 1 2
lirgégf (Ee(ue) + gllstILz(Q)> <00

that the limit is an integer rectifiable varifold with L? generalised mean curvature.

The main focus of this paper is to generalise this result to higher dimensions.
Before we state our main theorem, we give a choice of the diffused analogue of “mean
curvature” in the Allen—Cahn setting, which will be used to state our bounded L0
Allen—Cahn mean curvature condition in the theorem.

Recall that for an embedded hypersurface £" ¢ Q C R"*! restricted to a bounded
domain 2 and a compactly supported variation X with ¥y = X, we have the first
variation area at s = 0 given by

d
— Area(X; N2) = —/ H, n)dus =/ H{v,n)dus, (1.3)
ds $=0 Rn+1 Rn+1

where H is the mean curvature scalar, H = — Hv is the mean curvature vector, v is

a unit normal vector field, 7 is the variation vector field, and dux, is the hypersurface

measure. By comparing the first variation formula (1.2) for Allen—Cahn energy and
the first variation formula (1.3) for area , we can see that (ﬁ) roughly plays the
role of the mean curvature scalar in the Allen—Cahn setting. In [1], a result of Allard
implies that if a sequence of integral varifolds has L9 integrable mean curvature scalar
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with go > n, then after passing to a subsequence, there is a limit varifold which is also
integer rectifiable.

Under similar conditions on L% integrability of the term ( ) with gg > n, we

fe
|Vl

prove the integer rectifiability of the limit of sequences of Allen—Cahn varifolds :

Theorem 1.1 Let u, € Wh2(Q), @ c R"*! satisfy Eq. (1.1) withe — 0 and f, €
LY (Q). If any one of the following holds:

(1) Bounds on the total energy

2
/Cmﬁ+w%wm§%; (1.4)
Q 2 €

(2) Uniform L*° bounds
llee |l Loo () < co; (1.5)

(3) L9 bounds on the diffuse mean curvature

/el %v 2dx < A 1.6
eV e|Vugl"dx < Ao (1.6)

for some qo > n;

then after passing to a subsequence, we have for the associated varifolds (see Sect. 2
for the definition) V,,, — Vs weakly and

(1) Vo is an integral n-rectifiable varifold;
(2) For any B,(xg) CC 2, the L9° norm of the generalized mean curvature of Voo is
bounded by Ay;
2
(3) The discrepancy measure (% — %) — 0in Llloc as ¢ — 0 (c.f. Proposi-
tion 4.4).

This theorem shows we can prove a result analagous to Hutchinson—Tonegawa [4],
Tonegawa [10] and show as ¢ — 0, the diffuse varifold associated to the Allen—Cahn
functional converges to an integer rectifiable varifold. This has some similarities with
Allard’s compactness theorem for rectifiable varifolds and for integral varifolds but
here the sequence consists of diffuse varifolds and hence we require stronger conditions
on the proposed mean curvature. As we shall see in a later paper, these conditions are
exactly what is required to prove a version of Allard’s regularity theorem for Allen—
Cahn varifolds.

In the proof of Theorem 1.1, we also obtained a variational approximation of a class
of integral mean curvature functional via I' - convergence by a sequence functionals
from the phase-field model.
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Corollary 1.2 Let u € W'2(Q), Q@ c R"*! satisfy Eq. (1.1) with u, = u and Fy :
L' (Q) — R be a sequence of functionals defined by

W’ (u) 90
—

Vul? Au —
fg(u)zf elvul” | W) dx+/ ledu— =71 ¢|Vu|?dx,
Q 2 & Q 8|VL£|

for any qo > n. Then for any x = 2xg — 1 with E C Q,3E N Q € C? where xg is
the characteristic function for E, there holds

I () - lim Fe (%) = F (0 = aH"(IE N ) +06/d o |Hye|?dH",
- IEN

where o = ffooo (tanh’ x)2dx is the total energy for the 1-d heteroclinic solution Allen-
Cahn equation, H" is the n-dimensional Hausdorff measure, and Hyg is the mean
curvature of OE.

Our result can also imply some previous convergence results under various integra-
bility conditions for the inhomogeneous term and its derivatives. (Notice that we do
not require any integrability condition on the derivative of the inhomogeneous term f
in Theorem 1.1).

Corollary 1.3 If u, satisfies (1.1) and of one of the following conditions holds:
(1)

1
I fellLsy < Cie2,  forsome2 <s <n
n—2

ﬁ L@ < C,, forsomet > - 2s > max{s,n — 2};
(2)
1
Je <C, forsomep > i, (c.f [11]);
8|Vug| Wlp(Q) 2
(3) 1
I fellz2@) < Cie2, if the ambient dimensionn +1 =2, (c.f [8])
% L) < Ca, ifthe ambient dimensionn + 1 > 3;

then after passing to a subsequence as ¢ — 0, the associated varifolds V, converge
to an integral n-rectifiable varifold with generalized mean curvature in L1 for some
qo > n.

Here we give an overview of our proof. In Sect. 2, we gather together some standard
notation on varifolds and the first variation. In Sect. 3, we prove the main estimates
required for the proof of the integrality and rectifiability. Specifically we will need a
monotonicity formula. For the homogeneous Allen—Cahn equation and Allen—Cahn
flow, a strict monotonicity formula can be proven due to Modica’s estimate showing
the discrepancy is negative. This estimate is not true without a homogeneous left hand
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side to Eq. (1.1). Instead we will use the integral bound (1.6) to derive a decay bound
for L' norm of the discrepancy which we eventually show vanishes in the limite — 0.
This estimate constitutes one of the main advances of this paper. In Sect. 4 we show
the limiting varifold we obtain as ¢ — 0 is a rectifiable set and in Sect. 5 we show
the limiting varifold is in addition integral. In Sect. 6, we prove Corollary 1.3 and
Corollary 1.2.

2 Preliminaries and notations

Throughout the paper, we will denote a constant by C if it only depends on the
constants n, Eg, co, Ao which appear in the conditions of Theorem 1.1. At certain
points we may increase this constant in some steps of the argument, but we will not
relabel the constant unless there is a risk of confusion from the context. We associate
to each solution of (1.1) a varifold in the following way : let G(n + 1, n) denote the
Grassmannian (the space of unoriented n-dimensional subspaces in R"**1). We regard
S e G+ 1,n)asthe (n + 1) x (n + 1) matrix representing orthogonal projection
of R"*! onto S, that is

s?=8, STs=1

and write S-Sy = tr(SlT -82). We say V is an n-varifold in Q2 C R"*+1if V is a Radon
measure on G, (2) = Q2 x G(n + 1, n). Varifold convergence means convergence of
Radon measures or weak-* convergence. We let V € V,,(2) and let || V|| denote the
weight measure of V and we define the first variation of V by

SV(n)z/ V@) - SdV(x,$) ¥ne ClQ:R"™).
Gn(S2)

We let ||§V || be the total variation of § V. If ||§ V|| is absolutely continuous with respect

to ||6 V|| then the Radon—Nikodym derivative % exists as vector valued measure. We

denote by Hy = —%, the generalised mean curvature.
Let u = u, be a function in Theorem 1.1, we define the associated energy measure
as a Radon measure given by

ity = (8|V;5|2 . W(Mg)>d£n+1
&

where £"*! is the (n + 1) dimensional Lebesgue measure. We also denote the energy
of the 1 dimensional solution by

1
a=/ V2W(s)ds.
-1
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There is an associated varifold V € V,(2) to the functions u given by

V<¢)—/ ¢ [« (V”(x) )l dpu(x)
— Jyvuizo) "\ IVu(x)| "

—/ ¢<x oY) o Vul) )d ). ¢ € Co(Gn())
= Jivarzo T T Vol Vaeo ) M AmBeD:

where [ is the (n 4+ 1) x (n 4 1) identity matrix and

B Vu(x) Vu(x)
[Vu(x)| — [Vu(x)]

is orthogonal projection onto the space orthogonal to Vu(x), that is {a € R"*! |
{(a, Vu(x)) = 0}. By definition ||V| = pvr{vu20) and the first variation may be
computed as

. (I Vu(x) Vu(x)

- lo. pntl
V()] |Vu(x)|)d“(x)’V"€Cc<9,R ). (2.1)

8V (n) =/ Vi
{IVu|#0}

3 Discrepancy bounds and monotonicity formula

In this section, we deduce integral bounds on the discrepancy. There exists an almost
monotonicity formula for the Allen—Cahn energy functional, we will give estimates
on the terms appearing in the almost monotonicity formulas under the assumptions in
Theorem 1.1 and obtain a monotonicity formula for the n-dimensional volume ratio.
It will be used in the next section to deduce rectifiability and integrality of the limit
varifold as ¢ — 0. Conditions (1)—(3) in Theorem 1.1 are assumed to hold throughout
this section.

The n-dimensional volume ratio of the energy measure satisfies the following almost
monotonicity formula.

Proposition 3.1 (Almost Monotonicity Formula) If u, satisfies (1.1) in By C R**1,
then forr < 1, we have

d (1e(Br) 1 € 2
ar < - ) = —rn+1§(3r)+ rn—H/aBr(X,Vue)

1
- m/B (x, Vite) f. 3.1

-

2
Here j1.(By) = fBr dug = fBr (% + %) is the total energy and £(B,) =

2
B, (% — %) is the discrepancy measure (difference between the Dirichlet

and potential energy) in B;.
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Proof Multiplying Eq. (1.1) by (x, Vu,) and integrating by parts on B,, we get

/ (x, Vug) fe :/ 8Au8(x,Vu5>—/ <Mx>
B, B, B, €
f ( 2 W(u»)
= er —r—
€

88,,uxlux] +8V2u(Vu8, X) —

W(u»)
—r
I

|Vue|* x> GRS 1>W<ug>)

Il
L ([5
A )

B,
due > We)  |Vuel?
=7r E|— —_ — &
9B, av & 2

_ 2
-I-/ (8 (n — D |Vug| n (n + 1)W(ue))
B, 2 &

2 2
_ n/ <8|V’48| + W(”s)) _ r/ (8|V”s| + W(”s))
X 2 e 3B, 2 &

&

+—/ (x. Vie)? — E(B,).
r JyB,

oy
ov

(n+ 1)W(ue)>

&

8u‘s

e|Vue|* + ¢ <

The conclusion then follows by dividing both sides by 7! and noticing
d (us(Br)) S / (SIVuglz N W(ue)) N i/ (SIVugIZ N W(us)).
dr rhn rnt B, 2 £ ™ JaB, 2 £

Integrating the almost monotonicity formula (3.1) from e torg for0 < ¢ < rg < 1,
we have

Ma(Bro) e (Bg)
o P

"o | e 2 1
2/; (_mé(Br)+m/g;3',<X7 Vue) _’,H_H/Br<x’vus>fs> dr

e|Vue>  Wu,) e(x, Vug)?
—70 SUp Wy +1 2 - + BT —
By, € + Jao\B. Xl

ro 1
—/ m/;g (x, Vug) fedr, (3.2)
& r

where w,, 1 denotes the volume of unit ball in R"*!,

O

v
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We need to estimate the first and third term on the right hand side to obtain a
monotonicity formula. In order to estimate the third term, we derive an a priori gra-
dient bound for u. Condition (3) of Theorem 1.1 states a combined integrability for
the inhomogeneity f; and |Vu|. The following theorem allows us to obtain separate
integrability and regularity for each quantity.

Theorem 3.2 There exists C, g9 > 0 depending on Eq, co, Ao as defined in Theorem
1.1 such that if u, satisfies (1.1) in By C R"™ ' with ¢ < ey and if gqo > n + 1, then

sup ¢|Vu,| < C, (3.3)
Bi—¢
and
p_ntl
& 7 ”u€|| 1,1—ntl S C (34)
C7 90 (Bi-¢)
Ifn <qo <n+1, then
1
2 < C. .
e uell oy, =€ (3.5)

Furthermore, there exists a 5o > 0 so that f has the following improved integrability

Ifell a1 <Cs . (3.6)

T 0By (x0)) T

Proof~ We first consider the case g9 > n+1: Define the rescaled solution iz (x) := u(ex)
and f(x) = ¢ f:(ex) which satisfies the equation

Aii —W'(@) = f, inBi c R'"L (3.7)
By condition (3) in Theorem 1.1, we have by rescaling

fﬂmgn—qowm?—qo =/ 8—Zqofq08|vﬁ|2—qogqo—28n+1

B B
&

1
3

:/ 790 fU0g|Vy [>T < Ay. (3.8)
By

Claim For any Bj(xg) C Bi_,, we have

Vil 28, (xg)) < C(co, Mo, qo, n).
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Proof of Claim By the hypothesis Bj (xo) C 31 _, we have B (xo) C 31 We choose a

smooth cutoff function ¢ € C2° (B2 (x)), [0, 1]) with ¢ = 1in B (xp) and |Vo| < 4.
By integration by parts and Young’s inequality, we obtain

/ IVﬁ|2¢2§/ ZCOIVﬁII¢|IV¢I+/ cod?| Al
B> (x0) B> (x0) B> (x0)

5/ 2co|Vﬁ||¢||V¢|+f oW (D)
B> (xp) B (x0)

+ / cod?I ]
B (x0)
1 . ~
< E/ |Vu|2¢2+/ 2c3|V¢|2+/ Co¢2Cco+/ cog’| f1.
B> (x0) B:(x0) Bs(x0) B> (x0)
3.9
. 9, 7 L 2] Y N S ,
We write coop”| f| = colfle® "|Vil|oo = x ¢~ 9 |Vu| 9% and use Young’s

inequality with exponent g to get

1 .oy 2 490
f cod?| F1 < 5—[ col fle® ™ |Vl
B> (x0) q0 J B> (xg)
490
) —1 _n _2 g1
T (g0 ) 281 o |Vﬂ|l 0
q0 B (xo)
el 8(go—1) a0 a2
< L ag+———r ¢ |Vid| 0T
3q0 q0 Ba(x0)
-2
40 — 44 %
8q0 q0 Ba(x0)
4C, (g0 — c™ 1 o
—De 40~
< 2D+ [ [ gwar] ™
90 4 B (x0)
q0

~ 2 _ _n
Here we used (3.8) to bound fBz(xo) cofe ! |Vii| and the fact that s’ @0 <

1 in the second inequality, Holder’s inequality with exponent 290=D ip the third

-2
inequality. And the fourth inequality is obtained from the third by choosing § to be

40,,(2%' We assume f Ba(xg) ¢? |Vii|? > 1,otherwise the desired bound holds trivially.
Inserting the above inequality into (3.9), we get

N 1 N
f |Vii|*¢? < 3 / |Vii|*¢? + / 2¢3IVpI* + / co$*Ce,
B> (x0) B> (x0) B> (x0) B> (x0)

4C, — Dl 1
+ MI\O + — max {/ &2 Vi, 1} )
90 4 B> (x0)
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Then by moving the first term % -/Bz(xo) |Vii|2¢? and the fifth term fBz(xo) &2 |Vii|?
on the right to the left, we prove the claim. O

Now suppose || Vit Lro (8, (xy)) < C(co, Ao, g0, n) (independent of &) for some pg > 1
(po can be chosen to be 2 by the claim above). For any B>(xo) € B1(0), we have by

Holder’s inequality

~ P00 P0490
1Al poso = | f|Potao=2
L P0+40=2 (By (x0)) Bi (x0)

10490
n—-q0 7_1 Po+a0—2
< g q0 |Vu|qo
- Po+a0—2
L 70 (Bi(x0))
Po+40—2
Po40 P0490
qap—"n 1— Po+t90—2
g 0 |Viil
rotap—2
L 9=2 (By(x0))
_ pot+dp—2
(ap—m)pQ qJ(r)—z 2 Pot0
—20 - Po+a0—
< Apo+qo 2€p0+q0 2, </ |Vﬁ|p0)
By (xo0)
1 02
L q0—n 5 P040
:A(‘)iO .e 9 </ |Vu|p°)
B (x0)
qo—)‘l
< C(co, Ao, g0, n)e 90 < C(co, Ao, g0, 1)- (3.10)

Remark 3.3 Here go > n will make the scaling subcritical and ensures a uniform

bound of || f I _rogo independent of .
L PoT9072 (By (x0))

- 1040

Thus f is uniformly bounded in L r0+%~2 (B (x¢)) independent of ¢. By applying
the Sobolev inequality to (3.7), standard Calderon—Zygmund estimates and finally
using the L°° bound of u in condition (2) of Theorem 1.1, we have

IVl pao < llall RS— T R
LT TP0RET (B) (xo)) W POT0EP0RET (B (xg)
< Cllull W Pod0
PoF40=2 (B (xp))
<CIfIl _roso _ + CIW @)l _rosg__
L2002 (By (x0)) L P0%90-2 (B (x0))

902

L gn 040
< CA(‘)I0 -g 0 . (/ |Vﬂ|”°)
Bi(x0)

+ ClIW @)l oo (B, (xo))
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a0=n

< C(co, Mo, q0, 1) <8 w0+ 1> < C(co, Ao, qo, 1).
(3.11)

g0="
We remark that go > n ensures the coefficient ¢ % stays uniformly bounded as

e — 0.
In the case —2%° > p + 1, by Calderon-Zygmund estimates we have

Po+qo—2
. a-n .
llael| 5 _podo < C(co, Ao, qo,n) e 0 4+ 1) < C(co, Ao, g0, ).
W™ P0F90=2 (By (x0))
The Sobolev inequality then gives | Vit~ < C.
In the case pOTq?—z <n+1,using go > n + 1, we have py < po;%’;. Namely
q0 q0 q0

po = po > po. (3.12)
Po+qo—2— poyiy (Po — poy2y) + (qo — 2) q0—2

_4q0 _
So we improved Vi from L0 to L2 Define p; = qf_gzpi_l. Using go > n + 1,

(n+1)(q0—=2) Piqo
qo—(n+1) > 1.€. Pitqo—2 > n—+ 1. The

Sobolev inequality gives Vii € L™. Soif go > n + 1, we get Vii € L™ . Rescaling
back, we get (3.3). By (3.8) where (qo > n+1 > 2)and Vii € L, we have f € L.

Standard Calderon—Zygmund estimates give

we iterate finitely many times until p; >

Vi n < |||l w2 <\ f
I HCO’F’%OI(BWCO)) < ||W2 0 (B (x0)) = ”f”LqO(BI(XO))

+ W' (@)1l 90 (B, (xp)) < OO

which gives (3.4).
Consider now the case n < gop < n + 1. For any

2n+1
p<—tD (3.13)
n+1-—qo
we have
q0 n—+1-qo
i —2—p; = p; -2
pi +qo Pzn+1 i nrl + qo0
2(n +1 n+1-—
:< (n+1) _5> DO 4 yo—2
n+1-—qo n—+1
I il (P
— o n+1
And thus
q0 q0
pi = ——Pi > Pi. (3.14)
pi+q0—2— piyiy qo — 5105
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B p;

=g,
So (3.11) increases the integrability of Vi from LPi to L%~ =10 And we can
iterate until (3.13) fails, namely

q—n
IVl 20en < C(co, Ao, g0, m)e © =< C(co, Ao, g0, 1), (3.15)

L™ T=40 (B (x0))

for any xo € B1_,(so that the condition in the claim above is satisfied). By Sobolev
&
inequalities, we then have for any xo € B1_,

C u n
il g oy < 120505,
< Cllul W 2n+1)
=0 (B (x0))
O n

< C(co, M, 0,90,n)e 90 < C(co, A, 0, qo, n).

Rescaling back gives

a0
e2||lu < |u < C(cg, Mo, qo,n)e 90 < C(cg, Mo, qo, 1),
|| ”c s, é)_ll ||C0,%(BL71)_ (co, Mo, qo, 1) < C(co, Ao, q0, 1)

which is (3.5). By (3.10) we improve the integrability of f in (3.10) up to

~ qa—"n
1A piao =Ce w
LPiT9072 (By(x0))

for p; < an(ranq)o — 4. S0if go € (n,n + 1], by choosing p; = 2(n + 1), we have
; i i 2 1 2 1
pigo  _ ._fl - pl = 2 ff:z ) _ 2+ )’ (3.16)
pitgo—2 B2y opzZyg ZebDd g 3

rearranging gives % > @ > % + 6o for some §p > 0. On the other hand,

if go > n + 1, using (3.8) and the uniform gradient bound of u in Theorem 3.2, we
a0 ="
have [| £l a0 (B, (xg)) < C& © ,whereqo > n+1 > ”“ + 8¢. Combining both cases,

for any go > n

qo—n

||f|| +50(B o) <Cg % . (3.17)
and
17 <Ce' g (3.18)
LT (B) o) T erEe ’
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Rescaling back gives the bound on f,

n

) < Ce @,
||f||L%1+50(31_s(xo)) B

O
Since in the case gg € (n,n + 1], we lack gradient bounds of u as in the case
qo > n + 1. In order to get better estimates of the discrepancy terms in the almost

monotonicity formula, we use some ideas from [8]. We will apply the following Lemma
a0
to (3.7) for ¢ sufficiently small such that Ce 0 < w.

Lemma3.4 (cf[8, Lemma3.2])Letn+1>3,0<68 <51 and R(S) = 3+17 w(d) =
872, where p1 = 5, p» = 35. If it € C%(BR), f € C°(Bg), Bx = Bg(0) c R*t!
where
—Ai+W @)= f inBg,
li] < co in Bg,

F <
L1, 25150, <

co is as assumed in condition (2) of Theorem 1.1 and b is as in Theorem 3.2. Then

|Vl i
—Ww)) =<Cs. (3.19)
By 2 +
_ op _ 26
And for T = 873, where p3 = —(n+1)2+(n—(i)-1)50+660 , we get
|Vl _ Vi ? _
—-W@@ | <ect + W)
By 2 + B 2
2 2
Vii 2
+/ [Vl (3.20)
By nflalz1-7) 2

2

Proof Let us consider the auxiliary function v which solves the Dirichlet problem

Ay =—f, inBg
21

v =0, on 0 Bg. (321
The auxiliary function will allows us to control the inhomogeneous part of the equation.
O

Claim The function v defined in (3.21) satisfies the bounds

2545 !

Il oo (Bgy < C§ 70« ], (3.22)
VY atrnn+14250) < Cow = C8§. (3.23)

L n+1-25() (BR)
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Proof Rescaling by %, we have

AYgp = fR, in B
Yr =0, on 0By, (3.24)

where ¥r(x) = ¥ (Rx), fR (x) = R? f (Rx). Standard Calderon—Zygmund estimates
give

_ n1+l
n+ S
=R Jr()“‘f“ n+1+80(8 )

o
RN o 51 g ) S IR g1

where 2 — - fl++1 i 0. Rescaling back yields
7 T90

212
11, w510+ RIVY Ity 4 RAIV2U

90 (B)
nl+] n+|
— p s [E38)
=R Ol el m+30(3)+R OIVYRl L0 5
n+|
8 2
+ RS +0||V YRl n+1+50(3)
nl+l
ntl g
=R 2 +380 ||I//R||W2.%+50(Bl)
n+l __n+l
< CR™+0R "oy
= CR*w
= C8%

Here we prove (3.22): by the Sobolev inequality since §g > 0 = % +80 > 5=,
we have

W llLoeBry = IVR I Lo (B)) < C||1/fR|| 204l

+50(B )
_ _n+l
<CR i‘2ﬂ+50 1)
25451l

=Ccs T« 1,

due to the choice of w, where we used W > n + 1. Here we prove the
gradient bound (3.23):

n+1-26p

VU atrnm+1+2s9) < RwFHZ ||V1/IR|| (1) (1+1+250)
L n+1-25() (BR) n+1-25 30 (BI)
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n+1-24(

-1
< CR" 2% Ill//R”Wz’%“O(BI)
n+1-28y _1 2— n-f1+1
< CR™MH® 'R T oy
= CR%
=Cw=C8.
O
We define ilg := it + ¥ € W25 +90(Bg). By (3.21), (3.22), iio satisfies
litg] < co+1,
Adlg = W' (@). (3.25)
We compute for any g > 0,
|Vii|? _|Viig — Vy|? i
T—W(u)=f—W(uo—lﬁ)

< (1 +ﬂ> |Viiol? + (l + 1) IV |? — W(iio) + Cly|
= ) 0 ) ,3 0 B

for some C > 0. Thus by (3.22) and (3.23), we have

[ (% )
B 2 +
[Viig|? . -, 1 1 5
5/ < —W(uo)) +/ (ﬂIVuol +C|1ﬂ|+<—+—) IVlﬂI>
B 2 + JB 2 B

~ 12 2—
ngl <_'V§°' —W(ﬁo))++C(ﬁ+R ";1+sow+<%+é)w2).

. . . n+1
choosin = w < and using our othesis on w : w =
By ch < §P2 and hypoth R 7 o
254 St
T :
2 ™0 By our choice of p; = 2, p» = 15, we ensure

B =5 <Cs,
2— n+l 2545 n+l
R g s < Cs,
1 1 1
S a)2=—870+835§C8,
2 B 2

for n > 2. Thus

~2 ~ 12
/ ('W —W(ﬁ)) 5/ ('WO' —W(ao)) +Cs.
By 2 + By 2 +
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To prove (3.19), it suffices to show

~ 12
/ ('V”°| —W(:Zo)> < cs. (3.26)
B 2 +

Here we estimate u. Define it g (x) = i (Rx) then by the Calderon—Zygmund estimates
we have

iRl g < CATRN g1 sy, + Cligl nn

T+50(B +50(Bl)

]
<C|[R +o || Al| n+l+50(3 )+1

2 :
s (v
<C <R ; (nw @)1, 251 150, T ||fnL%BO(BR)) +1

2— n-:lJrl rH’—l]+]
<C|R o (R0 )41

< CR%. (3.27)

By the Sobolev embedding

n+1-28
Vi EEIENEL ) < Rt 1| Viig|| Dt 142%)
L~ nF1=25 (BRr) L =259 (B1)
R 2
n+|—250_1
< Rut1+28) ”
<R Il gt
nt1-2% | _
< R™ % . CR? = CRFTH !, (3.28)

We define

fo == —Aidig + W (iip)
= —AY — Aii + W' @) + W@y + %W“)(mwz - éW“)(mw?’

— Wy + %W“)(a)wz 4 éW“‘) @,

since the derivatives of order 5 or higher of the potential W (u) = (1_;2)2 vanish. By

(3.22), (3.23) and (3.28), we have

n+l n+1 +50

n+l(s 75415 n+l
||f0||L°°(BR) =< C”WHLOO(B y = C T ) <C8 <1, (3.29)
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and

IV foll asni+i+2s)
L n+1-24 (Bgr)

< CLIVall w+ym+i2sy N liLer) + IVEN aepeti+2sy
L n+1-25) (BR) L n+1-25( (BR)
nt1-28 2 _ntl
<C (R"i‘“‘sg“ ‘R g+ w)
= C(Rza) + w)
< CR*w
=8 « 1. (3.30)

Since we have |itg| < ¢, we apply Calderon—Zygmund to (3.25), for any B;(x) C Bgr
and | < r < oo and we get

”u0||W2~’(B1 (x)) <C,. (33])
2
Hence by the Morrey embedding
VitollLoo(Bg_y) < C.
We define a modified discrepancy
|Viio|? _ _
§6 1= —F— — W) = Glio) — ¢, (3.32)

for some function G € C*®°(R) and ¢ € W22(Bp) that we choose as in the following
claims

Claim If we make the following choice of G,

_ ’ LW )]+ 8
Golr) =2 (1 * / exp (‘ / m‘“) "’) 639

then we have the properties

8§ < Gs(ug) < C§,
0 < Gjip) <4,

W) 4 5 (3.34)
- - up)| +
0 < —GY(itg) = G5(ilg) ———— <
5( 0) 3( O)Z(W(uo)—i-(S) =
Furthermore we have
Gg W — ZGg(W + Gg) > BG:S (3.35)
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and
Gj(itg) = C8°. (3.36)

Proof of Claim The first three equations of (3.34) follow from the direct computations.
For (3.35), since G5 > §, we obtain

W[+
WD (W + G,s)>

(W/-l- |W|+8(W+3)>

GsW' —2G5(W + Gs) = Gj (W’ +

v

Gj

(W +6)
Gy (W' +|W'|+6)
Ga.

IV

For (3.36), from the definition of G5 (3.33) and the bound |itg| < ¢ + 1, we compute

. ot W/ (s)| + 8
Gsl(ito) = Sexp (_ ./75071 mds)
—1 d
> Sexp (7 /4071 7 oW () +9)
014
_/;1 ds

= log(W(s) +8)

ds

ds — (co + 1))
> sexp (— (log(W(—co — 1) +8) — log8) — (log(1 +8) — log8) — (co + 1))

> §exp ( log(é2 )
= C8,

where we used W is an even function, increasing in [—1, 0] and decreasing in [—co —
1, —1]. O

Claim If we choose ¢ to satisfy the Dirichlet problem

—Ag = |(Viig, Vfo) — (W +G5) fol >0 in B,

¢=0 on BBg (3.37)
then we have
>0 1in B§ (3.38)
and
I9llwqs ) < C R 4y — ¢Sy (3.39)
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Proof Since we have ¢ > 0 in dB & by applying the maximum principle, we have
¢ >0in B§ which gives us (3.38). The estimates (3.31), (3.29) and (3.30) bound the
right hand side of (3.37), that is

Al e+no+1+280) = |(Viig, Vfo) = (W' + G%) fo| wrnmiirasy
L "3 (Bg) L =y (BR
2 2
< CR*w=C8%.
Denote by ¢r(x) = (p(%), then the Calderon—Zygmund estimates give
lellwioo ey = lerllwico)y = CllQrll , atve+i+asg
2 w” n+1-25) (BI)
< C”A(pR” (n+1)(n+1425p)
L n+1-25 (Bl)
5 128
< CR™ ™10 ||A@|l @+hm+1+25)
L % (B
2
n+1-28)
< CR T nFI$25) )
+1-2
_ C815+52+1758
and hence we obtain (3.39). O

We choose ¢ according to (3.37). Notice if £; > 0, then we have Viig # 0 and
- | R
W (ig) < §|Vu0| . (3.40)
The case £ < 0 immediately gives us our desired estimate since we are seeking an

upper bound.

Claim For the choice of G as in (3.33) and ¢ as in (3.37) we have the differential
inequality

8 4 1t1=2% 6 4
At > —C (1 + W) <|V§G| 1+ RY Ry a)) +C(° + 8% (3.41)
o

in Bx N {§6 > 0} N {Viip # 0).
Proof We compute the Laplacian of the modified discrepancy
AEG = |VZio|* + (Vig, VAig) — Ap — (W' + G)Aig — (W + G| Vi)
= [VZiig|* + (Viig, W' Viig — V fo) — Ap — (W' + G')(W'(iio) — fo)
— (W' + G")|Viio|?
= |V2iio|* — (Viio. V fo) — Ap — (W' + G')(W'(iio) — fo) — G| Viio|*.
(3.42)
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By differentiating (3.32), we have
Vég = V3iigViig — (W + G')Vig — Ve,
and thus

V2| Viiol? > |V%iigViio |
> |Vég + (W + G)Viig + Vol?
> 2(W' + G') (Viig, V(G + @) + (W' + G)?|Viig|*.

Dividing by [Viig|?, the first term in (3.42), |VZiip|? , is bounded as follows

o 2WHG)
Vi) = ViR (Vi Ve + ) + (W' + G

The last term in (3.42) is
Vit = 2(66 + W + G + ).

Substituting these into (3.42) and rearranging, we have in Bg C {Viiy = 0}

2W' +G) _ .
At — ————"(Viig, Vég) +2G"ég
Vi
2W' + G’
> (W +G)Y? —W W +G)—2G"(W+G) + (——H(Vﬁo, Vo)

|Viig|?
—2G"9p — Ap — (Viig, Vo) + (W + G fo
2(W 4+ G

Vol (Vilg, Vo) —2G"p — Ag

— (G/)Z + (G/W/ _ 2G//(W + G)) +
— (Viio, V fo) + (W' + G f.

We choose G to be (3.33) which allows us to apply the estimates (3.34) and (3.35) so
that &g satisfies

2W' + G
[Viig|?
+(G)? 4 8G5 —2GYp — Ap — (Viig, V fo) + (W + G) fo.  (3.43)

Aég > (Vig, (V&G + Vo)) — 2G5&6

in Bg N {Viig # 0}. Furthermore we have by (3.40)
|W/(ii0)[* = liio|*(1 — |iio|*)* < CW (iig) < C|Vio|*.

@ Springer



Quantization of the energy...

From (3.34), the bounds on Gy and its derivatives, we get

W' + G (i) Viig| _ |Viiol> + 8| Vi 8
I( ‘i)( 0)Viig| < 2[Vito| _ [Vitol <C(l+—]). (3.44)
Viig|? |Viig|? IVito]

Substituting in (3.37), (3.39), and (3.44) into (3.43) and using the fact that G” < 0,
we have

8
Afg = —C (1 + W) (IV&| + Vo)) + (G5)* + 8G5 — Ap + Ag
0

n+1-289

8 —
2 —C 1 + - IVSG' + R4 n+1+250w + (G:S)z +8G:s
Vit

Thus applying Eq. (3.36) in B§ N{&c > 0} N {Vugy # 0}, we have (3.41)

8 _n+]—250
A%z—co+ﬁ700wm+ﬁnmmw+c®+ﬁy (3.45)
uo
[m}
We define
n :=supég (3.46)
B
and consider two cases :
casei) n:=supg & < 4. Since
|Vito|* - .
¢ = 5~ W(ug) — G(ug) — ¢ <6,
by (3.34) and (3.39) this implies
Vil : 4- iz
>~ W(ig) <8+ G(g) +¢9 <5+ C5+CR" "'+,
_ n+1-24) 154.57+1=2%
Our choices give CR™ "1*20w = C§ n+1+200 < C§ so
|Viio|* 3
5 W(up) < C

which, after integrating proves (3.26).
caseii) 1 :=supp ¢ > § > 0. We choose a cutoff function A € Cg(B R ) satisfying

0<i=<1lA=1lonBgand |ViA| < CR™J for j =1,2. Then Axg € B such that

(h6)(x0) = max | (66) () : x € By} = 0> 0.
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By (3.31) we have £ < C for some C(cg, Ao, Eog, n) > 0in Br_1, and thus
Ao0) = &
Moreover,
Vit (x0)|* > 2£6(x0) = 2(0EG) (x0) = 21 > 28 > 0.
Since xg is a critical point, V(A&g)(xg) = 0, and we get
V&G (x0)| = A(x0) ™' [VA(x0) &G (x0) < C(Rm) ™"
At a maximum point xg, the Laplacian of the function 1&g satisfies

0> Aég)(x0)
= Mx0)AéG (x0) + 2(VA(x0), V&g (x0)) + Ar(x0)éc (x0),

and thus

AEG(x0) < M(x0) M (CIVA(x0)IVEG (x0)| + [AA(x0)|1EG (x0)])
<cn! (CR_I(Rn)_l + CR_2>
<CR '+
<CR 7 'a+shH
<CRZp~'s7, (3.47)

since § < 1. Combining (3.41) and (3.47) we have

n+1-28g

) _ntl=2%
CRp7 67 > —C (1 + —WO(XO)') (wsm + R w) +C6°+5%

S _ntl1-28)
>C |:<1 + %> ((R;7)1 + R4 nT1128) a)) + 54i| )

Thus the last term above is bounded by

nt1-259

5 <C (R*anla*‘ + (Rn)’l) + CRY w35 .

_ n+1-24
By our choice of p; =2, pp = 15, we have R "*+%0@» = R

n+1-28)

15+5 35, <« 8% So

st < C (R + (R,
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dividing both sides by §*n~! gives
nsc(R—%—%—1+R—%—ﬁ
< Cé.
Namely, assuming (3.46) or not, we have
§c < Cs,

and thus by (3.39)

|Viig|? . .
7~ W (i) = &g + Gs(ig) + ¢
4128
E C(S + R n+1+250w
<cs +815+5%

< C6§.

This proves (3.26) and as a consequence (3.19). If [#] > 1 — 7 in B%, then (3.20)
follows because the left hand side is less than the second term on the right. So we
only need to consider the case there exists xo € B ! with u(xg) < 1 — t. By the
Sobolev inequality and Calderon—Zygmund estimates we bound # in the Holder norm
as follows

llall )25 < llall 5 ns1

, A=+
CO’ (n+1)+5( (By) wr 2t 0(B1)

< C " n F n i n
<¢ (nw O, 25ty ) I 2520+ ||u||L;1+SO(BI)>
C.

=<
~ ~ 2,
Therefore |i] < 1 — % and W(u) > TT in B w+n+syg C B1. So
(F) ™
(n+1D)[(n+1)+8p] 5
. 2 rt \ ™ (n+1)%+(n+1)89+48¢
Wm)> — | — =Ct 20
B 4 2C2
2

280
(n+1)2+(n-+1)80+680 °

|Vii|? -
/l< —WWO <Cs
B 2 n

2

By our choice p3 =

(1+1)2+(n+1)89+65
E CT 250

@ Springer



H.T.Nguyen, S. Wang

(112 +(n+1)89+45y
<Ctt 20

<Ct + W) ),
B 2

1
2

which proves (3.20). O
Next we derive energy estimates away from transition regions.

Proposition 3.5 ([8, Proposition 3.4]) For anyn > 2,0 < § < 8§, ¢ > 0,u, €
C*(Q), f: € CO(Q), if

e Aup + W/i“” = f ingQ
and

Qcc,0<r=<d@,9Q)
then

W (u W (u,)?
/ <8|Vu8|2+ (ue) n (ue) >
{lug|=1-6}NQ’ € €

5 8

§C8/ s|wg|2+csf |f€|2+C<—+—2> eL"T(Q)
{lug|<1-6}NQ2 Q r r

Ce

. W (1),
= Jlue|l=13nQ

(Notice the power of f. in the above inequality will still be 2 instead of % + &o.)

Proof Define a continuous function

W'(t), forlt]>1-36
g(t) =10, for [t] < 19
linear, fort e [—1+35, —ty]U 19, 1 — 48],

where t) = % is chosen to be the number in (0, 1) such that W”(ry) = 0. Clearly

lg| < |W'|. For n € C}(Q) satisfying0 <n < 1,n=1on and |Vn| < Cr~!, we
get by integration by parts

W' (ug
'/Qfsg(“s)nz = /S; (_SAus + iu )> g(ue)nz

= / eg (ue)|Vue|*n? +2 f eg(ue)n(Vue, V)
Q Q

+f We) o o2,
Q

&

@ Springer



Quantization of the energy...

(3.48)
The left hand side of (3.48) can be bounded by
e 1 e
/ fogu® < 5] Ifs|2+2—/ g < —f ol
Q Q e Jo 2 Ja
1
+g /Q W) g o)’ (3.49)

By the definition of g above, we have

lg@)] < |g(1 =8 =W'd—-235) < Cs,

g =&l _ g =9

=< = (s,
1-46 1 -6

lg'® <

for |f] < 1 — 4. Applying these estimates to the second term on the right hand side of
(3.48) we get the bound

'2/ Sg(us)rI(Vue,Vn)‘
Q
< 25/ enlVue|lVnl + ’/ eW'(ug)(Vug, V)
{lue|<1-6} {lue|>1-8}
< C(S/ e|Vup|? + edr 1 LMH(Q)
{luel<1-8)
+ r/ e|Vue|®n® + CST_lr_zf W (ug)?, (3.50)
{Jue|=1-8) {lue|=1-8)

fort > 0.As g'(t) = W”(t) > Cy > Ofor|f| > 1 —§, we obtain from (3.48), (3.49)
and (3.50)

1
Cyw / eV | + — / W (ue) g (ue)n?
{ue|>1-5) 2e Jo

<Cws Vi ? Vi 1202 € 2
=Cw elVue|”+ 7 e|Vueg|"n” + | fel
{lug|<1-6} {lue|>1-8} 2 Ja

+ ((Sr*1 + C32171r72> £ Q) + Cet’lrd/ W (ug)?.
{lug|>1}

Choosing 7 = CTW, and using W () < Cyw W'(r)* for |t| > 1 — § we get

W (u W' (ug)?
/ <€|Vu8|2+ (ue) " (ue) )
{lue|=1-8}NQ € 2

W/ 2
< c/ <g|ws|2 + ﬂ)
{lug|=1-8}NS €
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=< C5/ e|Vug|* + Cs/ | fol> + Ce (8r*1 +82r*2) (@)
(e <1-3) Q
+ Cer™ f W (ue)?,
{luel=1)

which completes the proof. O

The following proposition shows for all ¢ sufficiently small, if u, satisfies the inho-
mogeneous Allen—Cahn equation then we can control the last term f{l ue|> 1} W' (u)?
in Proposition 3.5 by applying the proposition inductively. B

Proposition 3.6 ([8, Proposition 3.5]) Forn > 2, & > 0,u, € C*(Q), f. € CO(Q), if

W/(“s) N

—eAug + fe inQ

and Q' CC Q2,0 <r <d(Q, Q) then

/ W = Gt +r2ede [
{luel =1} Qi
+ Ckr’zkey“/ W (1)
{lug|=1}NQ
forall k € Ny.
Proof For any k € NT we choose a sequence of open sets
Q fori =0
Q) = {x € Qld(x, Q) < ““T’”} fori=1,. k—1,
194 fori = k.

This sequence satisfies
Q' =Q, CcC_ CC..CcCQH=2,

with d(2;, Q;_,) = ¢ fori = 1, ..., k. Applying Proposition (3.5) with § = 0, we
have

/ W (us)? < Cs? f fol? + CR2 262 / W (ue)?,
(el 1102 /

Q,‘_l {\uslzl}ﬂﬂ;_|

fori = 1, ..., k. The conclusion is obtained by applying the above inequality induc-
tively k times. O

We conclude with the following integral bound for positive part of discrepancy
measure.
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Lemma 3.7 ([8, Lemma 3.1] for all n) Letn > 2, 0 < § < 81 (where 81 given as in
Lemma 3.4),0 < & < p, po := max{2, 1 +8Me}p for some large universal constant

M. Ifu, € Cz(BpO), fe € CO(BpO) satisfies (1.1) in B, (0) then the positive part of
the discrepancy measure satisfies

,,,/ (s|ws|2 W(m;))
o _
B,, 2 & +
Vus>? W
< Comp f (8' wel” (”5)>+ca—Mep—" f £l
By, 2 £ B

P0
w’ 2
F s Mpn / Wwe)” | ¢ (3> 5.
Bpom{‘uﬂzl} € P

Proof We prove the case 0 < ¢ < p = 1. The case for other p > 0 follows by
rescaling to p = 1. For 0 < § < §; we choose R(§) = 5% and w(§) = C,872 as in
Lemma 3.4. Let {x;};e1 C B1,I C N be a maximal collection of points satisfying

min |x; — x| >
i#] ’

| ™

Since ¢ < 1, we have

Bi(0) C Ujer By (xi) C B3 (0),

D X8 < Caxr0)s

iel

1
ZXBzRg(m < CaR" A By ke 0)-
iel

Fori € I and x € Byg, we define the rescaled and translated functions as

i (x) == ug(x; + €x),

fi@) = e fe(xi + ex),
which satisfy the rescaled equation
—Aiij + W' (i;) = fi, in Byg(0). (3.51)
For u;, f, to be well-defined, we choose M > 5n + 6 and §; < % so that

Xi +ex € Biyage(0) C By 51, (0) C Byy(0).

We decompose the index set I into

I = {i €Ll fell ug

ntl
1480 n+1
<& 2 w, u.l —1 1 3y < Cpe s
£ +§0(32Rs(1i)) Il (lue| )Jr“L (Bage (xi)) ® }
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L:=1I\1.
Fori € I, we have

<w < Cy,

x _ntl_ g
Il fill =& 2 Pefell

+1 = 41
LT 0By (0)) LT 0 (Byge (x1))

Il = Dl Bogey =& el = Dl Byge i) < Co-

By the condition |lu||L~ < cg in the condition of Theorem 1.1, and choosing C,,
sufficiently small, we have

liillLoogry <14+ C-Cyp < 2.
Applying Lemma 3.4 to ; gives (with p3 from Lemma 3.4)

~ 2 ~ 12
[ (55 vi) <o [ ("5 v
B + B

1 1
2 2
/ Vit |*
+ .
By Ol 21-5) 2

Rescaling back, we get

2 2
/ (8|V'48| _ W(“s)) < C5p3/ (5|Vus| + W(us))
Bs (1) 2 e /4 Bs (1) 2 €

/ &|Vue|?
+ .
By ()N{luez1-8) 2

Summing over i € I and noticing B (x;) are disjoint, we get

2 2
Z/ <8|VM8| B W(Ms)) - C81’3/ <8|VM8| n W(”s))
Bs (x)) 2 3 + B30 2 2

iel

e|Vue|?
+C
B3 ON{uc|>1-8} 2
2

2
§C81’3/ <e|we| . W(ug))
B2(0) 2 €

4 ce / o2
B> (0)

+ Ce (5 + [ W/(ug)z) , (3.52)
By (O)N(lue|=1)
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where we used Proposition 3.5 in the last line. Since forn > 3 (the n = 2 case requires
So > %, but has already been addressed in [8])

1+l s,

W ()? > 421+ 0)*(1 —* > Cwt*(t] — D? = Cw(lt] — 1,2

Thus for i € I, (at least one of the bounds in I} does not hold), we have

- ntl g _ e
cws/ (i) =7 o 2f 7
Byr(0) Byr

< C/ W (i) + w2 12
BogO)N{liij|=1) Bk

By elliptic estimates applied to the rescaled Eq. (3.51), we get

/ |Vii;|? < é/ (W/(ﬂi)z +i? 4 f,?)
B B

3
=C [ (W@ + )+ Condcy'co

Bag

< C/BZR (W@ + o072 f7).

where we used ||i; ||z~ < co. Rescaling back gives

W' (u,)?
/ e|Vug|? < c/ ( (1) +8w_2|fg|2>.
B% (x;) BoRe(xi) £

Then summing over i € I, we get

3 e =2
7 1

W (us)? _
(Tf + e 2| fol?
iel ieh Boge (xi)

W/ 2
= Cr™ / ( oy Swzlfsf)
Bi42re(0) €

W/ 2
<5 M f ( @e)” 8|fs|2> . (353)
By, \ €

for large enough M sinceboth R = § P! and w = §2 are fixed powers of §. Combining
(3.52) and (3.53) we get
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/ (e|ws|2 B W(ug>>
B 2 & +

-y s|wg|2 LUCOANS e Ve |?
Be (x;) & Be (x; 2
5 i + iel % Xi)

iely

2
§C51’3/ (a|we| N W(u8)>
B2 (0) 2 €
+ Cs/ |fel*> 4 Ce (5 +/ W’(u5)2>
B>(0) By (0)N{Jug|>1}

W' (u,.)?
+CS—M/ ( (1) +8|st2>
By 5-m.(0) €

Vu? W
5051’3/ (8| uel” | (u8)>+C85+C85_M/ VAL
Ba(0)

2 € Bmax(2,1+a*Me}(O)

W/(ue)z
—8 .

+cs™™

Bmax(Z, 14+6—Mg) ©

This completes the proof for p = 1 and rescaling gives the cases for other p > 0. O

As aresult of these, we have the L' convergence of the positive part of the discrep-
ancy measure as € — 0.

Lemma 3.8 Ifwe consider §; = &; 1 — & _ the decomposition of & into positive and
negative variations then

&+ —>0 ase— 0.

Furthermore this shows & < 0.

Proof For By, = B,(x) C ' CC 2,0 < 3§ < §pand 0 < & < ™ then applying
Lemma 3.7 we have

2 2
/ <€|Vug| B W(ue)) < C81’3f (8|Vu5| n W(ug)>
Bp 2 € + sz 2 &

+ CcS_Ms/ | fol?
By

+ CS‘M/ LCD
Bpn”us‘zl} €

e (f) 5"
o

(3.54)
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Proposition 3.6 gives us
/ W (ue)? < Cr(1 4 p~e?)e? / | fel?
{|u6‘21}ﬂBp BZp

+ Ckpfzkgzk/ W ()
{l

ug|=13NBy,

for all kK € Ny. Choosing k = 2 and applying the bound

/ W' (ue)* < C(Q)
{lue|=13NB2,

and inserting these estimates into (3.54), we get

2 2
/ <8|Vu£| _ W(“s)) < C3p3/ <8|vue| 4 W(“s))
Bp 2 1 + sz 2 &

+C( Mg +52)/ | fal?
By

rCosMS3 4 c <3> 5"
o

By the Holder inequality with exponent go/2, we estimate

f 2
s[ |fg|2=82/ ( : >8|Vug|2
B2 B2 |8|Vu€|
<e / €|V, / €|V,
By )2 B2

e Vg |
< &2C(Ao, Eo), (3.55)

and obtain

2
/ (’”Vz”s' _ W(”e)) <GP 4 G5 M2 1 G2 1+ o Med 4 G
B,7 & +

8.

IA
(@)

Letting ¢ — 0 we get & 4 (B,) — 0. O

4 Rectifiability
We will proceed by proving upper and lower density bounds for the energy measure.
Combining the estimates obtained in the previous section, we get an upper bound on

the density ratio of the limit energy measure.
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Theorem 4.1 If we consider Q' CC Q and ro(2') := min {1, M} then for all
x0 € Q',0 < r < rg there exists a function ¢ (&) with limy_, ¢ (&) = 0 such that

¢ (e)

o

r 7" e (Br(x0)) < C (Ao, ) + 4.1

Letting ¢ — 0 we get

r ™" 1(By (x0)) = C(Ag, 2,

2
where u = limg_.( (e is the weak-* limit of e = (% + %) dx in the sense
of Radon measures.

Proof For the sake of simplicity we set xo = 0 and set B,(0) = B,. By the almost
monotonicity formula (3.1), Lemma 3.8 and Holder’s inequality

d (1e(B,) 1 £ 2
1

- W/B (x, Vu) fe. 4.2)

P

We estimate the last term above as follows

1 Je

/Bp(x,w)fs p"+‘/3 “x’w)"swm
l
p" Jp,

Al
p" \Js,

1
pn+1

e|Vul?

IA

P
Je
|Vl

q0—1

q0 % q0
e|Vul? (f 8|Vu|2)
By
1 i
( 1 ),,0 ( q0 2) a0
<|(— f e|Vu|
o B,

q0—1 .

| B q0—1
— 2ue(Bp)) 1
|:pn:| ( M ( P))

[t
< C(A)p (M) "
P

n

MS(B,O)>

fe
e|Vul|

IA

Je
e|Vul

(4.3)

n

< C(Ag)p @ (1 +

_1
where we used the inequality a' "W < 1 4 a which holds for all a > 0. Inserting this
inequality into (4.2) and discarding the positive second term on the right had side, we
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get

i e (Bp) _i te(Bp) . 1
dp<1+ o" >_dp< o" )2 156 (Bp)

—C(Ag)p (1 + MS(BP)> . (4.4)

n

qo—n

d _n B
a [exp( q0 C(A()),Ol fio) (1 + e ( p)):|
dp qo—n p"
_n B
> _exp q0 C(A()),Ol ) &e( ,0) '
qo0 —n pt!

Multiplying both sides by exp <f C(Ao)p_%dp> = exp (q—OC(Ao)pl_%> we
have

Integrating from r to rg gives

-2 B, _n B
exp( q0 C(Ao)ro qo) (1 + Ms(nro)) —exp( q0 C(Ao)rl qo) (1 + Ms(n r))
qo —n T qo —n

0 r
"o _n B
> - / exp (—q" C(ao)p' %) el
r qo —n P

1 ro B
> —exp ( 40 C(A())VO q(,) gE.“r( lp).
qo —n r Pt

Namely
N ro
exp( q0 C(Ao)ré 1]0) <1 T /Ls(fm)) _ e (Br) > —C(Ao, Q/)/ gs,#—({ﬁ’p)
qo —n o rr oo Pt
ro
> —C(Ao, @) / gs**(ﬁ"’), 4.5)
r P

where we used exp (qgﬂn C(Ao)r17%> > 1 for r > 0. Passing to the limitas ¢ — 0

and using Lemma 3.8, we have

w(Br)

rl’l

< C(Ao, ', 1, qo).

Next, we obtain estimates of the discrepancy measure for each ¢.
iti = oY 1 -1 -M
Proposition4.2 Let § = p¥,e < p <rfor0 <y < < 3, we have § e <

M
pl=Mv < 1. For B3 ,1-5(x) CC Q, we have

P e L (By(x) < CpP 7" o (Bop(x)) + Crep M7~ / o
By,1-p (x)
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+ Cpep? 2 1+/ W (ue)? ). (4.6)
{lue|=1)NBy,1-p (x)

Proof For0 < y < % < %, by choosing M < p!=M7 < 1 we get max{2, 1 +

8§ Mg} = 2. Therefore substituting § = p? into Lemma 3.7 we have

e e elVuel>  W(ue)
p" e 1 (By) =p7" 1/ < SR
By (x) &€ /4

2
A / <e|wa| .\ W(ua)
Bap(x) 2 €

+ CepMy—n~] / | fol?

B2y (x)

+ Ce~lpMy—n-—l / W (ue)? + Cep? 2.
Bop (x)N{lue|=1}

On the other hand we have by Proposition 3.6 with r := d(B2,(x), 9B3,1-5 x)) =
3p'7F —2p > p'=F

/ W' (ue)* < Cr(1 4 p 1P g2K)e2 / | fel?
{lug|=1}NBy, B3p1,,3

i Ckp—zk(l—ﬁ)gzk/ W ().
{lue|=13NBy 1-p

Substituting this into our above estimate, we get

Vu > W
:O_n_lse,Jr(Bp)fC,Omy_n_l/ (Sl be| + (u€)>

32p<x) 2 £
4 Crep My / I
By, 1-p ()
+ Cs—lp—My—n—lékkaﬁ—2k82k/ W/(u€)2
{lue|=1)NBy 1 (x)
+ Cep? ™2
< CpPY =" (Bap(x)) + Crep Mr—n-1 / | fel?
3301,3 (x)
+C gpy—2 +8—1p—My—n—182kﬂ/ W/(Mg)z
{luel=1)NBy 1-p (x)
< CpPY N (B () + Crpep 71! / 2
By ,1-p(x)
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+ Cpep” 2 1+/ W ue)?),
{Jue|=1}NBy 1 (1)

y—2+My+n+1
2p

where we have chosen —My —n+2kf+1 >y —2ork > sufficiently
large. O

In the following theorem we prove the density lower bound for the limit measure.

Theorem 4.3 There exists 6 > 0 such that for any Q' CC Q and r|(Q') < szm)
sufficiently small, we have

r" (B (x) = 6 — Cr?,

forsome y > 0, and all x € sptu N Q' and 0 < r < ry. In particular,
0

0 (W) = —

wp

for p-a.e. in Q2.

Proof Without loss of generality, we assume 0 € sptu N Q' and want to prove a
density lower bound at 0. We first integrate (4.4) from s to r.

(B B [T
te(Br&) _ pe B / e (B (0)dp

B /’C(Ao)pf% <ug(Bp(x)))
s el

By (4.6) in Proposition 4.2, the discrepancy term

rl’l s}’l

a0—1 4.7
40

- / P e (By(x) = — f CoP ™" e (Bap(x))

’
- / Crep~Mr—n-1 / | fel?
s 33,317506)

,
—/ C,gepy_z(l +/ W/(ug)z).
s {lue|=13NQ2

4.8)

By the e-Upper Density Bound (4.1) we get

" pr—n _ |7 an pyy—1 He(B2p(x))
fs p e (Bap(x)) = / 2 eyt LeCor)

> —/r 2" ppav ! <C(Ao, Q) + ‘iff))
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> —C(Ag, Q) (,,173}/ — SP3V)

- Ll (rP3v = — gp3vTm)
p3y —n+

The last term in (4.8) may be estimated as follows

r t
—/ Cpep? 2 (1 +/ W/(ug)z) > —cﬂ/ p? tdp < —Cp(r? — s7).
s {lue|=1)NQ s

Using the bound

q0—1
<u8<Bp(x>>>% S (1 +M8(Bp<x)>>
P p"

and the e-Upper Density Bound (4.1), we get

" m r n
—/ C(Ag)p~ (%’;m)) Y —/ C(Ao. 2)p W0 (1 +%ﬁ(9‘)))
s 14 s 0

" n

- _/ C(Ao. Q)p (1 +C(Ao, Q) + @)
’ p

> —C(Ao, Q) (H*% _ Sl,%)

— C(Ao, )¢ (o) (rl‘"‘% - sl‘"‘%) ,

Thus, plug all the above estimates of terms in (4.7), we get

e (Br(x)) _ e (Bs(x))
r” sn

> —C(Aog, Q/) (,,Pw _ spsy)

_ ¢(e) (rmyfﬂ _ smyfn)
p3y —n+1

,
- f Cpep™ M7= / [fe? ) dp = Cp(r7 = 57)
s Bhl—ﬂ(x)

= C(ho, ) (r' 70 5" )

— C(Ao, Q) (e) (rl‘”‘ﬂln - sl‘”‘%) . (4.9)

Next, we estimate the term [ Cgep~ M7 —"~1 (fB3 @) |f8|2) dp in the following
3p

claim. O

Claim There exists x € B% such that

r

67" e (Be(x)) = 26 > 6p > / " Cpep My / |fe? ) dp,  (4.10)
By ,1-p (%)

&
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for some universal constant 6y > 0.

Proof of Claim Consider a point x € B% with |us(x)] <1 —17,forsome 0 < 7 < 1.

We can assume & " g (Bg(x)) < I(otherwise the conclusion automatically follows),
and so

8_”_1/ ul < 8_”_1f cg < cgwn+1,‘v’p > 1.
Be(x) Be(x)

From Theorem 3.2 we have

1
e lull 1 =C,
"2 (Bi-e ()

and thus

T
|ué‘| = 1__’ inBrzs (x)
2 a2

So since W(t) = (1 — %)% = (1 + 1)*(1 — 1)? we find in B 2, (x)

4c2
2 2T
Wue) = (1 + |ue)*(1 — ue))” > vy
+1 2
_ _ W(ue) ne1 e\ 1
e M (Be(x)) > e " N SR R i
e (Be(x)) > /B w e Z i | 162 Z
ac?
> Cpr¥ 4.11)

Denote
200 := min{1, C, 2"},

then for x € B% N {lug] < 1 — 1} the first inequality in the conclusion of the claim
holds. Applying the error estimates Proposition 3.5 with the choice Q' = B: and
Q= B%, for sufficiently small t

e (B = e (By 0 {luel < 1= 7)) + pe (By 0 el = 1 - 7))
< Cue (B% N{lug) <1— r}) + Ce/ | fol> + Ce(zr + 227"
Br
2

+Cr 2.
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Notice by (3.55), the second term ¢ fBr/Z | o] < €2C (Ao, Eo). So the last three terms
are at most of order O (e). Hence, as 0 € spt u, by passing to limit ¢ — 0 we have

0 < w(B:) < liminf e (Br) < liminf u, (Bg N{lus]l <1 — ‘L'}).
4 e—0 4 e—0 4
And in the set {|u;| < 1 — t}, we get by Lemma 3.8 that
liminf e~ L (Br N {lug] < 1 — 1))
e—0 2

w
> 1iminfg—1/ (;‘E)
e—~0 Brnflugl<i-t}) T

]
= liminf = (e — &) (B N (Jue| <1 -7}
e—~>0 T

L N

> s timinf e (By 0 {luel < 1= 7)) —liminf —&.4 (B N {lue] < 1— 7))
n(Br)

> 5— > 0. (4.12)
T

(This guarantees we can always choose such a point x € B% with Ju,(x)] <1 —r7if
0 € spt u.) To complete the proof, we define for 0 < p < ry the convolution

1 1
e p(x) 1= p " (m * glfe|2> x)=p""! /B = £l

p(x) €

with

1
l0ep (@)l ga ) < / S = Clo, Eo) < .
2

1
2t

by (3.55). Denote by w.(x) := f0r1 wg, p(x)dp, we have

llwe ()21 (B, ) = r1C (Ao, Eo) < 00.
2

Now we can estimate the term on the right hand side in the claim, by a change of

variables r = 3p!~#. Here B := B(r}) is chosen small enough such that 3 (%‘)l_lS <

r1. We calculate, setting t = 3,01_/3

i 1
/ p~My=—n-l (/ ~Ifel* | dp
& By1-p(x) €
L6, )
- 3gl-p 3 B;(x) & fs 3
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3’ —My—n—1+p 1 5
5cﬁf I f Lar) ar
3el-B B, €

1

ri\1-8

3(7) —My—n—1+8 +(n+1)

< Cg t~ 1B we ¢ (x)dt.
3egl-p '

We find

My —n—1+ My —n
4 Poynsy="Mr—rb _

0
1-8 1-8

—My—np
sothat? T-F  is adecreasing function. Hence we get the bound

5 i 3 My g
/ p—My—n—1 / “1fel? ) dp < Cﬁ/ (3817’5) we,r (x)dt
& By,1-p(x0) € 3el=f
r1
< CﬁSiMyinﬁ/ ws,t(x)dt
0

< Cpe ™ Mr="P . (x).
(4.13)

Choosing My < % and B sufficiently small so that My + nf < %, and applying

the weak L' inequality for the distribution function and (4.13), we get for some C 8
depending on g

i i
o (B; n {/ Cpep My~ ([ Ifsl2> dp > 90})
& 33/,17,3(16)

< £t (B% N {Clgé‘zé‘_My_n'ng(x) > 9_0})

< Cﬂ82—(My+nﬂ)9'(;1 ||ws||L1(B%)
< Cpe® M HBG M w, () 113, )
2

< Cpe?~My+BG 1 (A, Ep)
-0, (4.14)

as ¢ — 0. This guarantees we can always choose such a point x” € B : with

]
[ et ([ iR )ap <df
e By, 1-p(x")

We can thus combine (4.12) with (4.14) to find an x € B so that the upper bound
and lower bound in the claim holds. O
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With this claim, we proceed with the proof of the density lower bound. For the

obtained from the claim, we denote by s := sup{0 < p < :T : w > 29_0}. And
it is obvious from (4.11)

By this choice of s, we have

e (Bg(x))
g
Ms(Bp (x))
o

> 20,

- r
< 26, ¥ e[,—].
= 200.Vp € |5, 7

Substituting 7 for r in the integral form of the almost monotonicity formula (4.9), we
get from (4.10) the following density lower bound

|:Ms(35(x))i| e (B (x))
2 | = —
() (3)

HEE e (5) ) -

_ r/4
x ((g)” ”_svw") —f Cpep~Mr=n-! (f |f8|2> dp
s B3p17/3(x)
~ r\7v
=C((3) -
- n
— C(Ao, Q) ((2) © _s'*%)
1—-n—21 n
— C(Ao, ) (e) ((2) " —s‘*"*%>

> 200 — C(Ag, )" — C(Ag, )p(e)r " 0
— C(Ag, ) (e)rPY = — 5,
> G0 — C(Ao, Q)" — C(Ao, )p(e)r "1 — C(Ag, ) (e)rPY "+,

where y, := min{p3y, y, 1 — q”—o} > 0, and ¢(¢) — as ¢ — 0 by Theorem 4.1. As
B%(x) C B;(0) we let ¢ — 0 and get for some y;,, > 0

B B e (Br(x)) -
H(Br) > limsupM > lim sup M e > Cpbp — Cpr.
r’ e—0 rt e—0 rt

Approximating ' /' r we get for 0 < r < ri(Q)

B, (0 _
w > cobo
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and hence

n 0 :
0, (n) > o M-a.e. in 2.

n

which completes the proof. O
Before proving the rectifiability of the limit measure, we need to show that the full
discrepancy vanishes as the limit ¢ — 0.

Proposition 4.4
&l = 0 & [§]=0.

Proof We first prove the lower n-dimensional density of the discrepancy measure
vanishes. Namely

ISI(Bp)

0 (€D —1 =0.

If not, there exists 0 < pg, 8 < 1 and B, C £2 such that

B
P

Multiplying both sides of (4.2) by an integrating factor and integrating from r to pg
as in the proof of Theorem 4.1 we get

C(Ag, ) (L%) C(Ao, Q)</~’Lé‘( r)) > _C(Aq. Q)/ ES(BrO)dp,

00 n+1

Using Lemma 3.8, thatis &, = 0 and Theorem 4.1, we have when passing to the limit
e—0

C(AO,Q)>C(A0,Q)/I) dp

= C(Ao, Q)/po l‘g'(Bp) dp

n+1

£ (Bp) = ClAo. Q)/""é (Bp) +§+(By)

n+l

> cn ) [
-
— C(Ag, )5 1n (@) .
r
This gives a contradiction by letting » — 0. By the density lower bound Theorem 4.3
and differentiation theorem for measures, we have

B
E1(By(x)) _ lim inf , ¢ IEI(p ()

By ()~ tim sup,_ o P50

D [£](x) = lim inf
p—0
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_ 020l Do
- 0

=0
and this shows
|l = Dy|§]-u=0.

]

Proposition 4.5 We choose a Borel measurable function v, : Q2 — 9 B1(0) extending
Vie on Vu, # 0 and consider the varifold Vo = e ® v, that is

|V“s|
/ ¢(x,1 Vi) g Vi) )dui(X), 6 € C(Gu(Q).  (415)
{IVu|#0}

CVu)|  |Vu(x)]

The first variation is given by

Vu, Vug
Ve = — | fe(Vue,mydx + | V| ——, —— ) dé&,
[Vuel |Vl

Vi e CHQ x R"™ 1), (4.16)

Proof By Eq. (2.1), we have

SV.(n) = / divs 5 (x)dVe(x, S)
QxG(n+l,n)

_ /Q (div iy — V1 (ve, ve))dpte

elVue?>  W(ue)

= / (divy — Vi (ve, vp)) < + )dﬁ"“.
Q 2 £

The Stress-Energy tensor for the Allen—Cahn equation is given by

Vs |®
Tij = e———0ij = &ViueVjue + W ue) bij,

ViTij = eViViueViugdij — eAugViug — eViug Vi Vi
+ W (ug) Viugdij
= (—eAus + W' (ue)) Vjug.

Now

e|Vue|? .
T;jVinj = 5 + W (ug) | divy — eVn (Vug, Vu)

&|Vu,|? . 5
= T+W(”s) divy — Vn(ve, ve)e|Vue|”.
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Integrating by parts, we get

&|Vu,|? .
/( | 25' +W<ug)>chvn—Vn(vg,vg>e|wg|2
Q

—/ ViTijnj
Q

= / (—eAug + W (ue)) (Vue, ).
Q

Hence inserting this into our expression for the first variation we get

SVa(n) = — / (—eAue+ Wi”“) (Vig, mdL + / V(v ve)dE:.
Q Q

Combining Theorem 4.1, Theorem 4.3 and Proposition 4.4, we obtain

Theorem 4.6 After passing to a subsequence, the associated varifolds V. — V where
V is a rectifiable n-varifold with the weak mean curvature in L;Igc (uy).

Proof We first compute the first variation of the associated varifolds V, to the energy

measure ig(c.f. [8, Proposition 4.10], [11, Equation 4.3]). For any n € Cg (2; RrH ),
using Proposition 4.5 and Proposition 4.4

GV = | lim (V) (m)]

I /fV n)d +fv Vite - Vite ) 4
1rn Ug, X I ———
vt T\ Vel Ve ) °

< lim/IfEIIVuellnlderlim/IandIEel

elVug|“d
< tim [ | L etV P

1 q0—1
40 qo 40 Taq0
snm< Je g|m|2> (/mwolsmgﬁ)
e—0

elVug|

s

<ALl cn, (= CCAo, Eo)lnD
1%

4.17)

So we see the limit varifold has locally bounded first variation, combining with the
density lower bound Theorem 4.3 we conclude the limit varifold is rectifiable by
Allard’s rectifiability theorem. Moreover, the above calculation shows § V is a bounded

linear functional on L l’(?C

(uy) and thus itself is in L9 (uy). ]
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5 Integrality

In this section, we prove the integrality of the limit varifold.

Theorem 5.1 Let w be defined by (4.15). Then &u is an integral n-varifold where
o= ffooo (tanh’ x)2dx is the total energy of the heteroclinic 1-d solution.

From the previous section, we have already shown the limiting varifold V is rectifiable.
And thus for a.e. xg € spt wy, we have for any sequence p; — 0

Dy # 0 Top#(v) — Oy Po, forsome Py € G(n+1,n),

where Dy, (x) = p; Iy and Ty, (x) = x — xo represent dilations and translations in

R+ and Oy, 1s the density of py at xo. By choosing a sequence of rescaling factors

pi such that

&i

=2, (5.1)
Pi

the new sequence iz, (X) := ug; (0; X + xo), fgi (x) = pl-f,-(,o,-x + xq) satisfies

W' (itz, ~
g, — V)

&i

and the associated varifold V; of this new sequence ilz, converges to 6y, Py. By (3.55),
we also have

2

1 2 Jai . 2 o
= | fi=C —— | &lVug]
& Jp, B, \&ilVug]
2
q0 q0
— C p;]0+1—(n+1)/ <L> 8[|Vus,'|2
B/Jip 8i|vu8,’|

2(g0—m)

S Clol “© - Os

(n—=1)qq

. ~2(q0—
as qo > n. Furthermore, by choosing more carefully so that p; = &; o=
1
2(gg—n)
1+
& =D \we have
1 - -
= 2 <&l forp > &
. 1
& B,
and thus
1 2 n—1 )
= fE<p". (5.2)
& Jp,
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Quantization of the energy...

Therefore we have reduced Theorem 5.1 to the following proposition

Proposition 5.2 Ifthe limit varifoldis 6o H" | Py for some Py € G(n+1, n) and 6y > 0,
then a0y is a nonnegative integer, where o = ffooo (tanh’ x)%dx is the total energy
of the heteroclinic 1-d solution.

In order to prove Proposition 5.2, we need two lemmas. The first Lemma 5.5 is a
multi-sheet monotonicity formula (c.f. [1, Theorem 6.2] for the version for integral
varifolds, which is used to prove the integrality of the limits of sequences of integral
varifolds). The second Lemma 5.7 says at small scales, the energy of each layers are
almost integer multiple of the 1-d solution. We first gather some apriori bounds on
energy ratio for ;.

Proposition5.3 Let § = p¥,e < p <rfor0 <y < % < % we have § Mg <

,ol_MV < L. Furthermore we choose r := d(B,(x), aB3p1_5 (x)) > pl_ﬁ. Then

Cr e (B, (x) = 5" 1te (By(x)) — C / PP (Bay (1))dp

,
e [ ot ([ 1RR ) dp
K B3pl—,‘5(x)

,
~ Cp 1+/ W (u,)? / o’ ldp —C.
{Jute|=1}NB3 1 () s

(5.3)

Proof Substitute (4.6) into the Eq. (4.5) in the proof of Theorem 4.1, we have for
e<s<p<r<li

s (B ¢ (Bs r B
C(Ao,qw(“fn )) > (“S( )>—C<Ao,qo>—c 5;,5;)

¢ (Bs ' —h—
> (%) — C(Mo, q0) — C/ PP " (Bay (x))dp

N

-
— Cpe f p-Mr=n- / |feI* ) dp (5.4)
s By, 1-p ()
r ~
—/ Cﬁs,oy_2 1+/ W (up)? ) dp.
s {lue|=13NBy 1-p (x)

(5.5)

Noticing ¢ < p in the last term, we then conclude the desired energy ratio bound. O
As a corollary, we have

Corollary 5.4 If in addition to the conditions in Proposition 5.3, we assume
1 2 n—1
oo, prpze (5.6)
& B,
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and

1—My
Bel0, —— ),
2(n—1)
then the following upper bound for the energy ratio for jL. holds

C

e (Bs(x)) <

e (Br(x))
g P

+ C(Ao, Eo, q0, 1), (5.7

fore <s <r.

Proof We have

p3y —1,—-My +Bn—1),y — 1> —1.

Thus by Proposition 5.3 and ¢ < p, we have

C (Ms(Br(x))) . (Me(Bs(x))> _ Cfr pp3y—1 <M£(BZ,O()C))) dp
n = §n g o

2
r fB - (x)|f8|
_ 2 —My—2—B(n-1) 3p1-8
Cpe /S P ep=pa—n | 4P

.
—Cp (1 +/ W/(ug)z)/ o’ ldp—C
{lue|=1}NQ2 s

> (Ma(Bs(x))> _ C/r pP3V*] <M) dp—C.
s7 s 'On

The conclusion then follows by substituting in (5.6) and applying Gronwall’s inequal-
ity to the above differential inequality. O

Lemma5.5 Forany N € N, § > 0 small, A > 0 large and B € (0, %) where
M,y are from Proposition 4.2, there exists w > 0 such that the following holds:
Suppose u. satisfies (1.1) and the conditions(1)-(3) in Theorem 1.1 are satisfied, then
for any finite set X C {0} x R € R**! and the number of elements in X is no more

than N. If moreover for some 0 < ¢ <d < R < w, the followings are satisfied

diam(X) < wR, (5.8)
|x —y| >3d, forx,ye Xandx # vy, 5.9
1E:1 (B, (x) +/ eIVue?\ 1 —v2, | <wp", forxeXandd <p <R,
Bp(x)

(5.10)
1
-/ |fel?> < AP Y, for3d' =P < p <3R'7P. (5.11)
€ JB,(x)
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Quantization of the energy...

Then we have

D d7" e (Ba(x)) < (14 8)R™" e (Uxex BR(x)) + 6. (5.12)

xeX

The proof of the lemma is based on an inductive application of the sheets-separation
proposition, along with appropriate choices of parameters y and w. To simplify nota-
tion in the remainder of this section, we introduce a shorthand for the sheets-separation
term

(y —x, Vug), (5.13)

8|Vus|2 W(”s)) due
+ —e—
2 e

Sy,x = (Yn+1 — Xn+1) ( P
n-+

for any pair of points x, y € R+,

Proposition 5.6 Suppose the conditions in Theorem 1.1 are satisfied and let X C
(0"} x [t +d,tn —d] C R"! consist of no more than N € N elements and
UxexB3pi-p C 2 C R"H. Furthermore suppose for —oo <t < fh < 00,0 <
e<d<R< %, B €@ 17My) the following are satisfied:

» 2(n—1)
(I' 4+ I)diam(X) < R, forsomel > 1, (5.14)
[x —y| >3d, forx#yelX, (5.15)

dp <o (5.16)

R
/ o1 f Sy dH"
d By (x)m{)’n+lztj}

forany x € X, j =1, 2 and for some w > 0,

£ (B, (x)) +/ elVue?\/1=v2, .| <wp", ford<p<R (5.17)

B,o(x)
1
—/ |fel? <A™t for3d' P < p <3R'"P, (5.18)
€ JBy)
B
M <A, Vx € X (thisisimplied by Corollary5.4as R > ¢). (5.19)

R
Then by denoting Stl/ = {t < ypr1 < t'}, we have
d7" e (Ba(x)) < R™" e (Br(x) N Sztlz) + CR" + 2w, (5.20)

for some yy > 0 and for all x € X. Furthermore, if X consists of more than one point,
then there exists t3 € (t1, to) such thatVx € X

[Xn+1 — 131 > d, (5.21)

R
f p ! / |Sy.x|dH}dp < 3NTw, (5.22)
d Bp(x)m{y11+1:t3}
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where R := I'diam(X) and Sy.x as defined in (5.13). Moreover, both X N X;f and
Xn XZ are non-empty and

fn (Mg(uxEm,3 B () N SE) + e (U__y -y B () N Sf§)>
1 3
1 n
< <1 + F) R, (UxeXBR(x) N S,'lz) + CR" 4 2w.

Proof First we choose ¢ to be a non-increasing function satisfying

I, on|0,p]
¢5,p =
0, on[p+ 4, 00),

and xs satisfying

|1, on[r +38,1 -3l
X =10, on (—o0,t]U [t 00).

with x5 > Oon [t1, 7 + 8] and x5 < 0 on 12 — &, 12]. Then we multiply (1.1) on both

sides by (Vu, n), where n € C}(Q, R"*1) is defined by n(y) := (y — x)¢s,p(ly —
x|) xs Yn+1). Using integration by parts, we have

/fs(y - X, vue)‘b&p(l)’ —xD)xs(Ynt1)
Z/f€<vu’ 7))

Vug> W
:/<8| 2”8| + (”5))divn—va®vM:vn
&

= f (ly — x|@5 px5 + (04 Dps p x5 + (Ynt1 — xn+1)¢a,px,§) dpie
&5 X5
—/s - w—nv%ﬂ—/ﬂwm%wm
ly — x|
ou ,
—le (y —x, Vug) s, p Xs-

0Xn+1

Letting 6 — 0, we have

/ . fely —x, Vug)
Bp(x)ms,]2

=—/ o pdpe + (n+ 1) e
IB,NS;; B,NS;;

+/ (WH—MHMW—/‘ Ot = o 1)dite
Bnm{yn-H:Q} Bpm{yywl:l]}

@ Springer



Quantization of the energy...

+/ , sp*‘(y—x,wg)z—/ el Vug|?
3B,NSP B,NS;:
u Ju
+ & (y —x, Vug) — € (y — x, Vug).
BoN{ynr1=t2) 0%n+1 BoN(ynr1=n} 0Xn+1

Dividing both sides by p"*! and rearranging gives the following weighted monotonic-
ity formula

d
2 (p™"1e(By(x) N S1))

= —np ™" e (By(x) N S;) + p " 11 (9B, N ;)

=—(n+ 1)07”71/ dpe +p*"/ dpe
By(0)NS,? 3B, (x)NS;?

sl el
Bp(x)ms,l2 B,,(x)ms,l2

= p—n—l / n+1 — Xnr1)d e
BpoN{ynt+1=t2}

_ / 1 — Xos ) tte
BN {yn+1=t1}

—n—1 ou
+p £ (y — x, Vug)
BN {ynt+1=t2} OXn1
du
—p ! / ) (y — x, Vug)
ByNymsi=n1)  IXn+1

—p " / _dge—p ! / fely —x, Vi)
Bp(x)ms,l2 B,)(x)ms,l2

+p ! f ep Ny — x, Vi) (5.23)
dB,NS?

By the condition given by (5.16), the sum of norms of the first fours terms are bounded
by 2w. And by (4.6) and (5.18), the discrepancy term is bounded by

-
By(0)NS;;

< CpP "1 1 (Bay(x)) + Crep Mr—n~1 / | fel?

By, 1-p ()
+ C y—2 / 2
BEP 14 W' (ug)
{lug|=1}1NQ2

15
< Cpr] <u8<sz<x> N S?)

- ) + CepMr=n=1pgpU=P=D) | cppy=2
0
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B NS
< CpP3V71 <I’L5( ZPIS:) Sll)) + Cp2fM}/7n71+(n71)*13(n*1) + Cpl/*l

< CpPr 1y cpT T cpr T,

where we used (5.7) and ¢ < p in the last line. By (4.3) in the proof of Theorem 4.1
and (5.7), we have

—n—1 56,0 W

n

n B,N S n
<Cp i (1+—“8( ’ ")> K

/ . fely —x, Vug)
B,,(x)ms,]2

By integrating (5.23) from d to R and noting B;(x) C St'lz, we obtain the following
upper bound of energy density for u,,

d7" e (Bg(x)) = d ™" e (Ba(x) N S;2) < R e (Br(x) N S?) + CR™ + 20,
where yp = min{%q;", D3V, #, y} > 0. This proves (5.20).

Next, if X contains more than one point, then we can choose x4+ € X suchthatxy ;11—

X+l > diaTmX (where x4+ ,+1 denotes the (n + 1)-th coordinate of x.) and there is
X+n+1—X— n+1
3

no other element of X in {0} X (X— 41, X4 nt1). Let 7] := x_ 41 +
and 7 := x4y 1 — = Forx € X,y € By(x),d < p < R, we have

e|Vue|? N W(us)) _, ue

|Sy,x| = ‘(yn—&-l — Xp+t1) ( B e

(y —x, Vug)
9Xn+1

W) &|Vug|?
=‘(yn+1—xn+1)< - 28 + |Vt — Xn1)E| Ve |*
Jug
—e (y — x, Vi)
0Xp+1
elVue > W(ue)

+ &l Vig 1y — X, ent1) — (¥ — X, Ve)(€nt1, o)

2 g

elVug|>  Wi(uy)
<p|m — | elVuePly = 102
. ,
elVug > Wi(uy)
<p 25 -— Z+ pelVug 21 =02,

And thus by condition (5.17), we have

h R
—n—1 n
0 / |Syx|dH],  _dpdt
/fl /d By (N {yns1=1) bne1=1)

—/Rp"lf elVus? W(us))
d 13,)()5)05;12

2 3
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Quantization of the energy...

dug

(y —x, Vug)|dydp

0Xpt1

R
IR
d B,J(x)nsflz

< | p"wo"dp
d

< a)lé

5|V”8|2 W(ue)
2

+ 8|Vu€|2,/1 - vszvanyd,o

=N

So there must exist a t3 € [f1, f>] such that

R
Lo N —
d By (x)N{yn+1=13}

wR 3NwR
< <
~ (tp — 1)) — diam(X)

=3NTw.

By the choice of t3 € [f], f2], we automatically have |x, 4| — 3] > d for all x € X.
Finally, by denoting

Xy =xeX,x,>nLX_={xeX, x <3},
we have X4 # ¢ and
(Urex_Bz(0) N S;lz) U (Uxex; Bg(x) N Sttsz) C B giam(x) (X0) N S;lz

for any xo € X. By (5.20)(with R + diam(X) in place of d), we then have

R™" (pte (Uxex_Bg(x) N S7) + e (Urex, Bz(x) N Sg))
e (B R giamex) (10) N S

n
1+ —) (R + diam (X)) ™" ie (B giam x) X0) N S2)
n
) (R™" e (Br(x0) N 872) + CRY + 20)
n
) (R™"ie(Urex BR(¥) N S)) + CRY + 20.

O

The next Lemma taken from [8] shows the energy ratio at small scales are very
close to the 1-d solution.

Lemma 5.7 (Lemma 5.5 of [8]) Suppose the conditions in Theorem 1.1 are satisfied.
Forany v € (0, 1),6 > 0 small, A > 0 large, there exists w > O sufficiently small and
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L > 1 sufficiently large such that the following holds: Suppose u. satisfies condition
of Theorem 1.1 in B4y +(0) C R**! and

lus(0) < 1—1 (5.24)
(B (0 +/ Vue|* /1 =v2 | <w(@Le)" 5.25
|€: (BaLe (0))] B4L£(0)8| ug|”\/1—v; .1 <w(4Le) (5.25)
1 2 n—2

—/ [fel” < A(4Le) (5.26)
€ JBur:(0)

te(Bare(0)) < A(4Le)". (5.27)

Then by denoting (0,1) € R"*! to be the point with first n-th coordinate functions
being 0 and the (n + 1)-th coordinate functions being t, we have

[u(0, 1)] 21—%, forall Le < |t| < 3Le (5.28)
——— e (Br:(0) — | <§ 5.29

‘wn(Ls)”Mg( Le(0) — | < (5.29)
Le o

‘ W (ue (0, 1))dt — —| < 8. (5.30)
e 2

Proof First we consider the 1-dimensional solution

q,(t) =/ W(qo(t)) VteR,

q0(0) = u(0).

We will use g to choose L depending on 7, § > 0. On R"+! we write ¢ (x) = qo(xp41)
and choose L > 1 large enough depending on 7, § so that

lg(0,0)] =1 - % forall L < |t| < 3L,

wnL /Bl 0 ( 2 ( )>
o
( )

L
‘ / W (q(0, ))dr — %
—L

5
=3 (5.31)

1)
< —
-2

whenever |g(0)] < 1 — 7. The function u satisfies the Allen—Cahn equation
—Au+ W = f,

and by our condition (2) in Theorem 1.1 we get [[ug|lL>(B,»(x)) =< co. Hence by

Calderon—Zygmund estimates we get uniform W2 7 1+ estimates on B3 1 (0) of the
form

<C(A,L). (5.32)

u +1
el w2540 By (0))

@ Springer



Quantization of the energy...

If there is no such @ > 0 such that (5.28), (5.29) and (5.30) holds then this implies
there exists w; — 0 and u;, f; satisfying the above estimates but that do not satisfy
(5.28), (5.29) and (5.30). By (5.32), we get after passing to a suitable subsequence

that u j—u weakly in W23 +% (B3, (0)) and f;— f weakly in L"T +% (B3, (0)).
By the Sobolev embedding we have w2 40 (B3.(0)) — CY for 8¢ > 0 and hence
we get ; — u uniformly in CY(B3..(0)). O
Claim The functions u; — u = g strongly in W12(B31 (0)).

Proof Writing V = (V’, 9,,11) we get (5.25)

|Vul|? . |Vu, 2
— W(u)| < liminf — W(u;)
B30 2 J=00 JB31(0) 2
< liminf |§;|(B3.(0)) =0
Jj—00
and
172
/ [V'ul gli_minf/ |V'uj| < C(L) </ |VMj|2m) =0,
B31.(0) J=00 JB31(0) B31.(0) '
where v; = lvv—uujl for Vu; # 0. Therefore |Vu|2 = 2W(u) and u(y,t) = uo(t)

for some ug € W2 T T0((—L, L)) < C1((—L, L)) and |u}| = 2+/2W(up). As
lug(0)] < 1 — 7 by uniform convergence, we see |ug| < 1 and |ug| > 0. After a
reflection of the form (y, x,,) — (y, —x,) if necessary, we may assume u6 > 0 and
hence ug = +/2W (uo). This gives us ug = go and u = q. This shows u; — u =g
strongly in W12 (B (0)). o

From this claim and (5.31) we conclude u; satisfies (5.28), (5.29) and (5.30) for
sufficiently large j which is a contradiction. O
Now we prove Proposition 5.2.

Proof of Proposition 5.2 Without loss of generality, we assume Py = {x € R"*! x,,| =
0} and let 7 : R"*! — Py denote the associated orthogonal projection. Furthermore
we know

Ve=ue ®v, >V

is rectifiable and

my =
V=00H"_P)® dp,

and

lim e|Vue*\J1—=vZ, =0. (5.33)

B4(0)
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Let N € N be the smallest integer with

6
N>—O
o

and let 0 < § < 1 be small. By Proposition 3.5 and the L bound condition of u,. in
Theorem 1.1, we can fix T > 0 such that Ve(6) > O sufficiently small we have

2
/ W) | W) _ o
{lueg|=1—=1}NB4(0)

& &

We have by Lemma 3.8,

pe({lugl = 1 — 70 B4(0)}) = 15:(B4(0))]

W(ue)
+2 <35 (534
{lue|=1-7}NB4(0) &
We want to apply Lemma 5.5 and Lemma 5.7. We choose 0 < w = (N, 6, %, %’ C)

and w(§,7,C) < 1 where L = L(§, r) which are the parameters that appear in
Lemma 5.5 and Proposition 5.6 and C is the constant so that

1
ug(sz>+—/ Ifel? <C Q= B4(0).
&Ja

We define A, to be the set where the hypotheses for our Propositions hold, that is

lue(x)| < 1—r,

Ae=1{x€Bi(0)|Ye < p <3:[E(By ()| + [ () el Vuel? J1 =07,y < wp",
Ve<p=<3: %-/‘B/,(x) |f€|2 = wpnfl_

We show the complement of the set A, has small measure. By Besicovitch’s covering
theorem, we find a countable sub-covering U; B, (x;), p; € [&, 3] of {lue| < 1—T}\ A,
such thatevery pointx € {|u.| < 1—1}\ A belongs to at most B, balls in the covering,
where B,, depends only on the dimension n. For each i, either

By Gl + [ ARG
p; Xi
or
1 2 n—1 n
L APz w0 = Capt
€ Bpi(xi)

On the other hand, by (5.2), for sufficiently small ¢, we have

1

-/ |fel? < wp" !, ¥p € e, 3].
€ JB,(xi)
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By (5.7), for each i, we obtain
e (B () = Cof.
Since the overlap in the Besicovitch covering is finite and (5.34), we get

pe (B1(0) \ Ae) <38+ ) Cpf

1

<35+ Co! <|ss|<B4<0>> + /
B.

1 2
+- | fel
& JB4(0)

=44,

2
elVuel*\ /1 —vZ, .|

4(0)

(5.35)

for ¢ sufficiently small. First by Lemma 5.5 and Lemma 5.7 we have x € A;,VLe <
R < w,

aw, —8 < (1 +8)R"us(Br(x)) +34.
By the reduction to the conditions in Proposition 5.2, we obtain
e 2\ {|xp+1] <¢}) — 0, for any fixed ¢ > 0.
Thus, for sufficiently small § > 0, we get
A CA{lxps1l < ¢}, withg, > 0ase — 0.
For any y € Bi’(O) C R", consider a maximal subset
X={x{f<..<tk}CA N7 ()

with |[x —x’| > 3 Le if x # x’ € X, where 7 denotes the projection to {x,+1 = 0}. If
K > N, we apply Lemma 5.5 withd = 3Le, R = w and Lemma 5.7 to get

Naw, — N8 < (1+8)R™" e (BrR(y)) +8 < (1 + )R e (Brac, (v)) + 6.
As

limsup(1 4+ 8)R™"jte (Br+c. (3)) < R™"1(Br(¥)) + C8 = 6w, + C§,

e—0

and § > 0 is arbitrarily small, we have

Na <0,
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which is a contradiction to our definition of N. So we obtain
K <N-1
Since X is maximal, we get
AN n_l(y) C {y} x Ule(tk —3Le, ty +3Le¢).
By (5.28),
A, N7l o)n ({y} x UK (1 — 3Le, 1 + 3Ls)>
— AN\ )N ({y} x UK (t — Le, 1 + Le)) :
So
A: NN (y) € (v} x UK (tx — Le, tx + Le)
and by (5.30),

tk+Le t
/ wdt§%+3’ Vk=1,.. K.
Tk

—Le &

Hence summing over k gives
w N -1
f We) gy < WZDL 4y 1)
AN~ ) € 2

and integrating over Bf (0) C R" we obtain

1 w
/ —W (ug)dH" ! 5/ / ﬂd?{‘dy
BT na, € 10) JAnTl(y) €

< (N — Daw

Cs.
5 +
Recalling (5.35), we get
1
ue (B1(0) < f =W (ue)dH"™ + £ (B1(0) | + e (B1(0) \ Ap)
Bt ona, €

< (N — DHaw, + CS4.

On the other hand, since limg_,¢ e (B1(0)) = 6w, and § > 0 is arbitrarily small, we
obtain

6 < (N —Da.
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And since by definition N is the smallest integer such that 6 < N«, we have

0 = (N — Da.

6 Proof of corollaries and applications of Theorem 1.1

In this section, we provide the proof of Corollary 1.3 and Corollary 1.2, which are
applications of Theorem 1.1.

We first prove the convergence result under various other Sobolev conditions on

the inhomogeneous term.

Proof of Corollary 1.3 (1) To see the first condition implies the conditions in Theorem

2

1.1, we choose gy = =2 4 9 (go > n is satisfied due to the choice of # and s

N
above). Then we have

q0 qo—2 2
[ L v = [ [ L[,
o lelVue] o |&lVug| &
1 (q0722)s % N
<\l ) (L)
e \JalelVuel Q
O I /el
& 8|VM3| L' () FILE)

-2
< CICI™ < Ao

where we used Holder’s inequality in the second line with exponent —*5.

Inthe paper [11], assuming condition (2) above, the authors proved the same integer
rectifiability and L mean curvature bound for the limit varifold. We show this
conditions implies the integral bounds in the hypothesis of Theorem 1.1 for some
qo > n. To see this, we compute

np np (n+D(p—1)
\V4 (¢n+lfp) — —¢ n+1—p V¢
n+1—p

and applying [12, 5.12.4](c.f. [11, Theorem 3.7]) and [11, Theorem 3.8], and
np
Holder’s inequality, with ¢ = ¢"+1—7 and dju = ¢|Vug|>d L.

o
RV[

which implies

< c(n)K(,u)/ IVoldL" Vg e C! (R”“)
Rn

np
V NO1FP e VuPact !
RrRn+

= V wdu‘
RrRn+1
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(n+D(p—1)

gcm)K(u)V +IWIV¢H¢I e act!

(n+DH(p—1) 1
sC(n,mK(mV IVollg| nF1=p dL"t
Rn

1/p petn\
=C(n, p) </ |V¢|”> (f |¢|"+1"’)
R+l R+l

(p—l)l(n+|)
hFl—p
=C(n, p)HV(pHLp(Rn-%—I)”lZs” ;,L(,,Jrl)p

L n+I-p (Rn+l)

where C(n, p) — oo as p — n + 1. We apply the above inequality with ¢ =
¥ EIVfu and dju = ¢|Vu,|? together the Sobolev inequality to get for ¥ € C0 (2)

_pn_
+1-p
Je &|Vue|2d L
&|Vug|
f f (P*_'l_)l(ﬂJrl)
n+l—p

=cC HV <1ﬂ - ) ‘1/’—8 pn+1)

&[Vuel LP(R) e|Vug| L+T=D (Q)

n+l—p

<elv (Vi) |7 (v570e)

&[Viue| LP(Q) e|Vue| LP(R)
o, |2

e|Vue| Whr(Q
where we have g0 = ;7= — > nsince p > %

(3) If n + 1 = 2 then this is proven in [8]. For n 4+ 1 > 3 it can be directly verified
that the condition (3) implies the conditions in Theorem 1.1.
O

Secondly, we prove the I' - convergence of the L%, gy > n “Allen-Cahn" mean
curvature functional to the L9 mean curvature functional for hypersurfaces in R" 1.

Proofof 1.2 The T - convergence of the first term in the functional [, (8|Vu|2 + @) dx
to the perimeter functional " (3 E N 2) was proved by Modica [5].

40

| ) &|Vu|2dx fol-

le Au— W;(”)
e[Vl
lows from a similar argument as in [2], using a smooth approximation of the boundary

measure and a diagonal argument (see also [7]).

The limsup inequality for the I - convergence of |, Q

W' () 90
eAu—
% >8|Vu|2dx to

the L9° functional follows from (4.17) in the proof of Theorem 4.6. O

The liminf inequality for the I - convergence of fQ
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