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Abstract—Detecting the presence of animal vocalisations in
nature is essential to study animal populations and their behaviors.
A recent development in the field is the introduction of the task
known as few-shot bioacoustic sound event detection, which aims
to train a versatile animal sound detector using only a small set of
audio samples. Previous efforts in this area have utilized different
architectures and data augmentation techniques to enhance model
performance. However, these approaches have not fully bridged the
domain gap between source and target distributions, limiting their
applicability in real-world scenarios. In this work, we introduce
an new dataset designed to augment the diversity and breadth of
classes available for few-shot bioacoustic event detection, building
on the foundations of our previous datasets. To establish a robust
baseline system tailored for the DCASE 2024 Task 5 challenge,
we delve into an array of acoustic features and adopt negative
hard sampling as our primary domain adaptation strategy. This
approach, chosen in alignment with the challenge’s guidelines
that necessitate the independent treatment of each audio file,
sidesteps the use of transductive learning to ensure compliance
while aiming to enhance the system’s adaptability to domain shifts.
Our experiments show that the proposed baseline system achieves
a better performance compared with the vanilla prototypical
network. The findings also confirm the effectiveness of each
domain adaptation method by ablating different components
within the networks. This highlights the potential to improve
few-shot bioacoustic sound event detection by further reducing
the impact of domain shift.

Index Terms—Bioacoustic sound event detection, few-shot
learning, domain adaptation

I. INTRODUCTION

The automatic detection and analysis of bioacoustic sound
events is a valuable tool for assessing animal populations and
their behaviours, facilitating conservation efforts, and providing
insights into ecological dynamics [1]–[3]. By leveraging
advanced machine learning and computational bioacoustics
techniques, it is possible to decode the complex acoustic
signals of diverse species [4]. This approach can allow us to
overcome some of the challenges to a considerable extent, such
as background noise, simultaneous calls from various sources,
and the major issue of limited annotated data in the face of an
expanding volume of recordings [5]. Despite the advancements,
the domain-specific challenges of bioacoustic sound event
detection – such as distinguishing between various vocalisation

‡The work does not relate to Huy Phan’s work at Amazon.

types, dialect types, species versus individuals identification,
models capable of decoding both soundscapes and focal
recordings – underscore the need for general-purpose systems
that are capable of adapting to these specialized tasks [6]–
[8]. Addressing these fragmentation and specific challenges
in bioacoustic sound event detection, few-shot learning (FSL)
emerges as a promising framework capable of transcending
the varied subdomains within computational bioacoustics [9],
[10]. FSL in sound event detection leverages the concept
that a system can be trained on a small, representative set
of data samples to detect and classify novel, unseen sound
events. By training a single model to adapt to multiple datasets
with minimal examples, FSL proposes a robust and versatile
solution [11], [12]. This innovation not only addresses the
lack of large-scale annotated datasets but also the practicality
of applying deep learning techniques across the fragmented
landscape of bioacoustic research, offering a pathway to more
scalable and efficient detection systems [9].

To diversify methods and accelerate progress in FSL within
the bioacoustics domain, an open-science task was organized
within the Detection and Classification of Acoustic Scenes
and Events (DCASE) framework, focusing on bioacoustic
sound event detection (SED). This challenge, open to all ,
invited participants to develop few shot systems that given
only 5 examples of an animal sound (per recording) the
system is able to detect the same sound in the rest of the
recording. The task featured public datasets, evaluation metrics,
documentation, and baseline systems [13]–[15]. The few-
shot bioacoustic sound event detection task highlights some
unique features: 1) diverse target sounds: sounds of different
animals vary greatly due to the distinct mechanism of their
vocalisation; 2) sparse distribution of animal vocalisations: the
presence of animal sounds is much rarer than the background
slices in the recording; and 3) dynamic acoustic environment:
the context of target sounds changes drastically due to the
heterogeneous nature of various microphones, different sound
sources, and environments. We assume these unique features
pose a challenge of domain shift, hindering the generalization
ability of few-shot bioacoustic detectors.

In this work we explore the problem of domain shift in the
field of bioacoustics and present a new baseline system for



the few-shot bioacoustic event detection task in the DCASE
2024 challenge1. This is achieved by adapting the system
proposed in [16]. Diverse acoustic features are investigated
and two domain adaptation techniques, namely, negative hard
sampling [17] and transductive learning [18] are systematically
ablated to study their impact on the performance on the few-
shot bioacoustic event detection task. Additionally, to mitigate
the domain shift, we introduce a new dataset for DCASE
Task 5 for 2024 by extending the dataset from the previous
years challenges. We conduct an additional ablation study and
compare the performance on different versions of the dataset
to highlight the challenge of domain shift and analyse the
mechanism for a good performance in this task. In adherence to
the DCASE 2024 Task 5 challenge rules, which require treating
each audio file independently to prevent potential class overlap
in the evaluation set, our baseline system does not incorporate
transductive learning - a technique we evaluated in our 2022
analysis. Instead, our domain adaptation efforts for the 2024
challenge are centered around negative hard sampling, ensuring
compliance with the challenge’s guidelines and focusing on
methodologies conducive to advancing few-shot bioacoustic
event detection research within the stipulated framework.

II. DATASET

In this work we make use of the development dataset from the
DCASE 2022’s few-shot bioacoustic event detection task [14].
As described in [9], each subset of data represents different
bioacoustic sources and contains long duration recordings
of different species, recorded in various locations and with
different recording setups and devices. Due to this diversity,
the data is able to represent the nature of the bioacoustics
domain which is commonly described more as a set of
computational related tasks instead of single one. The training
set recordings are paired with multi-class annotations while
in the validation set each audio recording is only annotated
for a single class of interest. This means that in the validation
set, other salient/foreground events exist however these are
not the target of the detection task. Table I summarizes the
content of each set of data, and it serves to further illustrate
the heterogeneous nature of the data. We note that the level of
the annotations can also vary across the different subsets. In
some, the target classes are different species (see table I for
WMW, BV and PB), however in other sets the target classes
are different call types of the same species (see table I for
ME).

Focusing on the domain shift problem, this dataset provides
a realistic example of the expected degree to which data
distributions can shift and vary across the different sets of
data. In fact the training set has minimum overlap between
classes and characteristics of the data in the validation set which
constitutes a challenging scenario for system development,
particularly since the expectation of similar performance on
training and validation sets cannot be guaranteed here. To
further highlight the occurrence of domain shifts in bioacoustic
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datasets, we also consider the recently updated version of
the validation set2, see Table I, Validation set 2024. The
validation set has been extended to include more flight calls
recordings (PB data) and recordings of two new species: Red
Deer (RD) and Pilot Whales (PW). It is also of note that with
the addition of Pilot whale recordings in the validation set, we
are introducing an important domain shift since the acoustic
underwater soundscape is completely different from the other
acoustic environments.

III. PROPOSED SYSTEM

To automatically detect the presence of an animal in a
recording, the bioacoustic sound event detection system should
learn the concept of the vocalisation of a specific species from
a limited number of references. This poses a unique challenge
in the task of few-shot bioacoustic sound event detection: the
target domain could be misaligned with the source domain from
which the model learns the concept of animal vocalisation. In
Sect. III-A we formulate the problem of few-shot bioacoustic
sound event detection and introduce the architecture of the
proposed baseline in Sect. III-B. To mitigate the domain gap
between a source and a target domain, we elaborate two designs
in Sect. III-C.

A. Problem formulation

Suppose a dataset D = {(xi,yi)}|D|
i=1 where xi denotes the

i-th audio example, yi ⊂ C denotes the set of discrete labels
of the i-th example, and C denotes the label set of |C| classes,
C = {1, . . . , |C|}.

For two non-overlapping subsets Ds,Dq ⊂ D, a classical
few-shot learning setting can be formulated as a “N -way K-
shot” problem where a classification task is constituted by: (i) a
label subset Cs of N classes sampled from C, (ii) K examples
(known as support data) sampled from Ds for each class in
Cs, and (iii) Q examples (known as query data) sampled from
Dq for each class in Cs. With a model family chosen as pθ(x),
with unknown parameters θ ∈ Θ, the problem boils down to
maximizing the average likelihood of all the samples from Dq

under the model parameter:

θ∗ = argmin
θ∈Θ

1

|Dq|
∑

(x,y)∈Dq

L(y|x, θ) (1)

B. Model architecture

We adopt prototypical networks [19] to directly learn the
concept of animal vocalisation in the latent space. For a class
n ∈ Cs, let Sn be the subset of support examples containing
the sound events of this class, |Sn| = K. Then the set of sound
events is represented as S+

n ⊂ Sn where the set of negative
segmentation is denoted as S−

n = Sn/S+
n .

The positive prototype a+n of class n is then derived as the
mean of embedding vectors of the support examples in S+

n .
Formally,

a+n =
1

K

∑
(x,y)∈S+

n

fθ(x), (2)
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TABLE I
SUMMARY OF DATASET CHARACTERISTICS.

Name and species Mic type # Audio files Total duration # Labels # Events Mean Event duration (s)

BV: BirdVox-DCASE-10h fixed 5 10 hours 11 9026 0.15
HT: Hyenas various 5 5 hours 5 611 1.42

Training set MT: Meerkats animal mounted 2 70 mins 4 1294 0.14
JD: Jackdaws mobile 1 10 mins 1 357 0.12
WMW: Western Mediterranean Birds various 161 5 hours 26 2941 1.54

HB: Humbug mosquitoes handheld 10 2.38 hours 1 712 11.6
Validation set 2022 PB: Polish Baltic Sea bird flight calls fixed 6 3 hours 2 292 0.11

ME: Meerkats animal mounted 2 20 mins 2 73 0.19

Validation set 2022 +
PB24: Polish Baltic Sea bird flight calls fixed 4 120 mins 2 350 0.08

Validation set 2024 RD: Red Deer fixed 6 18 hours 1 1372 1.52
PW: Pilot Whales animal mounted 15 24 hours 1 705 2.21

where f denotes the embedding mapping realized by the model
whose parameters are denoted collectively as θ. Likewise, the
negative prototype a−n of class n is calculated by

a−n =
1

K

∑
(x,y)∈S−

n

fθ(x), (3)

Given a query example xq , the model performs N binary classi-
fications independently by producing a probability distribution
based on a softmax over distances between xq and the positive
and negative prototypes in the latent space. More specifically,
the probability that xq is classified as class n ∈ Cs is calculated
as

pθ(ŷq,n|xq) =
e−d(fθ(xq),a

+
n )∑

i∈Cs

[
e−d(fθ(xq),a

+
i ) + e−d(fθ(xq),a

−
i )
] , (4)

where ŷq,n is the predicted label for xq w.r.t. class n, d is a
distance function, such as ℓ2 or cosine distance. The network
is trained to minimize the negative log-probability of the true
class over the N×Q query examples:

L(θ) =
∑

(x,y)∈Q

∑
n∈Cs

− log pθ(ŷn = yn|x), (5)

where Q is the set of query examples, |Q|=N ×Q.
While prototypical networks perform well in few-shot

learning settings [20], their performance still suffers when the
domain of the development dataset is drastically different from
the one of the test dataset. To mitigate the domain misalignment
issue, we adopt two strategies in the following part.

C. Domain adaptation

Negative hard sampling. As shown in eqn. (4), both
positive and negative prototypes are important to predict the
probability distribution over each class. Bioacoustic sound
events are sparsely distributed throughout a recording. While
these sound events are hardly available during training, there
are many negative audio segments available. This drives us to
investigate how to create “meaningful” negative prototypes by
using hard sampling techniques [17] during inference stage.
Instead of using all negative audio segments, we randomly
sample a proportion of segmentations for negative prototype
measurement. In other words, we inject the randomness to the

cluster of negative segments such that the trained model can
generalise to evaluation set well. In addition, we enhanced
the trained prototypical network with different sets of negative
segments to further improve the performance of the proposed
model on the evaluation set.

Transductive learning. Acoustic environment of test record-
ings may vary from the development domain due to many
factors, such as the difference of recording contexts, recording
devices, and pre-processing methods. To alleviate the domain
mismatch caused by different acoustic environments, we apply
transductive inference [18] by learning not only from the
labelled events of the training set but the first five labelled
examples for each audio recording in the validation set.

IV. EXPERIMENT

A. Experiment setup

For a fair comparison, we adopted the same convolutional
neural network as the backbone for feature extraction. Fol-
lowing [16], this network consists of three 3×3 convolutional
layers, with dimension of 64, 128, 64. Each of the convolutional
layer is followed by batch normalisation, leak ReLU activation,
and a 2×2 max-pooling layer. For each convolutional block,
we added a skip connection followed by a max-pooling layer
to avoid catastrophic forgetting.

We trained and evaluated the models on DCASE 2022
Task5 and DCASE 2022 Task5 datasets, respectively. For
all experiments, we resampled audio recordings to 22.5 kHz
sampling rate and applied short-time Fourier transformation
(STFT) with 1024 of window length and 256 of hop length.
We set the number of frequency bins as 128 to extract
log-Mel spectrograms (Log Mel) from audio examples. To
investigate the impact of acoustic features on this task, we
also experimented diverse acoustic features, including the
Mel spectrogram (Mel), Mel-frequency cepstral coefficients
(MFCC), delta features of MFCC (delta MFCC), per-channel
energy normalization (PCEN), and their combinations as input
features. Specifically, the dimension of MFCC features is set
to 32 in the experiments.

We trained the models using RTX A5000 GPUs. Follow-
ing [16], we set the initiate learning rate to 0.001 with
exponential decay of 0.65 for every 10 epochs. We adopted
early stopping by monitoring the accuracy score and took the



TABLE II
BENCHMARKING THE BASELINE SYSTEM (%) ON DCASE 2022 TASK 5 AND DCASE 2024 TASK 5 VALIDATION SETS. THE GRAY BAR HIGHLIGHTS THE

PERFORMANCE SCORE OF OUR PROPOSED BASELINE FOR DCASE 2024 TASK 5.

Negative hard sampling Transductive learning DCASE 2022 Task 5 DCASE 2024 Task 5
Precision Recall F1-score Precision Recall F1-score

55.92±2.6 40.61±5.6 46.78±2.9 44.94±3.39 45.89±4.80 45.23±0.48
✓ 55.17±3.6 43.59±0.4 48.66±1.6

✓ 48.33±2.3 56.64±2.0 52.09±0.7 56.18±0.61 48.64±0.23 52.14±0.20
✓ ✓ 66.43±3.6 61.28±1.5 63.67±1.0

TABLE III
PERFORMANCE COMPARISON (%) OF SYSTEMS WITH DIVERSE ACOUSTIC

FEATURES ON THE DCASE 2022 TASK 5 VALIDATION SET.

Feature Precision Recall F1-score

Mel 38.56±1.2 49.01±1.5 43.14±0.9
Log mel 66.43±3.6 61.28±1.5 63.67±1.0
Log mel + MFCC 58.89±1.1 65.70±1.0 62.10±0.5
Log mel + delta MFCC 61.22±1.4 62.75±0.6 61.96±0.7
PCEN 68.00±2.2 53.70±1.7 59.97±0.7
PCEN + MFCC 63.88±1.7 57.65±0.7 60.59±0.6
PCEN + delta MFCC 59.47±5.1 52.22±1.8 55.47±1.5

checkpoint of the highest accuracy score as our best model.
During evaluation, we fixed the set of negative audio segments
across models with the same number of negative segments.
For each experiment, we calculated the average performance
scores with 95% confidence score over five independent trials
to avoid impact of randomness. Our code and implementation
can be found at this url3.

B. Experimental results

Table II details the baseline system’s performance on the
DCASE 2022 Task 5 and DCASE 2024 Task 5 validation sets,
alongside an ablation study for domain adaptation techniques
applied to the DCASE 2022 Task 5 dataset. The baseline
system achieved a precision of 48.33%, a recall of 56.64%,
and an F1-score of 52.09% for DCASE 2022 Task 5, and a
precision of 56.18%, a recall of 48.64%, and an F1-score of
52.14% for DCASE 2024 Task 5, outperforming the vanilla
prototypical network (the one without negative sampling) by
a large margin. We explored integrating transductive learning
with the baseline system, which showed improved performance
with an increase in precision by 18.1%, recall by 4.64%, and
F1-score by 11.58% absolute, indicating the impact of domain
shift in few-shot bioacoustic sound event detection.

Given the DCASE task rules, which stipulate treating each
audio file independently so that each item in the evaluation set
is handled as an independent few-shot scenario, we adhered
to these guidelines in our approach to the DCASE 2024
Task 5 challenge. Consequently, the version of transductive
learning we used for our 2022 analysis was not applied for the
2024 dataset. For the DCASE 2024 Task 5, we focused our
domain adaptation efforts on negative hard sampling, excluding
transductive learning from our methodology. This strategic
decision reflects our commitment to adhering to the DCASE
task rules while still advancing research in domain adaptation

3https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/baselines/
dcase2024 task5

Fig. 1. Ablation study on the number of negative audio segments and number
of enhanced models.

for few-shot bioacoustic sound event detection; various forms
of domain adaptation remain as future research possibilities.

Table III compares diverse acoustic features on DCASE
2022 Task 5 validation set. The system with log Mel features
achieves the best F1-score of compared to those of other
acoustic features. Among these models, the combination of log
Mel and MFCC yielded the best recall score of 65.70% while
PCEN had the best precision score of 68.00%. Provided that
we expect a balanced performance of bioacoustic sound event
detectors, we applied log Mel as the input acoustic features
for the baseline. In addition, the precision scores of log Mel
and PCEN are lower than their counterpart combined with
MFCC, respectively. This probably indicates that equipping
input features with MFCC is beneficial to models’ performance
in terms of the precision score.

Fig. 1 illustrates the ablation study on the number of negative
audio segments and enhanced models. Enhanced models hereby
are referred to as the model of the same checkpoint with
different sets of negative segments. As the number of sets of
negative audio segments increases, the system’ performance
varies less. Likewise, as the number of negative segments
increases, the performance score of systems becomes more
stable. In addition, the system of three models with 150 negative
segments achieved the best F1-score performance score. This
guides us to create the baseline system of the DCASE 2024
Task 5 dataset.

Fig. 2 compares the performance of the baseline on DCASE
2024 Task 5 validation set by species. It can be observed that
the baseline yielded the best performance on the species of
humbug mosquitoes while performing the worst on that of pilot

https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/baselines/dcase2024_task5
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Fig. 2. Species-wise performance of the baseline on DCASE 2024 Task 5
validation set.

whales. The latter observation is in line with our expectation:
the model did not learn any underwater sounds from the training
set and thus cannot be adapted to the vocalisation of marine
animals well.

V. CONCLUSION

In this work, we benchmarked the task of few-shot bioacous-
tic sound event detection using the recently updated DCASE
2024 Task 5 dataset. We pinpointed domain shift as a significant
challenge within this task. To substantiate our hypothesis, we
improved on the previous dataset, aimed at enhancing the
diversity and enlarging the size of the preceding version. We
experimented with a variety of acoustic features as inputs for
the baseline model to assess the effects of feature engineering
on bioacoustic computations. Additionally, we improved the
prototypical network by integrating negative hard sampling and
transductive learning, aiming to better adapt the network to the
target domain. In compliance with the guidelines of DCASE
Task 5, we adopted the enhanced prototypical network with
negative hard sampling as the new baseline for the DCASE
2024 Task 5 competition. Our goal is to stimulate future
research on domain adaptation in the context of few-shot
bioacoustic sound event detection.
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