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Abstract— The vision for the sixth-generation (6G) network 

involves the integration of communication and sensing 

capabilities in internet of everything (IoE), towards enabling 

broader interconnection in the devices of distributed wireless 

sensor networks (WSN). Moreover, the merging of SDN policies 

in 6G IoE-based WSNs i.e. SDN-enable WSN improves the 

network's reliability and scalability via integration of sensing and 

communication (ISAC). It consists of multiple controllers to 

deploy the control services closer to the data plane for a speedy 

response through control messages. However, controller 

placement and load balancing are the major challenges in SDN-

enabled WSNs due to the dynamic nature of data plane devices. 

To address the controller placement problem, an optimal number 

of controllers is identified using the articulation point method. 

Furthermore, a nature-inspired cheetah optimization algorithm 

is proposed for the efficient placement of controllers by 

considering the latency and synchronization overhead. Moreover, 

a load-sharing based control node migration (LS-CNM) method 

is proposed to address the challenges of controller load balancing 

dynamically. The LS-CNM identifies the overloaded controller 

and corresponding assistant controller with low utilization. Then, 

a suitable control node is chosen for partial migration in 

accordance with the load of the assistant controller. 

Subsequently, LS-CNM ensures dynamic load balancing by 

considering threshold loads, intelligent assistant controller 

selection, and real-time monitoring for effective partial load 

migration. The proposed LS-CNM scheme is executed on the 

open network operating system (ONOS) controller and the whole 

network is simulated in ns-3 simulator. The simulation results of 

the proposed LS-CNM outperform the state of the art in terms of 

frequency of controller overload, load variation of each 

controller, round trip time, and average delay. 

 
Index Terms— Control Node Migration, Controller placement 

problem, Load Balancing, SDN-enabled WSN, Multiple 

Controllers. 

I. INTRODUCTION 

n the sixth generation (6G) network, the fusion of IoE and 

WSN promises to revolutionize data collection, analysis, 

and dissemination, unlocking unparalleled potential across 

diverse real time applications. This revolutionary paradigm 

promises transformative advancements in connectivity, 

introducing unparalleled speeds, massive device connectivity, 

and seamless integration of new technologies [1]. With terabit-

per-second data rates and the ability to connect a vast range of 

devices, 6G IoE envisions a highly integrated and 

interconnected network where everything, from smart 

appliances to autonomous vehicles, communicates effortlessly. 

A distinctive feature of 6G IoE is its commitment to 

sustainability, emphasizing green technologies to minimize 

environmental impact and ensure energy-efficient practices. 

However, the convergence of the IoE with WSN in the 6G 

network introduces a complex and dynamic landscape of the 

integration of sensing and communication (ISAC) that 

necessitates innovative approaches to network management 

and optimization  [2]. ISAC stands as a pivotal advancement 

in IoE with WSN, bridging the gap between efficient resource 

utilization and optimal performance [3]. It also addresses the 

demanding need for seamless coordination between sensing 

and communication functions, ensuring that sensor nodes 

(SNs) not only capture data but also effectively transmit it. 

However, ISAC faces major challenges such as resource 

constraints and potential trade-offs between sensing accuracy 

and communication efficiency [4]. In this context, the 

integration of Software-Defined Networking (SDN) emerges 

as a pivotal solution to address the challenges and grasp the 

opportunities presented by this transformative paradigm. SDN 

enables programmability, centralized resource management, 

and faster policy implementation in WSN. In such an SDN-

enabled WSN, SDN separates the network functions of data 

forwarding devices from the data plane (DP) by transferring 

them to a centralized controller in the control plane (CP) [5], 

[6]. However, when the sensor nodes (SNs) in SDN- enabled 

WSN exceed the threshold, the centralized controller may fail 

to respond to the control messages (Ctrl_Msg) from the DP 

devices [7]. Additionally, an overload situation in the SDN 

controller occurs when the number of Ctrl_Msg requests 

exceeds the maximum processing capacity of the controller. 

Furthermore, the SDN controller can bring down the entire 

network due to being a single point of failure [8][9]. 

To overcome the aforementioned limitations inherent to the 

6G IoE, the logical centralization of SDN-enabled WSN 

architecture is upgraded with the physical distribution of CP 

[10]. It provides a scalable and reliable distributed architecture 

while preserving the importance of logically centralized SDN 

policies as shown in Fig. 1. The local controllers (LC) are 

placed near the DP devices under the supervision of the global 

controller (GC). The communication among controllers is 

managed via an east-west application programming interface 

(API). The end user is allowed to control and manage the SDN 

policies in CP from the application plane through the 

southbound API, however, the communication between CP to 
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DP is managed by the northbound API [11].  

Distributed SDN-enabled WSN allows multiple controllers 

to collaborate in coordinating the network functionalities 

during ISAC in the 6G IoE [12]. Specifically, each controller 

manages clusters of SNs called control domain. However, all 

SNs in a cluster report to the cluster head, namely the control 

node (CN), and these CNs are responsible for sharing the 

cluster data with the corresponding controller. The allocation 

of clusters to each controller will be optimized to distribute 

network load evenly, also known as the controller placement 

problem (CPP) [13]. Additionally, the controller placement 

considers, identifying the minimum controllers and their 

optimal location. However, more controllers cause a high 

synchronization overhead in CP [14][15].  

The multiple controller architecture suffers from uneven 

load distribution in CP due to the dynamic nature of SDN-

enabled WSN. Moreover, GC monitors each control domain 

periodically and migrates CN from any overloaded controller 

to neighboring controllers [16][17]. However, this migration 

process may exceed the threshold load of the neighboring 

controller, leading to a change in the controller state to 

overload. Consequently, the migrated CN returns to the 

previous control domain. This phenomenon is considered as 

the CN Zig-Zag problem. The above issue of CN migration 

occurs due to CN migration as a whole. To overcome this 

problem, we present the load sharing-based control node 

migration (LS-CNM) technique, allowing the partial share of 

the load of an overloaded controller. LS-CNM associates an 

overloaded controller with an assistant controller capable of 

sharing the load of others. Subsequently, it selects a partial 

load of CNs from the overload controller domain and migrates 

them with the assistant controller. 

 

 
Fig. 1.  Distributed SDN-enabled WSN  

 

 

This work is motivated by the need to overcome the uneven 

load distribution challenges in the control plane of a multiple-

controller architecture in the dynamic SDN-enable WSN. 

However, the technical challenges include the development of 

dynamic load balancing approaches, managing threshold load 

to prevent migration issues, intelligently selecting assistant 

controllers, designing a strategy for partial load migration, 

ensuring continuous load monitoring and decision-making, 

preventing load oscillations, integrating with existing SDN 

infrastructure, and addressing scalability concerns. The 

proposed LS-CNM approach is successfully implemented to 

resolve the above-mentioned challenges for SDN-enabled 

WSNs. 

To the best of our knowledge, LS-CNM is the first 

pioneering study that introduces dynamic management of 

controller workloads through partial CN migration within 

distributed SDN-enabled WSNs. The main contributions of 

this paper are summarised as follows. 

• An efficient distributed control plane is devised for SDN-

enabled WSN, aligning with the optimal number of 

controllers using the articulation point method. 

• A metaheuristic approach, referred to as CP_CO, is 

proposed to place the optimal number of controllers 

through cheetah optimization, effectively addressing the 

CPP challenge. To refine the controller placement, a well-

constructed fitness function is formulated, considering 

latency and synchronization overhead parameters. 

• A load sharing-based control node migration (LS-CNM) 

method is proposed to address the issue of load imbalance 

among controllers during ISAC. It examines the 

overloaded control domain, identifies the low-utilized 

assistant controller, and then, chooses a suitable CN for 

migration based on the load of the identified assistant 

controller. 

• The proposed methodology is implemented on the ONOS 

controller, and the network is simulated within the ns-3 

simulator to validate its feasibility. Simulation results 

indicate that LS-CNM has the capability to significantly 

reduce instances of controller overload while effectively 

achieving equitable distribution of the workload across all 

controllers. 

The rest of the paper is organized as follows. Section II 

presents a summary of related work. The system model and 

problem formulation are presented in Section III. Section IV 

shows the proposed techniques. The experiment setup and 

simulation results of the proposed LS-CNM are discussed in 

Sections V. Finally, the conclusion is summarized with future 

directions in Section VII. 

II. RELATED WORK 

This section provides an overview of recent advancements 

in load balancing techniques for ISAC in 6G IoE-based 

distributed SDN-enabled WSNs, which serve as the 

foundation for the research background. A comparison 

between the previous load-balancing methods and the 

proposed LS-CNM scheme is discussed in Table I. 

Kobo et al. [16] present the fragmentation-based distributed 

control system to improve the efficiency and scalability of the 

software-defined WSN by bringing control services closer to 

the DP. It focuses on controller placement and re-election in 

case of failure and reduces the propagation latency. However, 

the controller load is not considered during controller re-

election. In successive research of Kobo et al. [12], a 

consistent data model based on best effort and anti-entropy 

strategy is considered to minimize the load during cluster 

switching. However, cluster switching migrates the whole 

cluster to another controller, which makes the controller 

overloaded. 

Wang et al. [18] propose a consistent load-balancing 
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hashing algorithm using multiple controllers in underwater 

SDN-enabled WSNs. This approach considers an equal 

probability distribution process for cluster migration. 

However, a cluster is migrated as a whole which creates a 

controller Zig-Zag problem. Tahmasebi et al. [14] present a 

multi-objective optimization approach for the optimal 

placement of SDN controllers in WSNs. This approach 

improves the network performance by balancing the trade-off 

between synchronization overhead and development cost. 

However, cluster migration is not performed for controller 

load balancing. Babbar et al. [19] present two approaches for 

efficient cluster migration in SDN-enabled intelligent 

transportation systems. The first approach detects the 

imbalance load among various domains, while the second 

approach migrates the imbalance load to another controller. 

However, the controller load is not managed dynamically. 

Whereas, the article [20] resolved this issue efficiently in 

SDN-enable vehicular networks by reducing cluster migration 

delay and cost. However, the act of cluster switching results in 

the complete migration of the entire cluster to another 

controller, leading to an overloaded state of the controller. 
 

TABLE I  

Comparison with other related works 

Work 

Identify 

Optimal 

Controller 

CPP 

(Metaheuristic 

Optimization) 

Load 

Balancing 

Controller 

[14]  √  # 

[16]   CR ONOS 

[12]   CM(W) ONOS 

[18]  √ FD POX 

[21]   CM(W) Floodlight 

LS-CNM √ √ CM (W/P) ONOS 
Note: Symbol √ and # indicate adaptability and self-implemented controller, respectively. 

CR: Controller Reelection, FD: Flow distribution, CM(W): Cluster migration as a whole, 

CM(W/P): Cluster migration as a whole and partial both. 

 

Salam et al. [22] optimize CPP by minimizing both the 

number of controllers and network latency. This method 

determines the optimal number of controllers and chooses the 

optimal positions to place them efficiently. However, the fault 

tolerance approach may overload another controller in case of 

controller failure. Sahoo et al. [21] present an efficient load 

migration technique to balance the controller load. It 

recognizes the underutilized controller for migration based on 

a selection probability. To choose the target controller, a 

decision analysis method ranks the underutilized controllers 

based on memory, CPU load, bandwidth and hop count. 

However, the cluster is migrated as a whole to another 

controller. Li et al. [23] optimize the CPP based on network 

delay and load optimization. It balances controller load by 

reducing network congestion and outperforms existing 

methods in propagation delay and load balancing in large-

scale networks. However, cluster migration is not performed 

for load balancing. 

Cheng et al. [27] presented a nested tensor-based 

framework that enhances ISAC using a reconfigurable 

intelligent surface. This structure enables joint sensing and 

communication without specialized pilot signals, improving 

detection and localization accuracy by merging the dimensions 

of sensing and communication signals. Li et al. [28] explored 

physical-layer authentication (PLA) for user identification and 

security in AmBC-based NOMA symbiotic networks, taking 

into account channel estimation errors when assessing false 

alarms and detection probabilities for distant and nearby users. 

Gill et al. [29] introduced a classification framework for 

modern computing based on performance and impact, 

categorizing it by paradigms, technologies, and trends. 

Montazerolghaem  [30] discussed a method that managing 

resources optimally in internet of medical things (IoMT) 

networks, considering both energy and load constraints Then, 

the author introduced a system that manages energy and load 

in IoMT by leveraging network softwarization and virtual 

resources. This system dynamically modifies resource 

allocations based on the real-time size of the IoMT network. 

Montazerolghaem et al. [31] introduced a new framework that 

utilizes SDN to meet the QoS demands of diverse IoT services 

while also managing traffic distribution among IoT servers. 

The authors suggest a forward-looking heuristic approach, 

which integrates time-series analysis and fuzzy logic to predict 

and manage network conditions. Montazerolghaem introduced 

a framework for data centers utilizing Software-defined 

networking (SDN) to evenly distribute server loads and 

prevent server overloads [32]. The framework also delivers 

services quickly with minimal computational complexity. 

Alhilali et al. discussed a SDN architecture and explored load 

balancing challenges within it [33]. They also categorize AI-

based load balancing methods, evaluating them based on the 

algorithms used, the problems addressed, and their pros and 

cons.  

III. SYSTEM MODEL AND PROBLEM FORMULATION 

In this section, the characteristics of a multi-controller based 

SDN-enabled WSN model are introduced for ISAC among the 

network devices. Then, the CPP and CN migration problems 

are formulated. 

A. Characteristics of Proposed Network Model 

The proposed 6G IoE-based SDN-enabled WSN model is 

considered as an undirected graph 𝐺 = (𝑉, 𝐸) , where 𝑉 

represents the set of CNs and controllers, and 𝐸 represents the 

set of links between CNs and controllers as shown in Fig. 1. 

Let 𝑄̂ = {𝑐𝑛1, 𝑐𝑛2, . . . , 𝑐𝑛𝑛}   and 𝐶̂ = {𝑐1, 𝑐2, . . . , 𝑐𝑚}  are the 

set of 𝑛 CNs and 𝑚 controllers, respectively, where 𝑄̂, 𝐶̂  ∈  𝑉. 

However, the CPP is an optimization problem, which focuses 

on finding the optimal controller positions among a large 

number of potential options. The following list of 

presumptions pertains to dynamic controller placement based 

on latency and load balancing. 

• The SNs are deployed randomly and CS is placed at the 

centre of the target-sensing region in the data plane.  

• All the devices, participating in ISAC are stationary in the 

network scenario and the network load is dynamic in 

nature. 

• GC is connected with DP using the local controllers and all 

SNs are capable of performing the responsibilities of a CN. 

• Each 𝑐𝑖 is capable of acting as the master controller of any 

CN where each 𝑐𝑖 can respond to requests of one or more 

CNs in accordance with its processing capacity.  
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• The proposed method enables the clusters to migrate 

partially/completely with another 𝑐𝑖  to distribute the load 

evenly. Each control domain is assigned one 𝑐𝑖  and 

multiple CNs. 

The symbols used in the paper with their explanation are 

presented in Table II. 
TABLE II 

Symbols and Explanation 

Symbols Explanation 

𝑄̂ and 𝐶̂ Set of CNs and Controller respectively 

𝑐𝑖,and  𝑐𝑛𝑖 The ith controller and control node, respectively 

𝑄̂𝑐𝑖  Set of CNs which are managed by the 𝑐𝑖 

𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 Set of overloaded and assistant Controller  

𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) Average latency between CN and Controller 

𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) Average latency between Controller to Controller 

𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) Average latency between Controller to Global 

Controller 

𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
 Synchronization delay between 𝑐𝑖 and 𝑐𝑗 

𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) Current load of ith controller in time period 𝑡 

𝐶𝑀_𝑐𝑛𝑗
𝑡 Control messages sent by jth CN in time period 𝑡 

ֆ Threshold value of controller load 

𝑋𝐶𝐻𝑖,𝑗 
𝑡 , 𝑋𝑃𝑖,𝑗 

𝑡  Position of cheetah and prey in dimension 𝑗  

𝑆𝐶𝐻𝑖,𝑗 
𝑡  The step size of cheetah 

Ť𝐶𝐻𝑖,𝑗 , Ĭ𝐶𝐻𝑖,𝑗 
𝑡  Turning factor and Interaction factors  of cheetah 

 

B. Controller Placement Problem (CPP) 

The CPP is optimized by determining the optimal 

controllers and their locations using minimal controllers, 

latency, and synchronization overhead. It balances the network 

load that ensures efficient communication among SNs and 

controllers in ISAC process.  

1) Optimal number of controllers 

The networks equipped with more controllers, decrease the 

overall latency but increase the communication overhead 

between controllers. Therefore, it is essential to determine the 

optimal number of controllers. The optimal number of 

controllers is called 𝑚, i.e., elected using Algorithm 1, based 

on articulation point to balance trade-off between latency and 

communication overhead. 

2) Latency 

The latency between a CN and its respective controller is 

the average distance that a data packet (𝑃) travels from the 

𝑐𝑛𝑛 to 𝑐𝑚. It is represented by 𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) as given in Eq. 

(1).  

               𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) =
1

𝑛
∑ min 𝐷(𝑐𝑛, 𝑐)

𝑐𝑛 𝜖 𝑄̂
 (1) 

The inter-controller latency is the average distance that a 

packet travels from one controller to another (local or global). 

It is represented as 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃)  and 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃)  as 

given in Eqs. (2) and (3) for LC to LC and LC to GC, 

respectively.  

              𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) =
1

𝑚
∑ min𝑐 𝜖 𝐶̂ 𝐷(𝑐𝑖 , 𝑐𝑗)

𝑚

𝑖,𝑗=0
 (2) 

           𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) =
1

𝑚
∑ min𝑐 𝜖 𝐶̂ 𝐷(𝑐𝑖 , 𝐺𝐶)

𝑚

𝑖=0
   (3) 

The total latency ( 𝐴𝑉𝐺 _𝐿𝑎𝑡 (𝑃) ) is the sum of 

𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃),  𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) and 𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) latencies 

as given in Eq. (4). 

             𝐴𝑉𝐺_𝐿𝑎𝑡 (𝑃) =  𝐿𝑎𝑡𝐴𝑣𝑔𝑐𝑛, 𝑐(𝑃) +  𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝑐(𝑃) +
                                                                             𝐿𝑎𝑡𝐴𝑣𝑔𝑐, 𝐺𝐶(𝑃) (4) 

3) Synchronization Overhead 

The synchronization overhead represents the additional 

communication required to coordinate with multiple 

controllers. It includes tasks such as exchanging status 

updates, coordinating actions, and resolving conflicts. The 

extent of synchronization overhead depends on the specific 

system and the complexity of the controllers. To measure the 

synchronization overhead between each pair of controllers 

(𝑐𝑖 , 𝑐𝑗) , a matrix 𝑀_𝑆𝑦𝑛  is defined as the number of 

synchronization messages exchanged between 𝑐𝑖  and 𝑐𝑗. Thus, 

the synchronization overhead is denoted by 𝑆𝑦𝑛_𝑜 , and 

formulated as follows: 

           𝑆𝑦𝑛_𝑜 = ∑ ∑ 𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
∗  𝑀_𝑆𝑦𝑛𝑐𝑖,𝑐𝑗𝑐𝑗 𝜖𝐶

𝑐𝑖 𝜖𝐶
 (5) 

where 𝑆𝑦𝑛_𝑑𝑐𝑖,𝑐𝑗
 and 𝑀_𝑆𝑦𝑛𝑐𝑖,𝑐𝑗

 represent the synchronization 

delay and messages between 𝑐𝑖  and 𝑐𝑗, respectively. 

C. Load Balancing 

In a multi-controller SDN-enabled WSN, the network load 

balancing involves the systematic distribution of traffic among 

multiple controllers. This strategic approach aims to optimize 

resource utilization and enhance overall network performance 

in ISAC approach among network devices. This is achieved 

by considering both the capacity of the controllers and the 

migration of CNs. 

1) Controller Capacity 

It refers to the highest number of requests that a controller 

can handle at a specific time period 𝑡. The maximum capacity 

of a controller indicates how many 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔  can be 

processed in  𝑡 , i.e., represented as 𝑀𝑎𝑥_𝐿(𝑐) . All local 

controllers have a similar capacity and the current load 

𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) of 𝑐𝑖 at time 𝑡 is given as follows:   

                           𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) =  ∑ 𝐶𝑀_𝑐𝑛𝑗
𝑡

𝑘

𝑗=0
 (6) 

where 𝐶𝑀_𝑐𝑛𝑗
𝑡  represents the control messages sent by CN 

that exist in the control domain of 𝑐𝑖. When the current load is 

exceeded to 𝑀𝑎𝑥_𝐿(𝑐), the performance of any controller may 

degrade, and initiate the cluster/CN migration to maintain the 

stability of the network.  

2) Cluster/CN Migration 

The process of moving a CN from one controller domain to 

another to balance the load of an overloaded controller is 

called CN migration. CN migration is triggered by various 

factors such as network congestion, changes in traffic pattern, 

and network failures. The decision to migrate a CN to a 

particular controller is based on the current load of the 

neighboring controller. Additionally, the neighboring 

controller immediately eliminates the migrated CN if its 

𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) is exceeded due to the migrated CN. Subsequently, 

the CN returns its original domain and initiates another CN 

migration process due to the overloaded state of the controller. 

This situation gives rise to the CN migration problem, which 

occurs as a consequence of CN migration as a whole. 

An example is illustrated in Fig 3(a), which shows a 

scenario of the CN migration problem and its solution. 

Assume ֆ is the threshold load of the 𝑐𝑖 where ֆ < 𝑀𝑎𝑥_𝐿(𝑐) 

and controller 𝑐𝑖  is considered as overloaded if 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) >
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 ֆ. In Fig. 3(a), there are two controllers 𝑐1 and 𝑐2 with ֆ1 =
 ֆ2 = 70  and three CN namely 𝑐𝑛1, 𝑐𝑛2 and 𝑐𝑛3  in a 

network. Moreover, 𝑐𝑛1, 𝑐𝑛2 𝑎𝑛𝑑 𝑐𝑛3 produce 40, 50 and 40 

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 , respectively, in period 𝑡 . Controller 𝑐1  takes the 

charges of 𝑐𝑛1 & 𝑐𝑛2  and 𝑐𝑛3 is controlled by 𝑐2 . Now, 

controller 𝑐1  is overloaded because 𝐶𝑟𝑡𝐿
𝑡  (𝑐1)  is 90 

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 , i.e., greater than ֆ  and thus CN migration is 

required. In the current state of the load balancing mechanism 

[12], an overloaded controller 𝑐1 asks 𝑐2 to take responsibility 

for some of its CNs as a whole for an entire period 𝑡 as shown 

in Fig. 3(a). Furthermore, 𝑐𝑛1 migrates to the control domain 

of 𝑐2  at 𝑡 + 1 . Since, the 𝐶𝑟𝑡𝐿
𝑡(𝑐2) >  70  due to newly 

migrated CN. Now, 𝑐2 asks 𝑐1 to take charge of 𝑐𝑛1 for period 

𝑡 + 2. Accordingly, the current situation at 𝑐1 is the same as 

period 𝑡, and this is called the CN Zig-Zag problem. 

 

 
Fig. 3.  Illustrate CN Zig-Zag problem and how LS-CNM solves it 

 

 

Besides the scenario mentioned above, the proposed LS-

CNM performs CN migration in a partial load sharing manner 

for specific period 𝑡. During this period, the load of a CN is 

split between two controllers, as shown in Fig. 3(b). At period 

𝑡 + 1, the load of 𝑐𝑛1  is shared between 𝑐1  and 𝑐2  to ensure 

that the load remains below the threshold i.e., 𝐶𝑟𝑡𝐿
𝑡+1(𝑐𝑖) <

 ֆ . This approach helps in keeping the workloads of both 

controllers below their thresholds. In this way, LS-CNM can 

effectively address the issue of the CN Zig-Zag problem 

during migration. 

IV. PROPOSED METHODOLOGY 

In this section, CPP is optimized in accordance with an 

optimal number of controllers and their best location in the 

SDN-enabled WSN during ISAC among 6G IoE devices. 

After that CN Zig-Zag problem is resolved using a load 

sharing based partial CN migration technique. 

A. Controller Placement 

The objective of the controller placement phase is to 

determine the necessary quantity of controllers and the 

position of each controller at an optimized location to maintain 

the network stability and efficiency.  

1) Optimal Number of Controllers 

A method from graph theory is employed to calculate the 

optimum numbers of controllers and identify initial controller 

locations within the given network topology by identifying 

articulation points (APs) [24]. An AP is defined as a 

vertex/node whose removal may result in the partitioning of 

the graph. The value of identified APs is used as the required 

optimal number of the controller in the proposed network. The 

conventional depth-first search (DFS) [25] algorithm is 

employed to identify the APs within the network. In Algorithm 

1, a vertex or node ′𝑢′ is considered as the parent of another 

vertex ′𝑣′ if and only if ′𝑣′ can be discovered by traversing 

from ′𝑢′ . A vertex ′𝑢′  is classified as an AP if any of the 

following criteria are met: 

• Vertex ′𝑢′ is the root node and has a minimum of two child 

nodes. 

• Vertex ′𝑢′ is not the root node and has a child ′𝑣′, where 

there is no path of connectivity between ′𝑣′ and any of the 

ancestors of ′𝑢′  in the DFS tree. 

In Algorithm 1, the next visited node is designated as ′𝑢𝑖′, 
and a data structure 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is utilized to record the nodes that 

have been traversed in the graph. The algorithm progresses by 

traversing all the neighboring nodes of the currently visited 

node. At each iteration, the values of the visited nodes are 

updated. If a neighboring node has not been visited, it is 

considered as a 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒  of the current node, and its 

connectivity to any ancestors is evaluated. If there is no 

connectivity, the node is classified as an AP. 

2) Controller Placement based on Cheetah Optimization 

Once the necessary quantity of controllers has been 

identified, synchronization-aware controller placement in 

SDN-enabled WSNs is performed by utilizing cheetah 

optimization (CO) as outlined in Algorithm 2. CO motivates 

the selection of the best pray from multiple pray as control 

nodes for each cheetah acting as controllers. A cheetah's 

decision on the best prey to pursue is represented by a fitness 

function and different prey options constitute the potential 

solutions. This optimization is based on the cheetah’s hunting 

strategies such as searching, sitting-and-waiting, attacking, 

leaving the prey, and going back home defined as follows.  

• Searching Strategy 

The cheetahs' searching strategy is mathematically modeled 

using the variable 𝑋𝐶𝐻𝑖,𝑗 
𝑡  which represents the current position 

of the cheetah 𝐶𝐻𝑖 (𝑖 = 1, 2, … , 𝑛) in search space dimension  

(𝑗 = 1, 2, … , 𝐷) , where 𝑛  is the number of cheetahs in the 

population and 𝐷  is the dimension of the optimization 

problem. Each cheetah reaches at different positions when 

hunting various prey. Using this information, a random search 

Eq. (7) is utilized to find the new position 𝑋𝐶𝐻𝑖,𝑗 
𝑡+1   based on 

their current position and an arbitrary step size. 

                           𝑋𝐶𝐻𝑖,𝑗 
𝑡+1 =  𝑋𝐶𝐻𝑖,𝑗 

𝑡 +  𝑟𝐶𝐻𝑖,𝑗 
−1 . 𝑆𝐶𝐻𝑖,𝑗 

𝑡  (7) 

where 𝑟𝐶𝐻𝑖,𝑗  represents the random number generated using 

the normal distribution method. 𝑆𝐶𝐻𝑖,𝑗 
𝑡  represents the step size 

of cheetah in hunt time 𝑡 . 𝑆𝐶𝐻𝑖,𝑗 
𝑡 is calculated as 𝑆𝐶𝐻𝑖,𝑗 

𝑡 =

 0.001 ×  𝑡/𝑇  where 𝑇  represents the maximum allowed 

hunting duration i.e., calculated as  𝑇 ← 60 × ⌈𝐷/10⌉.  
• Sitting-and-waiting Strategy 

The cheetah chooses to sit-and-wait, in order to get close 

enough to the prey. In this mode, the cheetah remains in its 

current position and waits for the prey to come within reach. 
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This behavior is represented as follows. 

                                         𝑋𝐶𝐻𝑖,𝑗 
𝑡+1 =  𝑋𝐶𝐻𝑖,𝑗 

𝑡  (8) 

This approach involves gradually changing the cheetahs in 

each group rather than all at once, which improves the chances 

of finding a better solution and prevents the algorithm from 

reaching a suboptimal solution too quickly. 

 
Algorithm 1: Optimal Number of Controllers Module 

Input: Network Graph 𝐺 = (𝑉, 𝐸) 

Output: Number of articulation points (Controllers) 

1  Initially all vertices ← not visited 

2  Create  function 

𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡 (𝑣𝑒𝑟𝑡, 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[ ], 𝑁𝑝𝑎𝑟𝑒𝑛𝑡[ ], 𝐴𝑟𝑡_𝑃[ ]) 

3  Call the function 𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡, recursively  

4  𝐶ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒 ← 0 

5  𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[ 𝑢] ← 𝑆𝑒𝑡 𝑇𝑟𝑢𝑒 

6  Visit all the vertices adjacent to 𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[ 𝑢]   // Calculate the 

depth of the selected vertex 
7  if  𝑁𝑣𝑖𝑠𝑖𝑡𝑒𝑑[ 𝑣]  is not True 

8   𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒 ← 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒 + 1 

9   𝑁𝑝𝑎𝑟𝑒𝑛𝑡[ 𝑣]  ← 𝑆𝑒𝑡 𝑢  

10   if  (subtree has any connection with any of the ancestors is 

True) 

11    no articulation points       // u is root of DFS tree and has 

two or more children 
12   else if (N_parent [u]==NILL and 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒>1) 

13    𝐴𝑟𝑡_𝑃[𝑢 ] ← 𝑆𝑒𝑡 𝑇𝑟𝑢𝑒 

14   End 

15  Else 

16   Call the function 𝐴𝑟𝑡_𝑃𝑜𝑖𝑛𝑡 

17  End 

18  return 𝐴𝑟𝑡_𝑃[ ] 

 

• Attacking Strategy 

When a cheetah chooses to hunt, it uses two critical 

elements: speed and flexibility. The cheetah rushes towards its 

prey at top speed. The cheetah tracks the position of its prey 

and alters its path to intercept the prey's path at a specific 

point. The position of the cheetah will be updated as follows. 

                            𝑋𝐶𝐻𝑖,𝑗 
𝑡+1 =  𝑋𝑃𝑖,𝑗 

𝑡 + Ť𝐶𝐻𝑖,𝑗 . Ĭ𝐶𝐻𝑖,𝑗 
𝑡  (9) 

where 𝑋𝑃𝑖,𝑗 
𝑡 , Ť𝐶𝐻𝑖,𝑗 &  Ĭ𝐶𝐻𝑖,𝑗 

𝑡 represent the prey location,  

turning factor & interaction factor associated with cheetah, 

respectively. Ĭ𝐶𝐻𝑖,𝑗 
𝑡 is used to prevent collision during attack 

and denoted as the difference between the cheetah’s current 

position 𝑋𝐶𝐻𝑖,𝑗 
𝑡 with neighboring group of cheetahs’ 𝑋𝐶𝐻𝑘,𝑗 

𝑡  

where 𝑘 ≠ 𝑖. The turning factor Ĭ𝐶𝐻𝑖,𝑗 
𝑡 shows the sudden turn of 

𝐶𝐻𝑖 , 𝑗  while hunting and it can be formulated as Ĭ𝐶𝐻𝑖,𝑗 
𝑡 =

 |𝑟𝐶𝐻𝑖,𝑗 | 
exp ((𝑟𝐶𝐻𝑖,𝑗 )/2)

. 𝑠𝑖𝑛 (2 𝜋. 𝑟𝐶𝐻𝑖,𝑗 ).During hunting  period, 

cheetah switches between searching, sit-and-wait and 

attacking mode as per the rules expressed in Eqs. (10) & (11). 

        {
𝑖𝑓 (𝑅𝑛𝑑2 ≥ 𝑅𝑛𝑑3)                               𝑆𝑖𝑡 𝑎𝑛𝑑 𝑊𝑎𝑖𝑡

𝑖𝑓 (𝑅𝑛𝑑2 < 𝑅𝑛𝑑3)      𝐻 =  𝑒2(1−𝑡/𝑇) (2𝑅𝑛𝑑1 − 1)
 (10) 

       {
𝑖𝑓 (𝐻 ≥ 𝑅𝑛𝑑4)                           𝐴𝑡𝑡𝑎𝑐𝑘 𝑀𝑜𝑑𝑒     

𝑖𝑓 (𝐻 < 𝑅𝑛𝑑4)                         𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑀𝑜𝑑𝑒
 (11) 

where 𝑅𝑛𝑑1, 𝑅𝑛𝑑2 and 𝑅𝑛𝑑3 are random numbers in the range 

of [0, 1]. 𝐻 is a switching factor and 𝑅𝑛𝑑4 is a random value 

in the range of [0, 3]. If 𝐶𝐻𝑖 fails multiple hunts, their position 

is replaced by the last successfully hunted prey location, this 

strategy is called leave the prey and go back home mode.  

The CP_CO algorithm is used to determine the optimal 

location of controllers for controller placement in the control 

plane. In the proposed work, the number of CNs and their 

position are generated for the clusters similar to those defined 

in GMPSO [26].  After that, each 𝑐𝑛𝑗  𝜖  𝑄̂ selects their master 

controller 𝑐𝑖  𝜖𝐶 ̂ based on the latency factor as in Eq. (1). This 

process creates 𝑄̂𝑐𝑖  as the set of CNs i.e., managed by 𝑐𝑖 . 

Moreover, 𝑄̂𝑐𝑖 is updated after each re-clustering process. 

 
Algorithm 2: CP_CO 

Input: Initialize the position of GC, CS and CNs (Prey), dimension 

(𝐷), Initial population size (𝑃𝑠) 

Output: Best position for each controller 

1.  
Generate the initial position of search agent 𝑋𝐶𝐻𝑖,𝑗 

𝑡 (𝑖 =

1, 2, … , 𝑛) and (𝑗 = 1, 2, … , 𝐷) 

2.  Evaluate the fitness of each search agent 𝐶𝐻𝑖 using Eq. (12) 

3.  Initialize the population’s home, leader, and prey solutions 

4.  𝑡 ← 0,  𝐼𝑇 ← 1, 𝐼𝑇𝑀𝑎𝑥 ← Set as Maximum Iterations 

5.  Calculate 𝑇 ← 60 × ⌈𝐷/10⌉  
6.  while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑡𝑎𝑖𝑜𝑛 𝐼𝑇 ≤ 𝐼𝑇𝑀𝑎𝑥 do 

7.   Select random search agent 𝐶𝐻 (2 ≤ Ch ≤  𝑛)  

8.   for each search agent 𝑖 ∈ 𝑚 do  

9.    Define neighbor search agents’ set of 𝐶𝐻𝑖 

10.    for each arbitrary arrangement 𝑗 ∈ {1, 2, … , 𝐷} do 

11.     Calculate 𝐻, 𝑟𝐶𝐻𝑖,𝑗 , Ť𝐶𝐻𝑖,𝑗 , 𝑆𝐶𝐻𝑖,𝑗 
𝑡 , Ĭ𝐶𝐻𝑖,𝑗 

𝑡 , and  

12.     
choose random numbers 𝑅𝑛𝑑1, 𝑅𝑛𝑑2 and 

𝑅𝑛𝑑3 uniformly from 0 𝑡𝑜 1 

13.     if (𝑅𝑛𝑑2 < 𝑅𝑛𝑑3) then        

14.      Choose random number 𝑅𝑛𝑑4 from 0 𝑡𝑜 3 

15.      if (𝐻 ≥ 𝑅𝑛𝑑4) then   

16.       
Update new position of search agent using 

Eq. (7)          // Searching mode  

17.      Else 

18.       
Update new position of search agent using 

Eq. (9)          // Attacking mode 

19.      End 

20.     Else 

21.      
Update new position of search agent using Eq. 

(8)           // Sit-and-wait mode 

22.     End 

23.    End 

24.    Update the solutions of search agent 𝑖 and the leader 

25.   End 

26.   𝑡 ← 𝑡 + 1 

27.   if 𝑡 > 𝑅𝑛𝑑2 × 𝑇 then  

28.    
𝑋𝐶𝐻𝑖,𝑗 

𝑡 ←  𝑋𝐶𝐻𝑖,𝑗 
𝑡−1   the leader position doesn't change       

// Leave the prey and go back home mode 

29.    Evaluate the fitness of each search agent 𝐶𝐻𝑖 

30.    𝑡 ← 0 

31.   End 

32.   𝐼𝑇 ← 𝐼𝑇 + 1 

33.   Update the global best for leader search agent 

34.  End 

35.  if (𝑖 < 𝑛) then        

36.   Exclude the current leader search agent and go to step 3  

37.  Else 

38.   Update the global best for each search agent 

39.  End 

  

• Fitness Function 

The CP_CO is employed to find solutions quickly i.e., close 

to optimal during controller placement. The latency and 
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synchronization overhead are integrated into a single fitness 

function 𝑓𝐹𝑖𝑡  as in Eq. (12). This allows to identify efficient 

solutions that are near the global optimum while ensuring that 

the optimal controller placement constraints are not violated. 

                         𝑓𝐹𝑖𝑡 =  𝛼. 𝐴𝑉𝐺𝐿𝑎𝑡(𝑃) + 𝛽. 𝑆𝑦𝑛_𝑜  (12) 

where 𝛼 and 𝛽 are tuning constant values and considered as  

𝛼 + 𝛽 = 1 . These values are used to tune the relative 

significance of the 𝐴𝑉𝐺𝐿𝑎𝑡(𝑃) and 𝑆𝑦𝑛_𝑜 in the network. 

B. Load Balancing 

At the primary stage of the network, each CN chooses one 

controller as a master controller and creates an initial subnet. 

The load-sharing based control node migration scheme 

defined in Algorithm 3 allows CNs to migrate with controllers 

using partial load sharing rather than as a whole CN. It also 

allows more flexibility and addresses the issue of CN Zig-Zag 

during the migration process. 

 
Algorithm 3: LS-CNM 

Input: 𝑄̂ , 𝐶̂, 𝑄̂𝑐𝑖, 𝑀𝑎𝑥_𝐿(𝑐), ֆ,  

Output: Balanced control node migration 

1  Initially 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 ← { } 

2  for each 𝑐𝑖  𝜖 𝐶̂ do 

3   𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) ← 0 

4   for each 𝑐𝑛𝑗  𝜖  𝑄̂ do 

5    𝐶𝑟𝑡_𝐿𝑡(𝑐𝑖) = 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) +  𝐶𝑀_𝑐𝑛𝑗

𝑡 

6   End 

7   if  (𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) >  ֆ) 

8    𝐶̂𝑂𝐿  ←  𝐶̂𝑂𝐿  ∪ {𝑐𝑖} 

9   else  

10    𝐶̂𝐴𝑠𝑡  ←  𝐶̂𝐴𝑠𝑡  ∪ {𝑐𝑖} 

11   End 

12  End 

13  If (𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡 is not empty) then 

14   SORT(𝐶̂𝑂𝐿, 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) −  ֆ ) 

15   SORT(𝐶̂𝐴𝑠𝑡,ֆ − 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) ) 

16  Else 

17  Terminate the process of LS-CNM 

18  for each 𝑐𝑖   𝐶̂𝑂𝐿 do 

19   SORT(𝑄̂𝑐𝑖 , 𝐶𝑀_𝑐𝑛𝑖
𝑡  ) 

20   while each 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖) >  ֆ do 

21    Choose the nearest controller 𝑐𝑗  𝜖 𝐶̂𝐴𝑠𝑡 // based on 

latency (Eq. (2)) & synchronization overhead (Eq. (5)) 

22    Migrate 𝑐𝑛𝑖  𝜖 𝑄̂𝑐𝑖  with  𝑐𝑗  subnet till 

 𝐶𝑟𝑡𝐿
𝑡+1(𝑐𝑖) >  𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖) +  𝐶𝑀_𝑐𝑛𝑖
𝑡  

23    Calculate 𝑃𝑆_𝐶𝑀_𝑐𝑛𝑖
𝑡 =  ֆ − 𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖)  

24    𝐶𝑟𝑡𝐿
𝑡(𝑐𝑖)  ←  𝐶𝑟𝑡𝐿

𝑡(𝑐𝑖) − 𝑃𝑆𝐶𝑀
𝑐𝑛𝑖

𝑡
 

25    𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗)  ←  𝐶𝑟𝑡𝐿

𝑡(𝑐𝑗) + 𝑃𝑆𝐶𝑀
𝑐𝑛𝑖

𝑡
 

26   End 

27   if  (𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) >  ֆ) 

28    𝐶̂𝐴𝑠𝑡  ←  𝐶̂𝐴𝑠𝑡\ {𝑐𝑗} 

29   else  

30    SORT(𝐶̂𝐴𝑠𝑡, ֆ − 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) ) 

31   End 

32   If (𝐶̂𝐴𝑠𝑡 ← { }) 

33    Terminate the process of LS-CNM 

34   End 

35  End 

 

LS-CNM begins by identifying 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡  as the set of 

overloaded and assistant controllers from 𝐶̂. According to Eq. 

(6), step 5 calculates the current load of each controller 𝑐𝑖  𝜖 𝐶̂. 

If the current load exceeds a threshold ֆ, 𝑐𝑖  is classified as 

overloaded else classified as an assistant controller. Then, 

steps 13 to 17 show if both sets 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡  are not empty, 

the migration process is initiated for load-balanced. The 

migration starts by sorting the 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡  in decreasing 

order of overload controllers and the remaining controllers’ 

capacity, respectively. Then, it iteratively selects a pair of 

controllers, one overloaded and other assistants, and then 

migrates one CN from the overloaded controller's subnet to 

the assistant's in order to reduce the overloaded controller's 

current load. In this process, step 23 identified the number of 

partial sharing control messages (𝑃𝑆_𝐶𝑀_𝑐𝑛𝑖
𝑡) of migrating CN 

in accordance with the 𝐶𝑟𝑡𝐿
𝑡(𝑐𝑗) will not be exceeded from ֆ. 

This process continues until either the set of overloaded 

controllers or the set of assistant controllers is empty. The 

module stops if there are no more assistant controllers 

available to share the current load of the overloaded 

controllers. 

C. Complexity Analysis 

Algorithm 1 aims to determine the optimal number of 

controllers in a network by identifying articulation points. The 

initialization process involves marking all vertices as not 

visited, which takes 𝑂(𝑣)  time, where  𝑣  is the number of 

vertices in the graph. Afterwards, DFS traversal is performed 

to visit all vertices and calculate the depth of the selected 

vertex. The time complexity of a standard DFS is 𝑂(𝑣 + 𝐸), 
where 𝐸 is the number of edges in the graph. The recursive 

calls to the Art_Point function occur for unvisited vertices. In 

the worst case, each vertex is visited once, leading to a total 

time complexity of 𝑂(𝑣). Considering the above components, 

the overall time complexity of the algorithm is dominated by 

the DFS traversal and can be expressed as 𝑂(𝑣 +  𝐸). The 

space complexity is influenced by the stack space used in the 

recursive calls and can be expressed as 𝑂(𝑣). 

The proposed CP_CO algorithm, as outlined in Algorithm 

2, is designed for optimizing controller positions. Initially, the 

process begins with the initialization phase, which includes 

generating the initial positions of the search agents. The time 

complexity of the initialization phase is 𝑂(𝑃𝑠 ∗  𝐷), where 𝑃𝑠 is 

the initial population size, and 𝐷 is the dimension. Afterwards, 

the fitness evaluation of each search agent has a time 

complexity of 𝑂(𝑃𝑠).  The main loop iterates for a maximum 

of 𝐼𝑇𝑀𝑎𝑥  iterations. The loop involves operations such as 

selecting random search agents, defining neighbor sets, and 

updating agent positions. By considering these components, 

the overall time complexity of the CP_CO algorithm is 

influenced by the main loop, nested loops, and update 

operations. Therefore, the overall time complexity is 

approximately 𝑂(𝐼𝑇𝑀𝑎𝑥 ∗ 𝑃𝑠 ∗  𝐷).  The space complexity is 

determined by the storage of search agent positions and 

additional variables and can be expressed as 𝑂(𝑃𝑠 ∗  𝐷). 

The proposed LS-CNM algorithm, as outlined in Algorithm 

3, is designed for control node migration in a network. The 
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initialization section involves creating two sets, 𝐶̂𝑂𝐿 and 𝐶̂𝐴𝑠𝑡, 

and initializing some counters. This part has a time complexity 

of 𝑂(|𝐶̂|), where |𝐶̂ | is the size of the set 𝐶̂ . The first loop 

iterates through each control node in 𝐶̂. Inside the loop, there 

is a nested loop that iterates through each controller in 𝐶̂𝐴𝑠𝑡. 

The operations inside the nested loop have a time complexity 

of 𝑂(|𝐶̂𝐴𝑠𝑡|). Overall, the time complexity of the first loop is 

𝑂(|𝐶̂|) ∗ |𝐶̂𝐴𝑠𝑡|). Subsequently, the SORT operations for sets 

𝐶̂𝑂𝐿  and 𝐶̂𝐴𝑠𝑡  have time complexities of a standard sorting 

algorithm i.e., is typically 𝑂(𝑛 𝑙𝑜𝑔 𝑛), where 𝑛 is the size of 

the set being sorted. Therefore, the time complexity of the 

sorting operations is 𝑂(|𝐶̂𝑂𝐿  |  ∗  𝑙𝑜𝑔(|𝐶̂𝑂𝐿  |)) 𝑎𝑛𝑑 𝑂(|𝐶̂𝐴𝑠𝑡|  ∗

 𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|)). Similarly, the time complexity of the second 

loop is determined by the operations inside the while loop, and 

it depends on the specific input and conditions. In the worst 

case, it may be 𝑂(|𝐶̂𝑂𝐿|  ∗  |𝑄̂𝑐𝑖|). Finally, the time complexity 

of LS-CNM is primarily influenced by the sizes of the sets 𝐶̂  

𝐶̂𝑂𝐿 , 𝐶̂𝐴𝑠𝑡 , and 𝑄̂𝑐𝑖  and the sorting operations within the 

algorithm. Accordingly, the overall time complexity is 

dominated by the sorting operations, and it can be expressed 

as 𝑂(|𝐶̂| + |𝐶̂𝑂𝐿 | ∗ 𝑙𝑜𝑔(|𝐶̂𝑂𝐿 |))  + |𝐶̂𝐴𝑠𝑡| ∗  𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|) +

 |𝑄̂𝑐𝑖| ∗  𝑙𝑜𝑔(|𝑄̂𝑐𝑖|) ) . The space complexity of LS-CNM is 

influenced by the sizes of the sets 𝐶̂ , 𝐶̂𝑂𝐿 , 𝐶̂𝐴𝑠𝑡 , and 𝑄̂𝑐𝑖 , as 

well as the temporary variables used in the algorithm. Thus, 

the space complexity can be expressed as 𝑂(𝐶̂  +  𝐶̂𝑂𝐿 +
 𝐶̂𝐴𝑠𝑡  +  𝑄̂𝑐𝑖). 

In conclusion, it is essential to aggregate the complexities of 

all algorithms to calculate the overall time and space 

complexity of the proposed work. Thus, the overall time 

complexity is  𝑂(𝑣 +  𝐸 + 𝐼𝑇𝑀𝑎𝑥 ∗ 𝑃𝑠 ∗  𝐷 +  |𝐶̂| + |𝐶̂𝑂𝐿  | ∗

𝑙𝑜𝑔(|𝐶̂𝑂𝐿  |))  + |𝐶̂𝐴𝑠𝑡| ∗  𝑙𝑜𝑔(|𝐶̂𝐴𝑠𝑡|) + |𝑄̂𝑐𝑖| ∗  𝑙𝑜𝑔(|𝑄̂𝑐𝑖|))  

and the overall Space Complexity can be expressed as 𝑂(𝑣 +

𝑃𝑠 ∗  𝐷 + 𝐶̂  + 𝐶̂𝑂𝐿 + 𝐶̂𝐴𝑠𝑡  +  𝑄̂𝑐𝑖). 

V. PERFORMANCE EVALUATION 

This section provides the detailed result and discussion 

obtained from the proposed LS-CNM, Kobo et al. [12] and 

OpenFlow protocol. The performance of LS-CNM, Kobo et al. 

[12], and OpenFlow protocol are analyzed using various 

network performance metrics like frequency of controller 

overload (FCO), load on controllers, round trip time (RTT), 

and average delay 

A. Experimental Setup 

The proposed approach is implemented on the ONOS 

controller (Junco ver-1.9.2) and the network is simulated 

within the ns-3 network simulator ver-3.26. These tools are 

installed on Ubuntu OS (16.04-LTS) with an Intel i7 10th 

generation processor and 16 GB of RAM. The OpenFlow 

version 1.3 is used as the southbound interface to connect 

ONOS and ns-3. The network simulator parameters are 

presented in Table IV.  

An instance of the proposed network topology used in our 

implementation is depicted in Fig. 4, which consists of 4 

controllers 𝐶̂ = {𝑐0, 𝑐1, 𝑐2, 𝑐3}  and 16  CNs 𝑄̂ =
{𝑐𝑛1, 𝑐𝑛2, . . , 𝑐𝑛16, } , however, the CNs are dynamic. The 

hierarchical paradigm of the distributed architecture is adopted 

where controller 𝑐0 serves as the GC. GC coordinates all LC 

as well as monitors the load of each one to determine CN 

migration. 

TABLE IV  

Simulation Parameters 
Parameters Values 

Size of Network 200 × 200 𝑚2 

Total Nodes in the Network 300 

CS Location (100*100) 

SNs Initial energy 1J 

Packet size 2000 bits 

Transmitter and receiver energy consumption 50nJ/bit 

Simulation Time 280 Sec 

Time period 𝑡 5 Sec 

 

However, 𝑐0  does not participate in CN migration. Each 

controller, excluding 𝑐0, has a maximum processing capacity 

(𝑀𝑎𝑥_𝐿(𝑐)) of 100 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 per second and a threshold (ֆ) 

is 70 % of 𝑀𝑎𝑥𝐿(𝑐). If any LC receives more than 70 % 

𝐶𝑡𝑟𝑙_𝑀𝑠𝑔  in a period (𝑡) , the respective controller is 

considered as overloaded. 

 
Fig. 4.  Control Domains at (a) 1 Sec. (b) 10 Sec 

 

In addition, three types of CNs are considered based on the 

frequency (like small, medium, and higher) of  𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 

generation as shown in Fig. 4. Each CN with small frequency 

(SF), medium frequency (MF) and high frequency (HF) 

generates 8 to 10, 10 to 13, and 13 to 16 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 per second 

respectively. Fig. 4 shows a simulation instance of the control 

domain for each LC at 1 𝑠𝑒𝑐  where all CNs except for 

𝑐𝑛5, 𝑐𝑛8, 𝑐𝑛10, 𝑐𝑛13, and  𝑐𝑛16 , are SF CNs. After 10 𝑠𝑒𝑐 , 

𝑐𝑛9 and  𝑐𝑛14  become CNs of HF which can cause CN 

migration as depicted in Fig. 4(b).  

Moreover, the experimentation is also considered by 

varying the initial population (IP) and the number of iterations 

within the ranges of 30 to 70 and 5 to 90, respectively to 

observe how different combinations of population sizes and 

iterations would impact the convergence of the CP_CO 

algorithm. Based on the analysis, it is found that the best 

population size (IP=30) led to convergence after 

approximately 25 iterations based on the fitness values in each 

iteration, as illustrated in Fig. 5. This indicates that, among the 

tested various population sizes, an initial population of 30 

individuals demonstrated optimal convergence behavior for 

the proposed CP_CO algorithm. The next section compares 

the performance of the proposed LS-CNM with Kobo et al. [12] 
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and the OpenFlow protocol. 

B. Frequency of controller overload (FCO) 

The frequency of controller overload determines how many 

times a controller exceeds their threshold capacity ֆ . 

Moreover, numerous simulations are conducted to enhance 

result realism. The depicted average in Fig. 6 is accompanied 

by a 95% confidence interval to provide a measure of result 

reliability. Fig. 6 depicts the frequency of the controller 

overloaded with respect to each controller.  

 
Fig. 5.  Convergence of CP_CO through IP, fitness, and iterations. 

 

 
Fig. 6.  Frequency of controller overload 

It is evident from Fig. 5 that LS-CNM reports less FCO in 

comparison with Kobo et al. [12] and OpenFlow. The LS-

CNM not only selects the most appropriate CN for migration 

but also elects partial load during migration. Moreover, it 

allows neighbouring controllers to handle the process of the 

overloaded controller during the same time period. This leads 

to a further decrease in the FCO of all controllers as compared 

to Kobo et al. [12] and OpenFlow. 

C. Load on controllers 

Load on controller represents how many 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔  are 

processed per unit of time. Fig. 7 shows a comparative 

analysis of the number of  𝐶𝑡𝑟𝑙_𝑀𝑠𝑔   received by each 

controller with respect to time for proposed LS-CNM, Kobo et 

al. [12] and OpenFlow protocol. In Fig. 7, the values of some 

points are greater than the threshold, indicating that the current 

load of the specific controller has surpassed the threshold, 

leading to a situation of controller overloading in the network. 

In Fig. 7(a), the simulation result of OpenFlow shows that 

the controller 𝑐3  remains in the overloaded state for a long 

period because neighboring controllers also reached their 

thresholds frequently. In Fig. 7(b), Kobo et al. [12] show the 

long period of overloaded states of controllers when 𝑐2 and 𝑐3 

are overloaded simultaneously due to the absence of load 

balancing.  

Fig. 7(c) depicts that the instance at 11 sec when the 

controller 𝐶3  is identified as overloaded and controller 𝐶3 

changes its state to normal within 5 sec due to the partial load-

sharing migration in LS-CNM. It enables two controllers to 

jointly handle the processing of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 of HF of CN which 

leads to a better distribution of workloads. During the 

simulation period, the load of each controller becomes very 

similar to each other which ensures LS-CNM can effectively 

balance the load among all controllers. 

 
(a) OpenFlow 

 
(b) Kobo et al [12] 

 
(C) LS-CNM 

Fig. 7. Load evaluation of each controller (a) OpenFlow (b) Kobo et 

al [12] (C) LS-CNM 

D. Average round trip time 

It refers to the average time taken by a 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔  to be 

processed from end to end. In addition, the average time in 

which the 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 to be sent from the CN to the controller, 
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is processed by the respective controller, and then returned to 

the CN. Fig. 8 depicts the RTT of 𝐶𝑡𝑟𝑙_𝑀𝑠𝑔 transmitted over 

time. A high RTT can result in significant delays in the 

processing of packets, leading to slow network performance. 

The efficient controller placement based on latency and 

synchronization overhead in LS-CNM reports less RTT in Fig. 

8 compared with Kobo et al. [12] and OpenFlow.  

 
Fig.8.  Average RTT 

 
Fig.9.  Average delay V/s number of nodes 

E. Average delay 

It refers to the average time taken for a data packet to be 

transmitted from an SN to a control server. This delay includes 

the time required for the data to be processed at SN, 

transmitted over the network, and processed at the control 

server. Fig. 9 presents a comparison of the average delay with 

respect to the increasing number of nodes in the DP. LS-CNM 

outperforms as compared to Kobo et al. [12] and OpenFlow 

because it provides the optimized placement of the controller 

to reduce the latency of flow rule generation. Moreover, the 

transmission time from the source to the destination is 

decreased because intermediate devices in the data plane 

forward the data packets quickly based on the flow rules 

provided by the controllers frequently.  

V. CONCLUSION AND FUTURE DIRECTION 

The proposed work focuses on solving the controller 

placement and load imbalance problem in the distributed control 

plane of 6G IoE-based SDN-enabled WSN. LS-CNM is 

proposed to reduce the load of an overloaded controller using 

partial control node migration during ISAC among 6G IoE 

devices. However, the latency is reduced using optimal 

placement of controllers inspired by cheetah optimization 

whereas the initial controllers are identified using graph 

theory-based articulation point method. The simulation result 

shows the effectiveness of  LS-CNM by reducing the 

frequency of controller overload by 84 %  and 71 %  in 

comparison with OpenFlow and Kobo et al. [12], respectively. 

Also, the partial CN migration maintains the load of 

controllers below the threshold value. The optimal placement 

of controllers improves the RTT of the proposed LS-CNM. 

Moreover, LS-CNM reports less delay in transmitting the data 

from source to destination as compared to the state-of-the-art 

approaches.  

In the future, LS-CNM can be merged with artificial 

intelligence (AI) in 6G IoE to predict and prevent potential 

issues like fault tolerance, and overloaded controllers in the 

network for reducing downtime of the control plane. 

Additionally, there is room for further research in assessing 

the influence of dynamic network conditions and exploring the 

energy efficiency implications of the proposed method. 
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