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We first review the way in which Hasselmann’s paradigm, introduced in 1976 and recently honoured with the Nobel

Prize, can, like many key innovations in complexity science, be understood on several different levels. It can be seen

as a way to add variability into the pioneering energy balance models (EBMs) of Budyko and Sellers. On a more

abstract level, however, it used the original stochastic mathematical model of Brownian motion to provide a conceptual

superstructure to link slow climate variability to fast weather fluctuations, in a context broader than EBMs, and led

Hasselmann to posit a need for negative feedback in climate modelling. Hasselmann’s paradigm has much still to offer

us, but naturally, since the 1970s a number of newer developments have built on his pioneering ideas. One important

one has been the development of a rigorous mathematical hierarchy that embeds Hasselmann-type models in the more

comprehensive Mori-Zwanzig Generalised Langevin Equation (GLE) framework. Another has been the interest in

stochastic EBMs with a memory that has slower decay and thus longer range than the exponential form seen in his

EBMs. In this paper we argue that the Mori-Kubo overdamped GLE, as widely used in statistical mechanics, suggests

the form of a relatively simple stochastic EBM with memory for the global temperature anomaly. We also explore how

this EBM relates to Lovejoy et al’s Fractional Energy Balance Equation (FEBE).

Hasselmann’s stochastic energy balance model embodies

a long-standing paradigm in climate science. Recent ev-

idence that climate may show long ranged memory has

thus motivated newer stochastic models such as Lovejoy

et al’s FEBE. Physical arguments for extending the Has-

selmann formalism are more general than this, however,

and are motivated by many other well-known features of

the system, including periodicity. We thus need a model

that allows a more general range of dependency structures

than either just the shortest possible or longest possible

ranged behaviours, while allowing both as limiting cases.

In this article we propose the use of such a formalism to ex-

tend Hasselman’s EBM, the stochastic Mori-Kubo GLE.

I. INTRODUCTION

The value of climate science would be substantial even

without anthropogenic interference in the climate system. The

a)Electronic mail: nickwatkins62@fastmail.com

presence of such interference, however, raises a number of

categorically new challenges. The context of human-induced

climate change has made it important to quantify the observed

changes, understand their origin, and, as far as possible1,2,

predict their future scope, in the presence of the nontrivial

intrinsic variability that is already present (see e.g.3,4). The

development of this need has coincided with the rise of the

science of complexity, which has itself both pioneered and

promoted new approaches to similar problems across a very

wide range of topical application areas5.

Several key achievements in the study of fluctuations, at

the interface6–8 of climate modelling and the fast-developing

sciences of complexity, have recently been recognised by the

award of the 2021 Nobel Prize for Physics to Hasselmann,

Manabe and Parisi. The Nobel Committee have given a very

useful and accessible short introduction9 to these branches

of science, but two more recent articles have between them

demonstrated an emerging dichotomy in responses to the

Prize. Our paper seeks to reconcile them.

In Ref. 10 Franzke et al have shown how “the Hassel-

mann programme", first enunciated in Ref. 11, of explain-

ing how slow climate arises from fast weather using stochas-

tic EBMs, has given rise to decades of productive and in-
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sightful research. The original stochastic EBMs were Marko-

vian, depending only on the current values of their (stochas-

tic) variables, and by construction assumed strongly sepa-

rated fast and slow time scales. A reader might easily infer

from this excellent review, however, that the broader “Hassel-

mann programme" built around such stochastic EBMs, their

developments, and his subsequent spatiotemporal fingerprint-

ing methods, has fully solved the problems of realistic cli-

mate modelling. This impression is reinforced by the fact

that the paper does not delve into more recent, and maximally

non-Markovian, EBMs which exhibit “long-range memory"

(LRM; though see a complementary review of this by Franzke

et al12, and recent work by him with colleagues13).

In contrast, Lovejoy14 has stressed the differences between

Hasselmann’s Markovian paradigm and more recent develop-

ments in complexity science, especially those related to LRM

and fractional response. He has articulated15–17 the view that

only models incorporating LRM can fully describe already

known properties of climate data. Arguments for the rele-

vance of LRM have at times been received with scepticism

by some climate scientists18, while others (e.g. Ref. 19), who

do acknowledge its importance, have nevertheless emphasised

the deterministic behaviour present in the climate system be-

cause of the predictability that it affords. Recently, however

the Nobel committee has remarked9 on an increasing aware-

ness that “on decadal timescales of relevance to humans, evi-

dence is consistent with the memory becoming effectively infi-

nite . . . ".

An AGU Editor Highlight (Ana Baros, “Eminently Com-

plex – Climate Science and the 2021 Nobel Prize", 1st Jan-

uary 2023) described Ref 14 as making “the case that for the

last 100 years there has been little communication between at-

mospheric sciences and nonlinear geophysics, and this must

change to improve useful predictability (i.e., lead time) of cli-

mate models." In this paper we address the need for commu-

nication between these two fields in a number of ways.

i) Firstly, by reviewing the topic we will show that the sit-

uation is in some ways already better than it may appear, be-

cause in fact there has been work, notably that of Ref. 20,

reviewed in Ref. 8, which while proceeding directly from the

Hasselman paradigm, has allowed the construction of mod-

els with non-Markovian structure, via the use of memory

kernels. It seems not to have always been very accessible

to a wider audience, perhaps because it exploits the Mori-

Zwanzig formalism21, well known in applied mathematics,

data assimilation and statistical mechanics, to decompose the

effect of fast degrees of freedom into a memory term and

a noise-like term. The fundamental (and nonlinear) equa-

tion which expresses the Mori-Zwanzig decomposition is an

identity, and deterministic, but, confusingly to those already

familiar with the linear stochastic equation first studied by

Langevin in 1908, it is sometimes8,10,20–23 referred to as the

Generalised Langevin Equation (GLE). This Mori-Zwanzig

GLE is intractable without further approximations21 or other

modifications8.

ii) In view of this intractability, our paper takes an alterna-

tive, more directly stochastic approach to an EBM with mem-

ory, based on an already existing extension of Langevin’s orig-

inal equation24 of 1908. We advocate for the use of Mori’s and

Kubo’s stochastic GLE, widely known and applied since the

1960s in condensed matter theory, quantum optics and physi-

cal chemistry25–29. We show how the form of the Mori-Kubo

GLE, occasionally known as the non-Markovian Langevin

equation30, suggests an analogous generalised Hasselmann

stochastic EBM for the global temperature anomaly. Our pa-

per expands on and revises our contribution to the 2020 Inter-

national Conference on Complex Systems31, which was itself

expanded as Ref. 32.

iii) We go on to show that Hasselmann’s model is one limit-

ing case of our proposed EBM, that of short-ranged memory,

while Lovejoy’s fractional model, FEBE16,33, is closely re-

lated to the opposite special case, long-ranged memory. FEBE

differs only by using a Riemann-Liouville fractional deriva-

tive instead of a Caputo. We thus bridge these two seem-

ingly opposed perspectives. We further note that an EBM

based on the Mori-Kubo GLE can handle not just the two ex-

tremes of delta-correlated (shortest ranged) or power law de-

caying (longest ranged) memory kernels, but also those with

intermediate-ranged memory such as that which arises from

a few widely separated timescales. In addition, modifica-

tions of such an EBM could in principle accomodate many

of the types of periodic (or quasiperiodic) determinism which

are present, such as ENSO. As early as 1976 Mitchell34 as-

serted that “there are no known deterministic mechanisms of

climatic variability that are internal to the atmosphere . . . or

any other part of the climatic system". From this viewpoint

the emergence of any deterministic mode(s), even if nonlinear

and only quasi-periodic, is thus crucial to predictability35 and

its inclusion essential in any compact description.

iv) We conclude by noting that an EBM based on the Mori-

Kubo GLE would have the option of embodying a fluctuation-

dissipation relation (FDR) by construction, because this was

a main original purpose of their stochastic GLE.

We hope our contribution will open a new channel of com-

munication between two disparate worlds and will facilitate

construction of a new class of EBMs, which will in turn im-

prove the study of climate predictability.

In the next section we will first briefly recap the basic no-

tions of EBMs, and then discuss some ways in which nonlin-

earity and stochasticity have been incorporated in them.

II. ENERGY BALANCE MODELS

A. Nonlinearity in EBMs

The first energy balance models36–38 of Budyko and Sell-

ers were deterministic. As the name implies they captured

how the earth’s surface temperature T will, after a perturba-

tion, evolve in time t to restore the balance between the in-

coming R ↓ and outgoing R ↑ heat fluxes at the earth’s surface

expressed by the equation

CP
dT

dt
= R ↓ −R ↑ . (1)

Here CP is effective heat capacity per unit area.
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The Budyko-Sellers model in its simplest form then makes

the outgoing and incoming radiation terms in (1) explicit. The

former is modelled with the Stefan-Boltzman law and the lat-

ter includes an albedo feedback function a(T ):

CP
dT

dt
= S0(1− a(T))− εσSBT 4 (2)

where S0 is the mean solar radiation incident per metre

squared at the earth’s surface36, ε is the earth’s emissivity, and

σSB is the Stefan-Boltzmann constant.

Since the 1960s EBMs have been explored and extended in

many directions. In particular much work has been done on

nonlinear and stochastic climate dynamics in this framework,

one topic of the recent edited book by Franzke and O’Kane6.

Considerable attention has been focused on the nonlinearity

of the complicated potential created by the interplay of the T 4

term and the albedo feedback, for example. Taking a quadratic

choice for the latter gives the model studied by Fraedrich39

CP
dT

dt
=

1

4
µI0(1− a2 + b2T 2)− εσSBT 4 (3)

where I0 is the solar constant, µ is a fractional premultiplier36

which gives the radiation incident at the earth’s surface, and

the quarter results in an average over the planet’s surface.

B. Stochasticity in EBMs

Stochasticity can be introduced into nonlinear EBMs in a

number of ways, such as the white noise ξ (t) with a control-

lable variance σ2 added as an extra term to Eq. (3) by Sutera40.

This changes it from an ODE to a stochastic differential equa-

tion (SDE), an important subtlety.

The Fraedrich-Sutera model is Markovian because its de-

terministic part depends only on the current value of its sin-

gle variable, the temperature T (t), while its stochastic part,

Gaussian white noise, is delta-correlated and thus also has no

memory of its previous state.

The marginal distributions of such a Markovian climate

model need not be Gaussian, however41. Ref. 42 is a com-

prehensive study of α-stable Lévy noise of the more recent

Ghil-Sellers extension to the original EBMs. The PDF of the

noise here has an infinite variance and is heavy-tailed.

C. Memory in EBMs

The Markovian restriction on the earliest EBMs has since

been relaxed in several different ways. A pioneering ap-

proach was that of Bhattacharya et al43 who introduced mem-

ory into the deterministic part via a modification of the albedo

term. Resulting work has been based on delay differential

equations44.

Multi-box (and thus multivariate) stochastic models have

incorporated memory effects through the presence of a range

of feedback time scales in their different “boxes"45–47.

Most of the remainder of this paper concerns memory in

stochastic EBMs but in the next section we first examine the

simplest linear Markovian stochastic models in more detail.

In particular we consider the univariate autonomous and non-

autonomous versions in which they have been used to model

the earth’s global temperature anomaly.

III. THE HASSELMANN PROGRAMME I: LINEARISED
MARKOVIAN STOCHASTIC EBMS

Linear Markovian stochastic EBMs were explored in de-

tail in the second of Hasselmann’s classic mid 1970s papers,

Ref. 48, complementing the treatment in the first paper11

which was largely in PDE (Fokker-Planck) rather than SDE

(Langevin) terms. They can be motivated in several ways.

The first is an ansatz, and was essentially the approach fol-

lowed by Mitchell in the 1960s (section A below). It recog-

nises that the discrete time autoregressive first order Markov

process AR(1), and the continuous time Langevin equation (9)

whose solution is called the Ornstein-Uhlenbeck (O-U) pro-

cess, are the simplest possible linear stochastic models of the

response to a perturbation49.

A more physically intuitive argument, summarised in sec-

tion B, and given more fully by Lemke in Ref. 50, comes from

linearising deterministic EBMs of the Budyko-Sellers type,

and adding white noise. At this level of abstraction it is al-

ready apparent that the result is what we will refer to as Has-

selmann’s autonomous SDE. However Hasselmann’s SDE is

isomorphic to not one but two such equations arising in Brow-

nian motion so section C describes the dilemma posed by the

choice of possible mappings.

Hasselmann’s mathematical analogy with Brownian motion

was not limited simply to mapping an EBM to a Langevin

equation. The most sophisticated and abstract level of his pro-

gramme, proposed first in Ref 11, replaced Mitchell’s ansatz,

which has sometimes been seen as being purely statistical,

with a postulate, inspired by statistical physics: that of the

separation of fast and slow timescales, and the identification

of the former with weather and the latter with climate.

It is very important to realise that Hasselmann’s postulate

is potentially quite generally applicable to climate variables,

and not just to the global mean temperature anomaly-it was

not simply a way to make a stochastic EBM, but kicked off a

research programme.

A. Mitchell’s stochastic models of 1966

Mitchell’s pioneering chapter, Ref. 51 in a RAND Corpo-

ration conference proceedings volume from December 1966

proposed two stochastic climate models.

The first, as he put it, bore “primarily on the origins of

relatively rapid fluctuations, as for example those reflected

in the interannual variability of temperature observed at a

wide variety of locations during the past century". He pos-

tulated that the air temperature anomaly in a marine envi-

ronment was composed of two additive parts, one propor-
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tional to the sea surface temperature (SST) anomaly and one

independent of it. He then gave arguments suggesting that

each component’s data, comprising monthly values, would

follow first order Markov, or “AR(1)", stochastic processes.

An AR(1) process is defined at discrete times, in this case the

set t, t + dt, t + 2dt, . . ., and takes the form:

x(t + dt) = φx(t)+ ξ (t) (4)

where 0 < φ < 1 and ξ (t) is an iid normal random variable of

zero mean and unit variance.

Mitchell derived the standard results for the autocorrelation

function and power spectrum of the resulting compound first

order linear Markov process, and pointed out that measure-

ments of SST implied that its φ would be in the range 0.5 to

0.9, giving a red noise behaviour. He also fitted the compound

model to the famous 269-year (1689 to 1957) Manley series

of monthly temperatures for central England, illustrating how

the two component model ACF gave a good description of

the observed one. Hasselmann was made aware of Mitchell’s

work by a referee and took care to credit it, both in Ref. 11

and subsequently, e.g. the oral history of Ref. 52.

Mitchell’s second model operated on longer time scales

than his first and is less directly relevant to Hasselmann’s

work. He viewed it as bearing “contrastingly on the ori-

gin of much longer fluctuations, and" thought that it might

“have some unexpected relevance to the origins of the glacial-

interglacial succession of the Pleistocene ice age". In a sense

it anticipated the previous section’s Freidrich-Sutera model

and is further evidence of how far Mitchell was ahead of his

time.

B. Adding noise to a linearised Budyko-Sellars model

Following Ref. 9 we start with the Budyko-Sellers

model (2) and expand T about the steady state average sur-

face temperature TS,

T = TS +∆T

so

CP
d(TS +∆T)

dt
= S0(1− a(TS +∆T))− εσSB(TS +∆T)4

from which we can subtract the corresponding steady state

values to get

CP
d∆T

dt
=−S0

∂a

∂T
∆T − 4εσSBT 3

S ∆T +O(∆T3)

and thus, dropping terms in ∆T of third order and above, we

obtain

CP
d∆T

dt
=−

[

4εσSBT 3
S − S0|

∂a

∂T
|
]

∆T =−Λ∆T (5)

where we have additionally used the fact that albedo sensitiv-

ity, ∂a/∂T , is negative, and have defined a feedback parame-

ter Λ.

As in the Fraedrich-Sutera model high frequency fluctua-

tions are then introduced as additive white noise ξ (t), a stan-

dard Gaussian random variable (with zero mean and unit vari-

ance) to give Hasselmann’s stochastic EBM in its SDE form:

CP
d∆T

dt
=−Λ∆T +σξ (t) (6)

This SDE is Markovian in the sense that it depends only on

the current value of its variable, which is now the global mean

temperature (GMT) anomaly ∆T . This SDE is a Langevin

equation governing the OU process ∆T (t). It expresses the

competition between the Gaussian fluctuations and the mean-

reverting −Λ∆T , which produces a dynamic steady state.

There is also a non-autonomous version of Hasselmann’s

model, in which F(t) represents the deterministic part of the

forcing, in particular that arising from anthropogenic carbon

emissions:

CP
d∆T

dt
= F(t)−Λ∆T +σξ (t). (7)

Equations (6) and (7) are formal, and, like all SDEs, con-

tain objects whose meanings must be made explicit and rig-

orous. For white noise-driven SDEs this process has taken

decades of mathematical work in developing the now mature

field of stochastic calculus21,53. In that Markovian case there

is a widely used convention to write SDEs as differentials

rather than derivatives. We do not use this notation here be-

cause many of the equations we study have coloured or even

fractional noise driving terms for which there is less of a no-

tational consensus.

C. Relation of EBM to the equations of Brownian motion

Hasselmann was directly inspired by a conceptual and

mathematical analogy with Brownian motion. As he observed

in an AIP oral history interview52: “my stochastic model is an

application of the concept of Brownian motion . . . One of the

simplest stochastic processes. The idea that one could explain

long term climate variability very simply by the short term

fluctuations of the atmosphere in analogy with Brownian mo-

tion, is really rather obvious and I thought I would write it up

somewhere in a little note".

His paper explored an important distinction between the

mathematical and physical usages of the term Brownian mo-

tion (BM). For mathematicians the Wiener process defines

BM, while for physicists the underdamped LE defines BM.

Hasselmann showed that the former was already insightful

in addition to the then-current paradigms for fluctuations in

climate, but that the latter was necessary to create a power

spectrum that more closely resembled those already being ob-

served.

Interestingly, however, there are not one but two possi-

ble SDEs in physical BM to choose from, the underdamped

and overdamped Langevin equations. If Hasselmann had pro-

ceeded purely by mapping one of these onto an EBM he could
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ostensibly have used either, as we now show. While this am-

biguity was relatively unimportant to his work, we will then

argue that it becomes significant when thinking about exten-

sions to the Hasselmann EBM.

1. Underdamped Langevin equation

The fundamental SDE used in Brownian motion is the un-

derdamped Langevin equation:

M
dv

dt
=−V ′(y)− γv+σξ (t) (8)

It describes the acceleration dv/dt, where velocity v =
dy/dt, of a particle of mass M which experiences a determin-

istic force due to a potential V (y), a stochastic force σξ (t),
and a linear damping force −γv.

If we i) map velocity into GMT anomaly, and mass into

heat capacity CP, ii) ignore the question of the mapping and

meaning of the position variable y, and iii) replace the deriva-

tive of a potential by a deterministic forcing we obtain the

non-autonomous version (7) of the Hasselmann EBM.

The autonomous version (6), with F(t) = 0 is also fre-

quently studied, e.g. Ref. 54 where an attempt has been made

to remove the prompt effects of the deterministic forcing from

the time series.

2. Overdamped Langevin equation

We now consider forced Brownian motion in a potential.

If the mass is very large and the particle motion is close to

a minimum of the potential, we can neglect the acceleration

term in (8) and set V ′(y) ≈ −ky. This gives the overdamped

Langevin equation

γ
dy

dt
=−ky+σξ (t) (9)

The solution of this for the position of the overdamped particle

is the O-U process.

Equation (9) thus offers an alternative conceptual starting

point for a stochastic EBM, where instead of velocity it is the

position which is mapped to ∆T . The result is an autonomous

equation:

CP
d∆T

dt
=−Λ∆T +σξ (t). (10)

Although mathematically identical to the unforced version

of (7), rather than the mass M being mapped to the heat capac-

ity CP, it is now the friction constant γ which is so mapped.

This is why although γ is usually absorbed into a k̄ and σ̄ we

did not to do so in equation (9). Another conceptual difference

is that the linear term in ∆T of equation (10) arises from map-

ping a linearised potential rather than a friction coefficient.

The overdamped Langevin equation can be modified to

study problems with additional deterministic forcing of the

velocity, such as the ion trap modelled by Ref. 55, and so its

analogous Hasselmann EBM could also have an additional de-

terministic forcing term.

3. Which of the underdamped or overdamped Langevin
equations is closer to Hasselmann’s EBM ?

The conceptual differences between the underdamped and

overdamped Langevin equations start to become important

when we try to derive EBMs from first principles. This is even

more true if we want to extend them to include effects such as

long range memory and fluctuation-dissipation relations. We

illustrate this in the next section by considering Hasselman’ s

own motivation11 of his stochastic model embodied in Equa-

tion (10), and the outline derivation of it offered by the No-

bel committee9. We will find that the latter in particular has

more in common with the overdamped than the underdamped

Langevin equation.

IV. THE HASSELMANN PROGRAMME II:
FLUCTUATIONS, FAST AND SLOW.

A. Assumptions of the Hasselmann programme

A modernized version of Hasselmann’s argument is

sketched by the Nobel committee9, who describe it as an

“interpretative and notationally uncluttered outline". We fol-

low it and its notation here, supplemented by reference to

Hasselmann11.

1. Fast and slow variables

Hasselmann assumes that the instantaneous state of the

atmosphere-ocean-cryosphere-land system is described by a

finite set of discrete variables z=(z1,z2, . . .). He then assumes

its evolution is described by a series of prognostic equations

like

dzi

dt
= wi(z), (11)

and then divides the system into two subsystems z = (x,y).
The set of fast “weather" variables x have a response time

scale τx of order a few days, and evolve under one set of ODEs

ẋi = fi(x,y), (12)

while the slow “climate" variables y like sea surface temper-

ature, ice coverage, land foliage etc have a longer response

time scale τy, of order months, years or more:

ẏi = gi(x,y). (13)

Here f ,g correspond to u,v in Hasselmann’s original

notation11.
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2. Conditional average over fast dynamics

In Ref 11 Hasselmann then discusses the key idea of av-

eraging over the fast dynamics. The Nobel committee’s

argument9 writes the dynamics of the fast variables in terms

of the slow ones, and is simplified without loss of generality

by considering scalar x and y, so:

x = 〈x|y〉+ x∗ (14)

where, following Hasselman, the first term is an ensemble av-

erage of a set of values of x for a given y, i.e. a conditional

average, and the second term defines a fluctuation with respect

to this average.

B. The Nobel committee’s derivation.

1. Drift force and multiplicative noise

At this stage the Nobel committee9 gives a simpler but more

explicit argument for a Langevin-based EBM than Hassel-

mann’s own. His original paper, in contrast, dealt with both

Langevin and Fokker-Planck approaches.

Their approach is to substitute for x using Eq. 14 in the

equation for the slowly varying dynamics ẏ, and then Taylor

expand in the relatively small but fast fluctuations x∗:

ẏ = g(x,y)

= g(〈x|y〉+ x∗,y)≈ g(< x|y >,y)+ ∂xg(< x|y >,y)x∗

One can then model the slowly varying first term as a drift

force arising from a potential U(y), while the fast fluctuations

are modelled as a white noise ξ (t) whose strength σ̄ is de-

pendent on the value of y, i.e. this noise is not additive but

multiplicative:

ẏ =−dU(y)

dy
+ σ̄(y)ξ (t) (15)

2. Linearising the drift force, and assuming additive noise.

To transform the more general model Eq. 15 into the spe-

cific Hasselmann form with linear damping and additive noise

the Nobel committee then argues that noise intensity is small

so its amplitude can be taken to be approximately constant:

σ̄(y)≈ σ̄ (16)

and that in the case of interest the system loiters near a dy-

namical fixed point yE around which the potential and thus

the drift force can be expanded:

U(y) =U(yE)+(y−yE)
dU(yE)

dy
+

1

2!
(y−yE)

2 d2U(yE)

dy2
+ . . .

and linearised by dropping terms above second order in y−yE .

The SDE for the resulting dynamics then has the well

known O-U solution, but we can see from the above argu-

ments that the SDE must be in the variable y∗ = y− yE which

tracks the relative distance from the fixed point, rather than y:

dy∗

dt
=−γ̄y∗+ σ̄ξ (t). (17)

The result can be compared to the autonomous Hasselmann

model (10) which is in ∆T , not T .

V. STOCHASTIC EBMS AND IAMS

Economic assessments of climate change typically rely on

a suite of integrated assessment models (IAMs) descended

from the work of another Nobel laureate, Nordhaus.56,57.

These models have now been refined and extended in

many directions—from increasing their spatial and sec-

toral resolutions58–60 to explicitly modelling technological

choices61 to incorporating agent-based and non-equilibrium

models of the economy.62–64 Yet, though Hasselmann him-

self contributed to the early development of IAMs,65,66 the

climate modules of IAMs are generally based on determinis-

tic EBMs.67

Climate stochasticity, when it is acknowledged at all, most

commonly enters in the form of uncertain temperature thresh-

olds (effectively “tipping points") at which the model’s pa-

rameter values suddenly change.68

One strand of economic research has added noise to the

temperature dynamics directly.69–71 The main objective has

been to study how fast we can learn the model’s parame-

ter values—the equilibrium climate sensitivity, in particular—

when we observe a noisy temperature time series. Anticipated

learning tends to reduce the effect of parameter uncertainty

on the optimal mitigation policy, but there is no agreement

on whether this anticipated learning-channel is quantitatively

meaningful.72

One possible reason that the research on IAMs has paid so

little attention to temperature stochasticity is that this source

of uncertainty does not affect the marginal warming resulting

from an additional tonne of carbon emissions. As a conse-

quence, temperature stochasticity itself has very little effect

on the optimal mitigation policy.73,74 However, a recent pa-

per by Calel et al.,73 which perhaps offers the first example

of a Hasselman EBM coupled to an economic damage func-

tion, points out that temperature variability could still greatly

affect optimal investment in adaptation. They conclude that

a forward-looking social planner would be willing to make

substantial investments to avoid or reduce the effects of tem-

perature fluctuations. Evidently, Hasselman’s “obvious” idea

still has much to teach us.
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VI. BUT SHOULD STOCHASTIC CLIMATE MODELS
REALLY BE MARKOVIAN ?

A. Leith’s “infrared climate problem"

As well as Mitchell and Hasselmann, a third great climate

pioneer, Leith„ argued for the use of Langevin models in the

mid 1970s. In his case this was explicitly because of their

connection with fluctuation-dissipation relations. As he put it

at an NCAR conference on statistics and climate in 1994,75:

“a stochastic climate model that incorporates the fluctuation

dissipation relation can be devised and would provide a crude

estimate of climate sensitivity. This model would be of the

Langevin type".

However by then he had identified a problem of endur-

ing relevance, that “there is evidence that this kind of model,

would not on its own be satisfactory to capture some of the

low frequency phenomena observed in the atmosphere". He

referred to this, in a phrase that has sadly not gained currency,

as the “infrared climate problem". This was not a literal ref-

erence to thermal radiation but rather to an “infrared catastro-

phe" in fluctuations in temperature, i.e the “piling up of extra

variance at low frequencies".

The Nobel commitee9 illustrates and acknowledges the

continuing relevance of Leith’s worry. It points out that the

Markovian nature of Hasselmann-type models results in an

exponential decay of their autocorrelation functions:

R(τ) = 〈y∗(t)y∗(t + τ)〉. (18)

Such a model predicts that the typical power spectrum of a

climate variable would be Lorentzian:

P(ω) = σ̄2/(γ̄2 +ω2) (19)

and that the ratio of the strength σ̄ of the rescaled noise term

and γ̄ , the rescaled damping term would control the spec-

trum’s shape. The power spectral density would thus be flat

at low frequencies, a property that was reported in early com-

parisons of the Hasselmann paradigm with data from weather

ships.

B. Phenomenological evidence for LRM in climate

The simplest stochastic process with memory, AR(1)

Eq. (4) is Markovian, being formulated only in instantaneous

variables. It can additionally be given random initial condi-

tions, although this is not always the relevant case for climate,

where for example the initial temperature anomaly may be set

to zero.

The emergent physics of the earth system on larger scales

need not be similarly memoryless, though, and in fact the No-

bel commitee’s summary states that in contrast to the atmo-

sphere “the ocean has a very long memory of events, at least

in the hundreds ... 1000 year range". As we noted in our intro-

duction, the committee then remarks on the increasing aware-

ness of effectively infinite memory and that “this suggests

a potential self similarity or fractal character", citing Moon

et al’s Ref. 76 in support of their statement. Moon et al in

their turn refer to the by now quite extensive literature on long

range dependence in climate, from several research teams. We

note in particular the groups at Tromso (Refs. 47, 77, and 78)

and Montreal,16,33,79 and the recent PAGES CVAS group12.

In Ref. 14 Lovejoy addressed the issue of LRM directly. He

compared Frankignoul and Hasselmann’s original Markovian

power spectral fit48 to 16 years of sea surface temperature data

from the Ocean Weather Ship India, with the data now avail-

able from 452 stations over about 100 years. He argued that a

compound power law fit, S( f )∼ f−0.6 at low frequencies and

∼ f−1.8 at higher frequencies is much more satisfactory.

C. Theoretical approaches to LRM in climate.

In other papers16,33 Lovejoy and colleagues have argued for

a fractional energy balance equation (FEBE) as a method for

incorporating long range memory into EBMs.

In the next section we will emphasise that there was already

a well-studied and standard way, the Mori-Kubo GLE80–83, to

incorporate memory in a Langevin equation. The Mori-Kubo

GLE is suitable for use as a univariate stochastic equation,

and thus to add memory to EBMs of the Hasselman type. We

show that FEBE, but with a Caputo fractional derivative rather

than the Riemann-Liouville type used by Lovejoy et al, corre-

sponds to one particular limit of this equation.

VII. WHAT IS A GENERALISED LANGEVIN EQUATION ?

As frequently happens when mathematics and physics in-

tersect, the terminology used in this subject varies, which has

sometimes caused confusion.

An example is the otherwise excellent Nobel committee ar-

ticle, Ref. 9, which describes the SDE corresponding to the

O-U process as a “generalised Langevin equation". It is liter-

ally so, but only in the relatively limited sense that both the

underdamped and overdamped Langevin equations have the

same mathematical form, and that any other linearly damped

model with additive white noise will also obey an SDE of this

same form, whether physical in origin or not.

Two other equations which much more substantially merit

the description “generalised" are

• the equation which has been widely studied in ap-

plied mathematics as a concise statement of the Mori-

Zwanzig decomposition, and which is occasionally re-

ferred to as the GLE8,22 and

• the stochastic Mori-Kubo GLE which has found

widespread application in statistical physics.

The Mori-Zwanzig decomposition has played an important

conceptual role in formalising an approach to modelling the

dynamics of a few preferred degrees of freedom in the pres-

ence of many other unobserved ones in many areas of science,

notably quantum mechanics. The resulting equation are some-

times directly derived from Hamiltonian equations of motion



8

for the whole system, for example in a reservoir plus subsys-

tem model22. The technique is not restricted to such cases,

though, and it has also become arguably the most influen-

tial paradigm for thinking about how to make the Hasselmann

programme mathematically rigorous, and has been employed

in climate science to order empirical modes20, see also Ref. 8.

In contrast, throughout the statistical mechanics community

the more standard usage of the term GLE25–29 is to refer to the

linear integrodifferential Langevin equation of Mori and Kubo

with a memory kernel on its velocity term:

M
d2y

dt2
=−V ′(y)−

∫ t

tm

dt ′γ(t − t ′)
dy(t ′)

dt
+ν(t) (20)

where the Markovian friction term γdy/dt is replaced by a non

Markovian integral over past values of the velocity starting at

a “memory time" tm (c.f. Ref 55).

In the Mori-Kubo formalism the autocorrelation function

of the noise ν(t) is proportional to γ(t − t ′) with the prefactor

depending on the temperature of the medium

< ν(t)ν(t ′)>= kBT γ(t − t ′),

where T is the temperature of the medium and kB is the Boltz-

mann constant. It is thus a non-white noise.

VIII. THE MORI-KUBO GENERALISED LANGEVIN
EQUATION: A NEW APPROACH TO THE INFRARED
CLIMATE PROBLEM ?

A. The overdamped Mori-Kubo GLE

Just as there is an overdamped Langevin equation whose

solution is the O-U process (9) there is a corresponding over-

damped generalised Langevin equation, shown here for mo-

tion near the minimum of the potential V (y):

∫ t

tm

dt ′γ(t − t ′)
dy(t ′)

dt
=−ky+ν(t). (21)

We note that the memory kernel is on the left hand side

of this equation, on the term in dy/dt. We also remark that

the same FDR as that for underdamped Mori-Kubo GLE also

applies here. The power spectrum of the noise ν(t) is matched

to that of the kernel γ(t− t ′), and so as above ν(t) is no longer

white noise.

It is important to realise that while mathematically this is

adding memory to the Langevin model, physically it is sim-

ply making explicit something which was already known, the

presence of finite collision times in physical Brownian mo-

tion.

B. An EBM with memory.

The significance of the Mori-Kubo GLE for our purposes is

that it allows us to suggest a Mori-Kubo GLE-based extension

of the Hasselman EBM. We show our suggested EBM below

in its autonomous version:

∫ t

tm

dt ′CP(t − t ′)
d∆T (t ′)

dt
=−Λ∆T +ν(t). (22)

We remark that an integral over a time dependent heat ca-

pacity CP(t − t ′) has replaced the previous constant C. We do

not prescribe the form of the noise, so the notation ν(t) does

not presume that a fluctuation-dissipation relation exists.

C. A Mori-Kubo GLE with power law kernel: the Fractional
Langevin Equation.

An interesting special case of the overdamped Mori-Kubo

GLE arises when we take a decaying power law form for its

memory kernel

γ(t − t ′) =
(t − t ′)−α

Γ(1−α)
(23)

instead of an arbitrary memory function.

The resulting integrodifferential SDE is written (for nonin-

teger α):

1

Γ(1−α)

∫ t

tm

dt ′(t − t ′)−α dy(t ′)
dt

=−ky+να(t) (24)

and is known in the physics literature as the overdamped

fractional Langevin equation (FLE). Both the overdamped

and underdamped cases of the FLE have been extensively

studied84–87 follwing the pioneering investigation by Mainardi

and Pironi88of the α = 3/2 case.

The notation να here acknowledges the presence of a re-

lationship, the FDR89,90, between the noise and the damping

kernel.

D. Fractional derivatives.

The integrodifferential form of the FLE is sometimes sim-

plified by the use of a fractional derivative. Fractional calculus

forms a large and growing field of research in itself, see e.g.

Refs. 91–93, so to aid the reader we have included Appendix

A to summarise those aspects we have used here. We again

emphasise that the FLE is only one special case of the more

general Mori-GLE, and that we remain “agnostic" about its

relevance to the climate system, preferring to suggest a model

with a more flexible memory kernel.

The (left-handed) Caputo derivative of order α for a suit-

able function f (x) is defined94,95 for 0 < α < 1 as

C
a Dα

x f (x) =
1

Γ(1−α)

∫ x

a
du f ′(u)(x− u)−α (25)

where f ′(u) = d f/du.

As well as its order α the Caputo derivative has a second

parameter, the lower limit a of the integral in its definition.
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The Caputo fractional derivative has physically more intuitive

initial conditions than the most widely used alternative to it,

the Riemann-Liouville derivative. This is because they are

specified as integer rather fractional powers of physical quan-

titities. However, as noted by95, the problem can be circum-

vented by the Schneider-Weiss formulation of the Riemann-

Liouville derivative.

The Caputo derivative also has the nice property that while

of fractional order for α < 1 it becomes the familiar integer

derivative in the α = 1 case, i.e C
a D1

x f (x) = d f/du, as is shown

in Section 2.4.1 of Ref. 92. A Caputo FLE can thus be defined

C
tm

Dα
t y =−ky+να(t) (26)

that straightforwardly encompasses the familiar Langevin

equation as its α = 1 case. This equation and its close relatives

are increasingly being studied in several disciplines96–100, typ-

ically under the name “Caputo fractional SDE", though typi-

cally specialised to the case of white noise driving.

E. The LRM EBM special case and its relation to FEBE.

In the same way we can postulate a decaying power law

form for the kernel in the EBM above

C(t − t ′) =
(t − t ′)−α

Γ(1−α)
(27)

instead of an arbitrary memory function, and can thus write

the integral over the kernel in our EBM as a Caputo fractional

derivative, giving an autonomous version as:

C
tm

Dα
t ∆T =−Λ∆T +να(t) (28)

In this picture the external climate forcing can then be in-

corporated as an additional term F2(t), so we obtain

C
tm

Dα
t ∆T =−Λ∆T +να(t)+F2(t). (29)

which can be seen to be closely related to Lovejoy and

coworkers’ FEBE by comparison with, for example, Equa-

tions (13) and (14) of Ref. 16. The key difference is that we

have a Caputo derivative rather than their Riemann-Liouville

one. We postpone to future work the exploration of the impli-

cations of this choice in the model’s design. Importantly the

α = 1,H = 1/2 limit of both derivatives is of course the same,

and gives the Hasselmann model as required. The determina-

tion of the order of the Caputo derivative empirically is an area

of current research, both generally and in the specific climate

context. It is directly related to the form of the response func-

tion of the system under study, if the Caputo model is itself

applicable, and indirectly related to the power spectral density

of the main observable, here ∆T . The specific relationship if

any between the response function and the noise driving de-

pends on the presence or absence of a fluctuation-dissipation

relation.

We note that although the integral in the Caputo derivative

is frequently started at tm = 0 (including for example in its cur-

rent implementation in Mathematica), its definition allows

it to start anywhere on the real line101. It thus naturally en-

compasses the tm =−∞, “Weyl" case to which Lovejoy33 has

drawn attention in the climate context, without additional ef-

fort.

IX. SOLVING THE MORI-KUBO GLE AND THE FLE
ANALYTICALLY.

In this section and the following one we have used the

words “analytic",“numerical" and “solution" as is commonly

done in the physics literature. The mathematics literature has

different conventions and the reader is advised to beware !

A. General solution of the overdamped Mori-Kubo GLE

There are by now numerous sources in the literature for an-

alytic solutions of the Mori-Kubo GLE, starting from near-

contemporary work such as that of Fox83. They typically use

Laplace transform methods e.g. those of Ref. 86.

In our present application to climate it is important to note

that solutions of the GLE have not been limited to assuming

a starting time tm of zero. A notable recent example where

tm has been more general is Ref. 55 whose authors studied an

overdamped Mori-Kubo GLE

∫ t

tm

dt ′K(t − t ′)ẋ(t ′)+ kx(t) = F2(t)+ ξ (t),

which described a particle of mass M moving in a harmonic

confining potential V (x) = (1/2)kx2 (in their case an opti-

cal trap) and experiencing an additional deterministic forc-

ing (from dragging of the trap) F2(t) and a stochastic forcing

which they assumed to be white noise ξ (t).
The authors obtained the general solution of their Mori-

Kubo GLE as

x(t) = xtm(1− kχ(t− tm))+
∫ t

tm

dt ′χx(t − t ′)[F2(t
′)+ ξ (t ′)]

(30)

where the xtm denoted the initial condition for position,

x(t = tm). The position susceptibility χx(t) here was defined

through its Laplace transform

χ̂x(s) = [Ms2 + sK̂(s)+ k]−1

and the integral of it appearing in their solution was defined as

χ(t) =
∫ t

0
dt ′χx(t

′).

The cases treated in Ref. 55 were relatively tractable, so

they should in principle also allow some special cases of our

proposed stochastic EBM to be solved analytically-a problem

which we expect to return to in future work.
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B. Solving the FLE by Green’s functions

1. The overdamped FLE

For now, though, we will specialise to the fractional special

case of the overdamped Mori-Kubo GLE, i.e. the overdamped

FLE. We recall that this will specialise further for α = 1 to the

familiar exponential solutions of the Hasselmann model.

The overdamped FLE, both with and without deterministic

forcing, has been studied in the mathematics and statistical

physics literatures, e.g. in 2017 by Li et al in Ref. 102. With

an Riemann-Liouville derivative rather than the Caputo type

it has been studied by Lovejoy and co-workers as a stochastic

climate model since 2019, and dubbed “the fractional energy

balance equation".

The overdamped forced FLE

[

C
tm

Dα
t + k

]

x(t) = F2(t)+να(t) (31)

can be seen to have an entirely deterministic fractional opera-

tor on its left hand side, while the right hand side incorporates

both the deterministic forcing term F2(t) and a stochastic term

να .

2. The delta function-forced Caputo FDE and the Green’s
function of the FLE.

One way to solve the overdamped forced FLE is to first ob-

tain the solution of the deterministic relaxation and oscillation

fractional differential equation, i.e. the Caputo FDE, when

forced by a δ -function:

[

C
tm

Dα
t + k

]

x(t) = δ (x) (32)

which can be done using Laplace transforms e.g. Ref. 103.

With an appropriate initial conditions, this gives the im-

pulse response of the fractional operator, which can then be

used to construct a Green’s function to solve either the deter-

ministic or stochastic versions of the inhomogenous equation.

The Laplace transform solution of (32) for tm = 0 and

x(0) = 0 is

x(t) = tα−1Eα ,α(−ktα)

as can be checked in version 13.1 or later of Mathematica

using its CaputoD and DiracDelta functions.

Fig. 1 plots x(t) for values of α from 1 to 1/2, and k = 1.

On the semilog axes chosen we can see that the α = 1 case

is exponential while smaller values of α correspond to more

slowly decaying tails in the Mittag-Leffler function Eα ,α(t)
and to an increasingly singular “spike" at zero from the power

law prefactor. It may be compared with Figs 2 and 3 of Ref. 16

which used a Riemann-Liouville derivative.

3. Step function forcing of the Caputo FDE and FLE.

If we then include the deterministic forcing F2(t), and take

tm = 0,x(tm) = x0 the solution becomes

x(t) = x0Eα(−ktα)+

∫ t

0
F2(τ)(t −τ)α−1Eα ,α [−k(t−τ)α ]dτ.

In the well studied case most relevant to climate science, when

the forcing becomes a Heaviside step function applied from

t = 0 onwards, i.e. F(t) = θ (t), the integral can be evaluated

and the solution becomes

x(t) = x0Eα(−ktα)+ tαEα ,1+α [−ktα ].

which again can be confirmed by Mathematica.

This function is illustrated in Fig. 2 which plots x(t), again

for values of α from 1 to 0.5 but now for k = 0.1.

The effect of memory for the cases where α < 1 is clear in

lengthening the time it takes for the solution to take its asymp-

totic value. In a simplest forcing experiment, such as doubling

CO2, for a stochastic EBM this would correspond to the ap-

proach to a new equilibrium value of the GMT anomaly.

4. The overdamped FLE with arbitrary deterministic and
stochastic forcing

We come finally to the full overdamped forced FLE (31),

again with tm = 0, when the stochastic term has also been in-

cluded. This is too general to have a useful analytic solution,

but we can make some comments to help elucidate its mean-

ing.

When written in integral form the SDE has three parts. The

first and second are those seen in the previous sections, while

the third must be interpreted as a stochastic integral. We will

not deal with this term, corresponding to να(t) in (31), in

full generality but will instead consider the case of fractional

Gaussian driving:

x(t) = x0Eα(−ktα)+
∫ t

0
(t − τ)α−1F2(τ)Eα ,α [−k(t − τ)α ]dτ

+CH

∫ t

0
(t − τ)α−1Eα ,α [−k(t − τ)α ]dBH(τ) (33)

The above stochastic integral is best understood in the

H = 1/2 case of white noise when it can be described by Itô

calculus, although there is by now also a substantial math-

ematical literature concerning integrals with respect to frac-

tional Brownian motion94,104 (fBm).

Furthermore, when we then specialise to F2 = 0 and α = 1

the solution then corresponds to the very well studied O-U

process:

x(t) = x0 exp(−kt)+
∫ t

0
e−k(t−τ)dW (τ)

The stochastic integral in this case can be defined as the

limit of a sum and dW as a suitably rescaled increment of
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FIG. 1. Impulse response of the fractional relaxation-oscillation

equation for α = 1 to 0.5.
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FIG. 2. Step response of the fractional relaxation-oscillation equa-

tion for k = 0.1,α = 1 to 0.5.

Brownian motion,

∫ t

0
e−k(t−τ)dW (τ)= lim

∆→0

n−1

∑
j=0

e−k( j∆−τ)(W (( j+1)∆)−W( j∆))

as described on pages 90-91 of Ref. 21.

X. NUMERICALLY EVALUATING TRAJECTORIES OF
THE MORI-KUBO GLE AND FLE.

As is so often the case, the analytical intractability of the

most physically interesting and relevant SDEs means that we

must evaluate them numerically. We discuss this below, first

for the Mori-Kubo GLE and then for its fractional special

case.

A. Numerics for the Mori-Kubo GLE

There are by now several modern sources of numerical al-

gorithm for the stochastic Mori-Kubo GLE e.g. Refs. 28, 29,

105, and 106.

The algorithm of Lim28 requires that the system of SDEs to

be solved must be “Bohl" i.e. the matrix elements of the mem-

ory kernel K(t) are finite linear combinations of the functions

of the form tkeβ t cos(ωt) and tkeβ t sin(ωt), where k is an in-

teger and β and ω are real numbers. As Lim28 notes, when

these functions decay as a power law, for example, the result-

ing fractional Mori-Kubo GLE cannot be studied as a finite-

dimensional SDE system. Although one can work formally in

an infinite-dimensional setting, numerics will typically resort

(e.g. Ref. 107) to approximating the power law, frequently by

using a weighted sum of exponentials.

FIG. 3. Box plot of an ensemble of 10 sample paths of the over-

damped fractional Langevin equation, forced by a Heaviside step

function Θ(t) and a stochastic term of amplitude σ̄ = 0.16. The pa-

rameters were tm = 0,x(tm) = 0, k = 0.1, and α = 0.7. Overplotted

is the analytic solution, which can be seen to coincide well with the

means of the ensemble.

B. Numerics for the overdamped FLE

The overdamped FLE can be solved in a number of ways.

Lovejoy et al’s work15,16 on FEBE has so far used Fourier

methods similar to those widely used to simulate fBm and

its increment, fGn, and have focused on an initial condition

specified at tm = −∞. In our paper we will instead consider

finite tm, which allows the infinitely distant case as a limit, and

wish to use a non-Fourier based algorithm for its flexibility in

potential future developments.

Our approach is illustrative, rather than rigorous. We use

the explicit solution of the overdamped FLE and evaluate it at

each required value of t. We do this by discretising t using the

definitions of the stochastic and deterministic integrals as the

limits of sums. However, we must stress that even in the O-

U case it is known (e.g. Ref. 24) that this algorithm will not

ensure that a solution will have the required autocorrelation

properties on the solution. This is why our results must be

considered illustrative rather than definitive for now.

In our future work, in order to achieve the required ACF, a

time evolution equation rather than an integral will be needed.

A prototype of such algorithms was derived by Gillespie24,108

for the O-U case. Candidates include the spectral method of

Ref. 98, and the recently developed fast Euler-Maruyama al-

gorithm given in Refs. 109 and 110.

Here we also restrict ourselves to the white noise-forced

case, but with the additional deterministic forcing term, and

intend to explore coloured noise forcing in future work.

We first approximate the stochastic integral using
∫ t

0
(t − τ)α−1Eα ,α(−k(t − τ)α)dW (τ)

≈
n−1

∑
j=0

(t − j∆)α−1Eα ,α(−k(t − j∆)α)(W [( j+ 1)∆]−W( j∆))

=
n−1

∑
j=0

∆α−1(n− j)α−1Eα ,α(−k∆α(n− j)α)∆1/2N
( j+1)∆
j∆

where, following Ref. 24 each finite difference of W has been

replaced by the scaled Gaussian random number ∆1/2N.

The deterministic integral is approximated by
∫ t

0
F2(τ)(t − τ)α−1Eα ,α(−k(t − τ)α)dτ

≈
n−1

∑
j=0

∆α−1(n− j)α−1Eα ,α(−k∆α(n− j)α)∆ (34)

where F2(τ) = θ (τ) for the problem specified in equation.

In Figure 3 we illustrate the behaviour of the FLE by plot-

ting ten sample paths obtained this way for forcing by a Heav-

iside step function Θ(t) and a stochastic term of amplitude
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FIG. 4. Box plot of 64 paths for ∆T from white noise fractional

Caputo EBM driven by RCP 8.5 (shown in the inset). α = 0.7, Λ =
0.96 and σ̄ = 0.1

σ̄ = 0.16. We used MATLAB’s function boxplot where for

each box, the central mark indicates the median, and the bot-

tom and top edges of the box indicate the 25th and 75th per-

centiles, respectively. The whiskers extend to the most ex-

treme data points not considered outliers, and the outliers are

plotted individually using the ‘+’ marker symbol. Parame-

ters were tm = 0,x(tm) = 0, k = 0.1, α = 0.7. The mean of

the paths is overplotted and is seen to compare well with its

known analytic result.

C. Numerics for our proposed Mori-Kubo GLE-type EBM
driven by RCP 8.5.

We now briefly illustrate how our stochastic GLE-based

EBM, in its fractional special case (29), can be used to study

the global mean surface temperature. We do this in the white

noise driven (να = σ̄ξ ), fractional Caputo case by repeating

the the previous subsection’s approach, but this time taking

the deterministic part of the driving from the RCP 8.5 Rep-

resentative Concentration Pathway111, a (worst case) model

of anthropogenic forcing. Figure 4 is a box plot of 64 paths

for ∆T , again with the choice α = 0.7, and with the values

Λ = 0.96 and σ̄ = 0.1 that were also chosen in Ref. 67. Fur-

ther investigations will employ a better algorithm to solve the

SDE, as discussed above.

XI. ARE THERE ALTERNATIVE STOCHASTIC

GLE-BASED EBMS ?

Although this paper is focused on a stochastic EBM in-

spired by a mapping to the overdamped Mori-Kubo Langevin

equation, other options exist, some of which have been ex-

plored so far in the literature.

A. Mori-Kubo GLE- based EBMs and other intrinsically
stochastic approaches.

As well as Lovejoy et al’s FEBE, discussed in some detail

above, and the overdamped GLE-based EBM we have pro-

posed here, there have been several other proposals that ex-

tend the Hasselmann formalism to include multiscale mem-

ory. We enumerate some below. As noted in the introduction,

Ref.19 Ghil et al have argued that a key requirement of any

such model is the ability to add quasi periodic determinism as

well as a stochasticity.

1. Modified fractional Brownian motion

In several pioneering papers77,78 Rypdal and colleagues

discussed various extensions of fractional Brownian motion

as generalisations of the Hasselman EBM. The main limita-

tion of their idea was the absence of the damping term, as

noted by Lovejoy16,33.

2. Direct mapping to underdamped generalised Langevin
equation rather than overdamped GLE.

In our earlier conference proceedings chapter31 and subse-

quent preprint32 we considered a different GLE-based EBM.

Here the mapping was made from the underdamped Langevin

equation rather than the overdamped Langevin equation.

This results in a mapping from velocity onto GMT

anomaly, rather than from position. We erroneously thought

that in its fractional special case our suggested stochastic

EBM was isomorphic to FEBE after suitable conversions be-

tween their parameters, but in fact the comparisons made in

previous sections of the present paper show that FEBE is

much closer to the overdamped Langevin equation and thus

to our newer proposal.

3. Two box models

The two box EBM is an interesting alternative which may

be useful in some cases. It replaces the single decay scale of

Hasselmann’s model with two. This allows, for example, the

atmosphere and ocean timescales to be explicitly represented.

As shown in Ref. 45 the two box model results in a sec-

ond order SDE with constant coefficients, isomorphic to the

underdamped Langevin equation for position.

Interestingly this second order equation is a also an alterna-

tive representation for the Mori-Kubo GLE when its memory

kernel is of exponential form, as shown in Ref. 112, a special

case of a more general result given in Ref. 106.

4. Multi box models

The above methods can be extended to the case of many

relaxation time scales, an approach studied extensively for

SDEs in the applied mathematics literature and also in cli-

mate science22,46. Eigenvalue analysis can be used to to pre-

dict some of the spectral properties of such multibox models,

as done for example by Fredriksen and Rypdal47

5. The fractional Ornstein-Uhlenbeck equation

The Langevin equation can be modified to be driven by

fractional Gaussian noise rather than white noise, while still

keeping the friction term constant. This has been studied in

the mathematical finance literature extensively94 and has been
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suggested in the climate context113. These authors also de-

velop a time series model113,114 based on the discrete time au-

toregressive fractionally integrated moving average ARFIMA

process, which generlises AR(1).

6. Yuan et al’s generalised stochastic time series model.

A fractional time series model, not simply isomorphic to

ARFIMA or other existing models, has been proposed13, to

systematically separate the “forcing-induced direct” and the

“memory-induced indirect” trends in data.

B. Other stochastic Mori-Zwanzig GLE-based EBMs.

As noted in our introduction, the Mori-Kubo GLE is in prin-

ciple a subset of the more complete Mori-Zwanzig formalism,

which has at its heart a deterministic identity expressing the

division of a system into observed and unobserved degrees of

freedom27. Space does not permit a full discussion of this

here, but we refer the reader to a short introduction23, and re-

views of the method21 and its applications to climate8.

XII. FLUCTUATION-DISSIPATION RELATIONS

Fluctuation-dissipation relations (FDRs) have been studied

extensively in climate science, see e.g. the reviews of Refs. 3

and 4 and recent examples like Ref. 115.We do not discuss

them at length here, but simply note some aspects that relate

to the stochastic EBMs we study.

A. Emergent parameters in the OU-process.

The meaning of the phrase “Fluctuation Dissipation Rela-

tion" can sometimes be as simple as its usage by the Nobel

committee9, who noted that the variance 〈y2〉 of the OU pro-

cess which solves the overdamped Langevin equation (9) is

proportional to the ratio of the noise amplitude σ̄2 to the mean

reversion term γ̄ . The Nobel document appears to us to be

stressing that any system to which the O-U process has been

applied must in consequence obey this limited kind of FDR.

This is because there will then always be a ratio of σ2/2γ̄ and

it will empirically determine the value of < y2 >. This is not

a trivial observation in the climate context because either the

value of 〈y2〉 or the noise amplitude σ̄ are in this sense “emer-

gent" parameters whose values are unknown a priori, c.f. the

FDR-like relation found in Ref. 54.

B. The FDR in Brownian motion

In the physical context (the motion of a tracer particle

in a fluid) from which the underdamped and overdamped

Langevin equations originated4,24, however, this ratio was not

a free or empirically determined parameter. It was instead

constrained to be proportional to the temperature T of the sur-

rounding heat bath. A proportionality to T is seen both in the

Brownian motion special case of Kubo’s “FDR2"89,90,116–118,

i.e. the ratio of the noise amplitude to the mean reversion

(friction) term in the underdamped Langevin equation, and

in a corresponding expression arising from the overdamped

Langevin equation. Importantly these fluctuations are entirely

“internal", and the fast and slow terms in the Langevin equa-

tion arose from the same physics. This is not straightforwardly

the case when an EBM is written down or derived for the cli-

mate problem, and extensive debates have occurred about the

applicability or otherwise of the FDR in a climate context3,4.

C. The FDR as seen in the Mori-Kubo GLE

As we noted above the Mori-Kubo GLE (here in its over-

damped form)

∫ t

tm

dt ′γ(t − t ′)
dy(t ′)

dt
=−ky+ν(t) (35)

was designed to embody an FDR which relates the covariant

structure of the noise ν(t) to the auto-correlation structure of

the kernel γ(t − t ′), so that they are not free to vary indepen-

dently. In the original context for the GLE, Brownian motion,

this FDR is literally a fluctuation-dissipation relation because

the ν(t) term is a fluctuating noise and the integral operator

over γ(t) is a friction term acting to reduce the magnitude of

the velocity dy/dt.

If we naively take this functional form of the GLE over to

the climate context, however, the integral operator is doing

a physically different job. It is now an integral over a heat

capacity CP(t − t ′) and so an “FDR" of the classic GLE type

would be relating the covariance structure of the heat capacity

to that of the noise ν(t).
This would still be doing essentially the same thing in the

sense of balancing the noise and kernel, scale by scale, in or-

der to allow the system to relax to a steady state, but further

investigation would be necessary to establish whether it made

physical sense.

XIII. CONCLUSIONS

Hasselmann’s realisation that Brownian motion could be

used as a mathematical superstructure to organise fast weather

and slow climate fluctuations was a very powerful one, and

his recent Nobel prize provided a timely context for our re-

view. As we have shown, recent progress in going beyond his

paradigm has generated what at first sight seem to be diver-

gent positions, exemplified by the recent reviews of Franzke

et al in Ref. 10 and Lovejoy Ref. 14.

In this paper we have sought to facilitate an improved dia-

logue between these views, and have found them to have more

points of contact than was initially apparent. We first drew at-

tention to the existing climate work using the Mori-Zwanzig

approach, and proposed using the stochastic GLE of Mori and
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Kubo as a framework to study memory in one dimensional

stochastic EBMs. We then related the stochastic GLE-based

EBM to Lovejoy’s Fractional Energy Balance Equation, and

concluded with some speculations on fluctuation dissipation

relations.
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Appendix A: Summary of Fractional Calculus

Because of their relationship to long range dependence in

time series and heavy tailed amplitude distributions, fractional

differential equations (FDEs) and fractional stochastic differ-

ential equations (FSDEs) such as those in the present paper,

have also been extensively studied in complexity science. In

order to make the paper more accessible to readers who have

had little need to deal with fractional integration and differ-

entiation, we give here a very brief summary of the results

which we use. Fractional derivatives and the associated FDEs

are now implemented directly in some numerical packages,

like Mathematica whose demonstrations we encourage the

reader to explore.

This Appendix follows the notational conventions of the

physics literature. Readers seeking a more detailed but sim-

ilarly physics-inspired treatment are referred to Ref. 119 and

also the very useful general overview article of Ref. 120.

Readers who prefer a more mathematical development may

consult Refs. 92, 93, 103, 121, and 122. In addition two

books which study SDEs driven by fractional Brownian mo-

tion are Refs. 94 and 104.

1. Fractional integral

It is possible to begin by defining a fractional derivative but

we follow most authors by starting with the inductive defini-

tion of integration, which the fractional integral generalises.

We are used to the idea that the taking of a derivative of a

function f (t) with respect to time t is the inverse of integrat-

ing it with respect to t ′ up to the time t:
∫ t

a
f (t ′)dt ′. (A1)

The nth derivative is thus an inverse to the n-fold repeated in-

tegration:

∫ t

a
dt ′1

∫ t′1

a
dt ′2 . . .

∫ t′n

a
dt ′n f (t ′n) (A2)

and requires us to use the integral identity:

∫ t

a

∫ t′1

a
. . .

∫ t′n−1

a
f (t ′n)dt ′n . . .dt ′1 =

1

(n− 1)!

∫ t

a
f (t ′)(t−t ′)n−1dt ′

(A3)

The form of the right hand side of this expression shows

why we can then allow n to be replaced by a non-integer value

α , thus defining an integral of fractional order. In defining a

fractional integral we use the relationship between the facto-

rial and the gamma function, Γ(n) = (n−1)! the discovery of

whuich was a consequence of the earliest work on fractional

calculus123.

The left-sided Riemann-Liouville fractional integral opera-

tor of order α on a finite interval (a,b) of the real line, acting

on a function f (t) is then

(aIα
t f )(t) =

1

Γ(α)

∫ t

a
f (t ′)(t − t ′)α−1dt ′ (A4)

Note that this definition requires that α > 0. Typically

α < 1 is also assumed, but this is not obligatory101 Other no-

tations exist for this integral e.g. (Iα
a+ f )(x) used widely in the

mathematics literature.

Taking α = 1 recovers the usual integral of f (t) from a to

t,

(aI1
t f )(t) =

∫ t

a
f (t ′)dt ′ (A5)
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whereas α = 1/2 gives

(aI
1/2
t f )(t) =

1

Γ(1/2)

∫ t

a

f (t ′)√
t − t ′

dt ′. (A6)

which was one of the first fractional integrals to receive study

in physics, chemistry, and engineering, notably in the heat

transfer problem91.

Instead of being over a finite interval we can define the

left-sided Riemann-Liouville fractional integral of f (t) on the

complete real line:

(−∞Iα
t f )(t) =

1

Γ(α)

∫ t

−∞
f (t ′)(t − t ′)α−1dt ′ (A7)

2. Riemann-Liouville Fractional derivative

We can now define fractional differentiation as the inverse

of fractional integration. In practise this is done by taking

a fractional integral of order 1 higher than the desired or-

der of the derivative, and then using the usual integer deriva-

tive to lower its order by one. Because fractional integration

and differentiation do not commute, two possible fractional

derivatives exist, depending on whether the fractional integral

of f (t) is done first or the integer derivative. These are the

Riemann-Liouville and Caputo cases respectively.

Taking the Riemann-Liouville case first, and considering

the finite time interval (a,b) we define a derivative which is

based on the inverse of the left-sided Riemann-Liouville inte-

gral. We use the fact that the Riemann-Liouville fractional

derivative of the function f (t) of order α , aDα
t f (t), is its

Riemann-Liouville integral of order −α . We calculate this

by first writing the integral of order 1−α , where 0 < α < 1:

(aI1−α
t f )(t) =

1

Γ(1−α)

∫ t

a
f (t ′)(t − t ′)−α dt ′ (A8)

and then differentiating:

(aI−α
t f )(t) = (aDα

t f )(t) =
1

Γ(1−α)

d

dt

∫ t

a
f (t ′)(t − t ′)−α dt ′.

(A9)

The lower limit of this integral is usually taken to be 0,

though this is not in fact essential101. As in the case of the

fractional integral we can define the integral in the derivative

over the whole real line, so a can be −∞. This case is some-

times referred to as the Weyl or Riemann-Weyl derivative.

3. Caputo Fractional derivative

If instead we take the integer derivative first, before doing

the fractional integral, we can define the Caputo fractional

derivative:

(Ca Dα
t f )(t) =

1

Γ(1−α)

∫ t

a
dt ′(t − t ′)−α d f

dt
(t ′). (A10)

The Caputo derivative can be defined via the Riemann– Li-

ouville derivative:

(Ca Dα
t f )(t) = (aDα

t f )(t)− t−α

Γ(−α)
f (t), (A11)

so the Caputo and Riemann-Liouville fractional derivatives

will coincide for negative orders α . One advantage of the Ca-

puto definition over the Riemann–Liouville case is that it uses

the values of f (t) and its integer rather than fractional deriva-

tives at 0 (or, in general, at any lower-limit point a). This is

well suited to solving fractional-order initial-value problems

using Laplace transforms, a popular approach for both FDEs

and FSDEs.
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