
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Load Balancing in SDN-enabled WSNs Toward 6G

IoE: Partial Cluster Migration Approach

Vikas Tyagi, Samayveer Singh, Member IEEE, Huaming Wu, IEEE Senior Member, and Sukhpal Singh Gill

Abstract— The vision for the sixth-generation (6G) network

involves the integration of communication and sensing

capabilities in internet of everything (IoE), towards enabling

broader interconnection in the devices of distributed wireless

sensor networks (WSN). Moreover, the merging of SDN policies

in 6G IoE-based WSNs i.e. SDN-enable WSN improves the

network's reliability and scalability via integration of sensing and

communication (ISAC). It consists of multiple controllers to

deploy the control services closer to the data plane for a speedy

response through control messages. However, controller

placement and load balancing are the major challenges in SDN-

enabled WSNs due to the dynamic nature of data plane devices.

To address the controller placement problem, an optimal number

of controllers is identified using the articulation point method.

Furthermore, a nature-inspired cheetah optimization algorithm

is proposed for the efficient placement of controllers by

considering the latency and synchronization overhead. Moreover,

a load-sharing based control node migration (LS-CNM) method

is proposed to address the challenges of controller load balancing

dynamically. The LS-CNM identifies the overloaded controller

and corresponding assistant controller with low utilization. Then,

a suitable control node is chosen for partial migration in

accordance with the load of the assistant controller.

Subsequently, LS-CNM ensures dynamic load balancing by

considering threshold loads, intelligent assistant controller

selection, and real-time monitoring for effective partial load

migration. The proposed LS-CNM scheme is executed on the

open network operating system (ONOS) controller and the whole

network is simulated in ns-3 simulator. The simulation results of

the proposed LS-CNM outperform the state of the art in terms of

frequency of controller overload, load variation of each

controller, round trip time, and average delay.

Index Terms— Control Node Migration, Controller placement

problem, Load Balancing, SDN-enabled WSN, Multiple

Controllers.

I. INTRODUCTION

n the sixth generation (6G) network, the fusion of IoE and

WSN promises to revolutionize data collection, analysis,

and dissemination, unlocking unparalleled potential across

diverse real time applications. This revolutionary paradigm

promises transformative advancements in connectivity,

introducing unparalleled speeds, massive device connectivity,

and seamless integration of new technologies [1]. With terabit-

per-second data rates and the ability to connect a vast range of

devices, 6G IoE envisions a highly integrated and

interconnected network where everything, from smart

appliances to autonomous vehicles, communicates effortlessly.

A distinctive feature of 6G IoE is its commitment to

sustainability, emphasizing green technologies to minimize

environmental impact and ensure energy-efficient practices.

However, the convergence of the IoE with WSN in the 6G

network introduces a complex and dynamic landscape of the

integration of sensing and communication (ISAC) that

necessitates innovative approaches to network management

and optimization [2]. ISAC stands as a pivotal advancement

in IoE with WSN, bridging the gap between efficient resource

utilization and optimal performance [3]. It also addresses the

demanding need for seamless coordination between sensing

and communication functions, ensuring that sensor nodes

(SNs) not only capture data but also effectively transmit it.

However, ISAC faces major challenges such as resource

constraints and potential trade-offs between sensing accuracy

and communication efficiency [4]. In this context, the

integration of Software-Defined Networking (SDN) emerges

as a pivotal solution to address the challenges and grasp the

opportunities presented by this transformative paradigm. SDN

enables programmability, centralized resource management,

and faster policy implementation in WSN. In such an SDN-

enabled WSN, SDN separates the network functions of data

forwarding devices from the data plane (DP) by transferring

them to a centralized controller in the control plane (CP) [5],

[6]. However, when the sensor nodes (SNs) in SDN- enabled

WSN exceed the threshold, the centralized controller may fail

to respond to the control messages (Ctrl_Msg) from the DP

devices [7]. Additionally, an overload situation in the SDN

controller occurs when the number of Ctrl_Msg requests

exceeds the maximum processing capacity of the controller.

Furthermore, the SDN controller can bring down the entire

network due to being a single point of failure [8][9].

To overcome the aforementioned limitations inherent to the

6G IoE, the logical centralization of SDN-enabled WSN

architecture is upgraded with the physical distribution of CP

[10]. It provides a scalable and reliable distributed architecture

while preserving the importance of logically centralized SDN

policies as shown in Fig. 1. The local controllers (LC) are

placed near the DP devices under the supervision of the global

controller (GC). The communication among controllers is

managed via an east-west application programming interface

(API). The end user is allowed to control and manage the SDN

policies in CP from the application plane through the

southbound API, however, the communication between CP to

I
————————————————

Vikas Tyagi and Samayveer Singh are with Department of CSE, Dr B R

Ambedkar National Institute of Technology Jalandhar India. Email:
{vikast.cs.19, samays}@nitj.ac.in.

Huaming Wu is with Center for Applied Mathematics, Tianjin University,

China. Email: whming@tju.edu.cn.
Sukhpal Singh Gill is with School of Electronic Engineering and

Computer Science, Queen Mary University of London, UK. Email:

s.s.gill@qmul.ac.uk.

Corresponding author: Huaming Wu

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

DP is managed by the northbound API [11].

Distributed SDN-enabled WSN allows multiple controllers

to collaborate in coordinating the network functionalities

during ISAC in the 6G IoE [12]. Specifically, each controller

manages clusters of SNs called control domain. However, all

SNs in a cluster report to the cluster head, namely the control

node (CN), and these CNs are responsible for sharing the

cluster data with the corresponding controller. The allocation

of clusters to each controller will be optimized to distribute

network load evenly, also known as the controller placement

problem (CPP) [13]. Additionally, the controller placement

considers, identifying the minimum controllers and their

optimal location. However, more controllers cause a high

synchronization overhead in CP [14][15].

The multiple controller architecture suffers from uneven

load distribution in CP due to the dynamic nature of SDN-

enabled WSN. Moreover, GC monitors each control domain

periodically and migrates CN from any overloaded controller

to neighboring controllers [16][17]. However, this migration

process may exceed the threshold load of the neighboring

controller, leading to a change in the controller state to

overload. Consequently, the migrated CN returns to the

previous control domain. This phenomenon is considered as

the CN Zig-Zag problem. The above issue of CN migration

occurs due to CN migration as a whole. To overcome this

problem, we present the load sharing-based control node

migration (LS-CNM) technique, allowing the partial share of

the load of an overloaded controller. LS-CNM associates an

overloaded controller with an assistant controller capable of

sharing the load of others. Subsequently, it selects a partial

load of CNs from the overload controller domain and migrates

them with the assistant controller.

Fig. 1. Distributed SDN-enabled WSN

This work is motivated by the need to overcome the uneven

load distribution challenges in the control plane of a multiple-

controller architecture in the dynamic SDN-enable WSN.

However, the technical challenges include the development of

dynamic load balancing approaches, managing threshold load

to prevent migration issues, intelligently selecting assistant

controllers, designing a strategy for partial load migration,

ensuring continuous load monitoring and decision-making,

preventing load oscillations, integrating with existing SDN

infrastructure, and addressing scalability concerns. The

proposed LS-CNM approach is successfully implemented to

resolve the above-mentioned challenges for SDN-enabled

WSNs.

To the best of our knowledge, LS-CNM is the first

pioneering study that introduces dynamic management of

controller workloads through partial CN migration within

distributed SDN-enabled WSNs. The main contributions of

this paper are summarised as follows.

• An efficient distributed control plane is devised for SDN-

enabled WSN, aligning with the optimal number of

controllers using the articulation point method.

• A metaheuristic approach, referred to as CP_CO, is

proposed to place the optimal number of controllers

through cheetah optimization, effectively addressing the

CPP challenge. To refine the controller placement, a well-

constructed fitness function is formulated, considering

latency and synchronization overhead parameters.

• A load sharing-based control node migration (LS-CNM)

method is proposed to address the issue of load imbalance

among controllers during ISAC. It examines the

overloaded control domain, identifies the low-utilized

assistant controller, and then, chooses a suitable CN for

migration based on the load of the identified assistant

controller.

• The proposed methodology is implemented on the ONOS

controller, and the network is simulated within the ns-3

simulator to validate its feasibility. Simulation results

indicate that LS-CNM has the capability to significantly

reduce instances of controller overload while effectively

achieving equitable distribution of the workload across all

controllers.

The rest of the paper is organized as follows. Section II

presents a summary of related work. The system model and

problem formulation are presented in Section III. Section IV

shows the proposed techniques. The experiment setup and

simulation results of the proposed LS-CNM are discussed in

Sections V. Finally, the conclusion is summarized with future

directions in Section VII.

II. RELATED WORK

This section provides an overview of recent advancements

in load balancing techniques for ISAC in 6G IoE-based

distributed SDN-enabled WSNs, which serve as the

foundation for the research background. A comparison

between the previous load-balancing methods and the

proposed LS-CNM scheme is discussed in Table I.

Kobo et al. [16] present the fragmentation-based distributed

control system to improve the efficiency and scalability of the

software-defined WSN by bringing control services closer to

the DP. It focuses on controller placement and re-election in

case of failure and reduces the propagation latency. However,

the controller load is not considered during controller re-

election. In successive research of Kobo et al. [12], a

consistent data model based on best effort and anti-entropy

strategy is considered to minimize the load during cluster

switching. However, cluster switching migrates the whole

cluster to another controller, which makes the controller

overloaded.

Wang et al. [18] propose a consistent load-balancing

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

hashing algorithm using multiple controllers in underwater

SDN-enabled WSNs. This approach considers an equal

probability distribution process for cluster migration.

However, a cluster is migrated as a whole which creates a

controller Zig-Zag problem. Tahmasebi et al. [14] present a

multi-objective optimization approach for the optimal

placement of SDN controllers in WSNs. This approach

improves the network performance by balancing the trade-off

between synchronization overhead and development cost.

However, cluster migration is not performed for controller

load balancing. Babbar et al. [19] present two approaches for

efficient cluster migration in SDN-enabled intelligent

transportation systems. The first approach detects the

imbalance load among various domains, while the second

approach migrates the imbalance load to another controller.

However, the controller load is not managed dynamically.

Whereas, the article [20] resolved this issue efficiently in

SDN-enable vehicular networks by reducing cluster migration

delay and cost. However, the act of cluster switching results in

the complete migration of the entire cluster to another

controller, leading to an overloaded state of the controller.

TABLE I

Comparison with other related works

Work

Identify

Optimal

Controller

CPP

(Metaheuristic

Optimization)

Load

Balancing

Controller

[14] √ #

[16] CR ONOS

[12] CM(W) ONOS

[18] √ FD POX

[21] CM(W) Floodlight

LS-CNM √ √ CM (W/P) ONOS
Note: Symbol √ and # indicate adaptability and self-implemented controller, respectively.

CR: Controller Reelection, FD: Flow distribution, CM(W): Cluster migration as a whole,

CM(W/P): Cluster migration as a whole and partial both.

Salam et al. [22] optimize CPP by minimizing both the

number of controllers and network latency. This method

determines the optimal number of controllers and chooses the

optimal positions to place them efficiently. However, the fault

tolerance approach may overload another controller in case of

controller failure. Sahoo et al. [21] present an efficient load

migration technique to balance the controller load. It

recognizes the underutilized controller for migration based on

a selection probability. To choose the target controller, a

decision analysis method ranks the underutilized controllers

based on memory, CPU load, bandwidth and hop count.

However, the cluster is migrated as a whole to another

controller. Li et al. [23] optimize the CPP based on network

delay and load optimization. It balances controller load by

reducing network congestion and outperforms existing

methods in propagation delay and load balancing in large-

scale networks. However, cluster migration is not performed

for load balancing.

Cheng et al. [27] presented a nested tensor-based

framework that enhances ISAC using a reconfigurable

intelligent surface. This structure enables joint sensing and

communication without specialized pilot signals, improving

detection and localization accuracy by merging the dimensions

of sensing and communication signals. Li et al. [28] explored

physical-layer authentication (PLA) for user identification and

security in AmBC-based NOMA symbiotic networks, taking

into account channel estimation errors when assessing false

alarms and detection probabilities for distant and nearby users.

Gill et al. [29] introduced a classification framework for

modern computing based on performance and impact,

categorizing it by paradigms, technologies, and trends.

Montazerolghaem [30] discussed a method that managing

resources optimally in internet of medical things (IoMT)

networks, considering both energy and load constraints Then,

the author introduced a system that manages energy and load

in IoMT by leveraging network softwarization and virtual

resources. This system dynamically modifies resource

allocations based on the real-time size of the IoMT network.

Montazerolghaem et al. [31] introduced a new framework that

utilizes SDN to meet the QoS demands of diverse IoT services

while also managing traffic distribution among IoT servers.

The authors suggest a forward-looking heuristic approach,

which integrates time-series analysis and fuzzy logic to predict

and manage network conditions. Montazerolghaem introduced

a framework for data centers utilizing Software-defined

networking (SDN) to evenly distribute server loads and

prevent server overloads [32]. The framework also delivers

services quickly with minimal computational complexity.

Alhilali et al. discussed a SDN architecture and explored load

balancing challenges within it [33]. They also categorize AI-

based load balancing methods, evaluating them based on the

algorithms used, the problems addressed, and their pros and

cons.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the characteristics of a multi-controller based

SDN-enabled WSN model are introduced for ISAC among the

network devices. Then, the CPP and CN migration problems

are formulated.

A. Characteristics of Proposed Network Model

The proposed 6G IoE-based SDN-enabled WSN model is

considered as an undirected graph 𝐺 = (𝑉, 𝐸) , where 𝑉

represents the set of CNs and controllers, and 𝐸 represents the

set of links between CNs and controllers as shown in Fig. 1.

Let 𝑄̂ = {𝑐𝑛1, 𝑐𝑛2, . . . , 𝑐𝑛𝑛} and 𝐶̂ = {𝑐1, 𝑐2, . . . , 𝑐𝑚} are the

set of 𝑛 CNs and 𝑚 controllers, respectively, where 𝑄̂, 𝐶̂ ∈ 𝑉.

However, the CPP is an optimization problem, which focuses

on finding the optimal controller positions among a large

number of potential options. The following list of

presumptions pertains to dynamic controller placement based

on latency and load balancing.

• The SNs are deployed randomly and CS is placed at the

centre of the target-sensing region in the data plane.

• All the devices, participating in ISAC are stationary in the

network scenario and the network load is dynamic in

nature.

• GC is connected with DP using the local controllers and all

SNs are capable of performing the responsibilities of a CN.

• Each 𝑐𝑖 is capable of acting as the master controller of any

CN where each 𝑐𝑖 can respond to requests of one or more

CNs in accordance with its processing capacity.

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

• The proposed method enables the clusters to migrate

partially/completely with another 𝑐𝑖 to distribute the load

evenly. Each control domain is assigned one 𝑐𝑖 and

multiple CNs.

The symbols used in the paper with their explanation are

presented in Table II.
TABLE II

Symbols and Explanation

Symbols Explanation

𝑄̂ and 𝐶̂ Set of CNs and Controller respectively

𝑐𝑖,and 𝑐𝑛𝑖 The ith controller and control node, respectively

𝑄̂𝑐𝑖 Set of CNs which are managed by the 𝑐𝑖

𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 Set of overloaded and assistant Controller

𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) Average latency between CN and Controller

𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) Average latency between Controller to Controller

𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) Average latency between Controller to Global

Controller

𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
 Synchronization delay between 𝑐𝑖 and 𝑐𝑗

𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) Current load of ith controller in time period 𝑡

𝐶𝑀_𝑐𝑛𝑗
𝑡 Control messages sent by jth CN in time period 𝑡

ֆ Threshold value of controller load

𝑋𝐶𝐻𝑖,𝑗
𝑡 , 𝑋𝑃𝑖,𝑗

𝑡 Position of cheetah and prey in dimension 𝑗

𝑆𝐶𝐻𝑖,𝑗
𝑡 The step size of cheetah

Ť𝐶𝐻𝑖,𝑗 , Ĭ𝐶𝐻𝑖,𝑗
𝑡 Turning factor and Interaction factors of cheetah

B. Controller Placement Problem (CPP)

The CPP is optimized by determining the optimal

controllers and their locations using minimal controllers,

latency, and synchronization overhead. It balances the network

load that ensures efficient communication among SNs and

controllers in ISAC process.

1) Optimal number of controllers

The networks equipped with more controllers, decrease the

overall latency but increase the communication overhead

between controllers. Therefore, it is essential to determine the

optimal number of controllers. The optimal number of

controllers is called 𝑚, i.e., elected using Algorithm 1, based

on articulation point to balance trade-off between latency and

communication overhead.

2) Latency

The latency between a CN and its respective controller is

the average distance that a data packet (𝑃) travels from the

𝑐𝑛𝑛 to 𝑐𝑚. It is represented by 𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) as given in Eq.

(1).

 𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) =
1

𝑛
∑ min 𝐷(𝑐𝑛, 𝑐)

𝑐𝑛 𝜖 𝑄̂
 (1)

The inter-controller latency is the average distance that a

packet travels from one controller to another (local or global).

It is represented as 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) and 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) as

given in Eqs. (2) and (3) for LC to LC and LC to GC,

respectively.

 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) =
1

𝑚
∑ min𝑐 𝜖 𝐶̂ 𝐷(𝑐𝑖 , 𝑐𝑗)

𝑚

𝑖,𝑗=0
 (2)

 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) =
1

𝑚
∑ min𝑐 𝜖 𝐶̂ 𝐷(𝑐𝑖 , 𝐺𝐶)

𝑚

𝑖=0
 (3)

The total latency (𝐴𝑉𝐺 _𝐿𝑎𝑡 (𝑃)) is the sum of

𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃), 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) and 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) latencies

as given in Eq. (4).

 𝐴𝑉𝐺_𝐿𝑎𝑡 (𝑃) = 𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) + 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) +
 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) (4)

3) Synchronization Overhead

The synchronization overhead represents the additional

communication required to coordinate with multiple

controllers. It includes tasks such as exchanging status

updates, coordinating actions, and resolving conflicts. The

extent of synchronization overhead depends on the specific

system and the complexity of the controllers. To measure the

synchronization overhead between each pair of controllers

(𝑐𝑖 , 𝑐𝑗) , a matrix 𝑀_𝑆𝑦𝑛 is defined as the number of

synchronization messages exchanged between 𝑐𝑖 and 𝑐𝑗. Thus,

the synchronization overhead is denoted by 𝑆𝑦𝑛_𝑜 , and

formulated as follows:

 𝑆𝑦𝑛_𝑜 = ∑ ∑ 𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
∗ 𝑀_𝑆𝑦𝑛𝑐𝑖,𝑐𝑗𝑐𝑗 𝜖𝐶

𝑐𝑖 𝜖𝐶
 (5)

where 𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
 and 𝑀_𝑆𝑦𝑛𝑐𝑖,𝑐𝑗

 represent the synchronization

delay and messages between 𝑐𝑖 and 𝑐𝑗, respectively.

C. Load Balancing

In a multi-controller SDN-enabled WSN, the network load

balancing involves the systematic distribution of traffic among

multiple controllers. This strategic approach aims to optimize

resource utilization and enhance overall network performance

in ISAC approach among network devices. This is achieved

by considering both the capacity of the controllers and the

migration of CNs.

1) Controller Capacity

It refers to the highest number of requests that a controller

can handle at a specific time period 𝑡. The maximum capacity

of a controller indicates how many 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 can be

processed in 𝑡 , i.e., represented as 𝑀𝑎𝑥_𝐿(𝑐) . All local

controllers have a similar capacity and the current load

𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) of 𝑐𝑖 at time 𝑡 is given as follows:

 𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) = ∑ 𝐶𝑀_𝑐𝑛𝑗
𝑡

𝑘

𝑗=0
 (6)

where 𝐶𝑀_𝑐𝑛𝑗
𝑡 represents the control messages sent by CN

that exist in the control domain of 𝑐𝑖. When the current load is

exceeded to 𝑀𝑎𝑥_𝐿(𝑐), the performance of any controller may

degrade, and initiate the cluster/CN migration to maintain the

stability of the network.

2) Cluster/CN Migration

The process of moving a CN from one controller domain to

another to balance the load of an overloaded controller is

called CN migration. CN migration is triggered by various

factors such as network congestion, changes in traffic pattern,

and network failures. The decision to migrate a CN to a

particular controller is based on the current load of the

neighboring controller. Additionally, the neighboring

controller immediately eliminates the migrated CN if its

𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) is exceeded due to the migrated CN. Subsequently,

the CN returns its original domain and initiates another CN

migration process due to the overloaded state of the controller.

This situation gives rise to the CN migration problem, which

occurs as a consequence of CN migration as a whole.

An example is illustrated in Fig 3(a), which shows a

scenario of the CN migration problem and its solution.

Assume ֆ is the threshold load of the 𝑐𝑖 where ֆ < 𝑀𝑎𝑥_𝐿(𝑐)

and controller 𝑐𝑖 is considered as overloaded if 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) >

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

 ֆ. In Fig. 3(a), there are two controllers 𝑐1 and 𝑐2 with ֆ1 =
 ֆ2 = 70 and three CN namely 𝑐𝑛1, 𝑐𝑛2 and 𝑐𝑛3 in a

network. Moreover, 𝑐𝑛1, 𝑐𝑛2 𝑎𝑛𝑑 𝑐𝑛3 produce 40, 50 and 40

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 , respectively, in period 𝑡 . Controller 𝑐1 takes the

charges of 𝑐𝑛1 & 𝑐𝑛2 and 𝑐𝑛3 is controlled by 𝑐2 . Now,

controller 𝑐1 is overloaded because 𝐶𝑟𝑡𝐿
𝑡 (𝑐1) is 90

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 , i.e., greater than ֆ and thus CN migration is

required. In the current state of the load balancing mechanism

[12], an overloaded controller 𝑐1 asks 𝑐2 to take responsibility

for some of its CNs as a whole for an entire period 𝑡 as shown

in Fig. 3(a). Furthermore, 𝑐𝑛1 migrates to the control domain

of 𝑐2 at 𝑡 + 1 . Since, the 𝐶𝑟𝑡𝐿
𝑡(𝑐2) > 70 due to newly

migrated CN. Now, 𝑐2 asks 𝑐1 to take charge of 𝑐𝑛1 for period

𝑡 + 2. Accordingly, the current situation at 𝑐1 is the same as

period 𝑡, and this is called the CN Zig-Zag problem.

Fig. 3. Illustrate CN Zig-Zag problem and how LS-CNM solves it

Besides the scenario mentioned above, the proposed LS-

CNM performs CN migration in a partial load sharing manner

for specific period 𝑡. During this period, the load of a CN is

split between two controllers, as shown in Fig. 3(b). At period

𝑡 + 1, the load of 𝑐𝑛1 is shared between 𝑐1 and 𝑐2 to ensure

that the load remains below the threshold i.e., 𝐶𝑟𝑡𝐿
𝑡+1(𝑐𝑖) <

 ֆ . This approach helps in keeping the workloads of both

controllers below their thresholds. In this way, LS-CNM can

effectively address the issue of the CN Zig-Zag problem

during migration.

IV. PROPOSED METHODOLOGY

In this section, CPP is optimized in accordance with an

optimal number of controllers and their best location in the

SDN-enabled WSN during ISAC among 6G IoE devices.

After that CN Zig-Zag problem is resolved using a load

sharing based partial CN migration technique.

A. Controller Placement

The objective of the controller placement phase is to

determine the necessary quantity of controllers and the

position of each controller at an optimized location to maintain

the network stability and efficiency.

1) Optimal Number of Controllers

A method from graph theory is employed to calculate the

optimum numbers of controllers and identify initial controller

locations within the given network topology by identifying

articulation points (APs) [24]. An AP is defined as a

vertex/node whose removal may result in the partitioning of

the graph. The value of identified APs is used as the required

optimal number of the controller in the proposed network. The

conventional depth-first search (DFS) [25] algorithm is

employed to identify the APs within the network. In Algorithm

1, a vertex or node ′𝑢′ is considered as the parent of another

vertex ′𝑣′ if and only if ′𝑣′ can be discovered by traversing

from ′𝑢′ . A vertex ′𝑢′ is classified as an AP if any of the

following criteria are met:

• Vertex ′𝑢′ is the root node and has a minimum of two child

nodes.

• Vertex ′𝑢′ is not the root node and has a child ′𝑣′, where

there is no path of connectivity between ′𝑣′ and any of the

ancestors of ′𝑢′ in the DFS tree.

In Algorithm 1, the next visited node is designated as ′𝑢𝑖′,
and a data structure 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is utilized to record the nodes that

have been traversed in the graph. The algorithm progresses by

traversing all the neighboring nodes of the currently visited

node. At each iteration, the values of the visited nodes are

updated. If a neighboring node has not been visited, it is

considered as a 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒 of the current node, and its

connectivity to any ancestors is evaluated. If there is no

connectivity, the node is classified as an AP.

2) Controller Placement based on Cheetah Optimization

Once the necessary quantity of controllers has been

identified, synchronization-aware controller placement in

SDN-enabled WSNs is performed by utilizing cheetah

optimization (CO) as outlined in Algorithm 2. CO motivates

the selection of the best pray from multiple pray as control

nodes for each cheetah acting as controllers. A cheetah's

decision on the best prey to pursue is represented by a fitness

function and different prey options constitute the potential

solutions. This optimization is based on the cheetah’s hunting

strategies such as searching, sitting-and-waiting, attacking,

leaving the prey, and going back home defined as follows.

• Searching Strategy

The cheetahs' searching strategy is mathematically modeled

using the variable 𝑋𝐶𝐻𝑖,𝑗
𝑡 which represents the current position

of the cheetah 𝐶𝐻𝑖 (𝑖 = 1, 2, … , 𝑛) in search space dimension

(𝑗 = 1, 2, … , 𝐷) , where 𝑛 is the number of cheetahs in the

population and 𝐷 is the dimension of the optimization

problem. Each cheetah reaches at different positions when

hunting various prey. Using this information, a random search

Eq. (7) is utilized to find the new position 𝑋𝐶𝐻𝑖,𝑗
𝑡+1 based on

their current position and an arbitrary step size.

 𝑋𝐶𝐻𝑖,𝑗
𝑡+1 = 𝑋𝐶𝐻𝑖,𝑗

𝑡 + 𝑟𝐶𝐻𝑖,𝑗
−1 . 𝑆𝐶𝐻𝑖,𝑗

𝑡 (7)

where 𝑟𝐶𝐻𝑖,𝑗 represents the random number generated using

the normal distribution method. 𝑆𝐶𝐻𝑖,𝑗
𝑡 represents the step size

of cheetah in hunt time 𝑡 . 𝑆𝐶𝐻𝑖,𝑗
𝑡 is calculated as 𝑆𝐶𝐻𝑖,𝑗

𝑡 =

 0.001 × 𝑡/𝑇 where 𝑇 represents the maximum allowed

hunting duration i.e., calculated as 𝑇 ← 60 × ⌈𝐷/10⌉.
• Sitting-and-waiting Strategy

The cheetah chooses to sit-and-wait, in order to get close

enough to the prey. In this mode, the cheetah remains in its

current position and waits for the prey to come within reach.

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

This behavior is represented as follows.

 𝑋𝐶𝐻𝑖,𝑗
𝑡+1 = 𝑋𝐶𝐻𝑖,𝑗

𝑡 (8)

This approach involves gradually changing the cheetahs in

each group rather than all at once, which improves the chances

of finding a better solution and prevents the algorithm from

reaching a suboptimal solution too quickly.

Algorithm 1: Optimal Number of Controllers Module

Input: Network Graph 𝐺 = (𝑉, 𝐸)

Output: Number of articulation points (Controllers)

1 Initially all vertices ← not visited

2 Create function

𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡 (𝑣𝑒𝑟𝑡, 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[], 𝑁𝑝𝑎𝑟𝑒𝑛𝑡[], 𝐴𝑟𝑡_𝑃[])

3 Call the function 𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡, recursively

4 𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒 ← 0

5 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑢] ← 𝑆𝑒𝑡 𝑇𝑟𝑢𝑒

6 Visit all the vertices adjacent to 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑢] // Calculate the

depth of the selected vertex
7 if 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑣] is not True

8 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒 ← 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒 + 1

9 𝑁𝑝𝑎𝑟𝑒𝑛𝑡[𝑣] ← 𝑆𝑒𝑡 𝑢

10 if (subtree has any connection with any of the ancestors is

True)

11 no articulation points // u is root of DFS tree and has

two or more children
12 else if (N_parent [u]==NILL and 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒>1)

13 𝐴𝑟𝑡_𝑃[𝑢] ← 𝑆𝑒𝑡 𝑇𝑟𝑢𝑒

14 End

15 Else

16 Call the function 𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡

17 End

18 return 𝐴𝑟𝑡_𝑃[]

• Attacking Strategy

When a cheetah chooses to hunt, it uses two critical

elements: speed and flexibility. The cheetah rushes towards its

prey at top speed. The cheetah tracks the position of its prey

and alters its path to intercept the prey's path at a specific

point. The position of the cheetah will be updated as follows.

 𝑋𝐶𝐻𝑖,𝑗
𝑡+1 = 𝑋𝑃𝑖,𝑗

𝑡 + Ť𝐶𝐻𝑖,𝑗 . Ĭ𝐶𝐻𝑖,𝑗
𝑡 (9)

where 𝑋𝑃𝑖,𝑗
𝑡 , Ť𝐶𝐻𝑖,𝑗 & Ĭ𝐶𝐻𝑖,𝑗

𝑡 represent the prey location,

turning factor & interaction factor associated with cheetah,

respectively. Ĭ𝐶𝐻𝑖,𝑗
𝑡 is used to prevent collision during attack

and denoted as the difference between the cheetah’s current

position 𝑋𝐶𝐻𝑖,𝑗
𝑡 with neighboring group of cheetahs’ 𝑋𝐶𝐻𝑘,𝑗

𝑡

where 𝑘 ≠ 𝑖. The turning factor Ĭ𝐶𝐻𝑖,𝑗
𝑡 shows the sudden turn of

𝐶𝐻𝑖 , 𝑗 while hunting and it can be formulated as Ĭ𝐶𝐻𝑖,𝑗
𝑡 =

 |𝑟𝐶𝐻𝑖,𝑗 |
exp ((𝑟𝐶𝐻𝑖,𝑗)/2)

. 𝑠𝑖𝑛 (2 𝜋. 𝑟𝐶𝐻𝑖,𝑗).During hunting period,

cheetah switches between searching, sit-and-wait and

attacking mode as per the rules expressed in Eqs. (10) & (11).

 {
𝑖𝑓 (𝑅𝑛𝑑2 ≥ 𝑅𝑛𝑑3) 𝑆𝑖𝑡 𝑎𝑛𝑑 𝑊𝑎𝑖𝑡

𝑖𝑓 (𝑅𝑛𝑑2 < 𝑅𝑛𝑑3) 𝐻 = 𝑒2(1−𝑡/𝑇) (2𝑅𝑛𝑑1 − 1)
 (10)

 {
𝑖𝑓 (𝐻 ≥ 𝑅𝑛𝑑4) 𝐴𝑡𝑡𝑎𝑐𝑘 𝑀𝑜𝑑𝑒

𝑖𝑓 (𝐻 < 𝑅𝑛𝑑4) 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑀𝑜𝑑𝑒
 (11)

where 𝑅𝑛𝑑1, 𝑅𝑛𝑑2 and 𝑅𝑛𝑑3 are random numbers in the range

of [0, 1]. 𝐻 is a switching factor and 𝑅𝑛𝑑4 is a random value

in the range of [0, 3]. If 𝐶𝐻𝑖 fails multiple hunts, their position

is replaced by the last successfully hunted prey location, this

strategy is called leave the prey and go back home mode.

The CP_CO algorithm is used to determine the optimal

location of controllers for controller placement in the control

plane. In the proposed work, the number of CNs and their

position are generated for the clusters similar to those defined

in GMPSO [26]. After that, each 𝑐𝑛𝑗 𝜖 𝑄̂ selects their master

controller 𝑐𝑖 𝜖𝐶 ̂ based on the latency factor as in Eq. (1). This

process creates 𝑄̂𝑐𝑖 as the set of CNs i.e., managed by 𝑐𝑖 .

Moreover, 𝑄̂𝑐𝑖 is updated after each re-clustering process.

Algorithm 2: CP_CO

Input: Initialize the position of GC, CS and CNs (Prey), dimension

(𝐷), Initial population size (𝑃𝑠)

Output: Best position for each controller

1.
Generate the initial position of search agent 𝑋𝐶𝐻𝑖,𝑗

𝑡 (𝑖 =

1, 2, … , 𝑛) and (𝑗 = 1, 2, … , 𝐷)

2. Evaluate the fitness of each search agent 𝐶𝐻𝑖 using Eq. (12)

3. Initialize the population’s home, leader, and prey solutions

4. 𝑡 ← 0, 𝐼𝑇 ← 1, 𝐼𝑇𝑀𝑎𝑥 ← Set as Maximum Iterations

5. Calculate 𝑇 ← 60 × ⌈𝐷/10⌉
6. while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑡𝑎𝑖𝑜𝑛 𝐼𝑇 ≤ 𝐼𝑇𝑀𝑎𝑥 do

7. Select random search agent 𝐶𝐻 (2 ≤ Ch ≤ 𝑛)

8. for each search agent 𝑖 ∈ 𝑚 do

9. Define neighbor search agents’ set of 𝐶𝐻𝑖

10. for each arbitrary arrangement 𝑗 ∈ {1, 2, … , 𝐷} do

11. Calculate 𝐻, 𝑟𝐶𝐻𝑖,𝑗 , Ť𝐶𝐻𝑖,𝑗 , 𝑆𝐶𝐻𝑖,𝑗
𝑡 , Ĭ𝐶𝐻𝑖,𝑗

𝑡 , and

12.
choose random numbers 𝑅𝑛𝑑1, 𝑅𝑛𝑑2 and

𝑅𝑛𝑑3 uniformly from 0 𝑡𝑜 1

13. if (𝑅𝑛𝑑2 < 𝑅𝑛𝑑3) then

14. Choose random number 𝑅𝑛𝑑4 from 0 𝑡𝑜 3

15. if (𝐻 ≥ 𝑅𝑛𝑑4) then

16.
Update new position of search agent using

Eq. (7) // Searching mode

17. Else

18.
Update new position of search agent using

Eq. (9) // Attacking mode

19. End

20. Else

21.
Update new position of search agent using Eq.

(8) // Sit-and-wait mode

22. End

23. End

24. Update the solutions of search agent 𝑖 and the leader

25. End

26. 𝑡 ← 𝑡 + 1

27. if 𝑡 > 𝑅𝑛𝑑2 × 𝑇 then

28.
𝑋𝐶𝐻𝑖,𝑗

𝑡 ← 𝑋𝐶𝐻𝑖,𝑗
𝑡−1 the leader position doesn't change

// Leave the prey and go back home mode

29. Evaluate the fitness of each search agent 𝐶𝐻𝑖

30. 𝑡 ← 0

31. End

32. 𝐼𝑇 ← 𝐼𝑇 + 1

33. Update the global best for leader search agent

34. End

35. if (𝑖 < 𝑛) then

36. Exclude the current leader search agent and go to step 3

37. Else

38. Update the global best for each search agent

39. End

• Fitness Function

The CP_CO is employed to find solutions quickly i.e., close

to optimal during controller placement. The latency and

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

synchronization overhead are integrated into a single fitness

function 𝑓𝐹𝑖𝑡 as in Eq. (12). This allows to identify efficient

solutions that are near the global optimum while ensuring that

the optimal controller placement constraints are not violated.

 𝑓𝐹𝑖𝑡 = 𝛼. 𝐴𝑉𝐺𝐿𝑎𝑡(𝑃) + 𝛽. 𝑆𝑦𝑛_𝑜 (12)

where 𝛼 and 𝛽 are tuning constant values and considered as

𝛼 + 𝛽 = 1 . These values are used to tune the relative

significance of the 𝐴𝑉𝐺𝐿𝑎𝑡(𝑃) and 𝑆𝑦𝑛_𝑜 in the network.

B. Load Balancing

At the primary stage of the network, each CN chooses one

controller as a master controller and creates an initial subnet.

The load-sharing based control node migration scheme

defined in Algorithm 3 allows CNs to migrate with controllers

using partial load sharing rather than as a whole CN. It also

allows more flexibility and addresses the issue of CN Zig-Zag

during the migration process.

Algorithm 3: LS-CNM

Input: 𝑄̂ , 𝐶̂, 𝑄̂𝑐𝑖, 𝑀𝑎𝑥_𝐿(𝑐), ֆ,

Output: Balanced control node migration

1 Initially 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 ← { }

2 for each 𝑐𝑖 𝜖 𝐶̂ do

3 𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) ← 0

4 for each 𝑐𝑛𝑗 𝜖 𝑄̂ do

5 𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) = 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) + 𝐶𝑀_𝑐𝑛𝑗

𝑡

6 End

7 if (𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) > ֆ)

8 𝐶̂𝑂𝐿 ← 𝐶̂𝑂𝐿 ∪ {𝑐𝑖}

9 else

10 𝐶̂𝐴𝑠𝑡 ← 𝐶̂𝐴𝑠𝑡 ∪ {𝑐𝑖}

11 End

12 End

13 If (𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 is not empty) then

14 SORT(𝐶̂𝑂𝐿, 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) − ֆ)

15 SORT(𝐶̂𝐴𝑠𝑡,ֆ − 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖))

16 Else

17 Terminate the process of LS-CNM

18 for each 𝑐𝑖 𝐶̂𝑂𝐿 do

19 SORT(𝑄̂𝑐𝑖 , 𝐶𝑀_𝑐𝑛𝑖
𝑡)

20 while each 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) > ֆ do

21 Choose the nearest controller 𝑐𝑗 𝜖 𝐶̂𝐴𝑠𝑡 // based on

latency (Eq. (2)) & synchronization overhead (Eq. (5))

22 Migrate 𝑐𝑛𝑖 𝜖 𝑄̂𝑐𝑖 with 𝑐𝑗 subnet till

 𝐶𝑟𝑡𝐿
𝑡+1(𝑐𝑖) > 𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖) + 𝐶𝑀_𝑐𝑛𝑖
𝑡

23 Calculate 𝑃𝑆_𝐶𝑀_𝑐𝑛𝑖
𝑡 = ֆ − 𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖)

24 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) ← 𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖) − 𝑃𝑆𝐶𝑀
𝑐𝑛𝑖

𝑡

25 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) ← 𝐶𝑟𝑡𝐿

𝑡(𝑐𝑗) + 𝑃𝑆𝐶𝑀
𝑐𝑛𝑖

𝑡

26 End

27 if (𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) > ֆ)

28 𝐶̂𝐴𝑠𝑡 ← 𝐶̂𝐴𝑠𝑡\ {𝑐𝑗}

29 else

30 SORT(𝐶̂𝐴𝑠𝑡, ֆ − 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗))

31 End

32 If (𝐶̂𝐴𝑠𝑡 ← { })

33 Terminate the process of LS-CNM

34 End

35 End

LS-CNM begins by identifying 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 as the set of

overloaded and assistant controllers from 𝐶̂. According to Eq.

(6), step 5 calculates the current load of each controller 𝑐𝑖 𝜖 𝐶̂.

If the current load exceeds a threshold ֆ, 𝑐𝑖 is classified as

overloaded else classified as an assistant controller. Then,

steps 13 to 17 show if both sets 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 are not empty,

the migration process is initiated for load-balanced. The

migration starts by sorting the 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 in decreasing

order of overload controllers and the remaining controllers’

capacity, respectively. Then, it iteratively selects a pair of

controllers, one overloaded and other assistants, and then

migrates one CN from the overloaded controller's subnet to

the assistant's in order to reduce the overloaded controller's

current load. In this process, step 23 identified the number of

partial sharing control messages (𝑃𝑆_𝐶𝑀_𝑐𝑛𝑖
𝑡) of migrating CN

in accordance with the 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) will not be exceeded from ֆ.

This process continues until either the set of overloaded

controllers or the set of assistant controllers is empty. The

module stops if there are no more assistant controllers

available to share the current load of the overloaded

controllers.

C. Complexity Analysis

Algorithm 1 aims to determine the optimal number of

controllers in a network by identifying articulation points. The

initialization process involves marking all vertices as not

visited, which takes 𝑂(𝑣) time, where 𝑣 is the number of

vertices in the graph. Afterwards, DFS traversal is performed

to visit all vertices and calculate the depth of the selected

vertex. The time complexity of a standard DFS is 𝑂(𝑣 + 𝐸),
where 𝐸 is the number of edges in the graph. The recursive

calls to the Art_Point function occur for unvisited vertices. In

the worst case, each vertex is visited once, leading to a total

time complexity of 𝑂(𝑣). Considering the above components,

the overall time complexity of the algorithm is dominated by

the DFS traversal and can be expressed as 𝑂(𝑣 + 𝐸). The

space complexity is influenced by the stack space used in the

recursive calls and can be expressed as 𝑂(𝑣).

The proposed CP_CO algorithm, as outlined in Algorithm

2, is designed for optimizing controller positions. Initially, the

process begins with the initialization phase, which includes

generating the initial positions of the search agents. The time

complexity of the initialization phase is 𝑂(𝑃𝑠 ∗ 𝐷), where 𝑃𝑠 is

the initial population size, and 𝐷 is the dimension. Afterwards,

the fitness evaluation of each search agent has a time

complexity of 𝑂(𝑃𝑠). The main loop iterates for a maximum

of 𝐼𝑇𝑀𝑎𝑥 iterations. The loop involves operations such as

selecting random search agents, defining neighbor sets, and

updating agent positions. By considering these components,

the overall time complexity of the CP_CO algorithm is

influenced by the main loop, nested loops, and update

operations. Therefore, the overall time complexity is

approximately 𝑂(𝐼𝑇𝑀𝑎𝑥 ∗ 𝑃𝑠 ∗ 𝐷). The space complexity is

determined by the storage of search agent positions and

additional variables and can be expressed as 𝑂(𝑃𝑠 ∗ 𝐷).

The proposed LS-CNM algorithm, as outlined in Algorithm

3, is designed for control node migration in a network. The

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

initialization section involves creating two sets, 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡,

and initializing some counters. This part has a time complexity

of 𝑂(|𝐶̂|), where |𝐶̂ | is the size of the set 𝐶̂ . The first loop

iterates through each control node in 𝐶̂. Inside the loop, there

is a nested loop that iterates through each controller in 𝐶̂𝐴𝑠𝑡.

The operations inside the nested loop have a time complexity

of 𝑂(|𝐶̂𝐴𝑠𝑡|). Overall, the time complexity of the first loop is

𝑂(|𝐶̂|) ∗ |𝐶̂𝐴𝑠𝑡|). Subsequently, the SORT operations for sets

𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 have time complexities of a standard sorting

algorithm i.e., is typically 𝑂(𝑛 𝑙𝑜𝑔 𝑛), where 𝑛 is the size of

the set being sorted. Therefore, the time complexity of the

sorting operations is 𝑂(|𝐶̂𝑂𝐿 | ∗ 𝑙𝑜𝑔(|𝐶̂𝑂𝐿 |)) 𝑎𝑛𝑑 𝑂(|𝐶̂𝐴𝑠𝑡| ∗

 𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|)). Similarly, the time complexity of the second

loop is determined by the operations inside the while loop, and

it depends on the specific input and conditions. In the worst

case, it may be 𝑂(|𝐶̂𝑂𝐿| ∗ |𝑄̂𝑐𝑖|). Finally, the time complexity

of LS-CNM is primarily influenced by the sizes of the sets 𝐶̂

𝐶̂𝑂𝐿 , 𝐶̂𝐴𝑠𝑡 , and 𝑄̂𝑐𝑖 and the sorting operations within the

algorithm. Accordingly, the overall time complexity is

dominated by the sorting operations, and it can be expressed

as 𝑂(|𝐶̂| + |𝐶̂𝑂𝐿 | ∗ 𝑙𝑜𝑔(|𝐶̂𝑂𝐿 |)) + |𝐶̂𝐴𝑠𝑡| ∗ 𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|) +

 |𝑄̂𝑐𝑖| ∗ 𝑙𝑜𝑔(|𝑄̂𝑐𝑖|)) . The space complexity of LS-CNM is

influenced by the sizes of the sets 𝐶̂ , 𝐶̂𝑂𝐿 , 𝐶̂𝐴𝑠𝑡 , and 𝑄̂𝑐𝑖 , as

well as the temporary variables used in the algorithm. Thus,

the space complexity can be expressed as 𝑂(𝐶̂ + 𝐶̂𝑂𝐿 +
 𝐶̂𝐴𝑠𝑡 + 𝑄̂𝑐𝑖).

In conclusion, it is essential to aggregate the complexities of

all algorithms to calculate the overall time and space

complexity of the proposed work. Thus, the overall time

complexity is 𝑂(𝑣 + 𝐸 + 𝐼𝑇𝑀𝑎𝑥 ∗ 𝑃𝑠 ∗ 𝐷 + |𝐶̂| + |𝐶̂𝑂𝐿 | ∗

𝑙𝑜𝑔(|𝐶̂𝑂𝐿 |)) + |𝐶̂𝐴𝑠𝑡| ∗ 𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|) + |𝑄̂𝑐𝑖| ∗ 𝑙𝑜𝑔(|𝑄̂𝑐𝑖|))

and the overall Space Complexity can be expressed as 𝑂(𝑣 +

𝑃𝑠 ∗ 𝐷 + 𝐶̂ + 𝐶̂𝑂𝐿 + 𝐶̂𝐴𝑠𝑡 + 𝑄̂𝑐𝑖).

V. PERFORMANCE EVALUATION

This section provides the detailed result and discussion

obtained from the proposed LS-CNM, Kobo et al. [12] and

OpenFlow protocol. The performance of LS-CNM, Kobo et al.

[12], and OpenFlow protocol are analyzed using various

network performance metrics like frequency of controller

overload (FCO), load on controllers, round trip time (RTT),

and average delay

A. Experimental Setup

The proposed approach is implemented on the ONOS

controller (Junco ver-1.9.2) and the network is simulated

within the ns-3 network simulator ver-3.26. These tools are

installed on Ubuntu OS (16.04-LTS) with an Intel i7 10th

generation processor and 16 GB of RAM. The OpenFlow

version 1.3 is used as the southbound interface to connect

ONOS and ns-3. The network simulator parameters are

presented in Table IV.

An instance of the proposed network topology used in our

implementation is depicted in Fig. 4, which consists of 4

controllers 𝐶̂ = {𝑐0, 𝑐1, 𝑐2, 𝑐3} and 16 CNs 𝑄̂ =
{𝑐𝑛1, 𝑐𝑛2, . . , 𝑐𝑛16, } , however, the CNs are dynamic. The

hierarchical paradigm of the distributed architecture is adopted

where controller 𝑐0 serves as the GC. GC coordinates all LC

as well as monitors the load of each one to determine CN

migration.

TABLE IV

Simulation Parameters
Parameters Values

Size of Network 200 × 200 𝑚2

Total Nodes in the Network 300

CS Location (100*100)

SNs Initial energy 1J

Packet size 2000 bits

Transmitter and receiver energy consumption 50nJ/bit

Simulation Time 280 Sec

Time period 𝑡 5 Sec

However, 𝑐0 does not participate in CN migration. Each

controller, excluding 𝑐0, has a maximum processing capacity

(𝑀𝑎𝑥_𝐿(𝑐)) of 100 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 per second and a threshold (ֆ)

is 70 % of 𝑀𝑎𝑥𝐿(𝑐). If any LC receives more than 70 %

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 in a period (𝑡) , the respective controller is

considered as overloaded.

Fig. 4. Control Domains at (a) 1 Sec. (b) 10 Sec

In addition, three types of CNs are considered based on the

frequency (like small, medium, and higher) of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔

generation as shown in Fig. 4. Each CN with small frequency

(SF), medium frequency (MF) and high frequency (HF)

generates 8 to 10, 10 to 13, and 13 to 16 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 per second

respectively. Fig. 4 shows a simulation instance of the control

domain for each LC at 1 𝑠𝑒𝑐 where all CNs except for

𝑐𝑛5, 𝑐𝑛8, 𝑐𝑛10, 𝑐𝑛13, and 𝑐𝑛16 , are SF CNs. After 10 𝑠𝑒𝑐 ,

𝑐𝑛9 and 𝑐𝑛14 become CNs of HF which can cause CN

migration as depicted in Fig. 4(b).

Moreover, the experimentation is also considered by

varying the initial population (IP) and the number of iterations

within the ranges of 30 to 70 and 5 to 90, respectively to

observe how different combinations of population sizes and

iterations would impact the convergence of the CP_CO

algorithm. Based on the analysis, it is found that the best

population size (IP=30) led to convergence after

approximately 25 iterations based on the fitness values in each

iteration, as illustrated in Fig. 5. This indicates that, among the

tested various population sizes, an initial population of 30

individuals demonstrated optimal convergence behavior for

the proposed CP_CO algorithm. The next section compares

the performance of the proposed LS-CNM with Kobo et al. [12]

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

and the OpenFlow protocol.

B. Frequency of controller overload (FCO)

The frequency of controller overload determines how many

times a controller exceeds their threshold capacity ֆ .

Moreover, numerous simulations are conducted to enhance

result realism. The depicted average in Fig. 6 is accompanied

by a 95% confidence interval to provide a measure of result

reliability. Fig. 6 depicts the frequency of the controller

overloaded with respect to each controller.

Fig. 5. Convergence of CP_CO through IP, fitness, and iterations.

Fig. 6. Frequency of controller overload

It is evident from Fig. 5 that LS-CNM reports less FCO in

comparison with Kobo et al. [12] and OpenFlow. The LS-

CNM not only selects the most appropriate CN for migration

but also elects partial load during migration. Moreover, it

allows neighbouring controllers to handle the process of the

overloaded controller during the same time period. This leads

to a further decrease in the FCO of all controllers as compared

to Kobo et al. [12] and OpenFlow.

C. Load on controllers

Load on controller represents how many 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 are

processed per unit of time. Fig. 7 shows a comparative

analysis of the number of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 received by each

controller with respect to time for proposed LS-CNM, Kobo et

al. [12] and OpenFlow protocol. In Fig. 7, the values of some

points are greater than the threshold, indicating that the current

load of the specific controller has surpassed the threshold,

leading to a situation of controller overloading in the network.

In Fig. 7(a), the simulation result of OpenFlow shows that

the controller 𝑐3 remains in the overloaded state for a long

period because neighboring controllers also reached their

thresholds frequently. In Fig. 7(b), Kobo et al. [12] show the

long period of overloaded states of controllers when 𝑐2 and 𝑐3

are overloaded simultaneously due to the absence of load

balancing.

Fig. 7(c) depicts that the instance at 11 sec when the

controller 𝐶3 is identified as overloaded and controller 𝐶3

changes its state to normal within 5 sec due to the partial load-

sharing migration in LS-CNM. It enables two controllers to

jointly handle the processing of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 of HF of CN which

leads to a better distribution of workloads. During the

simulation period, the load of each controller becomes very

similar to each other which ensures LS-CNM can effectively

balance the load among all controllers.

(a) OpenFlow

(b) Kobo et al [12]

(C) LS-CNM

Fig. 7. Load evaluation of each controller (a) OpenFlow (b) Kobo et

al [12] (C) LS-CNM

D. Average round trip time

It refers to the average time taken by a 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 to be

processed from end to end. In addition, the average time in

which the 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 to be sent from the CN to the controller,

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

is processed by the respective controller, and then returned to

the CN. Fig. 8 depicts the RTT of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 transmitted over

time. A high RTT can result in significant delays in the

processing of packets, leading to slow network performance.

The efficient controller placement based on latency and

synchronization overhead in LS-CNM reports less RTT in Fig.

8 compared with Kobo et al. [12] and OpenFlow.

Fig.8. Average RTT

Fig.9. Average delay V/s number of nodes

E. Average delay

It refers to the average time taken for a data packet to be

transmitted from an SN to a control server. This delay includes

the time required for the data to be processed at SN,

transmitted over the network, and processed at the control

server. Fig. 9 presents a comparison of the average delay with

respect to the increasing number of nodes in the DP. LS-CNM

outperforms as compared to Kobo et al. [12] and OpenFlow

because it provides the optimized placement of the controller

to reduce the latency of flow rule generation. Moreover, the

transmission time from the source to the destination is

decreased because intermediate devices in the data plane

forward the data packets quickly based on the flow rules

provided by the controllers frequently.

V. CONCLUSION AND FUTURE DIRECTION

The proposed work focuses on solving the controller

placement and load imbalance problem in the distributed control

plane of 6G IoE-based SDN-enabled WSN. LS-CNM is

proposed to reduce the load of an overloaded controller using

partial control node migration during ISAC among 6G IoE

devices. However, the latency is reduced using optimal

placement of controllers inspired by cheetah optimization

whereas the initial controllers are identified using graph

theory-based articulation point method. The simulation result

shows the effectiveness of LS-CNM by reducing the

frequency of controller overload by 84 % and 71 % in

comparison with OpenFlow and Kobo et al. [12], respectively.

Also, the partial CN migration maintains the load of

controllers below the threshold value. The optimal placement

of controllers improves the RTT of the proposed LS-CNM.

Moreover, LS-CNM reports less delay in transmitting the data

from source to destination as compared to the state-of-the-art

approaches.

In the future, LS-CNM can be merged with artificial

intelligence (AI) in 6G IoE to predict and prevent potential

issues like fault tolerance, and overloaded controllers in the

network for reducing downtime of the control plane.

Additionally, there is room for further research in assessing

the influence of dynamic network conditions and exploring the

energy efficiency implications of the proposed method.

ACKNOWLEDGEMENTS

This paper is supported by the National Natural Science

Foundation of China (Grant No. 62071327), and Tianjin

Science and Technology Planning Project (Grant No.

22ZYYYJC00020).

REFERENCES

[1] X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint

Communication and Sensing Toward 6G: Models and Potential of

Using MIMO,” IEEE Internet Things J., vol. 10, no. 5, pp. 4093–4116,
2023, doi: 10.1109/JIOT.2022.3227215.

[2] S. Verma, S. Kaur, M. A. Khan, and P. S. Sehdev, “Toward green

communication in 6g-enabled massive internet of things,” IEEE
Internet Things J., vol. 8, no. 7, pp. 5408–5415, 2021, doi:

10.1109/JIOT.2022.3227215.

[3] F. Liu et al., “Integrated Sensing and Communications: Toward Dual-
Functional Wireless Networks for 6G and Beyond,” IEEE J. Sel. Areas

Commun., vol. 40, no. 6, pp. 1728–1767, 2022.

[4] C. Ouyang, Y. Liu, and H. Yang, “Performance of Downlink and
Uplink Integrated Sensing and Communications (ISAC) Systems,”

IEEE Wirel. Commun. Lett., vol. 11, no. 9, pp. 1850–1854, 2022.

[5] V. Tyagi and S. Singh, “GM-WOA: a hybrid energy efficient cluster
routing technique for SDN-enabled WSNs,” J. Supercomput. 2023, vol.

79, pp. 14894–14922, 2023.

[6] V. Tyagi and S. Singh, “Network resource management mechanisms in
SDN enabled WSNs: A comprehensive review,” Comput. Sci. Rev.,

vol. 49, p. 100569, 2023.

[7] S. S. G. Shiny, S. S. Priya, and K. Murugan, “Control Message
Quenching-Based Communication Protocol for Energy Management in

SDWSN,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 3188–

3201, 2022.
[8] S. Moazzeni, M. R. Khayyambashi, N. Movahhedinia, and F. Callegati,

“On reliability improvement of Software-Defined Networks,” Comput.

Networks, vol. 133, pp. 195–211, 2018.
[9] T. Abu-Ain, R. Ahmad, R. Wazirali, and W. Abu-Ain, “A New SDN-

Handover Framework for QoS in Heterogeneous Wireless Networks,”

Arab. J. Sci. Eng., pp. 1–17, 2023.
[10] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:

Survey, Taxonomy, and Challenges,” IEEE Commun. Surv. Tutorials,

vol. 20, no. 1, 2018.
[11] A. Narwaria and A. P. Mazumdar, “Software-Defined Wireless Sensor

Network: A Comprehensive Survey,” J. Netw. Comput. Appl., vol. 215,

p. 103636, 2023.
[12] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-

based distributed control system for software-defined wireless sensor

networks,” IEEE Trans. Ind. Informatics, vol. 15, no. 2, pp. 901–910,
2019.

[13] A. Shirmarz and A. Ghaffari, “Taxonomy of controller placement

problem (CPP) optimization in Software Defined Network (SDN): a

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

survey,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 12, pp.

10473–10498, 2021.

[14] S. Tahmasebi, N. Rasouli, A. H. Kashefi, E. Rezabeyk, and H. R.

Faragardi, “SYNCOP: An evolutionary multi-objective placement of

SDN controllers for optimizing cost and network performance in
WSNs,” Comput. Networks, vol. 185, p. 107727, 2021.

[15] G. Li, J. Wu, S. Li, W. Yang, and C. Li, “Multitentacle Federated

Learning Over Software-Defined Industrial Internet of Things Against
Adaptive Poisoning Attacks,” IEEE Trans. Ind. Informatics, vol. 19,

no. 2, pp. 1260–1269, 2023.

[16] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Efficient
controller placement and reelection mechanism in distributed control

system for software defined wireless sensor networks,” Trans. Emerg.

Telecommun. Technol., vol. 30, no. 6, 2019.
[17] W. Wang, M. Dong, K. Ota, J. Wu, J. Li, and G. Li, “CDLB: A cross-

domain load balancing mechanism for software defined networks in

cloud data centre,” Int. J. Comput. Sci. Eng., vol. 18, no. 1, pp. 44–53,
2019.

[18] J. Wang, S. Zhang, W. Chen, D. Kong, X. Zuo, and Z. Yu, “Design and

Implementation of SDN-Based Underwater Acoustic Sensor Networks

with Multi-Controllers,” IEEE Access, vol. 6, pp. 25698–25714, 2018.

[19] H. Babbar, S. Rani, A. K. Bashir, and R. Nawaz, “LBSMT: Load

Balancing Switch Migration Algorithm for Cooperative
Communication Intelligent Transportation Systems,” IEEE Trans.

Green Commun. Netw., vol. 6, no. 3, pp. 1386–1395, 2022.

[20] N. Aljeri and A. Boukerche, “An efficient heuristic switch migration
scheme for software-defined vehicular networks,” J. Parallel Distrib.

Comput., vol. 164, pp. 96–105, 2022.

[21] S. Sahoo, Puthal, D., Tiwary, M., Usman, M., Sahoo, B., Wen, Z.,
Sahoo, B.P. and Ranjan, R, “ESMLB: Efficient Switch Migration-

Based Load Balancing for Multicontroller SDN in IoT,” IEEE Internet

Things J., vol. 7, no. 7, pp. 5852–5860, 2020.
[22] R. Salam and A. Bhattacharya, “Efficient greedy heuristic approach for

fault-tolerant distributed controller placement in scalable SDN

architecture,” Cluster Comput., vol. 25, no. 6, pp. 4543–4572, 2022.
[23] C. Li, K. Jiang, and Y. Luo, “Dynamic placement of multiple

controllers based on SDN and allocation of computational resources

based on heuristic ant colony algorithm,” Knowledge-Based Syst., vol.
241, p. 108330, 2022.

[24] L. Tian, A. Bashan, D. N. Shi, and Y. Y. Liu, “Articulation points in

complex networks,” Nat. Commun. 2017 81, vol. 8, no. 1, pp. 1–9,
2017.

[25] H. L. Bodlaender, “On Linear Time Minor Tests with Depth-First

Search,” J. Algorithms, vol. 14, no. 1, pp. 1–23, 1993.
[26] R. Ramteke, S. Singh, and A. Malik, “Optimized routing technique for

IoT enabled software-defined heterogeneous WSNs using genetic

mutation based PSO,” Comput. Stand. Interfaces, vol. 79, p. 103548,
2022.

[27] Y. Cheng, J. Du, J. Liu, L. Jin, X. Li, and D. B. da Costa, "Nested
Tensor-Based Framework for ISAC Assisted by Reconfigurable

Intelligent Surface," in IEEE Transactions on Vehicular Technology,

vol. 73, no. 3, pp. 4412-4417, March 2024.
[28] X. Li, Q. Wang, M. Zeng, Y. Liu, S. Dang, T. A. Tsiftsis, and O. A.

Dobre, "Physical-Layer Authentication for Ambient Backscatter Aided

NOMA Symbiotic Systems," in IEEE Transactions on
Communications, vol. 71, no. 4, pp. 2288-2303, April 2023.

[29] S. S. Gill, H. Wu, P. Patros, et al., "Modern computing: Vision and

challenges," Telematics and Informatics Reports, vol. 13, 100116,
2024.

[30] A. Montazerolghaem, "Software-Defined Internet of Multimedia

Things: Energy-Efficient and Load-Balanced Resource Management,"
in IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2432-2442, 2022.

[31] A. Montazerolghaem and M. H. Yaghmaee, "Load-Balanced and QoS-

Aware Software-Defined Internet of Things," in IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 3323-3337, 2020.

[32] A. Montazerolghaem, "Software-defined load-balanced data center:

design, implementation and performance analysis," in Cluster
Computing, 2021, 24(2): 591-610.

[33] A. H. Alhilali, & A. Montazerolghaem, "Artificial intelligence based

load balancing in SDN: A comprehensive survey." in Internet of
Things, 2023: 100814.

