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Abstract—Edge computing plays a crucial role in the pro-
cessing of Consumer Internet of Things (IoT)-enabled latency-
sensitive applications. In smart homes, dynamic action strategies
based on multiple IoT objects with edge processing can be the
best solution for handling adverse events. To overcome these
challenges, the use of Stochastic Game Net (SGN) forming IoT
devices as players with predefined action sets is one of the feasible
solutions. Relative to this context, the edge-assisted IoT-enabled
data-driven SGN model is proposed to handle various events in
the smart home environment. Stochastic Petri Nets (SPNs) and
game theory are integrated into our proposed model to build
data-driven dynamic SGNs for the smart home environment.
Dynamic SGNs for a comprehensive smart home system are
generated in real-time through transitions based on sensor
data, enhancing interoperability and scalability in smart home
environments. We use the Net logo tool and state-of-the-art smart
home sensor datasets to generate dynamic SGNs for various
events. Experimental results demonstrate the effectiveness of the
proposed model within a data-driven smart home environment. It
shows that the present work significantly outperforms other state-
of-the-art techniques in terms of decision-making at the edge
layer. Moreover, using the proposed system the energy efficacy
increased to around 39mJ/K nodes, and the average temporal
delay for different events was reduced significantly.

Index Terms—Edge Computing, Stochastic Game Net, Game
Theory, Consumer IoT, Data-Driven Modeling.

I. INTRODUCTION

INTERNET of Things (IoT) is a prominent term that
touches every aspect of our lives and provides insights

into the status of various objects and systems [1]. Consumer
IoT represents the linkage of intelligent consumer electron-
ics or entities to the Internet, enabling them to perceive
their surroundings, generate insights, and communicate effec-
tively with both humans and other digital devices [2]. Many
smart applications in consumer electronics like healthcare
or Internet of Medical Things (IoMT) [3], [4], autonomous
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vehicles assisted by high-speed mobile networks [5], envi-
ronment monitoring [6], big data recommendation [7] and
building smart cities, are based on common technologies such
as IoT, Federated Reinforcement Learning [8] and Digital
Twins [9]. For instance, the integration of IoT in smart home
monitoring has significantly transformed the way homes are
managed and monitored, which involves connecting various
electronic devices and sensors to a network, enabling them
to communicate and share data. This interconnection allows
for seamless automation, monitoring, and control of various
aspects within the home [10]. Smart home monitoring sys-
tems leverage IoT to collect data from sensors, e.g., motion
detectors, cameras, temperature sensors, and door/window
sensors, creating a comprehensive view of the home environ-
ment [11]. Moreover, incorporating game-theoretical decision-
making with IoT-assisted electronic technology in smart homes
provides solutions related to effective event management and
minimizing loss to the maximum extent.

A. Edge Computing in Smart Homes
Generally, IoT-based data-driven applications require real-

time decision-making and actions. Edge computing, also
known as Mobile Edge Computing (MEC) or Multi-Access
Edge Computing, is a distributed architecture that brings
processing and storage resources for applications in proximity
to the place of generation or consumption of data [12], [13].
By keeping the computational capacity close to the users,
devices, or data sources, edge computing delivers benefits
such as low latency, high bandwidth, device processing, and
data offloading, improving the performance, security, operating
cost, and reliability of applications and services [14], [15].
Edge computing revolutionizes smart home monitoring by
enabling real-time data processing at the source, on elec-
tronic edge devices, or nearby servers. This approach reduces
latency, ensuring immediate responses to security incidents
or emergencies. Edge computing optimizes bandwidth usage,
as only relevant, secure or pre-processed data is transmitted
to the cloud layer, enhancing efficiency [16] and preserving
privacy [17].

B. Motivation and Our Contributions
Game theory provides vast solutions in the form of decision-

making services to various problems in smart home envi-
ronments. However, utilizing automated capabilities of con-
ventional game theory with IoT frameworks is a tough task
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due to the lack of modeling features to model data-driven
complex interactions and mixed strategies by IoT-based elec-
tronic devices [18]. Secondly, dynamic or unrelated scenarios
in consumer electronic-centric IoT systems are difficult to
map or update mathematical using game theory. Thirdly,
assigning preferences to players is complex in a game theory
environment. Lastly, in consumer electronics, nodes forming
IoT applications, their actions can’t be prioritized using game
theory, which leads to difficulty in quantifying the cost for
actions. Conspicuously, this research incorporates both game
theory and stochastic Petri nets (SPN), called stochastic game
nets (SGN). Finally, decision-making in smart homes based
on data-driven SGN has several benefits as follows:

• SGN can represent an effective data-driven dynamic sen-
sor displacement model for efficient analysis of various
events in smart homes.

• SGN can access the smart home consumer electronic
sensor environment as an n-player game model.

• SGN also effectively maps different events, strategies,
IoT-driven integration, and game equilibrium.

• SGN takes automated decisions based on numerous smart
home-oriented adverse event attributes collected from
consumer electronics.

Motivated by the SGN capabilities, this research presents
an efficient data-driven edge computing-based SGN smart
home monitoring system. The current research focuses on the
following major objectives.

• Developing data-driven smart home environments using
n-player game theory, where every consumer-centric IoT
device within the house operates as an independent player
with associated payoffs for each action undertaken.

• Temporal analysis of IoT-driven data using SGN edge
model and automated decision making.

• Formulating an effective mathematical formalization for
SGN-based smart homes and analyzing the model with
the large sensor test beds.

• The proposed edge-assisted data-driven SGN smart home
model is validated using execution delay, energy con-
sumption, and comparative analysis with state-of-the-art
datasets and alert generation statistical results.

The rest of this paper is framed as follows. Section II
discusses and analyzes the related works. Section III proposed
SGN for an IoT-Edge-based smart home environment. Sec-
tion IV empirically evaluates the system’s performance and
engages in a comprehensive discussion. Finally, Section V
provides the paper’s concluding remarks.

II. RELATED WORK

We have divided the related work into two different cate-
gories, namely, game theory in IoT and SPNs in IoT.

A. Game Theory in IoT

The adoption of game-based decision models is on the rise
within IoT environments. Game theory consists of analytical
tools for making decisions under conditions of uncertainty
and interdependence. Ding et al. [19] proposed a differential

game model to improve the stability of nodes in an IoT
environment. Kumar et al. [20] conducted an assessment
of a Bayesian coalition game within an IoT environment,
utilizing game theory and learning automata (LA). In this
context, the LA serves as the players, each equipped with
adjustable learning rates, participating in the coalition game.
These players make decisions through competitive learning
with variable learning rates, guided by a newly defined utility
function. This approach facilitates the rapid attainment of a
Nash equilibrium within the game. Kaur et al. [21] proposed
a game-based decision system for the performance evaluation
of employees in the smart industry. Zhang et al. [22] conducted
a study on the management of IoT service delivery. This study
took into account the factors of substitutability, externalities,
and complementarity that arise in the delivery of IoT services,
influenced by the diverse array of IoT components in mobile
systems.

B. Stochastic Petri Net in IoT

Zeng et al. [23] introduced a mathematical tool based
on SPNs for assessing and quantifying the dependability of
communication networks within smart grids. This approach
extends beyond the traditional metrics of reliability and avail-
ability, incorporating the analysis of transient and steady-state
probabilities. Ping et al. [24] proposed SPN to analyze and
design software systems to develop an application software
security testing approach rooted in the SPN model. Zhang et
al. [25] introduced a real-time production model referred to
as the “performance analysis and exception diagnosis model”,
which incorporates a hierarchical timed-colored Petri net fea-
turing smart tokens. This model is utilized for precise analysis
of sensor data to extract accurate information. Sanahmadi
et al. [26] introduced a model based on stochastic reward
nets (SRN) for modeling and quantitatively assessing system
energy consumption. Moreover, to focus more on the novelty
perspective, an extensive comparative analysis of the recent
works on IoT, game theory, Petri nets, and its applicability in
smart city applications were considered focusing on several
fields i.e., objectives, algorithms, and limitations with future
work in Table I.

III. SYSTEM MODEL

In this section, we discuss the system model and its com-
ponents in detail.

A. Sensor Types in Smart Homes

Smart home consists of multiple sensors and smart devices
such as door sensors, bed sensors, fire sensors, motion de-
tectors, Global Positioning System (GPS), and fall detection
sensors. These sensors are connected to an Edge server located
near the smart home. The server handles many responsi-
bilities such as intercommunication of smart devices, and
intra-communication with the outside world. The Edge server
decides on some action, appropriate request is forwarded to
third parties located outside the smart home such as shops,
marts, hospitals, grocery stores, and doctors.
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TABLE I: Comparative analysis of the proposed system with other state-of-the-art methodologies

Work Objective Algorithm/Technique Limitations and Future work

Ding et al. [19] To achieve optimal resources and find the
selfish nodes and malicious behavior

The Differential Game Model Proposed work is not tested in a real IoT environ-
ment and needs to measure accuracy to evaluate
the performance.

Zhang et al. [22] To improve the price and performance
by considering complementarity, external-
ities, and substitutability

Multi-leader Game-Theoretic
Approach

The proposed approach can be applied to com-
plex market behavior and online pricing.

Ping et al. [24] To enhance the security of software and
avoid software failure

Stochastic Petri nets theory Efficiency and scope of proposed work is limited.

Kaur et al. [27] To improve integrity, confidentiality, and
availability.

Stochastic Petri nets and game
theory approach

The proposed work can be used to detect the
anomalies in the network with high accuracy.

Sanahmadi et
al. [26]

To optimize energy consumption and la-
tency of IoT devices

Stochastic reward net model The proposed work can be used to enhance other
quality attributes of IoT.

Han et al. [28] To optimize multi-regional integrated en-
ergy systems based on cooperative games.

Latin-hypercube sampling,
Wasserstein metric, and Nash
bargaining game.

Scope is limited to optimization problems with
multiple operators.

Ajao and
Apeh [29]

To develop a security framework for the
smart cities’ sustainable edge computing
vulnerabilities.

Reinforcement learning, Petri-
nets and Genetic Algorithms.

Detection and mitigation of fog computing at-
tacks and cloud computing vulnerability were
not covered. Moreover, security challenges of
adopting 5G networks over smart cities are also
a major concern.

Guo et al. [30] Autonomous behavioral decision frame-
work for vehicular agents.

Cyber-physical social
intelligence, Iterative search
algorithm, and Universal
optimization algorithm.

Networking and intelligence required in the fu-
ture for the new energy vehicle industry (decision
model for intelligent driving decision system).

Sun et al. [31] To present a hierarchical framework that
coordinates the heterogeneity among tasks
and servers to improve resource utilization
in a vehicular network.

Bargaining-based increment ap-
proach and matching method.

Task processing rate and task processing delay
related to other efficient methodologies in vehic-
ular edge networks can be explored.

Bhuyan and
Chakraborty [32]

To develop feature selection multiap-
proach with the classification of diverse
datasets.

Extensible particle swarm
optimization, global and local
searching, feature ranking and
clustering, computational cost-
based feature selection, and
multi-objective optimization.

Different wrapping methods and ensemble learn-
ing can be used in the future for testing to fulfill
the social problem.

Dehory et al. [33] To provide a discrete block-chain-based
solution for clustered edge intelligence
makes the edge devices’ events history
immutable and easily traceable.

Secured cluster edge intelligence,
and blockchain.

Numerous challenges like network overhead,
scalability, interoperability, and technical vali-
dation based on real implementations for using
blockchain with cluster edge intelligence need to
be addressed in the future.

This work To provide event data in real-time for
better decision-making, energy efficient
modeling and improve interoperability and
scalability in smart home

Edge computing, Stochastic
Game Networks

In the future, the proposed approach can enhance
the cost and be applied to smart indoor applica-
tions and security.

B. SGN-Assisted Edge Computing

In smart homes to build real-time applications, IoT is
currently associated with the edge computing paradigm to
produce effective results. As shown in Fig. 1, the assisted-
IoT-enabled SGN model is proposed to handle various events
in a smart home environment. Real-time SGN graphs are
created on the Edge node to handle various adverse events such
as Fire, Theft, Patient health severity, and Grocery exhaust
information. Algorithm 1 shows the procedural steps for dy-
namic SGN creation in smart home applications. Consciously,
various events happening can be determined in real-time in the
Edge node by adopting SGN and game theory for decision-
making. Henceforth, the Edge node will generate real-time
responses for various events. These events related to dynamic
SGN are created regularly after a particular time interval. If
any unappropriated event happens, that event-related SGN will
be attached to the current SGN so that a real-time Alert can
be generated based on the parameters shown in Table V. In
the proposed system, the Edge nodes interact with each other
and send a message to generate an alert. In the patient health

event, the real-time information of the patient will be given to
the responder based on the current information. The caretaker
will decide if the patient needs to shift to the hospital or not.
If there is a fire in the smart home, the Edge nodes interact
with each other and send messages to initiate water, alert the
inmates, neighbors, fire services, etc. Moreover, the complete
mathematical data-driven SGN generation with a decision-
making procedure is carried out in the next subsection.

C. Stochastic Game Nets in Smart Homes

Definition 1: A smart home environment equipped with
numerous sensors can be structured to create an SGN using
the following sets of elements:

SGN = {N,A, P, T, F, π,R,X, λ, I, U}. (1)

The description of SGN elements is outlined below:
• N = (1, 2, 3, . . . , n) signifies the collection of IoT devices

within a smart home. As previously mentioned, these IoT
devices serve as game players. Two distinct player types,
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Fig. 1: Proposed abstraction data-driven model for SGN-based smart home connection

Algorithm 1: Computing SGN graph for each player
in Smart Home environment

Input: N , P , T
Output: R, π

1: Identify the game players and the game type.
2: Construct transition set π → [0, 1], the probability of

selecting a specific transition to move from one state to
another within the set of actions. Here, transition set
π(T

n
1 ) + π (Tn

2 ) + . . .+ π (Tn
n ) = 1 as per players

objectives and action.
3: Assign reward values to each player as R:

T → (R1, R2, R3, · · · , Rn)
4: Construct the place set P k =

⋃
a∈Ak pka for each player,

and SGN based on action results.
5: According to the SGN model of the player, calculate the

corresponding Game Equilibrium as
Ri(M1∗,M2∗, . . . , M (i−1)∗,M (i∗),M (i+1)∗, . . . ,MQ∗),
for any player i, M i is the alternative strategy and the
Game equilibrium strategy is MQ∗

6: λ values are assigned for each graph transition for
different events.

7: Simplify SGN model and solve the steady-state
probability.

namely the destructive player and the detective player,
are employed in smart homes. Detective players are IoT
devices responsible for detecting any critical activities

and promptly notifying the administrator. Subsequently,
the administrator player takes measures to safeguard the
home from the destructive player.

• A represents the assortment of actions that a player can
choose from. In cases where a player decides not to take
any action, it is symbolized as ∅. In the smart home,
sensors can act as players whenever any action has to be
taken based on the trigger of an individual sensor, inputs
from other sensors are also taken so that the result of the
action is more effective.

• P = (1, 2, 3, . . . , s) designates the collection of states for
game players. The vertices p ∈ P . Players’ selections of
specific actions induce transitions from one location to
another within the system efficiently, where Si signifies
the set of places where the respective IoT device is situ-
ated. These IoT devices have the flexibility to undertake
any action, denoted as p ∈ S.

• T = T 1 ∪ T 2 ∪ . . . ∪ Tn is the collective transition set
for IoT players. Here, T k represents the set of transitions
associated with player k ∈ N .

• F comprises the input and output arcs linking places with
transitions and vice versa. F ⊆ I∪O is set of arcs, where
I ⊆ I(P × T ) and O ⊆ I(T × P ) such that P ∩ T = Φ
and P ∪ T = Φ, where Φ is empty set.

• π → [0, 1] represents the probability of selecting a
specific transition to move from one state to another
within the set of actions. The summation of probabilities
for all transitions chosen by a player is denoted as
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π(T
n
1 )+π (Tn

2 )+. . .+π (Tn
n ) = 1. Here, the values 0 and

1 constitute a routing policy, reflecting the probability of
selecting a particular transition. A value of 0 indicates
a low likelihood of transitioning, while a value of 1
signifies a high likelihood of transitioning.

• R: T → (s1, s2, . . . , sn) represents the reward functions,
where the outcomes for both destructive and defensive
players are expressed as individual real values. These
values can be positive or negative, indicating either gain
or loss. Positive values signify gain, whereas negative
values indicate loss.

• X denotes a collection of terminal places, and X ∩ P =
X . A place is classified as terminal when not connected
to subsequent transitions.

• λ = {λ1, λ2, λ3, . . . , λx} indicates the number of tran-
sitions per unit of time, with x representing the total
number of transitions.

• I denotes the initial state of IoT players.
• U denotes the utility function of IoT players.
Definition 2: Action and Place set of any IoT device at

Edge layer. Let Ak represent the set of actions and Pk as the
set of places for player k, we can represent the place set for
IoT device k as the union of all actions that the IoT device
can execute from any state p ∈ P . This can be expressed as:

P k =
⋃

a∈Ak

pka, (2)

where pka is the action a taken by player k at place p. Similarly,
the action set can be expressed as:

Ak =
⋃

p∈Pk

akp, (3)

where akp is an action set of any kth IoT sensor placed at p.
Definition 3: Strategy and Strategy Set of IoT Devices at

Edge layer. Strategies represent the collection of actions that
an IoT device may employ while it operates. These strategies
are termed “mixed strategies” when there is a specific proba-
bility associated with the choice of each strategy. Let Sk be a
mixed strategy of kth IoT device. Then,

Sk = [π(ak1), π(a
k
2), . . . , π(akw)], (4)

where ak1 is the probability of selecting action a1 of kth
IoT device and w represents, the total action required as per
problem, that is w = |Ak|.

Sk =
[
π(akp1 i1), . . . , π( a

k
p1 i|Pk|

), . . . , π
(
akp|Pk|i|Pk|

)]
,

(5)
where π(akp1i1

) denotes the likelihood of strategy i1 being
executed at place p1 by IoT device k. The complete set of
strategies for the entire game involving N players can be
represented as S = (S1, S2, . . . , SN ), where S1 refers to
the strategies employed by the first IoT device.

Corollary 3.1: Probability of all Choices The sum of
probabilities for all available choices at any given node p ∈ P
will equate to one, which can be expressed as:∑

ai∈ak
p

π
(
akp, i

)
= 1. (6)

Corollary 3.2: Terminal Nodes In the case of terminal nodes,
the action set for each IoT device becomes empty, and the final
payoff is computed. Therefore, for the kth IoT device, any
terminal node z ∈ Z will have an empty action set denoted as
∅k

z . The utility function Uk(Rk(a), p0) for the kth IoT device
starting from the initial node p0 is simplified to Uk(Rk(a))
at the terminal node, resulting in the calculation of the final
payoff.

Definition 4: Reward Calculation. Reward obtained by kth
IoT device at place p is expressed as:

Rk (pw) =
∑
oi∈O

rkp (oi) +
∑

tj∈Tw

rk(tj). (7)

where O is the token set with time instant w at place p, the
number of tokens passed within time window w is represented
as Tw.

Discounted factor ∆ ∈ [0,1] is also added to finish the game
in finite time. Given any strategy s, the token is m level above
the terminal node of SGN from current time stamp w. Expected
utility of IoT device k from current time w can be calculated
as:

Uk
w (π, pw) = E

[
Rk (pw) + ∆Rk

(
pw+1

)
+∆2Rk

(
pw+2

)
+ . . .+ ∆mRk

(
pw+m

) ]
,

= E

[
m∑

n=0

∆mRk(pw+n))

]
, (8)

where the expectation operator E computes the average of
the probabilities employed in selecting transitions within the
SGN. Consequently, if the kth IoT device decides to execute
an action with a probability of (πk (pw+n)), it will receive the
corresponding reward (Rk(pw+n)). The reward at any place
p can also be calculated using the probabilities as follows:

Rk(p) =
∑

t1∈T 1,...,tn∈Tn

π1(p, t1), π2(p, t2) . . .

πn(p, tn)rk(p; t1, . . . , tn). (9)

D. SGN Formation in Smart Homes

The formation of SGN in smart homes is a data-driven
process. IoT devices in smart homes when triggered due to
some critical event like a fire or doorbell rings in smart homes
then dynamic SGN will be created or SGN of that triggered
device can be added to dynamic complete SGN. Moreover, one
IoT device may require data from another IoT device based
on the problem statement. Therefore, to construct dynamic
SGNs, perfect information on different smart home devices is
required.

A tree-based data-driven multilevel SGN graph G(V,E) is
formed based on IoT devices in the smart home. Let n be the
number of IoT devices and V be the set of vertices of SGN that
map it to the next level directed node with the help of E edges.
The leaf vertex or node is defined when Ev = ∅ if v ∈ V .
Furthermore, the vertex set V can be partitioned into (n+ 1)
disjoint sets, represented as Vi and i ∈ n is a set of vertices
required by ith IoT device in smart homes for its functioning.
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In addition to that extra vertex Vn+1 represents a set of all
terminal nodes in the formation of data-driven dynamic SGN
graphs. Finally, at each vertex V of the SGN graph, a unique
value is defined for reward to calculate the final payoffs at
terminal nodes based on the path from the root node to the
leaf or terminal node.

E. Construction of Complete SGN for Different Scenarios in
Smart Homes

1) Level 1: Data-driven SGN graph for the triggered IoT
device remains the same with the initial vertex v0, whenever
an IoT device is triggered in smart homes. A triggered list of n
IoT devices in the smart home is represented as a data-driven
triggered list DDTL = {L1, L2, L3, . . . , Ln}. Let P consist
of a set of edges, meant for joining two different SGNs. Pmn

represents the linking of mth IoT device with nth IoT device.
Payoffs will be calculated based on Definition 4 and the action
set is defined based on the data-driven 11 tuple element set in
Definition 1.

2) Level 2: After the formation of Level 1 the IoT device
L1 has the following three options:

• No action: If l2 /∈ DDTL, that means no element is
present in the DDTL. Therefore, the decision is based
on available SGN. The game will then move to any one
of the leaf nodes of the triggered l1 device.

• Data-driven SGN addition: If l2 ∈ DDTL, then SGN of
l1 IoT device should be included in the complete SGN
graph. Moreover, the current state vertex of the lth1 IoT
device must add the lth2 IoT device SGN so that the game
will end at the leaf node of lth1 IoT device.

• Crack SGN: If l2 has completely vanished from DDTL,
then SGN of the lth2 IoT device will be removed from the
complete SGN graph. Subsequently, the game will again
commence from edge connecting SGNs of the lth2 and
the lth1 IoT devices.

Finally, at Level 1, the number of vertices V available in the
complete SGN graph for smart homes will be updated as

• V = V; if no action.
• V ⊎ (V )(P12); if new SGN incorporated.
• V = V − (P12); if SGN has been removed.
3) Level 3: This level is created from the data-driven infor-

mation at Level 2. Let us assume that the SGN graph currently
is at level u (1 < u ≤ w), here w is the maximum possible
level of the SGN graph. The linking of vertices at level u can
be represented as P = {P12, P23, P34, . . . , P(u−1)(u)}. Hence
P(u)(u+1) will be defined using the following possible actions
at level u.

• V u+1 = V u; no action is required because of no P(u)(u+1)

link and game will finish at leaf node of the uth IoT
device.

• V u+1 = V u ⊎ V (P(u)(u+1)); new SGN added at stage
u+1.

• V u+1 = V u − V (P(u−1)(u)); if previous SGN has been
removed at stage u+1.

Therefore, in a data-driven SGN graph, for every node, a
unique path Pvis always available. In simple words, a vertex

in an SGN graph will continue its path based on data inputs
until vu ∈ V and vu ∈ Vn+1. After this, the smart home
environment will choose an action from the SGN 11-tuple
set in Definition 1. Using previously data-driven theoretical
mechanisms, in a smart home-based environment, SGNs can
be modified and the system can make decisions throughout
the life cycle.

F. Nash or Game Equilibrium

Due to mixed strategies, any game has at least one Nash
equilibrium vector set. In a smart home environment, mixed
strategy for dynamic SGN with Q matches is formalized as:

M∗ = (M1∗,M2∗,M3∗, . . . , MQ∗). (10)

The total reward for ith player is

Ri(M1∗,M2∗, . . . , M (i−1)∗,M (i∗),M (i+1)∗, . . . ,MQ∗).
(11)

For any player i, M i is the alternative strategy and the Nash
equilibrium strategy is MQ∗. Moreover, as per our dynamic
constructed SGN in Definition 1, there is Nash equilibrium for
a smart home mixed strategy environment with all information.
Since the SGN graph consists of IoT devices and each can act
as a player with a finite set of actions and states of each IoT
device’s own SGN are also finite, we can say that it fulfills all
the requirements of the proper game with Nash equilibrium
for a certain set of mixed strategies.

G. Action Set, Place Set, and Reward Generation

Meanings of each place and actions are described in Table
II and Table III, respectively. Each action performed at any
given place is associated with a specific reward value. Fig. 2
displays the reward rates for all sensors, contingent on their
locations and the actions to be undertaken.

Action set, place set, and reward rates for each transition are
provided for individual sensors. These individual sensors act as
players in the proposed smart home environment. Whenever,
any action has to be taken based on the trigger of an individual
sensor, inputs from other sensors are also taken so that the
resultant action is most effective. Moreover, when more than
one sensor is involved in taking any final action, a complete
SGN is created by the system. The resultant action will
be decided based on the subgame perfection of all sensors
involved. Smart home consists of multiple sensors such as bed
chair sensors, fire sensors, door sensors, body sensors, motion
sensors, and RFID sensors. The data-driven dynamic SGNs
for different events, considering all possibilities are shown in
Figs. 3-6.

Rewards come in varying values, where a higher reward
value indicates a greater likelihood of selecting the associated
action. The magnitude of the reward value reflects the priorities
of actions. Tables II and III outline the place and action
sets for different sensors. Moreover, the reward generation
on triggering of different sensors is shown in Fig. 2. If the
reward values are 3, 2, and -1, the reward value of 3 has
higher priority than the reward value of 2. If the reward value
is -1 that means no action should be taken. Positive reward
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Fig. 2: Reward generation table of all sensors when SGN triggered dynamically (A) Reward-based bed/chair sensor triggering
(B) Reward-based motion sensor triggering (C) Fire sensor triggering rewards (D) Door sensor triggering and associated
function-based reward generation (E) Body sensors based reward generation (F) RFID sensors based triggering for different
scenarios

TABLE II: Place Set of All Sensors

Sensor State Description

Bed/Chair Sensor OFF Bed/Chair is empty.
ON Someone is sitting on a bed/chair.
S OFF Sensor goes OFF suddenly. When

someone leaves the bed/chair.

Motion Sensor OFF There is no motion in the home.
ON Someone is in the home.
S OFF Someone just left the home.

Fire Sensor YES There is a fire in the home.
NO There is no fire in the home.
S OFF Fire just stops.
SMOKE There is smoke in the home.

Door Sensor ON Someone is at the door.
OFF No motion at the door
OPEN Door is opened by someone.
FORCE OPEN The Door lock is broken, and some-

one forcibly enters the home.

Body Sensor NORMAL Every wearable sensor is giving
normal readings.

FLUCT. There are fluctuations in body
wearable sensor data.

EMERG. There is a medical emergency in the
home.

RFID Sensor FULL Supplies are full.
EMPTY Supplies are empty.
N EMPTY Supplies are nearly empty.
NEW User asked for some new supplies.

Fig. 3: SGN at edge node for health event occurrence and its
dependability on body sensor (WS)

value should be carried out if possible. Based on these reward
values, the final strategy will be developed. In the case of
complete SGN, all reward values are calculated according to
Definition 4, and the action with the highest reward value is
taken. Moreover, procedural steps for dynamic SGN creation
in smart home applications are given in Algorithm 1.

IV. PERFORMANCE EVALUATION

SGN-based solution of IoT smart environments has a wide
variety of application scenarios. Even in smart homes for
senior citizens, hundreds of sensors can generate thousands
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TABLE III: Action Set of All Sensors

Sensor Action Description

Bed/Chair Sensor Yes Someone is sitting on bed/chair.
Alert OFF Put bed/chair sensor alert to off.
Check MS If BS is OFF check the motion sensor for any motion in the home.

Motion Sensor Yes Someone is in the home.
Alert OFF Put motion sensor alert to OFF.
No Motion There is no one in the home.

Fire Sensor Initiate Water/Sand Start spraying water/sand where fire has been sensed.
Alert Inmate Alert if someone is in the home to get out.
Alert Fire Services Alert fire services automatically.
Alert Neighbor Alert neighbor to get out of their respective homes.

Door Sensor Alert Visitor Alert visitor and take a photograph.
Alert Inmate If someone is in the home, alert him/her about visitors.
Alert Police Alert the police about unauthorized entry and send photographs.
Alert Neighbor Alert neighbors about unauthorized entry into the home.

Body Sensor Alert Inmate If someone is in the home, alert him/her about the medical situation.
Alert EMS Alert Emergency Medical Services about medical conditions.
Alert Doctor Alert the doctor about the medical condition in the home.
No Alert Everything is normal, no need to generate any alert.

RFID Sensors Ask Inmate If someone is in the home, ask him/her about the supplies.
Alert Mart Alert shopping mart to send supplies requested by users.
Alert Doctor Send data of supplies consumed by user to doctor so that calorie consumption data is available to doctor.
No Alert Everything is normal, no need to generate any alert.

Fig. 4: SGN at edge node for fire sensor and its dependability
on bed/chair sensor (BS)

of scenarios. To study the applicability of SGN in decision-
making for IoT smart environments, the six most influential
sensors are used and sensor-based datasets from state-of-the-
art were also used to simulate the smart home environments
and different scenarios. Net Logo with its wide suitability in
creating networks is used for simulating SGN-based IoT smart
environments.

A. Experimental Setup and Protocols

Net logo 6.3.0 interface has been used to provide input
from different sensors and output as final action from the

Fig. 5: SGN at edge node for theft detection and its depend-
ability on motion sensor

system [34]. A complete SGN graph has also been created
using individual graphs of each sensor as shown in Figs. 3-6.
Definitions explained in the mathematical part of the proposed
system are implemented at the backend of the Net logo.
Sub-game perfection methodology has been used in the Net
logo coding. Initially, optimization of each sensor action is
conducted, considering the reward values specific to each
sensor. Subsequently, a comprehensive SGN is constructed,
and the ultimate reward value is computed based on the sensors
utilized in forming the complete SGN. In this way, individual
sensor actions and complete SGN actions are optimized to
attain sub-game perfection in the system. Fig. 7 shows the
interface developed in the Net logo to experimentally evaluate
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Fig. 6: SGN at edge node for article consumption and its
dependencies on RFIDs

the proposed SGN method for smart environments. Choose
button has been used to add a place set of each sensor, Output
box has been used to show the final action of all individual
sensors as well as the complete SGN graph, 3D Graph is used
to show the generation of complete SGN graph, Auto Selec-
tion button automatically selects places of all sensors based
on predefined probabilities and Update Button automatically
updates the complete SGN graph and final actions if some
changes are made to place a set of all sensors by the user or
Auto Selection button.

1) Results from Net Logo Evaluation: Auto Selection and
Update buttons are kept on for 1000 ticks and different
results are stored. Results encompass the frequency of place
utilization by various sensors and the ultimate actions taken by
the complete SGN graph. In the experimental assessment of
the proposed system, the “Auto Selection” button indicates the
number of times different places were selected, as depicted in
Fig. 7. By considering the various place sets of all sensors, the
Net Logo software offers recommendations for final actions.
Fig. 8 provides insights into the number of final actions carried
out by the proposed system.

2) SGN-based Decision Making at Edge Layer vs. Cloud
Layer: The temporal delay parameter is adopted to create
SGN-based automated decisions. It’s the total time required for
SGN generation and decision-making. TSGNformation denotes
the time for generating SGN and Tdecisionmaking denotes the
time required for decision formulation. Therefore, temporal
delay at the edge device can be represented as:

Temporaldelay = TSGNformation + Tdecisionmaking, (12)

where Tdecisionmaking denotes the time required after SGN
creation for delivering the information to the concerned entities
(fire departments, police departments, nearby homes, and
grocery stores).

Cloud-assisted IoT-enabled smart home SGN creation en-
vironment requires transferring of various events happening
information by the following carbon footprints of the core
networks resulting in a rise in delivery time (Temporal delay
= TSGNformation + Tdecisionmaking + Ttransfertime). More-
over, cloud-based tasks such as smart factory data instances
can adopt the SGN model for various hazards. Our proposed
model can be compared with other decision models (like

artificial neural network ANN, support vector machine (SVM),
and K-nearest neighbor (KNN)) at the cloud layer in the
future. On the other hand, edge avoids back-and-forth traffic
between the cloud and entities in the smart home environment.
This limits the bandwidth but increases the efficiency of the
network. Fig. 9 depicts that the proposed IoT-enabled fog-
assisted SGN-based smart home monitoring system is far more
effective in delivering information to the entities associated
with the smart home environment as compared to the cloud-
based smart home SGN system. Moreover, the low value of
delay time indicates the effectiveness of the SGN-based smart
home monitoring strategy in our proposed system.

B. System Evaluation
The proposed smart home system (Data Driven SGN) is

evaluated on different smart home datasets, because of multi-
ple events: Kasteren [35] and Aruba [36]. The interaction of
the user and different sensors in the smart home is gathered
using multiple sensors like motion, cabinet, contact switch,
etc. Moreover, the Game Plan [37] software kit is used for
activity detection. SGN graph and reward tables are prepared
for the above-mentioned sensors to compute the Nash equi-
librium as per subsection C-E. Sub-game perfection method
plays a pivotal role in calculating Nash equilibrium for each
smart home sensor-based sub-game. The number of activities
correctly classified by the proposed system is compared with
other state-of-the-art methodologies using five cross-validation
methods for rigorous results because of the smaller dataset.
Moreover, many sequences of different sizes triggered during
sensor interaction were also taken into consideration (not the
activity) for evaluation.

1) Evaluation Statistical Measures: The proposed SGN-
based smart home events results can be compared with learn-
ing classifiers like AR-CbC, ET-KNN, KNN, and PNN [36].
Statistical parameters like precision, recall, F1 score, and ac-
curacy play a significant role in determining the applicability
of the proposed method in smart home environments [38].
Datasets comprise 6477 instances of Aruba for determining
11 activities in smart homes. 245 instances of the Kasteren
dataset for 7 activities another Kasteren dataset of 272 in-
stances for 10 activities. The set of activities performed by
the user in all datasets along with complete SGN created for
separate activities using NetLogo 6.3.0 are stored in an 11th
Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz system. The
stored complete SGN for different activities is important to
identify the activities in smart homes. On the other hand, other
classifiers’ results are calculated using Python with 16GB of
RAM. Table IV shows the comparison of the decision-making
efficacy of the proposed system with other state-of-the-art
classifiers using the above-mentioned data sets. Moreover, k-
fold cross-validation methodology is applied on all datasets to
yield rigorous results.

2) Energy Efficiency at Edge Layer: In our proposed sys-
tem, energy efficiency at the edge gateway is mathematically
computed as:

T i
m+1 = αtim + (1− α)T i

m; 0 < α < 1, (13)

tim+1 = T i
m+1 +∆ti, (14)
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Fig. 7: Net logo-based simulation environment for our proposed model

TABLE IV: Statistical measures of activity recognition in smart home based on the proposed method and other classifiers

Datasets Folds Approaches Precision(%) Recall(%) F1 score {0,1} Accuracy(%)

Proposed 85.67 83.47 0.82 93.45
AR-CbC 78.55 75.38 0.76 91.08

Aruba Five Fold ET-KNN 73.22 72.55 0.71 90.72
KNN 71.08 71.04 0.69 88.77
PNN 69.06 67.87 0.68 88.28
Proposed 95.07 93.07 0.93 95.34
AR-CbC 90.12 89.96 0.89 92.88

Kasteren (7 activities) Five Fold ET-KNN 88.29 86.87 0.83 91.89
KNN 89.06 82.12 0.83 88.25
PNN 89.64 83.04 90.67
Proposed 92.55 92.07 0.91 95.32
AR-CbC 89.67 91.22 0.88 92.33

Kasteren (11 activities) Five Fold ET-KNN 90.23 85.87 0.84 90.03
KNN 90.09 83.22 0.82 89.22
PNN 88.50 81.46 0.82 90.27

where the inactivity mode of IoT nodes is estimated in two
levels. Level 1 predicts the length of an IoT node’s next
inactivity interval based on previous history. Level 2, based
on different criteria the actual estimated value of the inactivity
interval is determined. Here, T i

m+1 is expected value of mth

IoT node’s m + 1th inactivity interval, and tim be the actual
value calculated of mth inactivity interval. The exponential
mean of the recorded duration of prior inactivity intervals is
used by the IoT nodes to predict T i

m+1 of each IoTnodesi

linked to it. α is the regulating parameter that affects how
rapidly the historical value deteriorates. The sensor type in
a particular application determines α value. In most of the
cases, the value of αis set closer to zero. The value of the
factor ∆ti in periodic sensors is based on numerous values like
information quality, energy capacity, conflict factor, etc [39].
In our proposed system, the energy efficiency is calculated
based on the Aruba dataset, while considering both inactivity
and without inactivity criteria. The result in Fig. 10 depicts that
while applying inactivity criteria the energy consumption effi-

cacy is significantly enhanced by an average of 39 mJ/nodes.

3) Statistical Analysis of Alert Generation: In this section,
we assess the system’s statistical parameters concerning alert
generation for the relevant entities associated with the smart
home emergency management environment. The primary ob-
jective of the statistical analysis of the alert generation process
is to determine the proportion of “false positive” alerts about
the total number of generated alerts. Table V reveals that only
3.15% of the alerts fall into the category of false positives.

The parameters such as sensitivity (88.47%), specificity
(94.27%), precision (91.23%), and coverage (98.12%) elu-
cidate the accuracy of the alert generation procedure. Fur-
thermore, the minimal values of various error parameters
indicate that the SGN-based transition mechanism proves
highly effective in addressing emergencies within a smart
home environment as shown in Fig. 10.
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Fig. 8: Cardinality of (a) Final action suggested by sensors (b)
Each sensor triggered values based on input to Netlogo

Fig. 9: Event-based temporal efficiency in proposed SGN-
based smart home environment

C. Discussion

Our proposed system conducts an SGN-based evaluation
in the smart home environment, characterized by dynamic
final actions. This dynamic aspect is realized by the dynamic
creation of a complete SGN graph through the integration
of individual sensor graphs. The Net logo is used to create
a dynamic complete SGN using six sensor readings in the
smart home environment for different events. Net logo-based
cardinality results in Fig. 8 provide final actions based on the
reward calculated at the terminal node. Moreover, the SGN-
based model at the edge layer provides real-time decision-
making for various events in the smart home environment. The
simulation results also depict that the SGN-based smart home
environment is very effective in generating alerts for different

Fig. 10: Energy efficiency in proposed SGN-based smart home
environment

TABLE V: Statistical Results Alert Generation

S.no Parameters Value

1 False Positive Alert 3.15
2 Sensitivity 88.47
3 Specificity 94.27
4 Precision 91.23
5 Coverage 98.12
6 Mean Absolute Error 3.14
7 Root Mean Square Error 2.53
8 Relative Absolute Error 7.84
9 Root Relative Squared Error 3.48

cases and the action taken by SGN is completely dynamic. In
addition to that, decision-making is far more effective in our
proposed system when compared with other decision models.
The temporal delay and energy consumption are significantly
reduced using the SGN data-driven model at the edge layer.

V. CONCLUSIONS AND FUTURE WORK

A smart home environment employs multiple sensors col-
laborating to perform actions in response to diverse event
detection scenarios. This paper presents a novel edge-assisted
IoT-enabled SGN-based smart home environment for imple-
menting dynamic action strategies apt for various real-time
occurrences of events such as fire, theft, patient health, motion
sensors, and grocery information. The key highlights of the
paper include (i) modeling data-driven smart home environ-
ments using n-player game theory and (ii) real-time decision-
making through edge computing followed by timely customer-
oriented alert generation. The applicability and efficiency of
the proposed framework are validated through a simulated
environment using NetLogo which provides promising results.
Future directions for the current work can be expressed in
points. Firstly, the temporal delay efficacy of the proposed
system can be further compared with the state-of-the-art
decision models for better decision-making. Secondly, the
economic aspect of the proposed model for other smart city
applications needs to be explored [40]. Finally, research can be
further extended for energy efficiency, security, and software
development for real-time smart home applications.

ACKNOWLEDGMENT

This work is supported by the Tianjin Science and Tech-
nology Planning Project (Grant No. 22ZYYYJC00020) and



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. , NO. , 2024 12

the National Natural Science Foundation of China (Grant No.
62071327).

REFERENCES

[1] S. S. Gill et al., “Modern computing: Vision and challenges,” Telematics
and Informatics Reports, vol. 13, p. 100116, 2024.

[2] C. K. Wu, C.-T. Cheng, Y. Uwate, G. Chen, S. Mumtaz, and K. F.
Tsang, “State-of-the-art and research opportunities for next-generation
consumer electronics,” IEEE Transactions on Consumer Electronics,
vol. 69, no. 4, pp. 937–948, 2022.

[3] X. Zhou, X. Ye, K. I.-K. Wang, W. Liang, N. K. C. Nair, S. Shimizu,
Z. Yan, and Q. Jin, “Hierarchical federated learning with social context
clustering-based participant selection for internet of medical things
applications,” IEEE Transactions on Computational Social Systems,
vol. 10, no. 4, pp. 1742–1751, 2023.

[4] Y. Wang, H. Wu, R. H. Jhaveri, and Y. Djenouri, “Drl-based urllc-
constraint and energy-efficient task offloading for internet of health
things,” IEEE Journal of Biomedical and Health Informatics, pp. 1–12,
2023.

[5] X. Zhou, X. Zheng, T. Shu, W. Liang, I. Kevin, K. Wang, L. Qi,
S. Shimizu, and Q. Jin, “Information theoretic learning-enhanced dual-
generative adversarial networks with causal representation for robust ood
generalization,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–14, 2023.

[6] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[7] X. Zhou, W. Liang, I. Kevin, K. Wang, and L. T. Yang, “Deep correlation
mining based on hierarchical hybrid networks for heterogeneous big
data recommendations,” IEEE Transactions on Computational Social
Systems, vol. 8, no. 1, pp. 171–178, 2020.

[8] P. Tiwari, A. Lakhan, R. H. Jhaveri, and T.-M. Grønli, “Consumer-
centric internet of medical things for cyborg applications based on
federated reinforcement learning,” IEEE Transactions on Consumer
Electronics, vol. 69, no. 4, pp. 756–764, 2023.

[9] X. Zhou, X. Zheng, X. Cui, J. Shi, W. Liang, Z. Yan, L. T. Yang,
S. Shimizu, I. Kevin, and K. Wang, “Digital twin enhanced federated
reinforcement learning with lightweight knowledge distillation in mobile
networks,” IEEE Journal on Selected Areas in Communications, vol. 41,
no. 10, pp. 3191–3211, 2023.

[10] C. Gray, R. Ayre, K. Hinton, and L. Campbell, “‘smart’ is not free:
Energy consumption of consumer home automation systems,” IEEE
Transactions on Consumer Electronics, vol. 66, no. 1, pp. 87–95, 2019.

[11] J. Ding and Y. Wang, “A wifi-based smart home fall detection system
using recurrent neural network,” IEEE Transactions on Consumer Elec-
tronics, vol. 66, no. 4, pp. 308–317, 2020.

[12] J. Du, H. Wu, M. Xu, and R. Buyya, “Computation energy efficiency
maximization for noma-based and wireless-powered mobile edge com-
puting with backscatter communication,” IEEE Transactions on Mobile
Computing, pp. 1–16, 2023.

[13] V. C. Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dustdar,
“Edge intelligence—research opportunities for distributed computing
continuum systems,” IEEE Internet Computing, vol. 27, no. 4, pp. 53–
74, 2023.

[14] J.-H. Syu, J. C.-W. Lin, G. Srivastava, and K. Yu, “A comprehensive
survey on artificial intelligence empowered edge computing on consumer
electronics,” IEEE Transactions on Consumer Electronics, vol. 69, no. 4,
pp. 1023–1034, 2023.

[15] M. Xue, H. Wu, G. Peng, and K. Wolter, “Ddpqn: An efficient dnn of-
floading strategy in local-edge-cloud collaborative environments,” IEEE
Transactions on Services Computing, vol. 15, no. 2, pp. 640–655, 2022.

[16] Z. Sharif, L. T. Jung, M. Ayaz, M. Yahya, and D. Khan, “Smart home au-
tomation by internet-of-things edge computing platform,” International
Journal of Advanced Computer Science and Applications, vol. 13, no. 4,
2022.

[17] X. Zhou, W. Liang, K. I.-K. Wang, Z. Yan, L. T. Yang, W. Wei, J. Ma,
and Q. Jin, “Decentralized p2p federated learning for privacy-preserving
and resilient mobile robotic systems,” IEEE Wireless Communications,
vol. 30, no. 2, pp. 82–89, 2023.

[18] B. Sedlak, I. Murturi, P. K. Donta, and S. Dustdar, “A privacy enforc-
ing framework for data streams on the edge,” IEEE Transactions on
Emerging Topics in Computing, pp. 1–12, 2023.

[19] Y. Ding, X.-w. Zhou, Z.-m. Cheng, and F.-h. Lin, “A security differential
game model for sensor networks in context of the internet of things,”
Wireless personal communications, vol. 72, pp. 375–388, 2013.

[20] N. Kumar, N. Chilamkurti, and S. C. Misra, “Bayesian coalition game
for the internet of things: an ambient intelligence-based evaluation,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 48–55, 2015.

[21] N. Kaur and S. K. Sood, “Cognitive decision making in smart industry,”
Computers in industry, vol. 74, pp. 151–161, 2015.

[22] Y. Zhang, Z. Xiong, D. Niyato, P. Wang, H. V. Poor, and D. I. Kim, “A
game-theoretic analysis for complementary and substitutable iot services
delivery with externalities,” IEEE Transactions on Communications,
vol. 68, no. 1, pp. 615–629, 2019.

[23] R. Zeng, Y. Jiang, C. Lin, and X. Shen, “Dependability analysis of
control center networks in smart grid using stochastic petri nets,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp.
1721–1730, 2012.

[24] P. Ping, Z. Xuan, and M. Xinyue, “Research on security test for
application software based on spn,” Procedia engineering, vol. 174, pp.
1140–1147, 2017.

[25] Y. Zhang, W. Wang, N. Wu, and C. Qian, “Iot-enabled real-time
production performance analysis and exception diagnosis model,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 3,
pp. 1318–1332, 2015.

[26] A. Sanahmadi, M. A. Azgomi, and S. Goudarzi, “An srn-based model
for quantitative evaluation of iot quality attributes,” Internet of Things,
vol. 23, p. 100894, 2023.

[27] R. Kaur, N. Kaur, and S. K. Sood, “Security in iot network based on
stochastic game net model,” International Journal of Network Manage-
ment, vol. 27, no. 4, p. e1975, 2017.

[28] F. Han, J. Zeng, J. Lin, Y. Zhao, and C. Gao, “A stochastic hierarchical
optimization and revenue allocation approach for multi-regional inte-
grated energy systems based on cooperative games,” Applied Energy,
vol. 350, p. 121701, 2023.

[29] L. A. Ajao and S. T. Apeh, “Secure edge computing vulnerabilities in
smart cities sustainability using petri net and genetic algorithm-based
reinforcement learning,” Intelligent Systems with Applications, vol. 18,
p. 200216, 2023.

[30] Z. Guo, D. Meng, C. Chakraborty, X.-R. Fan, A. Bhardwaj, and
K. Yu, “Autonomous behavioral decision for vehicular agents based on
cyber-physical social intelligence,” IEEE Transactions on Computational
Social Systems, vol. 10, no. 4, pp. 2111–2122, 2023.

[31] Z. Sun, G. Sun, Y. Liu, J. Wang, and D. Cao, “Bargain-match: A
game theoretical approach for resource allocation and task offloading
in vehicular edge computing networks,” IEEE Transactions on Mobile
Computing, vol. 23, no. 2, pp. 1655–1673, 2024.

[32] H. K. Bhuyan and C. Chakraborty, “Explainable machine learning for
data extraction across computational social system,” IEEE Transactions
on Computational Social Systems, pp. 1–15, 2022.

[33] C. K. Dehury, S. N. Srirama*, P. K. Donta, and S. Dustdar, “Securing
clustered edge intelligence with blockchain,” IEEE Consumer Electron-
ics Magazine, vol. 13, no. 1, pp. 22–29, 2024.

[34] Z. Cao, J. Zhu, B. Tang, and T. Chen, “System dynamics simulation
of occupational health and safety management causal model based on
netlogo,” Heliyon, vol. 9, no. 8, 2023.

[35] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate
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