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Abstract

In an era characterized by the rapid expansion of online information and the widespread dissemi-
nation of misinformation, automated fact-checking has emerged as an essential area of research.
As digital platforms continue to proliferate, the necessity for accurate and efficient fact-checking
mechanisms is attracting increasing interest. Automated fact-checking systems address two main
tasks: claim detection and claim validation. Claim detection involves identifying sentences or text
snippets containing assertions or claims potentially subject to fact-checking. Claim validation, a
multifaceted endeavor, encompasses evidence retrieval and claim verification. During evidence
retrieval, relevant information or evidence that may support or refute a given claim is obtained.
Claim verification, on the other hand, entails assessing the veracity of a claim by comparing it
against available evidence. Typically framed as a natural language inference (NLI) problem, claim
verification requires the model to determine whether a claim is supported, refuted, or there is not
enough information to reach a verdict.

In this thesis, we explore challenges inherent in claim verification, with a focus on few-shot
scenarios where limited labeled data and computational resources pose significant constraints.
We introduce three innovative methods tailored to tackle these challenges: Semantic Embedding
Element-wise Difference (SEED), Micro Analysis of Pairwise Language Evolution (MAPLE),
and Active learning with Pattern Exploiting Training models (Active PETs). SEED, a novel
vector-based approach, leverages semantic differences in claim-evidence pairs to perform claim
verification in few-shot scenarios. By creating class representative vectors, SEED enables efficient
claim verification even with limited training data. Comparative evaluations against previous state-
of-the-art methods demonstrate SEED’s consistent improvements in few-shot settings. MAPLE is
another pioneering approach to few-shot claim verification, harnessing a small seq2seq model and
a novel semantic measure to explore the alignment between claims and evidence. Utilizing micro
analysis of pairwise language evolution, MAPLE achieves significant performance improvements
over state-of-the-art baselines across multiple automated fact-checking datasets. Active PETs
presents a novel ensemble-based active learning approach for data annotation prioritization in
few-shot claim verification. By utilizing an ensemble of Pattern Exploiting Training (PET)
models based on various pre-trained language models, Active PETs effectively selects unlabelled
data for annotation, consistently outperforming baseline active learning methods. Its integrated
oversampling strategy further enhances performance, demonstrating the potential of active learning
techniques in optimizing claim verification workflows.

Together, these methods represent significant advancements in claim verification research,
offering scalable and practical solutions. Through extensive experimentation and comparative
analysis, this thesis evaluates the effectiveness of each method on various dataset configurations
and provides valuable insights into their strengths and weaknesses. Furthermore, by identifying
potential extensions and areas for refinement, the thesis lays the groundwork for future research
endeavors in this critical field of artificial intelligence.
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Glossary

Active PETs Active Pattern Exploiting Trainings. Active PETs is a method for actively selecting

unlabeled samples with an ensemble of PET models.

AL Active Learning. AL is a machine learning paradigm where the model proactively selects the

subset of examples to be labeled next from the pool of unlabeled data.

ALPS Active Learning by Processing Surprisal. ALPS is a method that uses surprisal scores to

select instances for annotation in active learning.

BADGE Batch Active learning by Diverse Gradient Embeddings. BADGE is an active learning

method that batch selects diverse instances for annotation.

BERT Bidirectional Encoder Representations from Transformers. BERT is a transformer-based

language model developed by Google for natural language processing tasks.

BioSentVec Biomedical Sentence Vectors. BioSentVec refers to vectors representing biomedical

sentences, often used in natural language processing tasks in the biomedical domain.

BLEU Bilingual Evaluation Understudy. BLEU is a metric for evaluating the quality of machine-

translated text based on n-gram overlap with reference translations.

BLEURT Bilingual Evaluation Understudy with Representations from Transformers. BLEURT

is a metric for evaluating machine translation that leverages BERT-based representations.

CAL Contrastive Active Learning. CAL is an active learning approach that selects instances

that are similar in the model feature space and yet the model outputs maximally different

predictive likelihoods.

cFEVER Climate Fact Extraction and VERification. cFEVER is a variant of the FEVER dataset

focused on climate change facts.
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CLEF Conference and Labs of the Evaluation Forum. CLEF is an forum that established a

framework of systematic evaluation of information access systems, primarily through

experimentation on shared tasks.

DeBERTa Decoding-enhanced BERT with disentangled attention. DeBERTa is a variant of

BERT with improved decoding and attention mechanisms.

DistilBERT Distilled BERT. DistilBERT is a smaller, faster version of the BERT model.

DistilRoBERTa Distilled RoBERTa. DistilRoBERTa is a smaller, faster version of the RoBERTa
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ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements Accurately.

ELECTRA is a model that learns to discriminate between real and generated tokens.

FEVER Fact Extraction and VERification. FEVER is a dataset for evaluating fact extraction and

verification systems.

FT/SFT Fine-Tuning / Supervised Fine-Tuning. FT/SFT is the process of further training a

pre-trained language model on a specific task or dataset.

GPT Generative Pre-trained Transformer. GPT is a type of transformer-based language model

developed by OpenAI for natural language processing tasks.

IR Information Retrieval. IR is the process of obtaining information from a collection of docu-

ments.

KILT Knowledge Intensive Language Tasks. KILT is a benchmark for evaluating language

models on knowledge-intensive tasks.

LLaMA 2 Large Language Model Meta AI 2. LLaMA 2 is a recent generative large language

model with multi-billion parameters from Meta AI that uses an optimized transformer

architecture.

LLM Large Language Model. LLM is a language model that is larger and more powerful than

traditional models.
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LoRA Low-Rank Adaptation. LoRA is an efficient method for adapting language models to new

tasks with low-rank matrices.

MAPLE Micro Analysis of Pairwise Language Evolution. MAPLE is a few-shot claim veri-

fication method that utilises signals from the language transition process during seq2seq

training.

METEOR Metric for Evaluation of Translation with Explicit ORdering. METEOR is a metric

for evaluating the quality of machine translation based on the weighted harmonic F1 of

unigram precision and recall.

MLM Masked Language Modeling. MLM is a task where a model is trained to predict masked

tokens in a sentence, used in pre-training language models.

MNLI Multi-Genre Natural Language Inference. MNLI is a dataset for evaluating natural

language inference systems across multiple genres of text.

MTTR Maas Type-Token Ratio. MTTR is a variant of the type-token ratio used in natural

language processing.

NLG Natural Language Generation. NLG is the task of generating natural language text from

text or other forms of input.

NLI Natural Language Inference. NLI is a task in natural language processing where the goal is

to determine the logical relationship between two pieces of text.

NLP Natural Language Processing. NLP is a field of artificial intelligence focused on the

interaction between computers and human languages.

NLPO Natural Language Policy Optimization. NLPO is a framework for training natural lan-

guage processing models using reinforcement learning.

PB Perplexity-Based. PB is a method that uses perplexity scores to perform few-shot claim

verification.

PET Pattern Exploiting Training. PET is a method for training language models with verbalizers

and patterns.
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PLM Pre-trained Language Model. PLM is a language model that has been pre-trained on a large

corpus of text.

QBC Query-By-Committee. QBC is an active learning strategy where a committee of models is

used to select instances for annotation.

RL Reinforcement Learning. RL is a machine learning paradigm where an agent learns to make

decisions by interacting with an environment and receiving rewards.

RLHF Reinforcement Learning from Human Feedback. RLHF is a framework where a reward

model is first trained from human feedback and then used to optimize the performance of

an agent through reinforcement learning.

RoBERTa Robustly optimized BERT approach. RoBERTa is a variant of BERT with improved

training dynamics and performance.

ROUGE Recall-Oriented Understudy for Gisting Evaluation. ROUGE is a set of metrics for

evaluating automatic summarization and machine translation.

RTE Recognizing Textual Entailment. RTE is a task in natural language processing where the

goal is to determine if one piece of text entails another.

SEED Semantic Embedding Element-wise Difference. SEED is a vector-based method for

few-shot claim verification.

SemSim Semantic Similarity. SemSim refers to a method that calculates the degree to which

two pieces of text convey the same meaning using sentence representations from language

models.

SOTA State Of The Art. SOTA refers to the current best performance on a particular task or

problem.
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Chapter 1

Introduction

1.1 Introduction

With the increased availability of information through online platforms, people increasingly use

the Web to access up-to-date information and to learn about the latest news and events. Along with

the increased availability of information, this has also led to an increase of misinformation, which

can lead society to making wrong decisions in your life due to the inaccuracy of the information.

As such, identifying when online information is inaccurate becomes crucial as a means to support

people to be aware of misinformation. As a means to mitigate the impact of online misinformation,

research in automated fact-checking is attracting increasing attention (Zeng et al., 2021). A

typical automated fact-checking pipeline consists of two main components: (1) claim detection,

which deals with identifying the set of sentences, out of a long text, deemed capable of being

fact-checked (Konstantinovskiy et al., 2021), and (2) claim validation, which assess the veracity

of a claim by checking it against a piece of evidence, with a two-step process that does evidence

retrieval first, followed by claim verification for claims (Pradeep et al., 2021). The evidence

retrieval component obtains, typically from a database, the most relevant piece(s) of evidence for

a given claim. Once the evidence is retrieved, the claim verification component determines the

level of support the evidence gives to the claim.

As a fertile research area where numerous methods have been proposed and tested to support

automated fact-checking, substantial improvements have been achieved in the performance of

claim validation models when a considerable amount of training data is available (Pradeep et al.,
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2021; Li et al., 2021; Zeng and Zubiaga, 2021; Zhang et al., 2021; Wadden et al., 2022). As a

key component of the claim validation pipeline, the claim verification1 component is generally

framed as a task in which a model needs to determine if a claim is supported by a given piece

of evidence (Thorne et al., 2018a; Wadden et al., 2020; Lee et al., 2021). It is predominantly

tackled as a natural language inference (NLI) task: given a claim c and a piece of evidence

e, predict the veracity label for the claim c which can be one of ‘SUPPORTS’, ‘REFUTES’,

and ‘NOT_ENOUGH_INFO’. The FEVER (Thorne et al., 2018a) dataset presents the following

example: the claim “A staging area is only an unused piece of land.” is contradicted by the

evidence “A staging area (otherwise staging point, staging base or staging post) is a location where

organisms, people, vehicles, equipment or material are assembled before use.” Adding to these,

the Climate FEVER (Diggelmann et al., 2021) dataset offers an illustrative example where the

claim “Coral atolls grow as sea levels rise.” is supported by the evidence “Gradual sea-level rise

also allows for coral polyp activity to raise the atolls with the sea level,”. Similarly, in the SciFact

(Wadden et al., 2020) dataset, the claim “Fz/PCP-dependent Pk localizes to the anterior membrane

of notochord cells during zebrafish neurulation.” receives a ‘NOT_ENOUGH_INFO’ label when

paired with evidence “These results reveal a function for PCP signalling in coupling cell division

and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might

underlie NTDs.”

While the majority of previous work tackles the problem with fully supervised methods where

there is a good amount of labeled training data available (Li et al., 2021; Zeng and Zubiaga, 2021;

Zhang et al., 2021; Wadden et al., 2022; Rana et al., 2022b,a), deploying these methods face

practicality issues. Emerging domains of misinformation often involve novel claims, limiting

the availability of relevant labeled data. This is the case, for example, of claims associated with

newly emerging topics such as COVID-19, which at the time of becoming widely discussed in

society lacked sufficient data, not least instances which were labeled by fact-checkers. Indeed,

the claims needing fact-checking can be diverse, ranging from political claims to health related

claims, including other subjects such as finance and more general news. This leads to a diversity

of datasets used in automated fact-checking, sometimes including more general-domain datasets,

in other cases including domain-specific datasets; in this thesis, we are interested in investigating

the impact of this diversity in the developing of automated fact-checking systems.

1The task is sometimes referred to as veracity classification (Lee et al., 2021).
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In addition, fact-checkers often need to evaluate claims with time constraints, limiting the

time allowed for conducting extensive fine-tuning of pretrained language models (PLMs). Hence,

performing claim verification in few-shot scenarios, where a model has seen very limited labeled

data that resembles what will be seen during the test phase, is of particular importance in the

real-world combat of misinformation.

Interestingly, the availability of unlabelled data can often be abundant in the context of

automated fact-checking, but given the cost and effort of labeling this data, one needs to be

selective in labeling a small subset. In these circumstances, rather than randomly sampling this

subset, in this thesis we hypothesize that we can optimize the selection of candidate instances to

be labeled through active learning, and that we can strategically design models to make better

use of the limited labeling budget than existing approaches, such that it leads to overall improved

few-shot performance.

1.2 Research Questions and Objectives

The overarching aim of this thesis is to study the extensibility of automated fact-checking models

to the scenario with limited training data, i.e. in few-shot settings. This involves both identifying

weaknesses of existing, state-of-the-art models, as well as furthering their ability by proposing

new and improved approaches, in turn evaluating their effectiveness with increasing levels of

challenge where the number of labeled samples decreases.

To address this aim, we address the following more specific research questions:

• RQ1: How do the challenges vary between different types of datasets, including domain-

specific versus more general, and synthetic versus non-synthetic data, as well as different

dataset configurations such as oracle versus retrieved evidence configurations?

• RQ2: What are the existing and novel few-shot claim verification methods, and how do

they tackle the obstacles presented by scarce annotations, tight annotation budgets, and the

limitations imposed by restricted computing resources?

• RQ3: What are the comparative strengths and weaknesses of various few-shot claim

verification methods, and which method is most suitable for specific scenarios?

To tackle these questions, our objective is to devise novel few-shot claim verification methods

that exhibit strong performance across diverse domains, demonstrate robustness to noisy evidence,
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and offer scalability and practicality in implementation.

1.3 Contributions to the Field

This research significantly contributes to the active research area of automated fact-checking by

studying the challenges these systems face and how these can be improved in few-shot settings.

By introducing novel questions and solutions, and providing insights into the challenges and

opportunities in the field, the contributions of this thesis aim to advance the understanding and

capabilities of claim verification systems. This thesis makes the first comprehensive contribution

to claim verification in few-shot settings, which had been understudied.

Contributions Our contributions in this study are outlined as follows:

• We conducted extensive experiments to explore the challenges in few-shot claim verification

across multiple datasets and various dataset configurations, providing insights into the

complexities of the task.

• We adapted established few-shot Natural Language Processing (NLP) methods such as PET

and LLaMA 2 into the domain of few-shot claim verification, showcasing their applicability

and effectiveness in addressing verification challenges.

• We introduced two novel few-shot claim verification methods, SEED and MAPLE, designed

specifically to overcome the hurdles posed by limited annotations and computing resources,

contributing innovative solutions to the field.

• We proposed a novel paradigm called Active PETs, which combines active learning with

few-shot claim verification to optimize data annotation prioritization, thereby maximizing

the utility of limited annotation budgets for improved outcomes.

• We conducted comprehensive analyses to evaluate the strengths and weaknesses of each ex-

plored method, offering recommendations on their respective use cases to guide practitioners

in selecting the most suitable approach for their specific scenarios.

1.4 Publications

Research conducted as part of this PhD and reported in this thesis has been published in academic

venues as follows:
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• Xia Zeng and Arkaitz Zubiaga. 2024. MAPLE: Micro Analysis of Pairwise Language

Evolution for Few-Shot Claim Verification. In Findings of the Association for Computa-

tional Linguistics: EACL 2024, pages 1177–1196, St. Julian’s, Malta. Association for

Computational Linguistics.

• Xia Zeng and Arkaitz Zubiaga. 2023. Active PETs: Active Data Annotation Prioritisation

for Few-Shot Claim Verification with Pattern Exploiting Training. In Findings of the Asso-

ciation for Computational Linguistics: EACL 2023, pages 190–204, Dubrovnik, Croatia.

Association for Computational Linguistics.

• Xia Zeng and Arkaitz Zubiaga. 2022. Aggregating pairwise semantic differences for

few-shot claim verification. PeerJ Computer Science 8:e1137 https://doi.org/10.7717/peerj-

cs.1137

• Xia Zeng, Amani S. Abumansour and Arkaitz Zubiaga. 2021. Automated fact-checking: A

survey. Language and Linguistics Compass, e12438. https://doi.org/10.1111/lnc3.12438

• Xia Zeng and Arkaitz Zubiaga. 2021. QMUL-SDS at SCIVER: Step-by-step binary

classification for scientific claim verification. In Proceedings of the Second Workshop on

Scientific Document Processing (pp. 116–123). Association for Computational Linguistics.

1.5 Thesis Structure

The thesis is structured in seven chapters, as follows:

Chapter 1 provides introductory context for the growing importance and impact of automated

fact-checking, highlighting the demand for improved few-shot claim verification methods. It

discusses the motivation and contributions of this thesis, and sets the stage for the subsequent

chapters.

Chapter 2 offers a comprehensive literature review within the realm of automated fact-checking,

structured into four key sections. It encompasses the evolution and significance of automated

fact-checking, delves into claim validation techniques, highlights the challenges and solutions

in few-shot claim verification, and concludes with the methodological foundations central to

our innovative solutions. This chapter aims to set a solid foundation for the thesis, situating our

contributions within the broader context of NLP and AI advancements.
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Chapter 3 provides an overview of the experimental framework for all the experiments pre-

sented within this thesis, detailing the shared resources utilized in our studies. This includes a

comprehensive discussion on the datasets and baseline models employed, the formulation of the

problem, and the evaluation metrics used. By consolidating these core components in a single

chapter, we aim to provide a clear, unified foundation for the novel contributions presented in the

subsequent chapters.

Chapter 4 introduces Semantic Embedding Element-wise Difference (SEED), a novel vector-

based method designed for few-shot claim verification. SEED leverages pairwise semantic

differences in claim-evidence pairs, simulating class representative vectors to enhance classifi-

cation accuracy. Comparative evaluations against competitive baselines demonstrate consistent

improvements in few-shot settings.

Chapter 5 introduces Micro Analysis of Pairwise Language Evolution (MAPLE), a pioneering

approach for few-shot claim verification. MAPLE leverages a small seq2seq model and a novel se-

mantic measure to explore the alignment between claims and evidences, demonstrating significant

performance improvements over state-of-the-art baselines across multiple fact-checking datasets.

Chapter 6 proposes Active PETs, a novel weighted approach for active data annotation priori-

tization in few-shot claim verification. By utilizing an ensemble of Pattern Exploiting Training

(PET) models based on various language models, Active PETs effectively selects unlabelled data

for annotation, consistently outperforming baseline methods and achieving further improvements

with an integrated oversampling strategy.

Chapter 7 summarizes the findings from the individual chapters to answer the proposed research

questions, highlighting the contributions made and their implications for the field of automated

fact-checking. It further identifies potential extensions of the proposed methodologies, areas for

refinement, and new directions that can contribute to the ongoing evolution of claim verification

techniques. This forward-looking perspective aims to inspire and guide future research endeavors

in this dynamic and crucial field.

Additionally, this thesis is supplemented with four appendices. These appendices offer addi-

tional insights, detailed analyses, and supporting information, enriching the reader’s understanding

of the scope and impact of our work.

• Appendix A presents our participation in the QMUL@SCIVER shared task in the early
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stages of this PhD, where we introduced a step-by-step binary classification approach to

address the entire claim validation pipeline comprehensively. This appendix details the

methodology behind our approach, illustrating how each step contributes to the overall

objective of claim verification. Our experiments demonstrate that classification models can

effectively complete the whole claim validation pipeline, showing potential broader impact

for better claim verification models.

• Appendix B provides an extended literature review focused on related tasks within the

domain of misinformation detection, such as claim detection and fake news detection,

providing a broader context to our research.

• Appendix C includes additional comprehensive results to supplement the experiments

reported in the main chapters. This appendix reinforces the robustness and reliability of our

findings, and further validates our contributions to the field.

• Appendix D features a runtime report, which delves into the computational efficiency of

our proposed methods. This section addresses practical considerations important for the

implementation and deployment of automated fact-checking technologies, underscoring the

feasibility of applying our research in real-world settings.

1.6 Summary

This introduction underscores the pivotal role of few-shot claim verification models in enhancing

automated fact-checking systems, setting the stage for a detailed exploration of innovative, scalable,

and practical methods for claim verification. Across seven chapters, this thesis embarks on a

comprehensive journey from a broad literature review in automated fact-checking and few-shot

claim verification, to a detailed discussion on shared experimental resources, before delving

into the specific contributions of SEED, MAPLE, and Active PETs. These novel approaches

collectively showcase the transformative potential of leveraging few-shot claim verification

within natural language processing to address and mitigate misinformation effectively. Chapter

7 synthesizes the findings, evaluates the contributions, and explores future research directions,

aimed at further advancing the field of automated fact-checking and beyond. Complementing the

main content, four appendices provide additional insights, extending the discussion on related

tasks, offering detailed additional experimental results, and providing runtime reports.
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Chapter 2

Background

The domain of automated fact-checking stands at the forefront of addressing the proliferation of

misinformation in the digital age. This background chapter delves into the intricate landscape

of automated fact-checking, tracing its evolution from foundational concepts to the cutting-

edge methodologies that define the field today. It begins by exploring the broad spectrum of

automated fact-checking, laying the groundwork for understanding its critical role in contemporary

information dissemination. The discussion then narrows to the specific challenges and innovations

within claim validation, a core component that underscores the complexity of verifying information

authenticity. Further, the chapter addresses the problem of few-shot claim verification, highlighting

its significance in leveraging limited data to make substantial inferences—a critical capability

in the fast-paced digital world where data scarcity is a common hurdle. We conclude with the

methodological foundations that inform our approach, setting the stage for the novel contributions

of this thesis. Through this focused literature review, we contextualize our work within the broader

landscape of natural language processing and artificial intelligence.

2.1 Automated Fact-Checking

While online content continues to grow unprecedentedly, the spread of false information online

increases the potential of misleading people and causing harm. This leads to an increasing demand

on fact-checking, i.e. a task consisting in assessing the truthfulness of a claim (Vlachos and Riedel,

2014), where a claim is defined as ‘a factual statement that is under investigation’ (Hanselowski,

2020). As an indicator of the pressing need of fact-checking to support assessing the integrity of
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information in circulation, a number of fact-checking organisations have been founded in recent

years, e.g. FactCheck, PolitiFact, Full Fact, Snopes, Poynter and NewsGuard. At the time of this

writing, the directory by the Duke Reporters’ Lab1 documents a total of 439 active fact-checking

sites globally.

Fact-checkers continually conduct laborious manual fact-checking, which involves a complex

set of tasks including: familiarising with the topic, identifying claims needing fact-checking,

searching for evidence linked to a claim, checking source credibility, verifying the claim against

the evidence collected and writing up an article that summarizes the assessment of a claim

(Hanselowski, 2020). This however proves challenging, not least because the speed and efficiency

of manual fact-checking cannot keep up with the pace at which online information is posted

and circulated. The journalism community can benefit from tools that can support or, at least

partially, automate the fact-checking process (Cohen et al., 2011; Hassan et al., 2017a; Thorne

and Vlachos, 2018; Konstantinovskiy et al., 2021). This can be achieved primarily by automating

more mechanical tasks, so that human effort can instead be dedicated to more knowledge-intensive

tasks (Babakar and Moy, 2016). Restricting claims to those that are objectively fact-checkable

makes the automation task more realistically achievable while reducing the volume of content

needing manual fact-checking. Furthermore, recent progress in the fields of natural language

processing (NLP), information retrieval (IR) and big data mining has demonstrated the potential

for efficiently processing large-scale textual information online, which is also being leveraged in

the context of automated fact-checking.

Researchers have developed valuable fact-checking datasets, pipelines and models, an effort

which has also been supported by shared tasks, including HeroX fact checking challenge (Francis

and Fact, 2016), Fake News Challenge (Pomerleau and Rao, 2017), ClaimBuster (Hassan et al.,

2017b), RumourEval (Derczynski et al., 2017; Gorrell et al., 2018; Derczynski et al., 2017),

FEVER (Thorne et al., 2018a, 2019; Aly et al., 2021), CLEF CheckThat! (Nakov et al., 2018;

Elsayed et al., 2019; Barrón-Cedeño et al., 2020; Nakov et al., 2021b, 2022; Barrón-Cedeño et al.,

2023), SCIVER (Wadden et al., 2020), and SEM-TAB-FACTS (Wang et al., 2021).

With different major concerns, proposed pipelines take various forms. For instance, Claim-

Buster (Hassan et al., 2017b) designed a comprehensive pipeline of four components to verify

web documents: a claim monitor that performs document retrieval; a claim spotter that performs

1https://reporterslab.org/fact-checking/

https://reporterslab.org/fact-checking/
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Figure 2.1: An Overview of Automated Fact-checking System.
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claim detection; a claim matcher that matches a detected claim to fact-checked claims; a claim

checker that performs evidence extraction and claim validation. A similar pipeline was proposed

by CLEF CheckThat! (Nakov et al., 2021b), which in its 2021 edition included three subtasks:

first, perform claim detection to detect claims that are check-worthy; second, determine whether

a claim has been previously fact-checked; and third, perform claim validation to determine the

factuality of the detected claims. In subsequent years, the CheckThat! shared task has contin-

ued innovating by adding more tasks on related challenges, including detection of previously

fact-checked claims (Nakov et al., 2022), as well as multimodal fact-checking and detecting

subjectivity in news articles (Alam et al., 2023). While some pipelines include claim detection,

some are only designed to tackle claim validation, e.g. FEVER (Thorne et al., 2018a, 2019) and

SCIVER (Wadden et al., 2020),2 assuming check-worthy claims are already at hand. Figure 2.1

depicts a comprehensive fact-checking pipeline as discussed in this chapter and consisting of two

components: (1) a claim detection component, which looks for claims that need checking and

tries to find matches between claims when they are related to the same fact-check, and (2) a claim

validation component, which retrieves the documents and rationales that can serve as evidence to

fact-check a claim and ultimately performs the verification task, producing a verdict. In this thesis,

we focus on claim validation due to a special interest in predicting the veracity of a given claim.

Please see detailed overview on claim detection and other related tasks in Appendix B.

2.2 Claim Validation

As a component of the automated fact-checking pipeline, claim validation is formulated as ‘the

assignment of a truth value to a claim made in a particular context’ (Vlachos and Riedel, 2014).

2.2.1 Approaches

In order to fulfill the task of claim validation, two different major approaches to verification have

emerged: 1) the claim is verified against textual references such as documents from Wikipedia

(Thorne et al., 2018a, 2019); 2) the claim is verified against existing knowledge bases (Shi and

Weninger, 2016; Syed et al., 2019). Both approaches assume their references are reliable. The first

approach may limit evidence to only trusted resources such as Wikipedia, fact-checking websites,

peer-reviewed academic papers, and government documents, achieving substantial coverage of

information. However, the second approach faces bigger challenges in terms of coverage of

2The task of claim validation is referred to as fact-checking by some papers in the literature.



2.2. Claim Validation 33

reliable information. Existing knowledge bases tend to be too small to cover sufficient information

for claim validation purposes (Mendes et al., 2012; Azmy et al., 2018; Pellissier Tanon et al.,

2020). Attempts have been made to automatically populate knowledge bases (Nakashole and

Weikum, 2012; Adel, 2018; Balog, 2018; Mesquita et al., 2019) but this method has the risk of

further introducing unreliable noise and makes it harder to maintain the knowledge bases. Due to

its maturity and reliability, we focus on the first approach.

There have been a number of shared tasks focused on claim validation in slightly different

ways. One of the major differences is whether the final verification step is reliant on previously

identified pieces of evidence (such as Wikipedia documents or scientific articles) or it is instead

reliant on the stances expressed by users (for example by aggregating supporting or opposing

stances towards a story in social media). Of those relying on evidence, well-known shared tasks

include FEVER (Thorne et al., 2018a) and SCIVER (Wadden et al., 2020), both of which perform

evidence retrieval first and then perform claim verification based on that evidence. On the other

hand, both UKP Snopes (Hanselowski et al., 2019) and RumourEval (Derczynski et al., 2017;

Gorrell et al., 2018) proposed to tackle the task by retrieving texts relevant to a story, determining

the stance of those texts afterwards, to ultimately classify the veracity value of the story.

2.2.2 Datasets

The NLP and AI community has developed valuable datasets to progress research in automated

claim validation, though with common issues of being synthetic and imbalanced. As shown in

Table 2.1, recent datasets are not only growing in size, but they also attempt to capture naturally

occurring sentences, include context and metadata, offer evidence chains and cover different

domains, languages and modality.

Name # of Claims/Claim-

Evidence Pairs

Domains Details

PolitiFact (Vlachos

and Riedel, 2014)

106 claims Politics Very small; metadata and evi-

dence of various forms

Emergent (Ferreira

and Vlachos, 2016)

300 claims News Very small; 2595 associated doc-

uments

LIAR (Wang, 2017) 12,836 claims Politics Medium; metadata



34 Chapter 2. Background

Snopes (Popat et al.,

2017)

4,956 claims Snopes web-

site

Medium; 30 Google retrieved

documents for each claim

FEVER (Thorne

et al., 2018a)

185,445 claims Wikipedia Big; associated Wikipeida evi-

dence

LIAR-PLUS

(Alhindi et al.,

2018)

12,836 claims Politics Medium; automatically extracted

justifications

Perspectrum (Chen

et al., 2019b)

907 claims Debates Small; evidence and perspectives

UKP Snopes

(Hanselowski et al.,

2019)

6,422 claims Snopes web-

site

Medium; associated evidence

MultiFC (Au-

genstein et al.,

2019)

34,918 claims Fact-

checking

websites

Medium; metadata and 10

Google retrieved webpages for

each claim

SciFact (Wadden

et al., 2020)

1,409 claims Scientific pa-

pers

Small; associated documents

PolitiHop (Os-

trowski et al.,

2021)

500 claims Politics Very small; evidence chains for

multi–hop reasoning

WikiFactCheck-

English (Sathe

et al., 2020)

124,821 claims Wikipedia Big; context and evidence

DanFEVER (Nørre-

gaard and Derczyn-

ski, 2021)

6,407 claims encyclopedia Medium; Danish

ParsFEVER (Zarha-

ran et al., 2021)

22,906 claims Wikipedia Medium; Farsi

X-Fact (Gupta and

Srikumar, 2021)

31,189 claims Fact-

Checking

websites

non-English claims from 25 lan-

guages with seven labels
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Climate-FEVER

(Diggelmann et al.,

2021)

1,535 claims Climate Medium; 7,675 claim-evidence

pairs with climate related claims

verified against Wikipedia evi-

dence

COVID-Fact

(Saakyan et al.,

2021)

4,086 claims COVID-19 Medium; 1,296 supported claims

from r/COVID19 subreddit and

2,790 automatically generated re-

futed claims

Vitamin-C (Schus-

ter et al., 2021)

488,904 pairs Wikipedia Big; contrastive evidence from

Wikipedia edits

FEVEROUS (Aly

et al., 2021)

87,026 claims Wikipedia Biggest; evidence collected from

both structured and unstructured

information on whole Wikipedia

DialFact (Gupta

et al., 2022a)

22,245 conversa-

tional claims

Wikipedia Big; dialogue format

CHEF (Hu et al.,

2022b)

10,000 claims Fact-

Checking

websites

Medium; real-world claims col-

lected from six Chinese fact-

checking websites

MMM Gupta et al.

(2022b)

10,473 claims news Medium; multilingual (Hindi,

Bengali and Tamil); multimodal

(text and image)

COVID-VTS (Liu

et al., 2023)

10,000 claims Twitter Medium; multimodal (video,

speech, claim); synthetic claims

Table 2.1: Claim Validation Datasets

2.2.3 Evidence Retrieval

Evidence retrieval is conventionally addressed in two steps: document retrieval and rationale

selection. Document retrieval is the task of retrieving relevant documents that supports the

prediction of a claim’s veracity. Rationale selection is the task of selecting directly relevant

sentences out of the retrieved documents to get final supporting evidence for claim verification.
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Document Retrieval Deeply influenced by information retrieval research, the majority of work

in the literature addresses it as a ranking problem consisting in retrieving the top k documents.

Various combination of Named Entities, Noun Phrases and Capitalised Expressions from the claim

were used to query search APIs such as Google or Wikipedia and search servers (Thorne et al.,

2018b), when participating in the FEVER shared task. Metadata such as page viewership statistics

is helpful to rank webpages (Nie et al., 2019). However, when search engines are not available,

such as in the SCIVER shared task, the majority of effort goes into exploring similarity metrics

that are used as a proxy to determine the documents’ relevance to a claim. TF-IDF similarity

is a common baseline (Wadden et al., 2020; Malon, 2018) and BM25 (Robertson et al., 1994)

is demonstrated to be effective (Pradeep et al., 2021). When dealing with a specific domain,

in-domain word embeddings are also a promising option, e.g. BioSentVec (Chen et al., 2019a) for

the SCIFACT dataset (Li et al., 2021).

Instead of completely relying on unsupervised methods, improvements have been achieved by

reranking based on supervised learning on top of a large number of retrieved documents (Pradeep

et al., 2021).

Rationale Selection Keyword matching, sentence similarity scoring and supervised ranking are

common approaches to rationale selection (Thorne et al., 2018b). Similar to document retrieval,

attempts typically use one of these approaches or a combination of them to get a ranking score

and select top k sentences as rationale with a manual choice of the k value (Pradeep et al., 2021).

Most of studies in the literature conduct evidence retrieval by addressing document retrieval

and rationale selection in a pipeline manner, which ignores valuable information across sentences.

2.2.4 Claim Verification

Claim verification is commonly addressed as a text classification task by NLP researchers. Given

a claim under investigation and its retrieved evidence, models need to reach a verdict of the claim,

which may be ‘SUPPORTS’, ‘REFUTES’ or ‘NOT_ENOUGH_INFO’. Some other datasets

(Hanselowski et al., 2019; Wang, 2017) include other labels such as ‘mostly-true’, ‘half-true’,

‘pants-fire’, ‘most false’, ‘most true’ and ‘other’, whose finer granularity is more difficult to

tackle through automated means and are sometimes collapsed into fewer labels. An important

observation here is the difference in the types of labels used by different studies. Some studies

rely on truth values (e.g. true, false, half-true), determining the veracity value of a claim. Others
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refer to the concept of support instead (i.e. support, contradict), which instead determine whether

there is an agreement between the claim and the reference. The latter avoids making an explicit

connection with truthfulness, looking instead at the alignment of a claim with respect to a given

reference.

The task of claim verification may be essentially addressed as a Recognising Textual Entail-

ment (RTE) task, i.e. ‘deciding, given two text fragments, whether the meaning of one text is

entailed (can be inferred) from another text’ (Dagan et al., 2009) or a Natural Language Inference

(NLI) task, i.e. ‘characterising and using semantic concepts of entailment and contradiction in

computational systems’ (Bowman et al., 2015).

Given that claim verification is predominantly addressed as a RTE or NLI task, we present

a brief overview of them below. The RTE task, which dates back to 2005, focuses on detecting

whether the hypothesis h is entailed by a given text t or not, which corresponds to ‘SUPPORT’ or

not. Proposed models may take a linguistic approach, a statistical approach, a machine learning

approach or a hybrid version of them. The NLI task, equipped with many large-scale labelled

datasets, has powered large neural models to be the dominant approach. State-of-the-art models

are large pre-trained language models that are fine-tuned on large NLI datasets.

Recognising Textual Entailment (RTE) Textual entailment is defined as a relation between a

text T and a hypothesis H. Formal semantics defines that a text t entails hypothesis h if h is true

in every possible circumstance where t is true (Chierchia and McConnell-Ginet, 2000). This

definition, as well as many other formal linguistic theories, is theoretically sound but practically

too rigid to handle uncertainty. In practical NLP context, we define entailment to include cases

where the truth value of hypothesis h is highly plausible given text t, rather than absolutely certain

(Dagan et al., 2009). In other words, ‘text t entails hypothesis h if, typically, a human reading t

would infer that h is most likely true’ (Bar-Haim et al., 2014). In contrast to a formal theoretical

definition, this somewhat informal definition of entailment allows and requires common sense

background knowledge.

The task of RTE started as a two-way classification of deciding whether hypothesis h is

entailed/supported by text t or not (Bar-Haim et al., 2006; Dagan et al., 2005; Giampiccolo et al.,

2007). After the notion of ‘contradiction’, i.e., ‘the negation of the hypothesis h is entailed by

the text t’ is introduced (de Marneffe et al., 2008), the RTE task became a three-way classifica-

tion task of predicting labels of a text pair out of ‘ENTAILMENT’, ‘CONTRADICTION’ and
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‘UNKNOWN’ (Giampiccolo et al., 2008).

Driven by a yearly RTE challenge from 2005 to 2011, the NLP community developed some

useful datasets for the task, specifically the RTE1 - RTE7 datasets. Despite being relatively small

and imbalanced, these datasets enabled the development and evaluation of various approaches.

While lexical-based and syntax-based approaches struggled to achieve good results (Bar-Haim

et al., 2014; Dagan et al., 2009), machine learning approaches achieved reasonable performance,

often combined with logical or probabilistic methods.

One of the earlier models attempted to feed deep semantic features generated by first-order

theorem prover and finite model builder into a machine learning classifier to make predictions

(Bos and Markert, 2006). Surprisingly, the deep semantic features failed to outperform shallow

semantic features. This is likely due to the models’ naïve and rigid representation of sentences,

lack of background knowledge and flawed sample distribution of the dataset.

Another intuitive approach is to first induce representations of text snippets into a hierarchical

knowledge representation and then use a sound inferential mechanism to prove semantic entailment

(De Salvo Braz et al., 2005). Despite its sound and intuitive system design, this model only

achieved an overall accuracy of 65.9%.

Furthermore, the NatLog system deals with the problem in three stages. It first conducts

linguistic analysis, then aligns the dependency graph of the text t and the hypothesis h, finally

uses a decision tree classifier to perform entailment inference based on antonyms, polarity, graph

structure and semantic relations (Chambers et al., 2007). This NatLog system trades low recall

(31.71 on RTE3 test set) for higher precision (68.06 on RTE3 test set).

To help address the low recall achieved by first-order rules, the class of pair feature spaces

was introduced (Zanzotto et al., 2009). It allowed the model to enrich the sentence-pair with

‘placeholders’ and then generate first-order rewrite rules to relax the rigidness. This model

achieved around 68% overall accuracy on RTE3.

Moreover, COGEX developed a system that first transforms the text into three-layered

semantically-rich logic form representations, then generates a set of linguistic and world knowl-

edge axioms, and searches for a proof of entailment (Tatu and Moldovan, 2007). This system

achieved an overall accuracy of 72.25%.

Overall, many inspiring hybrid models of logical inference and machine learning methods

were developed for RTE challenges. Though they did not achieve perfect performance, we believe
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they have great potential once equipped with better text representations and more powerful neural

models.

Natural Language Inference (NLI) More recently, NLI is proposed as ‘the problem of determin-

ing whether a natural language hypothesis h can reasonably be inferred from a given premise p’

(Bowman et al., 2015; MacCartney and Manning, 2009). Noticeably, the definition of NLI is very

similar to RTE and researchers tend to mention them together when addressing the problem.

Despite that, NLI datasets have improvements over RTE datasets. Earlier RTE datasets,

published before the notion of ‘CONTRADICTION’ attracted enough attention, only have binary

labelling of ‘ENTAILMENT’. In contrast, NLI datasets all include three-way labelling that

includes ‘ENTAILMENT’, ‘CONTRADICTION’ and ‘UNKNOWN’. Furthermore, recent NLI

datasets have larger size, more balanced label distribution and cover various domains. Table 2.1

presents NLI datasets that are potentially useful for claim verification.

With their large size and balanced design, NLI datasets have powered large neural network

models, which has become the dominant approach. The common practice is to fine-tune a large

pre-trained language model on the target NLI dataset, which may or may not be coupled with

small task-specific techniques. Compared with traditional approaches, this approach improved text

representations, achieved better generalisability and allowed more complex computing without

relying on hand-crafted rules.

2.2.5 Discussion and Challenges

Despite the noticeable progress, current automated claim validation systems also face unique

challenges and desire improvements over several key aspects: annotation reliance, system integrity,

and model interpretability.

Annotation Reliance State-of-the-art systems heavily depend on fine-tuning pre-trained language

models, necessitating extensive, high-quality labeled data that can be costly and impractical for

certain niche or evolving domains. While recent datasets have made significant contributions, they

often suffer from imbalance and synthetic nature, posing challenges for effective model training.

While high-quality datasets are expected to further advance the field, there is a growing need for

systems that can reduce reliance on vast amounts of labeled data and rapidly learn from a limited

number of samples. Such systems would offer valuable flexibility and efficiency in addressing

evolving information landscapes and domain-specific challenges.
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System Scalability and Integrity Proposed automated claim validation systems cover a range of

relevant tasks. Though a few of them try to jointly handle rationale selection and claim verification

(Hidey and Diab, 2018; Li et al., 2021; Wadden et al., 2022), most of them are pipeline systems

that train individual models to deal with subtasks separately. Improved scalability and integrity

is desired. Fine-tuning pre-trained language models, the current dominant approach of various

relevant tasks, requires lots of computing resources to train and inference. The scalability and

accessibility of the proposed systems remain inferior.

Otherwise, increased system integrity is desired. Pipeline design has its inevitable disad-

vantage: downstream components can only make inferences on upstream results and errors

accumulate throughout the pipeline. For instance, a claim verification component that takes the

retrieved evidence and the detected claim as input will perform poorly with low-quality evidence

or claims that are not checkable. Furthermore, the popular three-way classification approach

may not be the best approach for claim verification. If a trained model struggles particularly to

predict “REFUTES” class due to a lack of training data in this class, it may accumulate errors

across classes. Moreover, current approaches leave limited space for aggregating evidence across

sentences.

We believe a more compact overall system design is desired for automated claim validation

such that it systematically handles subtasks. We believe a promising direction is to train a single

model to handle all involved tasks for optimized overall performance.

Model Intepretability Neural networks are robust but struggle with interpretability and gener-

alisability (Duan et al., 2020), which is of particular importance for automated claim validation.

Underwhelming model interpretability may induce an increased probability of models making the

right prediction based on the wrong reasoning. In contrast, symbolic systems that are unfortunately

fragile and inflexible have strong interpretability and abstraction. Naturally, building a neural-

symbolic system that integrates neural networks with symbolic logic becomes an interesting

direction. In a nutshell, neural-symbolic systems = connectionist machine + logical abstractions

(Garcez et al., 2022).

Researchers have proposed various architectures that incorporate first-order logic into neural

networks. A recent study proposed a general framework capable of enhancing neural networks

with declarative first-order logic (Hu et al., 2016). Another study explored a symbolic intermediate

representation for neural surface realisation (Elder et al., 2019) that is similar to first-order logic.
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Moreover, a recent attempt adapted module networks to model natural logic operations, which

is enhanced with a memory component to model contextual information (Feng et al., 2020).

Furthermore, RuleNN (Sen et al., 2020) is developed to tackle sentence classification where

models are in the form of first-order logic, and achieved performance that is comparable to some

neural models.

Neural-symbolic methods have a fascinating potential of attaining interpretability from sym-

bolic models and robustness from neural models. Recently, ProoFVer (Krishna et al., 2022)

introduces a seq2seq model to generate natural logic-based inferences as proofs for automated

fact-checking. We believe such efforts on neural-symbolic methods for various tasks of automated

fact-checking is promising and of particular interest to our society.

2.3 Few-Shot Claim Verification

As claim validation has emerged as a crucial task to combat the spread of false information,

which can help fact-checking researchers and pratitioners as a fully automated tool that emphasise

on classification performance (Thorne and Vlachos, 2018; Zeng et al., 2021), a classification

tool with improved explainability (Kotonya and Toni, 2020; Guo et al., 2022), and a tool that

focuses on assisting human workers (Nakov et al., 2021a). A body of natural language processing

(NLP) research has investigated the task of claim verification: determining the veracity of a claim

based on retrieved evidence. While the majority of previous work tackles the problem with fully

supervised methods (Li et al., 2021; Zeng and Zubiaga, 2021; Zhang et al., 2021; Wadden et al.,

2022; Rana et al., 2022b,a), deploying these methods face practicality issues. Emerging domains

of misinformation often involve novel claims, limiting the availability of relevant labeled data.

Fact-checkers often need to evaluate claims with time constraints, limiting the time allowed for

conducting extensive fine-tuning of pretrained language models (PLMs). Hence, performing claim

verification with limited labelled data is of particular importance in the real-world combat of

misinformation.

In machine learning, few-shot learning is a framework where a model can effectively learn

from a very small number of labeled samples, typically used when available training data is scarce.

Specifically, with n-shot learning, we refer to the experimental setup where the training data has

n samples per class. While the scarcity of annotations poses a major challenge to automated

fact-checking (Zeng et al., 2021), research on few-shot learning techniques for claim verification
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is limited to date.

To the best of our knowledge, previous literature that tackles few-shot claim verification

only has one such attempt PB (perplexity-based method) (Lee et al., 2021). Lee et al. (2021)

investigated a perplexity-based approach that solely relies on perplexity scores from PLMs. This

method proved to achieve better performance on few-shot binary classification than fine-tuning

a BERT model. However, their model was tested on binary claim verification, as opposed to

the three-way NLI classification (Thorne and Vlachos, 2018) that claim verification is typically

addressed as. Specifically, it has limited its applicability to binary claim verification, i.e., keeping

the ‘SUPPORTS’ class and merging the ‘REFUTES’, and ‘NOT_ENOUGH_INFO’ classes into a

new ‘Not_SUPPORTS’ class.

In contrast, our research introduced SEED (Zeng and Zubiaga, 2022), a method that calculates

PLM-based pairwise semantic differences between claims and associated evidence. By deriving

representative class vectors from these differences, SEED offers an efficient solution for few-

shot claim verification and serves as one of our baseline models. While, the SOTA baseline for

few-shot claim verification PB is limited to binary classification, SEED is also applicable to and

experimented in three-class settings. The main application scenario of SEED is few-shot claim

verification, but it may also apply to many other pairwise classification tasks such as natural

language inference and stance detection. Due to its sensitive to data sampling within few-shot

scenarios, SEED also offers the potential to be used for annotation quality evaluation as a good

metric to determine whether the annotated data is of high quality or not with only a few samples.

Similarly, SEED can be adapted to do task difficulty estimation: experiments show that SEED’s

few-shot performance on different datasets correlates well with how challenging the datasets are.

Another competitive training procedure for few-shot learning is PET (Schick and Schütze,

2021a,b). PET reformulates classification tasks into cloze tasks using templates. By calculating

the probability of candidate tokens filling the placeholder [mask] position with an PLM, PET

maps it to a preconfigured label. PET has shown competitive performance in a range of NLP

classification tasks, but its adaptation to the context of automated fact-checking has not been

studied. We therefore conduct few-shot claim verification experiments on it.

When addressing claim verification, both SEED and PET heavily rely on PLMs trained

on NLI, which brings several limitations. Firstly, they face challenges when dealing with data

that significantly differs from general NLI datasets, such as cases where the domain is highly
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technical and different from general NLI data pairs and/or the evidence consists of large paragraphs

rather than single sentences. Additionally, their reliance on NLI-trained models restricts their

applicability to languages for which NLI datasets and corresponding PLMs are available, excluding

their use in low-resource languages. To address these limitations, our research further proposed

MAPLE (Zeng and Zubiaga, 2024), which does not rely on NLI-trained models but instead utilizes

unlabelled claim-evidence pairs which could be abundant and useful for domain adaptation.

In addition, recent advancements in generative LLMs with multi-billion parameters have

showcased impressive few-shot capabilities. However, closed-source pioneering models, including

GPT-3.5 and GPT-4, present reproducibility challenges with their behavior changing over time

(Chen et al., 2024). In this study, we prioritize open-source solutions, with a particular focus

on LLaMA 2, a recent model that surpasses existing open-source alternatives across various

benchmarks (Touvron et al., 2023). The primary drawback of these approaches lies in their

requirement for advanced computational infrastructure, a substantial computational budget, and

extended inference times. MAPLE tackles these constraints by utilizing parameter-efficient

models, aiming to improve both resource and runtime efficiency. Experiments show that MAPLE

is robust to noisy and challenging data in realistic fact-checking scenarios, including scenarios

when oracle evidences are absent. With an efficient integration workflow, the application of

MAPLE in real-world scenarios can bring in a decent claim verification tool to assist fact-

checkers in combating emerging domains of misinformation, with minimal cost in annotation and

computational resources.

While few-shot claim verification experiments are often conducted with random sampling on

the supervisory data, it is not a hard requirement in real-work fact-checking. As availability of

detected claims can be abundant, creating lots of claim-evidence pairs with automated retrieval

methods, i.e., unlabelled data for the claim verification task, is very practical. To maximise the

effectiveness of the human annotations, we aim to study data annotation priotisation in order to

select the most beneficial data, with active learning strategies.

To the best of our knowledge, however, no work has investigated the use of active learning

in the context of claim verification. To further research in this direction, our research proposes

Active PETs (Zeng and Zubiaga, 2023), a model that incorporates active learning capabilities into

PET. Experiments demonstrate Active PETs’ significant improvements over random sampling

and other active learning strategies, particularly when the data distribution is highly skewed.
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Fact-checking researchers and practitioners may incorporate it into their data annotation pipeline

and use it to select optimal samples from the unlabelled pool for optimal usage of annotation

budgets, especially when the unlabelled data pool is expected to have highly imbalanced label

distribution.

2.4 Methodological Foundations

In this section, we explore the methodological foundations of the development of our proposed

methods: SEED, MAPLE, and Active PETs. Each subsection below delves into the literature

relevant to our novel approaches, shedding light on the progression of ideas and technologies that

have shaped our contributions to the field. This includes examining the utilization of representative

vectors for text classification, which underlies our SEED method; dissecting the role of natural

language generation (NLG) metrics and the concept of language evolution in informing our

MAPLE approach; and scrutinizing the evolving landscape of Active Learning strategies that

enrich our understanding and implementation Active PETs. Through this exploration, we aim to

highlight the relevance and novelty of our contributions against the backdrop of existing research.

2.4.1 Representative Vectors for Text Classification

Use of class representative vectors for text classification has also attracted interest in the research

community recently. In a similar vein to our proposed approach SEED, prototypical networks

(Snell et al., 2017) have proven successful in few-shot classification as a method using represen-

tative vectors for each class in classification tasks. Prototypical networks were proposed as a

solution to iteratively build class prototype vectors for image classification through parameter

updates via stochastic gradient descent, and have recently been used for relation extraction in

NLP (Gao et al., 2019; Fu and Grishman, 2021). While building on a similar idea, our SEED

method in Chapter 4 further proposes the use of semantic differences to simulate a meaningful

and comparable representation of claim-evidence pairs, enabling its application on the task of

claim verification.

2.4.2 NLG Metrics and Understanding Language Evolution

NLG metrics NLG evaluation metrics play a crucial role in evaluating the quality of generated

texts. Classic metrics such as BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002),

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004), and METEOR (Metric
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for Evaluation of Translation with Explicit ORdering) (Banerjee and Lavie, 2005) remain as the

most widely used metrics. They address the evaluation as a matching task, quantifying n-gram

overlap with recall, precision and F-score and providing lexical-level evaluations.

Recent advancements include SacreBLEU (Post, 2018), which enhances reproducibility,

tokenization support, and ease of statistical significance reporting. In contrast, BLEURT (Bilingual

Evaluation Understudy with Representations from Transformers) (Sellam et al., 2020) advances

semantic-level evaluations and treats evaluation as a regression task using PLMs. Another metric,

BARTScore (Yuan et al., 2021), approaches evaluation as a text generation task for LLMs,

calculating the BARTScore as the weighted log probability of one text given another text.

Given our primary interest in the semantic shift during pairwise language evolution, our

research in Chapter 5 proposes ‘SemSim’ as an alternative metric to evaluate NLG performance.

Understanding Language Evolution Language evolution has been the subject of several theories,

including biological evolution, learning, and cultural evolution (Lekvam et al., 2014). Studies

conducted in laboratory settings have explored the intricate nature of various phenomena, offering

valuable insights into the emergence of language (Scott-Phillips and Kirby, 2010).

Researchers have focused on modeling evolution within language families to identify patterns

in phonetic features across observed languages Nouri and Yangarber (2016). Computational

research has also introduced tools such as language evolution simulators, examining word-level

evolution within language families (Ciobanu and Dinu, 2018), and realistic geographic environ-

ments to simulate language and linguistic feature development over time (Kapur and Rogers,

2020). These studies tackle various related issues for historical linguistics, areal linguistics, and

linguistic typology.

While language evolution research often adopts a macro and historical perspective, our

research engages in micro-level analysis, i.e. asking “what path does it take for a piece of text

to migrate into another piece”. Interestingly, the convergence process during seq2seq training

simulates such a path of evolving or transitioning language. In our work in Chapter 5, we

investigate language transition across seq2seq training epochs and further utilize it to conduct

pairwise classification.
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2.4.3 Active Learning

Active Learning (AL) is a paradigm used where labelled data is scarce (Ein-Dor et al., 2020).

The key idea is that a strategic selection of training instances to be labelled can lead to improved

performance with less training (Settles, 2009). Active learning methods are provided with an

unlabelled pool of data, on which a querying step is used to select candidate instances to be

annotated with the aim of optimising performance of a model trained on that data. The goal

is therefore to optimise performance with as little annotation –and consequently budget– as

possible. Traditional active learning query strategies mainly include uncertainty sampling, query-

by-committee (QBC) strategy, error/variance reduction strategy and density weighted methods

(Settles, 2012). Recent empirical studies have revisited the traditional strategies in the context of

PLMs: Ein-Dor et al. (2020) examined various active learning strategies with BERT (Devlin et al.,

2019), though limited to binary classification tasks. Schröder et al. (2022) conducted experiments

with ELECTRA (Clark et al., 2020), BERT, and DistilRoBERTa (Sanh et al., 2019) respectively,

while limiting the scope to uncertainty-based sampling.

Recent efforts on combining active learning with PLMs go into both warm-start and cold-start

strategies. Warm-start strategies require a small initial set of labelled data to select additional

instances, while cold-start strategies can be used without an initial set of labelled data. Ash

et al. (2020) proposed Batch Active learning by Diverse Gradient Embeddings (BADGE) that

samples a batch of instances based on diversity in gradient loss. Margatina et al. (2021) proposed

Contrastive Active Learning (CAL), the state-of-the-art (SOTA) warm-start strategy that highlights

data with similar feature space but maximally different predictions. Furthermore, Active Learning

by Processing Surprisal (ALPS) (Yuan et al., 2020), the SOTA cold-start strategy, utilises masked

language model (MLM) loss as an indicator of model uncertainty. Our research uses BADGE,

CAL and ALPS for baseline comparison, please see detailed descriptions in section 6.2.

To the best of our knowledge, QBC strategies (Seung et al., 1992; Dagan and Engelson, 1995;

Freund and Haussler, 1997) that utilise a committee of models remains to be explored with PLMs,

as previous studies limit their scope at measuring single model uncertainty. Nowadays various

PLMs are publicly available that applying an ensemble-based query strategy on a downstream

task becomes realistic, especially in few-shot settings where the computation required is relatively

cheap. Furthermore, previous studies always perform fine-tuning to get classification results from

PLMs. Our work in Chapter 6 presents the first attempt at integrating an active learning strategy
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into PET, a few-shot learning claim verification method that is suitable for a wide range settings

on the number of labelled data.

2.5 Summary

In this chapter, we have traversed the evolving landscape of automated fact-checking, marking

its significance against the backdrop of digital misinformation. From foundational challenges

to innovative solutions in claim validation and few-shot claim verification, our discussion has

not only highlighted the field’s complexity but also its critical role in leveraging limited data for

reliable inference. By anchoring our research in the methodological advances of natural language

processing and artificial intelligence, we pave the way for our thesis’s novel contributions.
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Chapter 3

Shared Experimental Resources

This chapter delineates the comprehensive experimental framework underpinning the research

presented in this thesis. It provides a detailed examination of the datasets, baselines, problem

formulation, and evaluation metrics used in the experiments conducted with each of the proposed

novel methods: SEED, MAPLE, and Active PETs.

3.1 Datasets

Here, we delve deeper into the characteristics and significance of the three pivotal datasets utilized

in our experiments: FEVER, Climate FEVER, and SciFact. Each dataset has been carefully

selected for its unique attributes and contributions to the field of fact-checking, ranging from

the groundbreaking scope of FEVER as the initial large-scale dataset, to the specialized focus

and challenging nature of Climate FEVER and SciFact. To offer a comprehensive understanding

of the experimental framework, we will provide an overview of each dataset, highlighting its

relevance. Additionally, we will illustrate the specifics of our experimental datasets through

showcasing representative data samples from each dataset, and detailing the label distributions for

each datasets.

3.1.1 Dataset Profiles

FEVER FEVER (Thorne et al., 2018a) is a large-scale dataset for automated fact-checking.

It contains claims that are manually modified from Wikipedia sentences along with their cor-

responding Wikipedia evidences. Despite criticisms of its synthetic nature by researchers in
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the fact-checking domain, it has been widely used also for other tasks outside of fact-checking.

Various NLP benchmarks, such as KILT (Petroni et al., 2021), include the claim verification task

of FEVER to test models’ reasoning capabilities. To enable direct comparison with the baseline

model PB (Lee et al., 2021), FEVER is used in claim verification experiments in chapter 4 and

5, following the practice of using oracle evidence (Lee et al., 2021; Petroni et al., 2021) . As

claims from FEVER dataset are synthetic mutations from evidence texts, they are synthetic and

lexically very close to their evidence. Hence, FEVER does not provide realistic scenarios and is

not used in active learning experiments in chatper 6, which focuses on solving realistic challenges

for data annotation priotisation. We only use the test set of the original FEVER dataset, as it

contains higher-quality data and the quantity is sufficient for few-shot experiments. We reserve

150 instances for each class to form a test set and leave the rest in the train set.

cFEVER Climate FEVER (Diggelmann et al., 2021) is a challenging, large-scale dataset that

consists of claim and evidence pairs related to climate change, along with their veracity labels.

Since the dataset does not naturally provide options for setting up retrieval modules, we directly

use it for the claim verification task. Similarly, we reserve 150 instances for each class to form a

test set and leave the rest in the train set.

SciFact SciFact (Wadden et al., 2020) provides scientific claims with their veracity labels, along

with a collection of scientific paper abstracts, some of which contain rationales to resolve the

claims. Additionally, it provides oracle rationales that can be linked to each claim. Research on

SciFact places strong emphasis on the evidence retrieval module. Hence, we conduct experiments

on SciFact with two configurations: SciFact_oracle and SciFact_retrieved. The former utilizes

oracle evidence provided by the annotations, while the latter uses evidence retrieved by a retrieval

model, namely BM25, to retrieve the top 3 abstracts as evidences (Wadden et al., 2022; Zeng and

Zubiaga, 2023). We merge the original SciFact train set and dev set and redistribute the data to

form a test set that contains 150 instances for each class, using the rest as the train set.

3.1.2 Dataset Samples

In Table 3.1, we showcase representative samples from each dataset to illustrate the diversity

and nature of the data our experiments engage with. These samples provide insights into the

challenges and considerations unique to each dataset, highlighting the varied contexts in which

our methods are applied.
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FEVER

Claim Evidence Veracity

“In 2015, among

Americans, more

than 50% of adults

had consumed alco-

holic drink at some

point.”

“For instance, in 2015, among Americans, 89% of adults had

consumed alcohol at some point, 70% had drunk it in the last

year, and 56% in the last month.”

‘SUPPORTS’

“Dissociative identity

disorder is known

only in the United

States of America.”

“DID is diagnosed more frequently in North America than in

the rest of the world, and is diagnosed three to nine times more

often in females than in males.”

‘REFUTES’

“Freckles induce neu-

romodulation.”

“Margarita Sharapova (born 15 April 1962) is a Russian novel-

ist and short story writer whose tales often draw on her former

experience as an animal trainer in a circus.”

‘NOT_

ENOUGH_

INFO’

cFEVER

Claim Evidence Veracity

“Coral atolls grow as

sea levels rise.”

“Gradual sea-level rise also allows for coral polyp activity to

raise the atolls with the sea level.”

‘SUPPORTS’

“There’s no trend

in hurricane-related

flooding in the U.S.”

“Widespread heavy rainfall contributed to significant inland

flooding from Louisiana into Arkansas.”

‘REFUTES’

“The warming is not

nearly as great as the

climate change com-

puter models have

predicted.”

“The model predicted <0.2 °C warming for upper air at 700

mb and 500 mb.”

‘NOT_

ENOUGH_

INFO’
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SCIFACT_oracle

Claim Evidence Veracity

“Macropinocytosis

contributes to a

cell’s supply of

amino acids via the

intracellular uptake

of protein.”

“Here, we demonstrate that protein macropinocytosis can also

serve as an essential amino acid source.”

‘SUPPORTS’

“Gene expression

does not vary ap-

preciably across

genetically identical

cells.”

“Genetically identical cells sharing an environment can display

markedly different phenotypes.”

‘REFUTES’

“Fz/PCP-dependent

Pk localizes to the

anterior membrane

of notochord cells

during zebrafish

neuralation.”

“These results reveal a function for PCP signalling in cou-

pling cell division and morphogenesis at neurulation and indi-

cate a previously unrecognized mechanism that might underlie

NTDs.”

‘NOT_

ENOUGH_

INFO’

SCIFACT_retrieved

Claim Evidence Veracity
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“Neutrophil extracel-

lular trap (NET) anti-

gens may contain the

targeted autoantigens

PR3 and MPO.”

“Netting neutrophils in autoimmune small-vessel vasculitis

Small-vessel vasculitis (SVV) is a chronic autoinflammatory

condition linked to antineutrophil cytoplasm autoantibodies

(ANCAs). Here we show that chromatin fibers, so-called

neutrophil extracellular traps (NETs), are released by ANCA-

stimulated neutrophils and contain the targeted autoantigens

proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition

of NETs in inflamed kidneys and circulating MPO-DNA com-

plexes suggest that NET formation triggers vasculitis and pro-

motes the autoimmune response against neutrophil components

in individuals with SVV.”

‘SUPPORTS’

“Cytochrome c is

transferred from

cytosol to the

mitochondrial in-

termembrane space

during apoptosis.”

“At the gates of death. Apoptosis that proceeds via the mi-

tochondrial pathway involves mitochondrial outer membrane

permeabilization (MOMP), responsible for the release of cy-

tochrome c and other proteins of the mitochondrial intermem-

brane space. This essential step is controlled and mediated by

proteins of the Bcl-2 family. The proapoptotic proteins Bax

and Bak are required for MOMP, while the antiapoptotic Bcl-2

proteins, including Bcl-2, Bcl-xL, Mcl-1, and others, prevent

MOMP. Different proapoptotic BH3-only proteins act to in-

terfere with the function of the antiapoptotic Bcl-2 members

andor activate Bax and Bak. Here, we discuss an emerging

view, proposed by Certo et al. in this issue of Cancer Cell, on

how these interactions result in MOMP and apoptosis.”

‘REFUTES’
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“Incidence of heart

failure increased by

10% in women since

1979.”

“Clinical epidemiology of heart failure. The aim of this paper

is to review the clinical epidemiology of heart failure. The

last paper comprehensively addressing the epidemiology of

heart failure in Heart appeared in 2000. Despite an increase

in manuscripts describing epidemiological aspects of heart

failure since the 1990s, additional information is still needed,

as indicated by various editorials.”

‘NOT_

ENOUGH_

INFO’

Table 3.1: Data samples for each dataset.

3.1.3 Dataset Label Distribution

Table 3.2 details the label distributions for the datasets, offering a quantitative glimpse into the

class balance—or lack thereof—within each. This overview is pivotal for understanding the

datasets’ inherent challenges and complexities.

Table 3.2: Unlabelled pool label distribution for each dataset.

FEVER cFEVER SciFact_oracle SciFact_retrieved

‘SUPPORTS’ 3099 1789 356 266

‘REFUTES’ 3069 652 115 61

‘NOT_ENOUGH_INFO’ 3183 4778 294 2530

Total unlabelled pairs 9351 7219 765 2857

3.2 Baselines

This section outlines the baseline methods against which the proposed novel methods are bench-

marked. It includes a perplexity-based approach, Pattern Exploiting Training (PET), and the

utilization of Large Language Model Meta AI 2 (LLaMA 2), each offering a distinct perspective

on claim verification and few-shot learning performance. 1

1In this section, we only list the claim verification baselines used for SEED and MAPLE experiments.
For active learning baselines, please see in section 6.2.
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Perplexity-based Approach

(Lee et al., 2021) hypothesised that evidence-conditioned perplexity score from language models

would be helpful for assessing claim veracity. They explored using perplexity scores with a

threshold th to determine claim veracity into ‘SUPPORTS’ and ‘Not_SUPPORTS’: if the score is

lower than the threshold th, it is classified as ‘Not_SUPPORTS’ and otherwise ‘SUPPORTS’.

Pattern Exploiting Training

Pattern Exploiting Training (PET) (Schick and Schütze, 2021a,b) is a semi-supervised training

procedure that can reformulate various classification tasks into cloze questions with natural

language patterns and has demonstrated competitive performance in various few-shot classification

tasks. To predict the label for a given instance x, it is first reformulated into manually designed

patterns that have the placeholder [mask]. Then, the probability of each candidate token for

replacing [mask] is calculated by using a pretrained language model, where each candidate is

mapped to a label according to a manually designed verbaliser.

Large Language Model Meta AI 2

Large Language Model Meta AI (LLaMA) 2 (Touvron et al., 2023) is a recent generative LLMs

with multi-billion parameters that uses an optimized transformer architecture. After pertaining,

it further went through supervised fine-tuning (SFT) and reinforcement learning with human

feedback (RLHF) for improved helpfulness and safety. As an open-source alternative to ChatGPT,

it has impressive few-shot learning capabilities via simple prompting.

3.3 Problem Formulation

Our research investigates claim verification tasks, focusing on samples comprised of a claim and

its supporting evidence, alongside the veracity label annotated to this pair. The experimental setup

includes a training set with labeled data for model learning, a test set for result evaluation with a

balanced label distribution, and, optionally, an unlabeled data pool distinct from both training and

test sets.

Few-Shot Learning Framework The experiments pivot around the “K-way, N-shot" paradigm,

tailored for few-shot claim verification, with k representing the classification problem’s complexity

(binary or three-way) and n denoting the number of labeled examples per class in the training set.

For SEED, we explore a range of n in the settings of 2, 4, 6, 8, 10, 20, 30, 40, 50, to 100 shots,
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facilitating a comprehensive comparison against previous state-of-the-art (SOTA) methods in both

binary and three-way classifications. MAPLE’s investigation predominantly addresses three-way

settings, advancing beyond the perplexity-based baseline significantly surpassed by SEED. SEED

and MAPLE experiments are iterated 10 and 100 times, respectively, to ensure reliability.

Adaptation for Active Learning Active PETs introduces a novel approach within the few-shot

learning domain, focusing on a three-way classification framework (k = 3) and adapting to the

nuances of active learning. Unlike traditional settings, the training set evolves through an active

learning sampling strategy, starting from a zero-shot scenario. This process iteratively selects i

new samples for annotation, continuously refining the model with each batch, until reaching a

maximum of m instances. In our experiments, i = 10, m = 300. This adaptation acknowledges the

variable nature of labeled data in active learning contexts, diverging from the per-class instance

count typical in few-shot learning.

3.4 Evaluation Metrics

We employ accuracy and macro F1 as the main metrics to evaluate the effectiveness of few-shot

claim verification techniques. Given the inherent variability in repeated experiments, our focus is

on reporting mean accuracy for SEED and mean macro F1 score for MAPLE to guarantee the

reliability of our findings.

To provide a deeper insight into the variability and reliability of these results, standard

deviations for both metrics are presented in the Appendix C.1 for all methods in 5-shot settings.

This approach allows us to assess the consistency and stability of our models across various

experimental conditions, offering a more comprehensive understanding of their performance in

few-shot learning contexts.

Additionally, we analyze classwise F1 scores for MAPLE within 5-shot scenarios in Appendix

C.2, offering detailed insights into the model’s discriminative power across different claim

categories: ‘SUPPORTS’, ‘REFUTES’, and ‘NOT_ENOUGH_INFO’. This nuanced analysis

helps identify specific strengths and areas for enhancement.

Active PETs, employing a unique active learning strategy, diverges from the experimental

framework of repeated experiments used in SEED and MAPLE. As there is no repeated exper-

iments due to its distinctive approach, we directly report the macro F1 performance for Active

PETs.
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3.5 Summary

In this chapter, we have presented detailed information on the shared experimental resources,

paving the way for the following chapters. Our study delves into few-shot claim verification

methods primarily within the “K-way, N-shot" framework, with adjustments made for active

learning experiments. We scrutinize SEED, MAPLE, and Active PETs against tailored baselines,

assessing their effectiveness in varied settings—SEED in binary and three-way, and MAPLE and

Active PETs in three-way scenarios. Evaluations utilize accuracy and macro F1 scores to gauge

classifier performance, adhering to machine learning evaluation standards. Through meticulous

experimental design, our research endeavors to demonstrate the promise of few-shot learning in

overcoming data limitations for automated fact-checking.
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Chapter 4

SEED: Aggregating Pairwise Semantic Differences for

Few-Shot Claim Verification

In this chapter, we hypothesize that a method can leverage a small number of training instances,

such that the semantic differences will be similar within each veracity class. Hence, we can

calculate a representative vector for each class by averaging semantic differences within claim-

evidence pairs of that class. These representative vectors would then enable making predictions

on unseen claim-evidence pairs. Figure 4.1 provides an illustration: 1. Captures average semantic

differences between claim-evidence pairs for each class, leading to a JDIFFqK representative vector

per class. 2. During inference, each input vector JDIFFqK is compared with these representative

vectors.

Building on this hypothesis, we propose a novel method, Semantic Embedding Element-

wise Difference (SEED), as a method that can leverage a pre-trained language model to build

class representative vectors out of claim-evidence semantic differences, which are then used for

inference. By evaluating on two benchmark datasets, FEVER and SciFact, and comparing both

with fine-tuned language models, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), and

with the state-of-the-art few-shot claim verification method that leverages perplexity (Lee et al.,

2021), we demonstrate the effectiveness of our method. SEED validates the effectiveness of our

proposed paradigm to tackle the claim verification task based on semantic differences, which we

consistently demonstrate in three different settings on two datasets.

We make the following contributions:
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Figure 4.1: SEED Illustration.

• We introduce SEED, a novel method that computes semantic differences within claim-

evidence pairs for effective and efficient few-shot claim verification.

• By experimenting on two datasets, we demonstrate the effectiveness of SEED to outperform

two competitive baselines in the most challenging settings with a limited number of shots.

While the state-of-the-art perplexity-based model is restricted to binary classification, SEED

offers the flexibility to be used in two- or three-class settings. By looking at classwise

performance results, we further demonstrate the consistent improvement of SEED across

all classes.

• We perform a post-hoc analysis of the method, further delving into the results to understand

performance variability through standard deviations, as well as to understand method

convergence through the evolution of representative vectors.

4.1 Methodology

We hypothesise that we can make use of sentence embeddings from pre-trained language models

such as BERT and RoBERTa to effectively compute pairwise semantic differences between claims

and their associated evidences. These differences can then be averaged into a representative vector

for each class, which can in turn serve to make predictions on unseen instances during inference.

We formalise this hypothesis through the implementation of SEED as follows. For a given
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pair made of claim and evidence, we first leverage a pre-trained language model through sentence-

transformers library (Reimers and Gurevych, 2019) to obtain sentence embeddings JclaimK and

JevidenceK. Specifically, embeddings are obtained by conducting mean pooling with attention

mask over the last hidden state. We then capture a representation of their semantic difference

by calculating the element-wise difference |JclaimK− JevidenceK|. To the best of our knowledge,

its previous implementation is only found in (Reimers and Gurevych, 2019) as one of many

available classification objective functions, leaving room for further exploration. Formally, for a

claim-evidence pair i that has evidencei and claimi, we have equation 4.1:

JDIFFiK = |JevidenceiK− JclaimiK| (4.1)

To address the task of claim verification that compares a claim with its corresponding evidence,

we obtain the mean vector of all JDIFFK vectors within a class. We store this mean vector as the

representative of the target claim-evidence relation. That is, for each class c that has n training

samples available, we obtain its representative relation vector with Equation 4.2.

JRelationcK

= JDIFFcK

=
1
n

n

∑
i=1

(JDIFFiK)

=
1
n

n

∑
i=1

(|JevidenceiK− JclaimiK|)

(4.2)

During inference, we first obtain the query JDIFFqK vector for a given unseen claim-evidence

pair, then calculate Euclidean distance between the JDIFFqK vector and every computed JRelationcK

vector, e.g. JSUPPORT SK, JREFUT ESK and JNOT _ENOUGH_INFOK for three-way claim

verification, and finally inherit the veracity label from the candidate relation vector that has the

smallest Euclidean distance value.

4.2 Experimental Settings

Here we focus the experiments on the FEVER (Thorne et al., 2018a) and SciFact_oracle (Wadden

et al., 2020) datasets configurations (see examples in Section 3.1.2), as they are the more influential

datasets. For comprehensive experimental results on all presented dataset configuration, see
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appendix C.1. Apart from three-way classification on both configurations, we also conduct

experiments on binary FEVER to enable direct comparison with previous SOTA PB.

Baselines We compare our method with two baseline methods: perplexity-based (PB) method

and fine-tuning (FT) method.

Perplexity-Based Method (PB) The perplexity-based method (Lee et al., 2021) uses con-

ditional perplexity scores generated by pre-trained language models to find a threshold that

enables binary predictions. We conduct experiments with BERT-base and BERT-large for direct

comparison with other methods. We denote them as PBBERTB and PBBERTL hereafter.

Fine-Tuning Method (FT) We also conduct experiments with widely-used model fine-

tuning methods. Specifically, we fine-tune vanilla BERT-base, BERT-large, RoBERTa-base and

RoBERTa-large models 1. Following (Lee et al., 2021), we use 5e−6 for FTBERTB and FTRoBERTaB

as learning rate and 2e−5 for FTBERTL and FTRoBERTaL . All models share the same batch size of 32

and are trained for 10 epochs. We denote them as FTBERTB , FTBERTL , FTRoBERTaB and FTRoBERTaL

hereafter.

SEED We implement SEED using the sentence-transformers library (Reimers and Gurevych,

2019) and the huggingface model hub (Wolf et al., 2020). Specifically, we use three variants of

BERT (Devlin et al., 2019) as the base model: BERT-base, BERT-large and BERT-nli. 2 We

include experiments with SEEDBERTNLI due to the proximity between the claim verification and

natural language inference tasks. We use SEEDBERTB , SEEDBERTL and SEEDBERTNLI to denote

them hereafter.

Experimental Setup Experiments are conducted in three different configurations: binary FEVER

claim verification, three-way FEVER claim verification and three-way SciFact_oracle claim

verification. The first configuration is designed to enable direct comparison with the SOTA method

(i.e. PB), as it is only designed for doing binary classification. For binary classification, we

use the FEVER data provided by the original authors of the PB method (Lee et al., 2021) for

fair comparison. The data contains 3333 ‘SUPPORTS’ instances and 3333 ‘Not_SUPPORTS’

instances.3 For n-shot settings, we sample n instances per class as the train set, and use 3333−n

1The associated model ids from huggingface model hub (Wolf et al., 2020) are bert-base-uncased,
bert-large-uncased, roberta-base and roberta-large respectively

2The first two are available on huggingface model hub (Wolf et al., 2020) with model id bert-base-
uncased and bert-large-uncased. The last one has been fine-tuned on natural language inference (NLI)
tasks and is available on sentence-transformers repository with model id bert-base-nli-mean-tokens.

3The ‘Not_SUPPORTS’ is obtained by sampling and merging original instances from both ‘REFUTES’
and ‘NOT_ENOUGH_INFO’ by the original authors of the PB method (Lee et al., 2021). We inherit the
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instances per class as the test set. We present experiments with all three methods (SEED, PB, FT).

We conduct n-shot experiments (n training samples per class) with the following choices of

n: 2, 4, 6, 8, 10, 20, 30, 40, 50, 100. Note that one may argue that 50-shot and 100-shot are

not necessarily few-shot, however we chose to include them to further visualise the trends of

methods up to 100 shots. The number of shots n refers to the number of instances per class, e.g.

2-shot experiments would include 6 instances in total when experimenting with 3 classes. To

control for the performance fluctuations owing to the randomness of shots selection, we report

the mean results for each n-shot experiment obtained by using 10 different random seeds ranging

from 123 to 132. Likewise, due to the variability in performance of the FT method given its

non-deterministic nature, we do 5 runs for each setting and report the mean results.

4.3 Results

We first report overall accuracy performance of each task formulation, then report classwise F1

scores for three-way task formulations. Finally we report statistical significance results.

Figure 4.2: Comparison of few-shot accuracy performance on the binary FEVER dataset.

data files from previous research.
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FEVER Binary Classification As shown in Figure 4.2, SEED achieves the overall best perfor-

mance in few-shot settings. It suggests positive answers to our research questions: sentence

embeddings from pretrained language models can be effectively utilised to compute semantic

differences between claim-evidence pairs and they do contribute positively to the task of claim

verification in few-shot settings . When given fewer than 10 shots, the accuracy of the FT

method remains low at around 50%, which is close to a random guess for a balanced, binary

classification task. Meanwhile, PBBERTB , PBBERTL , SEEDBERTB and SEEDBERTL achieve similar

results at around 57%. In 10-shot, 20-shot and 30-shot settings, SEED outperforms PB, which in

turn outperforms FT. In 40-shot and 50-shot settings, FTBERTL surpasses PB, although FTBERTB ,

FTRoBERTaB and FTRoBERTaL perform remarkably lower. In the 100-shot setting, FTBERTL manages

to outperform SEEDBERTB and SEEDBERTL and achieves similar performance as SEEDBERTNLI .

FTBERTB , FTRoBERTaB and FTRoBERTaL in the 100-shot setting failed to outperform SEED, despite

that FTRoBERTaL successfully outperformed PB. Overall, SEED with vanilla pre-trained language

models outperforms both baselines from 10-shot to 50-shot settings. In addition, SEEDBERTNLI

always achieves the best performance up to 100 shots.

Interestingly, the increase of shots has very different effects on each method. SEED experi-

ences significant accuracy improvement as shots increase when given fewer than 20 shots; the

performance boost slows down drastically afterwards. Starting with reasonably high accuracy, PB

achieves a mild performance improvement when given more training samples. When given fewer

than 10 shots, the FT method doesn’t experience reliable performance increase over training data

increase; it only starts to experience linear performance boost after 10-shots.

FEVER Three-Way Classification Figure 4.3 shows a general trend to increase performance as the

amount of training data increases for both methods. When given 10 or fewer shots, SEED shows

significant performance advantages. When given between 2 and 10 shots, performance of fine-

tuned models fluctuates around 33%, which equals to a random guess. Meanwhile, SEED achieves

significant accuracy improvement from less than 40% to around 55% with vanilla pre-trained

language models. In this scenario, the performance gap between the two methods that use the same

model base ranges from 6% to 26%. With 20 shots, SEED with vanilla pre-trained language models

significantly outperform FTBERTB , FTRoBERTaB and FTRoBERTaL , although FTBERTL managed to

achieve similar results. With 30 shots, SEED with vanilla pre-trained language models reaches

its performance peak at around 60% and SEEDBERTNLI peaks at around 68%. Given 30 or more
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Figure 4.3: Comparison of few-shot accuracy performance on the FEVER dataset.

shots, SEED slowly gets surpassed by the FT method. Specifically, FTBERTL surpasses SEED with

vanilla pre-trained language models using 30 shots, while FTRoBERTaL and FTBERTB only achieve a

similar effect with 100 shots. However, FTRoBERTaB never outperforms SEED within 100 shots. In

addition, SEEDBERTNLI has substantial performance advantages when given fewer than 10 shots,

despite being outperformed by FTBERTL at 40 shots. Overall, SEED experiences a performance

boost with very few shots, whereas the FT method is more demanding, whose performance starts

to increase only after 10 shots. Like performance on binary FEVER, performance on three-way

FEVER also suggests positive answers to our research questions: semantic differences between

claim-evidence pairs can be captured by utilising sentence embeddings and positive contributions

to the task of claim verification in few-shot settings are observed.

Interestingly, SEEDBERTB outperforms SEEDBERTL starting from 6 shots. This performance

difference within SEED further results in another interesting observation: SEEDBERTB achieves

better overall accuracy than FTBERTL at 10 shots.

SciFact_oracle Three-Way Classification Figure 4.4 shows again an expected increase in perfor-

mance for both methods as they use more training data. Despite taking a bit longer to pick up,
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Figure 4.4: Comparison of few-shot accuracy performance on the SciFact_oracle dataset configu-
ration.

SEED still starts its performance boost early on. Increasing from 2 to 10 shots, SEED gains a

substantial increase in performance. In addition, the FT method performs similarly to a random

guess at around 33% accuracy when given 10 or fewer shots. When given 20 shots, FT still falls

behind SEED, which differs from the trend seen with the FEVER three-way claim verification.

SEEDBERTB and SEEDBERTL peak at around 45%, while SEEDBERTNLI peaks at around 50% with

only 20 shots. At 30-shots and 40-shots, SEED still shows competitive performance, where

FTBERTL outperforms two of the SEED variants, but still falls behind SEEDBERTNLI . FTRoBERTaL

outperforms SEED with vanilla BERT models at 50-shots and FTBERTB and FTRoBERTaB achieves

that at 100-shots. Similarly, performance on SciFact_oracle dataset configuration leads to positive

answers to our research questions: sentence embeddings from pretrained language models can be

effectively utilised to compute semantic differences and make positive contributions to few-shot

claim verification task.

The accuracy scores on the SciFact_oracle dataset configuration are noticeably lower than

on the FEVER dataset. The FT method is again more demanding on the number of shots and

experiences a noticeable delay to overtake SEED, more so on SciFact_oracle than on FEVER.
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This highlights the challenging nature of the SciFact dataset, where SEED still remains the best in

few-shot settings.

Figure 4.5: Comparison of few-shot classwise F1 performance on the binary FEVER dataset.

Classwise F1 Performances We present classwise F1 performance here for further understanding

of the results. Figure 4.5 sheds light on addressing the task of FEVER binary claim verification.

Both SEED and FT method gain improved performance on both classes with more data. The

SEED method and PB method have significant performance advantages on the ‘SUPPORTS’

class, when given 10 or fewer shots. Despite that the PB method initially achieves very high

performance on the ‘SUPPORTS’ class at around 60%, it then experiences a performance drop

and ends at around 55% for BERT-base and 58% for BERT-large.

Figure 4.6: Comparison of few-shot classwise F1 performance on the FEVER dataset.

Figures 4.6 and 4.7 show consistent classwise performance patterns in tackling three-way
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Figure 4.7: Comparison of few-shot classwise F1 performance on the SciFact_oracle dataset
configuration.

claim verification on both FEVER and SciFact_oracle. Both figures indicate that SEED has better

overall performance in all three classes when given fewer than 20 shots, where performance on the

‘SUPPORTS’ class always has absolute advantages over the FT method and performance on the

‘NOT_ENOUGH_INFO’ class experiences the biggest boost. At around 20-shots the FT method

starts to overtake largely due to improved performance on the ‘NOT_ENOUGH_INFO’ class.

Interestingly, within SEED, SEEDBERTB outperforms SEEDBERTL , which in turn outperforms

SEEDBERTNLI .

Furthermore, classwise F1 performance also sheds light on the interesting SEED perfor-

mance difference noted previously: SEEDBERTB outperforms SEEDBERTL in three-way claim

verification with noticeable margin on FEVER three-way claim verification. Figure 4.6 shows

that SEEDBERTB has clear performance advantages over SEEDBERTL on the ‘REFUTES’ and

‘NOT_ENOUGH_INFO’ classes on FEVER three-way claim verification, which may be the main

cause of the performance difference. When conducting binary claim verification on FEVER where

the ‘REFUTES’ and ‘NOT_ENOUGH_INFO’ classes are merged together, the performance

advantages from SEEDBERTB over SEEDBERTL are trivial. Otherwise, SEEDBERTB does not outper-

form SEEDBERTL on the SciFact_oracle dataset configuration as shown in Figure 4.4. Meanwhile,

Figure 4.7 does not demonstrate SEEDBERTB’s performance advantages on distinguishing the ‘RE-

FUTES’ and ‘NOT_ENOUGH_INFO’ classes on SciFact_oracle. We conjecture that SEEDBERTB

is better at capturing simple differences between ‘REFUTES’ and ‘NOT_ENOUGH_INFO’

classes while SEEDBERTL is better at capturing complex differences due to their size difference.

Given that FEVER is a synthetically generated dataset, it is to be expected that it includes more

cases of simpler differences.
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In general, classwise F1 performance shows consistent performance patterns with overall

accuracy performance. The SEED method has significant performance advantages when given

10 or fewer shots in all classes. The PB method has very good performance on predicting

the ‘SUPPORTS’ class initially but struggles to improve with more data. The FT method has

underwhelming performance on all classes when given very few shots and gain big improvements

over training data increase, especially on the ‘NOT_ENOUGH_INFO’ class.

Statistical Significance We present statistical significance test results conducted based on McNe-

mar’s Test to demonstrate robustness of SEED, compared with FT. For demonstration purposes,

results are calculated in 20-shot setting with the sampling seed set as 123 across 3 task formula-

tions. For fair comparison, we use vanilla BERT-base as the base model for both SEED and FT

methods.

binary FEVER FEVER SciFact_oracle

p value 4e−38 1e−110 0.00679

Table 4.1: Statistical significance test results in 20-shot setting.

Table 4.1 presents p values. The p values are always smaller than 0.005, indicating statistical

significance for performance improvements obtained by SEED across three task formulations.

Noticeably the p value calculated on binary FEVER and three-way FEVER are much smaller than

the p value on SciFact_oracle, which suggests that the performance advantages are less significant.

It correlates well with task difficulty: SciFact is more challenging than FEVER. Overall, SEED

achieves significant improvements over FT in 20-shot setting.

4.4 Analysis and Discussion

Impact of shot sampling on performance Random selection of n shots for few-shot experiments

can lead to a large variance in the results, which we mitigate by presenting averaged results for 10

samplings. To further investigate the variability of the three methods under study, we look into the

standard deviations.

Figure 4.8 presents the standard deviation distribution on Binary FEVER claim verification,

which is largely representative of the standard deviations of the models across the different settings.

We only analyse configurations that utilise BERT-base and BERT-large for direct comparison
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Figure 4.8: Standard deviation comparison on binary FEVER claim verification.

across methods. Overall, PB always has the lowest standard deviation, which demonstrates its low

performance variability across random sampling seeds. Combined with the initial performance

boost of SEED in Figure 4.2, the high standard deviation in the beginning implies that the

SEED method is able to learn from the extremely limited number of training data and therefore

experiences performance fluctuations due to different few-shot samples. Meanwhile, when given

10 or fewer shots, FT’s accuracy performance remains close to random guess (see Figure 4.2) and

its standard deviation remains low (see Figure 4.8). The low performance and the insensitivity to

different sampling seeds indicates in this scenario that the FT method is not able to effectively learn

from the extremely limited number of data. As the number of training samples further increases

beyond 10 shots, the standard deviation of SEED drastically decreases and its performance

experiences a boost until it converges at around 40 shots. After the initial performance boost,

the SEED method shows robustness to random sampling. When given more than 10 shots, the

standard deviations of FT surpass SEED with a large margin and its accuracy performance starts

to experience a boost, which indicates that the FT models are able to learn from the given samples

in this scenario. However, the FT models do not converge within the first 100 shots, which leads

to high standard deviation within the range from 20-shots to 100-shots and they remain vulnerable



4.4. Analysis and Discussion 71

to random sampling in few-shot settings.

In short, PB is the most robust method to sample variations, despite underperforming SEED

on average; SEED is still generally more robust to random sampling and has higher learning

capacities than the FT method in few-shot settings.

Figure 4.9: SEED converging on three-way FEVER claim verification with increasing number of
n shots.

Why does SEED plateau? As presented in the Results Section, the performance improvement

of SEED becomes marginal when given more than 40 shots. Given that SEED learns mean

representative vectors based on training instances for each class, the method likely reaches a

stable average vector after seeing a number of shots. To investigate the converging process of

representative vectors, we measure the variation caused in the mean vectors by each additional

shot added. Specifically, for values of n ranging from 2 to 100, we calculate the Euclidean distance

between n-shot relation vectors and (n-1)-shot representative vectors, which measures the extent to

which representative vectors were altered since the addition of the last shot. Figure 4.9 depicts the

converging process with FEVER three-way claim verification. Across three different model bases,

the amount of variation drops consistently for larger numbers of n shots, with a more prominent

drop for n={2-21} and a more modest drop subsequently. From a positive angle, this indicates the

ability of SEED to converge quickly with low demand on data quantity. It validates the use of

semantic differences for verification and highlights its efficiency of data usage in few-shot settings.

From a negative angle, it also means that the method stops learning as much for larger numbers of

shots as it becomes stable, i.e. it is particularly useful in few-shot settings.

The curves of BERT-base and BERT-large largely overlap with each other, while the curve of

BERT-nli does not conjoin until convergence. It corresponds well with the overall performance

advantages of utilising BERT-nli as presented in the Results Section. It implies that using language
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models fine-tuned on relevant tasks allow larger impact to be made with initial few shots. Future

work may deepen the explorations in this direction. For example, using a model fine-tuned on

FEVER claim verification to address SciFact_oracle claim verification.

General discussions With experiments on two- and three-class settings on two datasets, FEVER

and SciFact, SEED shows state-of-the-art performance in few-shot settings. With only 10 shots,

SEED with vanilla BERT models achieves approximately 58% accuracy on binary claim verifi-

cation, 8% above FT and 1% above PB. Furthermore, SEED achieves around 56% accuracy on

three-way FEVER, while FT models underperform with a 38% accuracy, an absolute performance

gap of 18%. Despite the difficulty of performing claim verification on scientific texts in the

SciFact dataset, SEED still achieves accuracy above 42%, which is 9% higher than FT. When

utilising BERT-nli, SEED consistently achieves improvements with 10 shots only: 15% higher

than FT and 8% higher than PB on FEVER binary claim verification; 23% higher than FT on

FEVER three-way claim verification and 17% higher than FT on SciFact_oracle three-way claim

verification. Further, detailed analysis on classwise F1 performance also shows that improved

performance is consistent across classes.

Our experiments successfully demonstrate that sentence embeddings from pre-trained lan-

guage models can be effectively utilised to compute pairwise semantic differences between claims

and their associated evidences with limited labelled instances. The proposed method leads to posi-

tive contributions with improved performance on the task of claim verification in few-shot settings.

In comparison with PB, SEED has better learning capacities, higher few-shot performance, and

most importantly, it is more flexible for doing multi-way claim verification, enabling in this case

both two-class and three-class experiments. With respect to FT, SEED is better suited and faster

to deploy in few-shot settings. It is more effective regarding few-shot data usage, generally more

robust to random sampling, and it has lower demand on data quantity and computing resources.

The main application scenario of SEED is few-shot pairwise classification, i.e. when the input

involves text pairs. While we have demonstrated its effectiveness on few-shot claim verification,

future work may study the effectiveness of SEED on other pairwise classification tasks, e.g.,

natural language inference, stance detection, knowledge graph completion and semantic relation

classification between documents. Furthermore, SEED also offers the potential to be used for

annotation quality evaluation: SEED is sensitive to data sampling within 10 shots and it may be

utilised as a good metric to determine whether the annotated data is of high quality or not with
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only a few samples. Moreover, SEED can be applied to do task difficulty estimation: SEED’s

few-shot performance on SciFact_oracle is significantly lower than FEVER, which correlates well

with the fact the SciFact is more challenging than FEVER. In future studies, one may conduct

few-shot experiments without gradient update using SEED on a new dataset and a familiar dataset

to gain valuable initial understanding on the difficulty of the new dataset.

While SEED demonstrates the ability to learn representative vectors that lead to effective claim

verification with limited labelled data and computational resources, its design remains simple

and its performance plateaus with larger numbers of shots. Future studies may further develop

the method by utilising more advanced sentence embeddings. For example, while our proposed

SEED calculates mean values of all tokens for sentence embeddings, future work may obtain

syntactically aware sentence embeddings by calculating weighted average values with reference to

syntactic parse trees. In addition, further exploration into SEED’s potential to further improve its

performance when more training samples are observed would also be a valuable avenue of future

research. One possibility to achieve this could be by extending SEED with the use of gradient

descent.

4.5 Summary

We have presented an efficient and effective SEED method which achieves significant improve-

ments over the baseline systems in few-shot claim verification. By comparing it with a perplexity-

based few-shot claim verification method as well as a range of fine-tuned language models, SEED

achieves state-of-the-art performance in the task on two datasets and three different settings. Given

its low demand on labelled data and computational resources, SEED can be easily applied, for

example, to new domains with limited labelled examples. Future research may further extend

SEED with more sophisticated sentence embeddings. While our focus here has been on few-shot

learning, future research could focus on building a capacity to more effective learning from larger

numbers of training samples.
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Chapter 5

MAPLE: Micro Analysis of Pairwise Language

Evolution for Few-Shot Claim Verification

In last chapter, we presented SEED, an effective claim verification method that does not perform

gradient descent to update model parameters for high efficiency and works particularlly well when

combined with an NLI-trained PLM. However, its best performing configuration heavily relies

on NLI-trained PLMs, limiting its applicability to only cases where NLI data and/or NLI-trained

PLMs are available, excluding scenarios such as low-resource languages. Moreover, it excels

when the data is similar to general NLI data but struggles when dealing with dissimilar data, such

as claim verification data where the evidence is particularly long and technical. In this chapter, we

propose to embrace the potential of performing some more computing with gradient descent and

leveraging unlabeled fact-checking data rather than general NLI data, to enhance few-shot claim

verification.

We present MAPLE (Micro Analysis of Pairwise Language Evolution), a novel approach

designed for few-shot claim verification. MAPLE innovatively builds upon the concept of language

transition1, scrutinizing the semantic shift that occurs as a sequence-to-sequence model learns to

generate a target sequence from a given input sequence. In this chapter, such language transition

1In this chapter, we distinguish between claim language and evidence language, treating them as distinct
languages as they may differ in formality, length, or even depth. In real-world scenarios, checkworthy
claims often emanate from more informal settings, such as social media platforms. On the other hand,
evidences typically come from formal and reputable sources such as research papers and Wikipedia, marked
by a concise, informative, and professional style. For concrete examples, please see the data samples in
Section 3.1.2.
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Figure 5.1: MAPLE for claim verification. (1) In-domain seq2seq training. With LoRA, a
T5-small model is trained on claim-to-evidence task for e epochs using the d unlabelled claim-
evidence pairs from the data pool. At the end of each training epoch j, model inference is
performed on each instance i to generate a mutation mutation_c2e_i. This process is repeated
on evidence-to-claim setting. In total this step produces 2 ∗ d ∗ e triples that consist of a claim
c, an associated piece of evidence e and a generated mutation m. (2) SemSim transformation.
Each triple is grouped into three pairs including claim-evidence pair c− e, claim-mutation pair
c−m and evidence-mutation pair e−m. ‘Semsim’ scores are obtained for each pair by calculating
the cosine similarity score based on corresponding sentence embeddings. (3) Logistic classifier
training with few-shot labelled data. A logistic classifier is trained on labelled data where the
transformed ‘SemSim’ scores are used as input features to predict veracity labels.

from the input sequence to the output sequence over the training epochs is referred to as pairwise

language evolution. As the semantic similarity within a text pair can be reflected by how difficult

it is for a sequence-to-sequence model to learn from and converge upon, MAPLE is designed to

capture such signals and use them as input features to make predictions for claim verification

task. By intricately capturing and harnessing this pairwise language evolution, MAPLE aims

to facilitate accurate predictions even in scenarios with minimal labeled data. Our key novel

contributions include:

• We introduce MAPLE, an innovative approach that leverages unlabeled data for enhancing

few-shot claim verification. While building MAPLE, we also propose ‘SemSim’ as an NLG

evaluation metric that focuses on semantic similarity.

• We perform a pioneering exploration of the language transition convergence process during

seq2seq model training.
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• We conduct comprehensive experiments on four dataset configurations, facilitating a direct

comparison with established SOTA methods, namely SEED, PET, and LLaMA 2.

Experiments demonstrates MAPLE’s effectiveness and robustness across different dataset

domains and configurations, when unlabeled data for seq2seq in-domain training is available,

particularly within five shots. Fact-checking practitioners may leverage MAPLE to perform

few-shot claim verification when unlabeled data and some computational resources are available,

while labeled data is extremely limited.

5.1 Methodology

Traditionally, generative models are often used in classification tasks by generating corresponding

labels given input sentences (Pradeep et al., 2021). However, such an approach does not fully

exploit the potential of generative models on tasks such as claim verification. In this section, we

present the MAPLE method and its application to few-shot claim verification.

The intuition of MAPLE is that sentence pairs of various relationships bring diverse learning

challenges to the seq2seq generation task. As the data difficulty is reflected in the seq2seq training

process, such learning difficulty associated with each sample could be further transformed into

various signs to indicate the relationship within a sentence pair. We explore such potential to be

leveraged for effective claim verification, where the goal is to determine the veracity of a claim

based on its relationship with the provided evidence. MAPLE consists of three steps, as illustrated

in Figure 5.1.

(1) In-domain seq2seq training. In order to leverage in-domain unlabeled data, i.e. claim-

evidence pairs without veracity labels, we perform seq2seq training in two directions: claim-

to-evidence and evidence-to-claim. For claim-to-evidence task, a T5-small Raffel et al. (2020)

model is fine-tuned for e epochs using all of the unlabeled claim-evidence pairs from the data

pool with a size of d. At the end of each training epoch j, model inference is performed on each

instance i to generate a mutation mutation_c2e_i. Similarly, another T5-small model is fine-tuned

on evidence-to-claim task to generate mutations mutation_e2c_i for each training epoch j. For

computational efficiency, the training is conducted with Low-Rank Adaptation (LoRA) 2 Hu et al.

(2022a), a parameter-efficient training method. In total, this step produces 2 ∗ d ∗ e triples that

consist of a claim c, an associated piece of evidence e and a generated mutation m.

2Please see more information on the training algorithms in section 5.4.
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(2) SemSim transformation. The SemSim transformation aims to transform the generated triples

into numeric scores while recording the transition of mutation m during the training process in

both claim-to-evidence task and evidence-to-claim task. Each triple is grouped into three pairs

including claim-evidence pair c− e, claim-mutation pair c−m and evidence-mutation pair e−m.

We measure the pairwise similarity with ‘SemSim’ score: first obtains sentence embeddings

with model ‘sentence-transformers/all-mpnet-base-v2’ Reimers and Gurevych (2019), a sentence

transformer model that is trained on over one billion sentences with contrastive training objective;

then calculates cosine similarity scores on sentence embeddings for each pair. Each triple is

transformed into an array of 3 ‘SemSim’ scores. All triples of a claim-evidence instance are

concatenated as features of the instance.

(3) Logistic classifier training with few-shot labeled data. Using n-shot labeled data from the

labeled data pool of size 3n,3 i.e. claim-evidence pairs with veracity labels, a logistic classifier

is trained. The transformed SemSim scores are used as input features to make predictions on

veracity labels.4

5.2 Experimental settings

In this section, experiments comparing MAPLE with previous SOTA methods on four dataset

configurations as presented in 3.1.

Baselines SEED SEED uses a sentence-transformer model that is trained on NLI tasks.5

PET PET uses BERT-base fine-tuned on the MNLI dataset.6 It is trained with a batch size

of 16, a learning rate of 1e−5, and training epochs of 3, following previous practice (Schick and

Schütze, 2021a,b; Zeng and Zubiaga, 2023).

LLaMA 2 LLaMA 2 experiments are conducted on the LLaMA 2 7b chat model.7 Answers

3For example, 1-shot experiments are conducted on a data pool that includes 3 labeled samples in total,
i.e., one instance per class per claim verification task.

4Please note that MAPLE differs from data augmentation methods. Data argumentation generates
pseudo-data and uses them as additional samples for model training; MAPLE does not treat mutations
as additional training samples, but relies on them to obtain input features for logistic classifier training.
From a tabular view, typical data augmentation methods generate additional rows but MAPLE operates on
columns.

5Huggingface hub model id ‘bert-base-nli-mean-tokens’ (Zeng and Zubiaga, 2022).
6Huggingface hub model id ‘textattack/bert-base-uncased-MNLI’. See performance using alternative

model checkpoint in Appendix C.1.
7Huggingface hub model id ‘Llama-2-7b-chat-hf’. See performance using alternative model checkpoint

in Appendix C.1.
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are generated by prompting with detailed instructions8 and post-processed to match class labels 9.

MAPLE In our experiments, MAPLE uses the T5-small model for efficient training.10 Training

is conducted with LoRA from epoch 0 to epoch 20, using 0.0001 as learning rate, 16 as batch size,

512 as max length, 0.1 as LoRA dropout, 32 as LoRA alpha Hu et al. (2022a) and “Summarize:”

as the prompt (Ramamurthy et al., 2022).

Experimental Setup Our experimental setup is designed to conduct comprehensive few-shot

experiments, where the term ‘n-shot’ refers to the number of samples available per class. As we

focus on few-shot performance, our main experiments are conducted on 1-shot, 2-shot, 3-shot,

4-shot and 5-shot settings. To ensure the reliability and generalizability of our findings, each

n-shot experiment has been repeated 100 times with sampling seeds ranging from 123 to 223. We

present the main results in Section 5.3. We also present further experiments showing the trend

going up to 50 shots in Appendix C.3.

Figure 5.2: F1 performance within 5 shots.

5.3 Results

In this section, we present the results of our experiments with a focus on few-shot settings.

Figure 5.2 illustrates the F1 performance within the 5-shot setting.11 Across the four dataset

configurations, MAPLE shows noticeable performance advantages within the 5-shot setting,

validating its effectiveness in few-shot scenarios and robustness across datasets. It achieves this

8After evaluating several prompts, the subsequent one is employed due to its superior performance.:
“Please perform the task of claim verification: you are given a claim and a piece of evidence, your goal is to
classify the pair out of ‘SUPPORTS’, ‘REFUTES’ and ‘NOT_ENOUGH_INFO’. Here are a few examples:
claim: train_claim_i evidence: train_evidences_i label: train_label_i What is the label for the following
pair out of ‘SUPPORTS’, ‘REFUTES’ and ‘NOT_ENOUGH_INFO’? Answer with the label only. ”

9Post-processing primarily includes stripping formatting strings and removing “label: ”. The remaining
responses that do not belong to any of the labels are mapped into the “NOT_ENOUGH_INFO” class, e.g.
responses such as “?” and “Please give me the answer”.

10Huggingface hub model id ‘t5-small’ Raffel et al. (2020).
11Please see detailed classwise performance in Appendix C.2
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primarily by starting from a high performance point and steadily improving within 5 shots. Al-

though SEED underperforms MAPLE, it showcases strong learning capabilities, and its relatively

lower performance is primarily due to a low starting point. Surprisingly, PET and LLaMA 2

perform poorly within the 5-shot range, generally starting low and exhibiting limited learning

capabilities.

On the FEVER dataset, MAPLE demonstrates significant improvements over the baselines.

Specifically, MAPLE achieves a very high F1 score over 0.6 at 1 shot, outperforming SEED, PET,

and LLaMA 2, which commence at approximately 0.25, 0.37, and 0.38, respectively. Within 5

shots, MAPLE exhibits a steady performance improvement, surpassing an F1 score of 0.7. While

SEED and PET also experience notable performance boosts, with SEED approaching just below

0.6 and PET reaching below 0.5, LLaMA 2 encounters a slight performance drop, settling around

0.36.

On the cFEVER dataset, the performance of all methods exhibits a considerable decrease

compared to FEVER, highlighting the challenging nature of the dataset. While MAPLE maintains

its leading position overall, the performance margin is narrower. It initiates above 0.3 and achieves

scores surpassing 0.4. SEED begins even lower, below 0.3, but manages to surpass 0.4, albeit

slightly trailing behind MAPLE. PET encounters greater challenges overall, commencing below

SEED and only slightly exceeding 0.3. LLaMA 2 excels initially with a score of 0.38 but

experiences a drop to 0.37.

On the SciFact_oracle dataset configuration, despite the overall performance being better

than cFEVER but worse than FEVER across all methods, MAPLE maintains superiority within 5

shots. It initiates around 0.4 and concludes around 0.45. SEED begins around 0.3 and lags behind

MAPLE, while PET starts higher than SEED but lower than MAPLE, failing to surpass them

within 5 shots. LLaMA 2 performs comparably to PET, starting at 0.37 and finishing at 0.40.

On the SciFact_retrieved dataset configuration, MAPLE demonstrates a slightly better perfor-

mance compared to SciFact_oracle, while all baseline methods exhibit a substantial decline in

performance compared to SciFact_oracle. Consequently, MAPLE achieves a larger performance

margin. It commences above 0.4 and concludes around 0.5. SEED starts at a very low point, below

0.3, and approaches 0.4 at 5 shots. PET initiates around 0.35 but struggles to learn effectively

within 5 shots, resulting in an even lower score. LLaMA 2 starts at 0.32 and 0.29 and experiences

a notable drop to 0.18 and 0.17 immediately afterwards.12

12Note that the SciFact_retrieved dataset configuration comprises lengthy instances that may exceed the
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In general, LLaMA 2 displays reasonable one-shot performance but shows limited learning

capabilities within 5 shots. Despite PET’s use of gradient descent to update the parameters

of a large language model, this strategy does not yield satisfactory results within the 5-shot

range. On the other hand, MAPLE and SEED showcase relatively rapid convergence due to their

limited number of trainable parameters. MAPLE stands out with a significantly higher level of

performance compared to all baselines overall, demonstrating its capacity to leverage limited data

for notable results and effectiveness as a few-shot claim verification model.

It’s crucial to highlight that while most experiments are conducted in oracle settings, real-world

claim verification often introduces the challenge of imperfect evidences. Therefore, achieving

optimal performance in the SciFact_retrieved dataset, where evidence is noisy and lengthy, is

particularly significant. This accomplishment highlights MAPLE’s robustness to noisy and

challenging data in realistic fact-checking scenarios.

5.4 Ablation Studies

Figure 5.3: Comparison of MAPLE performance using different training algorithms for in-domain
seq2seq training. The label “LoRA" represents parameter-efficient training method Low-Rank
Adaptation, “SFT" indicates supervised fine-tuning and “NLPO" refers to reinforcement learning
with the NLPO policy.

Figure 5.4: Comparison of MAPLE performance using the proposed ‘SemSim’ metric and
alternative metrics to measure micro pairwise language evolution.

Training algorithms With the growing interest in reinforcement learning (RL) and parameter-

efficient training, this ablation study investigates the effects of utilizing different training algo-

maximum context length for LLaMA 2. Addressing this issue would necessitate additional techniques.
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rithms. Specifically, we comprare LoRA, Supervised Fine-Tuning (SFT) and Natural Language

Policy Optimization (NLPO) and compare MAPLE results on few-shot claim verification when

seq2seq in-domain training is performed with these different training algorithms.

SFT is the canonical task adaptation training algorithm. For a model that has a weight matrix

W , it computes a weight update matrix ∆W during backpropagation which has the same size

as matrix W and contains the information for the model to update in order to minimise the

loss function. Compared with SFT, LoRA (Hu et al., 2022a) is a paramter-efficient training

algorithm that reduces the number of trainable parameters without introducing inference latency.

It achieves an approximate of SFT by freezing the original model weights W and replace the full

size d1 ∗d2 matrix ∆W with the decomposition of ∆W : two smaller LoRA matrices, A (d1 ∗ r) and

B (r ∗d2), where r is a new hyperparameter r that is significantly smaller than d1 and/or d2. With

vastly reduced computing storage requirement and computing time, experiments show that LoRA

achieves similar performance results. NLPO (Ramamurthy et al., 2022) is a novel on-policy RL

algorithm that dynamically learns task-specific constraints over the distribution of language at

a token level. As natural language generation can be viewed as a sequential decision making

processing, there is growing interest in applying RL training algorithms to PLMs. Since language

generation action spaces are significantly larger than traditional applications of RL algorithms, it

could cause instability when training PLMs with traditional RL methods. NLPO introduces top-p

sampling to mask out less relevant tokens in-context as it trains. It offers enhanced stability and

performance compared to previous policy gradient methods (Ramamurthy et al., 2022).

As presented in Figure 5.4, the overall differences in performance among the algorithms are

relatively marginal. SFT demonstrates best results on the FEVER and cFEVER datasets, while

NLPO outperforms on the SciFact_oracle and SciFact_retrieved datasets. Notably, despite the

largely reduced computational burden by utilizing LoRA,13 the observed performance drops are

modest. Therefore, MAPLE conducts in-domain seq2seq training with LoRA.

Metrics MAPLE uses our proposed ‘SemSim’ metric to measure and analyze the pairwise lan-

guage evolution. This ablation section presents the comparison with a number of established NLG

metrics, including ‘BLEU’, ‘ROUGE’, ‘METEOR’, ‘SacreBLEU’, ‘BLEURT’, and ‘BARTScore’.

Figure 5.4 illustrates the performance variations of MAPLE when employing different metrics.

Across all datasets, the ‘SemSim’ metric demonstrates superior performance compared to other

13For T5-small, the trainable % with LoRA is 0.485 (294,912/60,801,536). Please see a detailed
efficiency comparison with SFT in Appendix D.1.
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metrics, showcasing a significant improvement gap. This highlights the advantages of ‘SemSim’,

establishing it as the optimal choice for MAPLE. By focusing on measuring semantic similarity

as a primary component, we can effectively analyze the micro pairwise evolution of language

in a seq2seq learning process, which is captured by generated mutations across training epochs.

In contrast, metrics based solely on lexical overlap, or utilizing an LLM that is not trained

on substantial sentence pair data, may be less indicative in capturing the nuances of language

evolution. The emphasis on fine-grained semantic similarity provides highly informative insights,

particularly in assessing the learning difficulty of instances for seq2seq generation. As ‘SemSim’

surpasses many established NLG metrics in this task, it shows its potential for broader applications

as a general NLG evaluation metric.

5.5 Analysis and Discussion

Figure 5.5: Example signals captured for classification, using the ‘SemSim’ score for target-
mutation pairs on the test.

Despite recent research on generating rationales and explanations Atanasova et al. (2020);

Kotonya and Toni (2020); Schuster et al. (2021), existing approaches heavily depend on directly

fine-tuning PLMs, hindering the understanding of their decision-making process. MAPLE stands

out by providing tangible and traceable solutions, guided by the principle that sentence pairs

with different relations present distinct challenges for seq2seq generation. Figure 5.5 further

supports this principle and elucidates the effectiveness of MAPLE. Overall, the ‘SemSim’ scores

for ‘NOT_ENOUGH_INFO’ are significantly lower than those for ‘SUPPORTS’ and ‘REFUTES’,

enabling easy differentiation between ‘NOT_ENOUGH_INFO’ and other classes 14. Furthermore,

generating a piece of evidence from a claim proves to be more challenging than generating a

claim from a piece of evidence. Generating claims primarily needs the removal of redundant

or unnecessary content, while generating evidence requires the model to expand the existing

14The detailed classwise performance in Appendix C.2 shows that MAPLE has the best performance on
‘NOT_ENOUGH_INFO’ class.
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content. Furthermore, figure 5.5 shows that generating a claim is easier for ‘SUPPORTS’ than

for ‘REFUTES’, while generating evidence is easier for ‘REFUTES’ than for ‘SUPPORTS’. This

pattern allows for a distinction between the two categories. With its enhanced interpretability and

traceability, MAPLE aims to bolster the reliability and trustworthiness of the claim verification

process.

Moreover, by comparing the difficulty among datasets based on the above information, we

can gain insights into the varying challenges posed by different domains. For example, if a dataset

such as FEVER consistently exhibits high ‘SemSim’ scores and low standard deviation during

in-domain seq2seq training, it suggests that the claims and evidences within that dataset are

easier to match and converge upon. On the other hand, datasets such as cFEVER with lower

‘SemSim’ scores, higher standard deviation, and longer convergence time indicate greater difficulty

in aligning claims and evidences. This comparative analysis allows us to understand the relative

complexities of fact-checking in different settings and further enhances the interpretability of

MAPLE’s performance across datasets.

Moreover, MAPLE’s low demand on annotations and computing facilities enhances its effi-

ciency and accessibility. Both step (1) in-domain seq2seq training and step (2) SemSim transfor-

mation only require unlabeled claim-evidence pairs and limited annotations are only required for

step (3) logistic classifier training with few-shot labelled data. While performing steps (1) and

(2) over the entire unlabeled pool may seem burdensome, such practice only takes from minutes

to few hours.15 Due to MAPLE’s efficiency and accessibility by design, training and deploying

can be easily accomplished on Google Colab with a free account or even on a personal laptop. In

real-world scenarios where the claim verification team has accumulated a substantial collection

of claim-evidence pairs, which can be claims with annotated oracle evidences or claims with

retrieved noisy evidences, they can initiate steps (1) and (2) and this process can be completed

while the team actively acquires a small number of labeled samples. Subsequently, step (3)

training a logistic classifier with the newly acquired data only takes seconds and MAPLE is

ready for deployment. By designing such an efficient workflow, the application of MAPLE in

real-world scenarios can bring in a decent claim verification model with minimal cost in anno-

tation and computational resources. Overall, MAPLE holds practical value for fact-checking in

real-world contexts, particularly as a tool to assist fact-checkers in combating emerging domains

15Please see detailed overall runtime report in Appendix D.2.
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of misinformation.

Future Directions With the development of MAPLE, several promising directions for future

research emerge:

Self-supervised Extensions Currently, MAPLE combines language transition signals with

a traditional logistic classifier for classification. A further research avenue could include its

development into a fully self-supervised system by integrating clustering methods.

NLG metric Adaptability While we propose ‘SemSim’ as an NLG metric and have demon-

strated its performance advantages for MAPLE, a comprehensive evaluation of ‘SemSim’ for

broader tasks and domains would enhance the understanding.

Most prevalent NLG evaluation metrics currently calculate similarity scores based on sentence

embeddings only, including the proposed metric ‘SemSim’ in this chapter, whereas MAPLE

offers nuanced insights derived from the seq2seq training dynamics. Converting MAPLE, which

combines ‘SemSim’ and T5 training, into a general NLG evaluation metric would be a promising

research direction.

Human-in-the-loop Workflow As previously demonstrated, MAPLE shows potential for

assisting fact-checkers in real-world scenarios. Fully exploring this potential primarily involves

leveraging MAPLE as a claim verification model in fact-checking organizations. Additionally, it

can serve as the backbone of an active learning system, facilitating data annotation prioritization.

5.6 Summary

In this chapter, we have introduced MAPLE, a novel approach for few-shot claim verification. By

leveraging language transition signals during seq2seq training convergence, MAPLE achieves

SOTA performance in precisely predicting claim veracity labels with reference to associated

evidences in few-shot learning scenarios. Through extensive experiments and analysis on multiple

datasets, we validate its effectiveness, robustness, interpretability, efficiency and accesibility.
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Chapter 6

Active PETs: Active Data Annotation Prioritisation

for Few-Shot Claim Verification with Pattern

Exploiting Training

Where new domains needing fact-checking emerge, collecting and annotating labelled data can

carry an impractical delay. Hence, we focus on few-shot claim verification task and have presented

two few-shot claim verification methods: SEED in chapter 4 and MAPLE in chapter 5, both of

which perform experiments using few-shot data constructed from random sampling. However,

given the cost and effort of labelling fact-checking data, practitioners can often be selective in

labelling a small subset, particularly when the availability of unlabelled data is abundant. In these

circumstances, rather than randomly sampling this subset, we propose to optimise the selection of

candidate instances to be labelled through active learning, such that it leads to overall improved

few-shot performance.

In this chapter, we represent the first such effort in proposing an approach leveraging an active

learning strategy for the claim verification problem to study how to optimise the usage of a highly

constrained annotation budget, as well as the first in furthering Pattern Exploiting Training (PET)

with an active learning strategy. To achieve this, we propose Active PETs, a novel methodology

that enables the ability to leverage an active learning strategy through a committee of PETs. Figure

6.1 illustrates the application of the active learning strategy on data annotation priotisation. For

each iteration, firstly the committee retrieves k new unlabelled samples (k=10 in our experiments),
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Figure 6.1: Illustration of the data annotation prioritisation scenario with a committee of 6 PETs.

secondly the human annotators label them, lastly each of the PET based on different PLMs is

trained individually with all of the labelled samples at hand. Our experiments start from 0 labelled

samples and end at 300 labelled samples.

By exploring effective prioritisation of unlabelled data for annotation and making better use

of a small amount of labelled data, we make the following novel contributions:

• we are the first to study data annotation prioritisation through active learning for few-shot

claim verification;

• we are the first to study the extensibility of PET to enable active learning, by proposing

Active PETs, a novel ensemble-based cold-start active learning strategy that enables multiple

pretrained language models (PLMs) to collectively prioritise data instances;

• we further investigate the effect of oversampling on mitigating the impact of imbalanced

data selection on few-shot learning, when guided by active learning;
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• we conduct further corpus-based analysis on the selected few-shot data instances, which

highlights the potential of Active PETs to lead to improved lexical and semantic character-

istics that benefit the task.

Our results show consistently improved performance of Active PETs over the baseline ac-

tive learning strategies on two datasets, SciFact (Wadden et al., 2020) and Climate FEVER

(Diggelmann et al., 2021). In addition to improved performance over the baselines, our research

emphasises the importance of the hitherto unexplored data prioritisation in claim verification,

showing remarkable performance improvements where time and budget are limited.

Active PETs achieve significant overall improvements for few-shot claim verification with

highly constrained annotation budget, particularly when the unlabeled pool exhibits heavily skewed

data distribution for three-way claim verification, a common scenario in real-world fact-checking.

Following the diagram in Figure 6.1, practioners can leverage Active PETs to actively select

candidate samples from the unlabelled pool, obtain the annotations and train models accordingly

for optimise overall performance.

6.1 Methodology

In this section, we introduce our model Active PETs, and describe the oversampling mechanism

we use.

Proposed method: Active PETs

Having a large pool of unlabelled data, our objective is to design a query strategy that selects

suitable candidates to be labelled, such that the labelled pool of instances leads to optimal few-shot

performance. Our query strategy is rooted in the intuition that disagreement among different PETs

in a committee can capture the uncertainty of a particular instance.

Based on the assumption that performance of different language models is largely dependent

on model size (Kaplan et al., 2020), we introduce a weighting mechanism: each PET is first

assigned a number of votes Vi that is proportional to its hidden size,1 and ultimately all votes are

aggregated. Algorithm 1 presents the pseudo-code for executing a single query iteration with

Active PETs.

We then quantify the disagreement by calculating vote entropy (Dagan and Engelson, 1995):

1For example, if we use a committee formed of only base models that have 6 hidden layers and large
models that have 12 hidden layers, proportionally each of the base models is allocated one vote and each of
the large models is allocated two votes.
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Algorithm 1 A Single Query Iteration

Require: The last trained Commitee of PETs C, unlabelled data pool U , query size k

for PETi ∈C do

vi← Size(PETi)/min∀PETi∈C Size(PETi)

end for ▷ assign number of votes

for instance x ∈U do

for PETi ∈C do

Vxi ← resize(ŷxi ,vi)

end for ▷ predict label and vote

Sx =−∑∀Vxi∈Vx

Vxi
|V | log (Vxi )

|V |

end for ▷ calculate entropy scores

return Sort(S)[: k] ▷ return top k instances

scorex =−∑
ŷ

vote(x, ŷ)
count(V )

log
vote(x, ŷ)
count(V )

(6.1)

where ŷ is the predicted label, x is the instance, vote(x, ŷ) are the committee votes of ŷ for

the instance x, and count(V ) is the number of total assigned votes. It can be viewed as a QBC

generalisation of entropy-based uncertainty sampling that is designed to combine models of

different sizes.

Data Oversampling

One of the risks of the proposed active learning strategy is that the resulting training data

may not be adequately balanced, which can impact model performance. An accessible solution is

oversampling: resample the instances from the minority class with replacement until balanced.

Note that this does not increase the labelling effort as instances are repeated from the labelled pool.

Instead of random resampling (Japkowicz, 2000), we propose a novel technique of integrating

resampling with the committee’s preference. For each minority class, we start resampling from the

instance that has the highest disagreement score to the instance that has the lower disagreement

score. In highly imbalanced cases, resampling is repeated from the highest to lowest priority until

the overall label distribution is balanced. Algorithm 2 presents the pseudo-code for executing the

training loop with the option of conducting oversampling with Active PETs.
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Algorithm 2 Training

Require: Labelled and sorted data D, A initial Commitee of PETs C

if Oversampling then

c← max∀class∈Dcount(data ∈ class)

D← resize∀class∈D(class,c)

end if ▷ oversampling

for PETi ∈C do

PETi← train(PETi,D)

end for ▷ train the commitee of PETs

return C ▷ return trained PETs

6.2 Experimental Settings

SciFact_retrieved

‘SUPPORTS’ ‘NOT_ENOUGH_INFO’ ‘REFUTES’

UP 266 (9.31%) 2530 (88.55%) 61 (2.14%)

Test 150 (33.33%) 150 (33.33%) 150 (33.33%)

cFEVER

‘SUPPORTS’ ‘NOT_ENOUGH_INFO’ ‘REFUTES’

UP 1789 (24.78%) 4778 (66.19%) 652 (8.66%)

Test 150 (33.33%) 150 (33.33%) 150 (33.33%)

Table 6.1: Label distribution of SciFact_retrieved and cFEVER. UP = unlabelled pool of training
data.

The main experiments focus on datasets with real-world claims in a realistic setting: Sci-

Fact_retrieved dataset configuration and cFEVER dataset, known to be challenging, technical and

free of highly synthetic data. Their reformulated data is highly imbalanced as presented in Table

6.1.

Baselines We compare our method to four baselines: random sampling, BADGE, CAL and

ALPS.
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Random For random sampling, we run each experiment over 10 different sampling seeds

ranging from 123 to 132, and present the averaged results.

BADGE BADGE (Ash et al., 2020) optimises for both uncertainty and diversity. Gradient

embeddings gx are first computed for each data in the unlabelled pool, where gx is the gradient

of the cross entropy loss with respect to the parameters of the model’s last layer. It then applies

k-MEANS++ clustering on the obtained gradient embeddings, and batch selects instances that

differ in feature representation and predictive uncertainty.

Though BADGE is proposed as a warm-start method, the required initial set of labelled data

is only used for the initial training the model. In our experiments on claim verification, PLMs that

are already finetuned on a similar task NLI are used, hence, BADGE can be used for cold-start

sampling.

CAL CAL (Margatina et al., 2021), the SOTA warm-start strategy, highlights contrastive data

points: data that has similar model encodings but different model predictions. Unlike BADGE,

an initial labelled set of data is essential for CAL. It first calculates the [CLS] embeddings

for all of the data and then runs K-Nearest-Neighbours (KNN) to obtain the k closest labelled

neighbours for each unlabelled instance. It further calculates predictive probabilities from the

model and measures Kullback-Leibler divergence on it. Finally it selects unlabelled instances

whose predictive likelihoods diverge the most from their neighbours.

While CAL achieves SOTA performance as a warm-start strategy, its dependence on an initial

labelled set of data makes it incompatible in the same few-shot active learning settings without

an initial labelled set. However, for comprehensive comparison purposes, we still include it as

a baseline starting at 100 labelled instances that are obtained from random sampling with 10

different random seeds.

ALPS ALPS (Yuan et al., 2020), the SOTA cold-start active learning method, also aims to

take both model uncertainty and data diversity into account. It calculates surprisal embeddings

to represent model uncertainty. Specifically, for each instance x, it is passed through the masked

language modelling head of a PLM and then 15% of the tokens in x are randomly selected to

calculate the cross entropy against their target tokens. The surprisal embeddings go through

L2-normalisation and then get clustered to select the top samples.

Active PETs Committees of five to fifteen models are common for an ensemble-based active

learning strategy (Settles, 2012). Here we form a committee of 6 PETs with 3 types of PLMs:
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Figure 6.2: Few-Shot F1 Performance on SciFact_retrieved claim verification.

BERT-base, BERT-large (Devlin et al., 2019), RoBERTa-base, RoBERTa-large (Liu et al., 2019),

DeBERTa-base and DeBERTa-large (He et al., 2021). Given the commonalities between the NLI

and claim verification tasks, we use the PLM checkpoints already fine-tuned on MNLI (Williams

et al., 2018).

Despite a line of research in optimising PET patterns and verbalisers (Tam et al., 2021), that is

not our main focus. We use the following pattern and verbaliser for PET: [claim]? [mask], [evidence];

‘SUPPORTS’:“Yes”, ‘REFUTES’:“No”, ‘NOT_ENOUGH_INFO’:“Maybe”, as they yielded best

performance on NLI tasks in our preliminary experiments. Figure 6.3 provides an example of

performing claim verification using PET.

There are two steps in our approach: (1) an ensemble method is used for data annotation

prioritisation, after which data is selected and annotated, and (2) with the data instances drawn and

annotated, we train a PET model that uses a single PLM to make the predictions. An ensemble

method is key in step (1) to support the combined decision-making of choosing instances to

annotate, but not in step (2) for the PET model which runs on a single PLM. Hence, results are

presented for individual PETs, even if in all cases the ensemble is involved in the underlying

prioritisation step. We test two variants: Active_PETs with no oversampling, and Active_PETs-o

with the oversampling described in Section 6.1.

Experimental Setup Hyperparameters. As in few-shot settings we lack a development set, we

follow previous work (Schick and Schütze, 2021a,b) and use the following hyperparameters for

all experiments: 1e−5 as learning rate, 16 as batch size, 3 as the number of training epochs, 256 as

the max sequence length. 2

Labelling budget. We set it to a maximum of 300. We experiment with all scenarios ranging

from 10 to 300 instances with a step size of 10.

Checkpoints. We always use the PLM checkpoints from the last iteration to perform active

2See further details for reproducibility in Appendix D.3.
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Figure 6.3: An example of doing claim verification with PET.

learning, but always train the initial PLMs which have never been trained on any fact-checking

datasets.

6.3 Results

We next discuss the results of our experiments.

Results on SciFact_retrieved Figure 6.2 presents experimental results on SciFact, where the

unlabelled pool is large, heavily imbalanced and the domain is technical. Each subfigure shows

results for a different PET among the six under consideration.

Data retrieved with Active PETs brings substantial improvements for all of the models,
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Figure 6.4: Few-Shot F1 Performance on cFEVER claim verification.

often from the very beginning but consistently as the number of shots increases from around

50 instances. Despite the performance fluctuations, training using data sampled with Active

PETs rarely underperforms the baselines for SciFact. With Active PETs, Bert-base peaks at

0.352, RoBERTa-base peak at 0.345; DeBERTa-base peaks at 0.385; BERT-large peaks at 0.380;

RoBERTa-large peaks at 0.409; DeBERTa-large peaks at 0.541. Generally, Active PETs shows a

10 to 20% increase in F1 scores, compared with various baselines.

Moreover, with Active PETs-o, i.e. when oversampling is further integrated with Active PETs,

we observe a significant performance increase. Models tend to learn better from the beginning; the

increase trend has less fluctuation; and the overall F1 scores are much higher. In this case, Bert-

base peaks at 0.497, RoBERTa-base peak at 0.539; DeBERTa-base peaks at 0.551; BERT-large

peaks at 0.548; RoBERTa-large peaks at 0.514; DeBERTa-large peaks at 0.587. This highlights the

potential of oversampling, which increases the number of instances without additional labelling

budget.

Among the baselines, we observe that training with data retrieved from all baselines failed to

lead to any effective outcomes for BERT-base and DeBERTa-base within a labelling budget of 300

instances. While BADGE and CAL lead to some improvements over BERT-large and RoBERTa-

large when given over 100 instances, random and ALPS failed to bring any improvements.

Baseline results are better with RoBERTa-base and DeBERTa-large, but underperform Active

PETs.

Results on cFEVER Figure 6.4 presents F1 scores on cFEVER, where the unlabelled pool is

large, imbalanced and the domain is somewhat technical. In this case, models generally achieve

higher F1 scores than on SciFact. First of all, we observe that Active PETs outperforms random

baseline in a more stable manner. It is over 10% higher than random most of the time, although it

shows large performance fluctuations on RoBERTa-large. With Active PETs, Bert-base peaks at

0.34, RoBERTa-base peak at 0.524; DeBERTa-base peaks at 0.508; BERT-large peaks at 0.447;
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RoBERTa-large peaks at 0.612; DeBERTa-large peaks at 0.624. Moreover, Active PETs-o leads to

a further performance boost, and more importantly, smooths out the large performance fluctuations.

It is about 20% better than the random baseline most of the time. Specifically, Bert-base peaks at

0.438, RoBERTa-base peak at 0.571; DeBERTa-base peaks at 0.562; BERT-large peaks at 0.557;

RoBERTa-large peaks at 0.615; DeBERTa-large peaks at 0.618.

When it comes to the baselines, the baselines do not struggle as much in the worst cases. Even

if BERT-base’s performance merely increased with most of the baselines, all of the other models

managed to improve within the budget. With random sampling, RoBERTa-base, DeBERTa-base,

BERT-large and RoBERTa-large all roughly peak at around 0.4, while DeBERTa-large is much

better and peaks at around 0.5. BADGE, CAL and ALPS are in general better than random, but

achieves lower F1 scores than Active PETs, especially in few-shot settings when the labelling

budge is below 100.

Figure 6.5: Few-Shot F1 Performance on SciFact_oracle claim verification.

6.4 Ablation Study

With SciFact we designed a slightly different pipeline where we conduct both evidence retrieval

and claim verification – a setting that wasn’t provided with cFEVER. To assess the impact of the

addition of the evidence retrieval component on SciFact, we further perform ablation experiments

on SciFact with oracle evidence, i.e., SciFact_oracle configuration.

With oracle evidence, the number of ‘NOT_ENOUGH_INFO’ claim-evidence pairs are

significantly reduced, resulting in a more balanced overall label distribution. After reserving

100 instances from each class for the test set, the unlabelled pool has 765 instances in total,

where ‘SUPPORTS’ takes 46.54%, ‘NOT_ENOUGH_INFO’ takes 38.43% and ‘REFUTES’

takes 15.03%. As shown in Figure 6.5, overall few-shot performance is much better and active

learning demonstrates lesser performance gains. Sampling with baseline active learning strategies

in general leads to similar results as random sampling. Surprisingly, coupling Active PETs
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with oversampling when the labelled pool is reasonably balanced, still maintains performance

advantages across models. Under this setting, Bert-base peaks at 0.645, RoBERTa-base peak at

0.655; DeBERTa-base peaks at 0.766; BERT-large peaks at 0.68; RoBERTa-large peaks at 0.657;

DeBERTa-large peaks at 0.86.

As demonstrated above, active learning is much more helpful for SciFact in a real-world

setting than in an oracle setting. We could expect that if this finding generalises to cFEVER,

active learning in a real-world setting involving evidence retrieval could possibly lead to larger

performance gains.

6.5 Analysis and Discussion

To better understand the impact of data prioritisation, we delve into the labelled data. In the

interest of focus, we compare Active PETs with the SOTA cold-start method ALPS by analysing

the best-performing PLM DeBERTa-large where 300 instances are selected.

Figure 6.6: Label Distribution of data obtained with active learning by DeBERTa-large. The upper
row is for SciFact_retrieved and the lower row is for cFEVER.

Balancing Effects We first look at the distribution of labels for the selected data. Figure 6.6

shows remarkable difference on label distribution for different active learning strategies. ALPS

samples over 80% data from ‘NOT_ENOUGH_INFO’, less than 10% from ‘SUPPORTS’ and

very few from ‘REFUTES’ for SciFact; over 60% data from ‘NOT_ENOUGH_INFO’, over 20%

from ‘SUPPORTS’ and less than 20% from ‘REFUTES’ for cFEVER. They correlate well with

original label distribution of each unlabelled pool, as presented in table 6.1. It suggests that ALPS

is not sensitive to label distribution. However, Active PETs manages to sample a much more

balanced distribution out of the extremely skewed original distribution. For SciFact, despite the

initial few iterations, Active PETs samples less than 60% data from ‘NOT_ENOUGH_INFO’, less
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than 40% data from ‘SUPPORTS’, around 10% data from ‘REFUTES’; for cFEVER, Active PETs

samples less than 60% data from ‘NOT_ENOUGH_INFO’, over 20% data from ‘SUPPORTS’,

around 20% data from ‘REFUTES’. In both datasets, label distribution from Active PETs are

significantly more balanced than ALPS. Finally, the strategy with oversampling returns perfectly

balanced distribution as expected. We identify a strong correlation between label distribution and

classification performance.

Linguistic Effects Aiming at providing further insights into data quality, we conduct corpus-based

linguistic analysis to investigate lexical richness and semantic similarity.

Lexical Richness

ALPS Active_PETs Active_PETs-o

SciFact_retrieved 0.0362 0.0387 0.0447

cFEVER 0.0389 0.0413 0.0503

Semantic Similarity

ALPS Active_PETs Active_PETs-o

SciFact_retrieved 0.7921 0.8031 0.8054

cFEVER 0.7449 0.7744 0.7841

Table 6.2: Lexical richness is measured with Maas Type-Token Ratio (MTTR) scores and Semantic
Similarity is measured by cosine similarity scores on embeddings of claims and evidences.

Lexical Richness

A popular metric for calculating lexical richness is Type-Token Ratio (TTR), where the total

number of unique tokens is divided by the total number of tokens. We use Maas Type-Token

Ratio (Maas TTR) (Maas, 1972), a logarithmic variant of TTR, which is demonstrated to be less

sensitive to the length of the text (McCarthy and Jarvis, 2007):

a2 =
logN− logV

logN2 (6.2)

where N is the number of tokens in the corpus and V is the number of unique tokens in the corpus.

As shown in the upper part of Table 6.2, data selected by ALPS has the lowest lexical richness,

while Active PETs leads to higher lexical richness for both datasets. Even more surprisingly, when

integrating Active PETs with oversampling, the corpus has even higher score at lexical richness,

despite that there are multiple duplicated instances in the corpus. One possibility is that training



6.6. Summary 99

data with higher lexical richness may convey more useful information, as a bigger vocabulary

enables more precise expressions.

Semantic Similarity

To investigate the overall data diversity, we calculate the average semantic similarity of all

possible claim-evidence pairs in the corpus.3 We obtain embeddings of claims and evidences with

the PLM at interest, namely DeBERTa-large that has been trained on MNLI. For each embedded

claim, we calculate its cosine similarity score with all embedded evidences in the corpus. The

average of all similarity scores is then obtained. The lower part of Table 6.2 shows that ALPS

leads to lowest overall semantic embedding similarity scores and Active PETs leads to higher

scores. Integrated with oversampling, Active PETs leads to even higher similarity scores. It

correlates well with the design of the strategies: ALPS explicitly encourages data diversity, while

Active PETs focuses on committee uncertainty. One possible explanation is that data diversity is

not as beneficial when the unlabelled pool contains less relevant instances: in the case of SciFact

and cFEVER datasets, the majority of the unlabelled pool belongs to the ‘NOT_ENOUGH_INFO’

class where the evidence is not enough to reach a verdict for the claim.

6.6 Summary

In this chapter, we have presented the first study on data annotation prioritisation for claim

verification in automated fact-checking. With our novel method Active PETs, we demonstrate the

potential of utilising a committee of PETs to collaboratively select unlabelled data for annotation,

furthering in turn the extensibility of PET to active learning for the first time. Experiments on the

SciFact and cFEVER datasets demonstrate the effectiveness of our proposed method, particularly

in dealing with imbalanced data. Our proposed model consistently outperforms the random,

BADGE, CAL and ALPS baselines by a margin. Further integration with an oversampling strategy

that does not impact labelling effort leads to consistent performance improvements in all tested

settings. Data that is more balanced shows to have higher lexical richness and semantic similarity,

leading to better training results. While we have shown its effectiveness for claim verification

here, in the future we aim to investigate Active PETs in other downstream tasks.

3Note that if we only calculate the retrieved pairs, the average similarity scores are approximately 1 for
all strategies.
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Chapter 7

Conclusions and Future Directions

Claim verification to support an automated fact-checking pipeline had been extensively studied

when we embarked in this thesis, but there was a significant gap in developing and studying

these models in the challenging settings posed by a few-shot learning scenario where very limited

training data is available for training a model. Motivated by the need to develop claim verification

components with the constraints of limited resources, and enabling the extensibility of automated

fact-checking to new, emerging domains for which labeled data was scarce, this thesis investigated

few-shot claim verification. The thesis aimed to study the extent of applicability of existing claim

verification models, as well as to propose improved solutions to better tackle the problem.

Through this investigation, this study has made substantial contributions to the field of few-

shot claim verification research, primarily in three key directions. First, we introduced SEED,

a scalable few-shot claim verification method that requires no parameter update. Second, we

proposed MAPLE, an efficient method that outperforms LLaMa 2 with only a T5-small model.

And third, we proposed Active PETs, a novel ensemble active learning method facilitating few-shot

data annotation prioritization. Below, we repeat the research questions and present our general

findings to address them comprehensively.

7.1 General Findings

Referring back to the research questions we set forth in the introduction of the thesis, here we

provide our answers based on what we have learned with the work conducted in this thesis.

RQ1: How do the challenges vary between different types of datasets, including domain-
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specific versus more general, and synthetic versus non-synthetic data, as well as different

dataset configurations such as oracle versus retrieved evidence configurations?

In examining the challenges associated with different datasets for few-shot claim verification,

we found that general and synthetic datasets, such as FEVER sourced from the Wikipedia domain

with claims mutated from source text, present fewer obstacles. Conversely, domain-specific

datasets such as SciFact, focused on biomedical research, and Climate FEVER, dedicated to

climate change claims, pose significantly greater challenges. Notably, methods exhibit optimal

performance on the general Wikipedia domain, indicating the lower complexity of verifying

more general claims. However, performance decreases notably when applied to more specialized

domains, emphasizing the higher demands for specialized knowledge and contextual understanding

in these areas.

Furthermore, the comparison between SciFact_oracle and Climate FEVER highlights the

impact of data origin on verification difficulty. Despite both datasets featuring domain-specific

claims, few-shot claim verification methods have higher performance on SciFact_oracle, com-

prised of manually mutated scientific claims, than Climate FEVER, which contains claims scraped

from the web. This discrepancy underscores the challenges presented by real-world data, includ-

ing noise and bias inherent in externally sourced claims. Thus, while synthetic data provides a

controlled environment for verification, real-world data introduces complexity and challenges.

Additionally, the notably poorer performance of few-shot claim verification methods on

the SciFact_retrieved configuration underscores the difficulty of verifying claims with retrieved

noisy evidence. This finding highlights the considerable challenges posed by noisy evidence in

real-world scenarios for automated verification methods.

Overall, the findings underscore the significant challenges posed by specific domains, noisy

claims, and imperfect evidence in few-shot claim verification scenarios.

RQ2: What are the existing and novel few-shot claim verification methods, and how do

they tackle the obstacles presented by scarce annotations, tight annotation budgets, and the

limitations imposed by restricted computing resources?

Throughout this thesis, various few-shot claim verification methods have been introduced

to tackle the challenges posed by limited annotations, tight annotation budgets, and constrained

computing resources. While the Perplexity-based method stands as the sole existing approach in

the few-shot claim verification literature, PET and LLaMA 2 are established few-shot methods
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in the broader NLP community, adapted here for claim verification purposes. Importantly, we

propose three novel methods for claim verification: SEED, MAPLE, and Active PETs.

To overcome the hurdles presented by sparse annotations, stringent annotation budgets, and

limited computing resources, the Perplexity-based method utilizes perplexity scores and manual

thresholds. SEED generates class representative vectors, PET crafts natural language patterns

and verbalizers, while LLaMA 2 enable classifications through prompting. MAPLE leverages

in-domain seq2seq training and explores its convergence process, whereas Active PETs integrate

ensemble-based active learning with PET for overall optimization.

RQ3: What are the comparative strengths and weaknesses of various few-shot claim

verification methods, and which method is most suitable for specific scenarios?

Here we elaborate on the strengths and weaknesses of the aforementioned few-shot claim

verification methods to offer tailored recommendations for various scenarios.

Despite its relatively high interpretability and low computing cost, the Perplexity-based

approach is generally not recommended due to its limitation to binary classification and being

surpassed by various other methods.

Prompting LLaMa 2 requires minimal setup efforts, as many platforms host such models for

customer chatting purposes. However, deploying this method on a large scale would encounter

several challenges: the "no response" problem, high costs, significant demands on computational

resources, limited availability of labeled data, and providing only average performance. It is

advisable for quick prototyping of one-shot scenarios with low expectations for scaling and

long-term use.

SEED stands out for its simplicity: it is conceptually easy to understand, requires minimal

setup, has low computational demands, and scales particularly well for inference tasks. However,

it relies on NLI-trained Pre-trained Language Models (PLMs) and may not achieve the best

performance, especially in one-shot cases. It is recommended for settings with 5-20 shots, where

an NLI-trained PLM is available, and the target domain data is relatively similar to a standard NLI

dataset.

Generally, MAPLE emerges as the best-performing method within five shots and demonstrates

robustness across different dataset domains and configurations. Unlike PET or SEED, it does

not rely on NLI-trained PLMs. However, MAPLE relies on unlabeled data for seq2seq in-

domain training. Although it excels within five shots, its performance does not improve beyond
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this threshold. It is recommended when unlabeled data and some computational resources are

available, and labeled data is extremely limited.

Alternatively, PET is the only method directly suitable for higher-shot scenarios, as it can

learn from hundreds of annotated data points. However, when thousands of labeled data points are

available, PET may not necessarily outperform supervised fine-tuning methods.

The flexibility of PET in learning from higher-shot data is particularly desirable, especially

when the annotation budget is less limiting. In such cases, prioritizing data annotation to optimize

the use of the budget can greatly benefit overall performance. Active PETs effectively merge

ensemble-based active learning with PET to address few-shot claim verification challenges

and achieve significant overall improvements. This approach is particularly effective when the

unlabeled pool exhibits heavily skewed data distribution for three-way claim verification, a

common scenario in real-world fact-checking.

7.2 Limitations and Future Directions

While this thesis presents a collection of innovative contributions to automated fact-checking,

potentials remain to be explored. Here we discuss limitations.

While our research encompasses datasets from multiple domains, it is limited to experiments

conducted on English texts. Recently published datasets have introduced content in other lan-

guages, such as Chinese (Hu et al., 2022b), Danish (Nørregaard and Derczynski, 2021) and Farsi

(Zarharan et al., 2021) and many more (Gupta and Srikumar, 2021), and have expanded to include

multi-modal options, such as tabular (Aly et al., 2021), image (Gupta et al., 2022b) and video

data (Liu et al., 2023). Consequently, the generalizability of our methods to multi-lingual and

multi-modal contexts is yet to be explored and validated.

SEED and MAPLE, specialized for few-shot claim verification, exhibit quick convergence,

making them suitable for specific scenarios. However, further research is needed to extend their

applicability to higher-shot settings. Active PETs, successfully proposing an ensemble method on

pretrained language models of similar size, face challenges to include models of varying size in

the same committee with its current voting mechanism.

While the focus of this thesis is on proposing models based on BERT-sized models for

accessibility and scalability, future work could explore the temporary inclusion of LLMs to harness

their capabilities and apply techniques such as knowledge distillation and model quantization, to
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reduce the model size for long-term deployment. Apart from these specific extensions mentioned,

we also propose a few board directions to inspire future work below.

7.2.1 Unified Benchmark for Automated Fact-Checking

The evolving landscape of misinformation necessitates a unified benchmark for automated fact-

checking that is both comprehensive and adaptable to the diverse nature of claims encountered

across different spheres of information. A benchmark with a multi-domain, multi-lingual, and

multi-modal approach addresses this need by accommodating the wide spectrum of misinformation

that proliferates across various subject matters, languages, and formats. Such a benchmark would

not only support the evaluation of fact-checking systems in a more global context but also ensure

that these systems are robust and versatile enough to handle the complexity of information as it

exists in the real world. By covering a broad range of data types and sources, this benchmark

would push the boundaries of current fact-checking methodologies, encouraging advancements

that are capable of tackling the nuanced and varied nature of false information.

Building on the foundation of a multi-faceted benchmark, it is crucial to enhance the in-

tegration of claim detection and claim validation processes, focusing on the concept of claim

checkworthiness as a measure of societal impact. This approach proposes a tighter integrity

between the two fundamental components of automated fact-checking, ensuring that the systems

not only identify potentially misleading claims but also prioritize them based on their significance

and potential impact on society. By utilizing the checkworthiness of claims to evaluate the ef-

fectiveness of a claim validation system, this integrated benchmark aims to direct fact-checking

resources more efficiently, focusing efforts on claims that, if left unverified, could have detrimental

effects on public understanding and discourse. Such an integrated approach underscores the

importance of not just detecting and validating claims in isolation but doing so in a manner that

reflects the real-world implications and priorities of fact-checking in the digital age.

7.2.2 Claim Verification-Centered System Design for Automated Fact-Checking

The task of evidence retrieval can be fulfilled with a rough retriever and a classifier, as demonstrated

by the QMUL@SciVer study in Appendix A. Given that a claim verification model is essentially a

NLI model that does three-way classification, it is plausible to design a claim validation system

centered on a scalable claim verification model. For example, train a NLI model with carefully

designed sampling strategy on a claim validation dataset and use it to directly run inference on



106 Chapter 7. Conclusions and Future Directions

every candidate evidence in the corpus to get the veracity label. Such simplified system design

has better integrity and does not experience accumulated errors in a pipeline system. Another

potential direction is to use the training data inversely: first training a claim verification model

with oracle evidence; then use it as a reward model to train an evidence retrieval model with

reinforcement learning such that the retrieved evidence module is optimized for the downstream

claim verification module. We believe a more robust system design with better integrity would be

greatly beneficial to the overall performance.

7.2.3 Human and Model Collaborative Workflow

Active PETs demonstrates using models to help with data annotation prioritization in experimental

settings. It would be great to deploy such active learning functionality in real-world fact-checking

practices. While active learning focuses on selecting the best data out of the unlabeled pool, the

best data is not necessarily in the pool but may be generatable given the pool. An interesting

direction is to extend the scope of active learning from a selecting/ranking problem to a generative

problem. For example, after top-k samples are selected, we can incorporate an additional step to

cluster and summarise the top-k samples into just fewer samples to reduce the annotation workload.

Another possibility is to use data augmentation techniques to populate out the top-k selected

samples, which can then be used as an extension of the selected samples to do more fine-grained

data selection or as additional training data for the current iteration with labels inherited from

the top-k samples. The extended workflow could include selecting, summarising, annotating,

populating, and training, using various NLP methods.

Alternatively, when training a capable system to conduct automated fact-checking is out of

the scope due to limited time, resources, and applications, a system that co-inference with input

from a human worker would also be helpful. For example, if a fact-checking organization tends to

have five fact-checkers examining the same claim, we may reduce the number to three when an

automated fact-checking system confirms the human judgments in the early stages. Otherwise,

deploying a double-checking system on human judgments would also provide valuable help. A

collaborative framework between human workers and models would have great contributions to

leveraging the strengths of both for enhanced efficiency and trust.



7.3. Summary 107

7.2.4 Beyond Automated Fact-Checking

Adapting MAPLE into an Evaluation Metric While proposing MAPLE, we introduced SemSim

as an NLG evaluation metric. Meanwhile, considering its unique capabilities in few-shot claim

verification, MAPLE itself also has great potential as a general NLG evaluation metric, either

unsupervised or with few-shot supervision. The exploration of adapting MAPLE into an evaluation

metric for broader applications is promising.

Applying Claim Verification to LLM Performance Evaluation Though automated fact-checking

was proposed to primarily address online misinformation problems, it is directly transferable to

be applied to model hallucination detection for Gen AI. Current mainstream Gen AI inference

framework uses RAG, which first retrieves relevant information from a given corpus, and then

generates responses based on the revised prompt. We can simply treat the retrieved information by

RAG as the evidence and the generated response as the claim, and run a claim verification model

on the pair. Given the growing public concerns about AI safety, it would be beneficial to the NLP

community to include claim verification as part of standard LLM performance evaluation.

7.3 Summary

In this chapter, we have addressed the research questions by presenting our findings and have

outlined limitations and future directions for few-shot claim verification research.

We have emphasized the challenges posed by specific domains, noisy claims, and imperfect

evidence in real-world scenarios. Our analysis has revealed that general and synthetic datasets,

such as FEVER, pose fewer challenges compared to domain-specific and more natural datasets

such as SciFact and Climate FEVER. Additionally, verifying claims with retrieved noisy evidence,

especially in configurations like SciFact_retrieved, has proven to be significantly more challenging

for automated methods.

Furthermore, we have provided an overview of the introduced few-shot claim verification

methods, including the Perplexity-based method, PET, LLaMA 2, SEED, MAPLE, and Active

PETs. Insights into the strengths and weaknesses of these methods have been provided. SEED is

recommended for 5-20 shots, MAPLE has demonstrated robustness within five shots, and Active

PETs are suitable for combining data annotation prioritization. Various other baseline methods

also have their optimal use cases.

Looking forward, we also outlined potential future research directions, including the construc-
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tion of unified benchmark for automated fact-checking, the development of claim verification-

centered system designs for automated fact-checking and the exploration of human-model collab-

orative workflows. Furthermore, we discussed the potential adaptation of MAPLE into a general

NLG evaluation metric and applying claim verification to LLMs evaluations.

In summary, our findings offer valuable insights into the intricate landscape of few-shot claim

verification research, shedding light on both the challenges and opportunities inherent in this

domain. By meticulously exploring the nuances of various datasets and dataset configurations, as

well as scrutinizing the performance of established and novel few-shot claim verification methods,

we have uncovered crucial factors influencing the effectiveness of automated fact-checking

systems. These insights not only deepen our understanding of the complexities involved but also

lay the groundwork for future advancements in automated fact-checking and natural language

processing. Through continued exploration and innovation, we can further refine and optimize

few-shot claim verification methodologies, ultimately enhancing the automated fact-checking

systems in combating misinformation in the digital age.
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Hung, and Simone Paolo Ponzetto. 2022a. Levirank: Limited query expansion with voting

integration for document retrieval and ranking. In CEUR Workshop Proceedings, pages 3074–

3089.

Ashish Rana, Deepanshu Khanna, Tirthankar Ghosal, Muskaan Singh, Harpreet Singh, and

Prashant Singh Rana. 2022b. RerrFact: Reduced Evidence Retrieval Representations for

Scientific Claim Verification. ArXiv preprint, abs/2202.02646.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese

BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language Process-

ing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational

Linguistics.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike

Gatford. 1994. Okapi at TREC-3. In Proceedings of the third text REtrieval conference,

volume 500-225 of NIST special publication, pages 109–126. National Institute of Standards

and Technology (NIST).

Arkadiy Saakyan, Tuhin Chakrabarty, and Smaranda Muresan. 2021. COVID-fact: Fact extraction

and verification of real-world claims on COVID-19 pandemic. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2116–2129,

Online. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter. ArXiv.

Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin Choi, and Dan Roth. 2020. Commonsense

reasoning for natural language processing. In Proceedings of the 58th Annual Meeting of the As-

sociation for Computational Linguistics: Tutorial Abstracts, pages 27–33, Online. Association

for Computational Linguistics.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry, and Joonsuk Park. 2020. Automated

fact-checking of claims from Wikipedia. In Proceedings of the 12th Language Resources and

http://ceur-ws.org/Vol-3180/#paper-259
http://ceur-ws.org/Vol-3180/#paper-259
https://arxiv.org/abs/2202.02646
https://arxiv.org/abs/2202.02646
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2020.acl-tutorials.7
https://doi.org/10.18653/v1/2020.acl-tutorials.7
https://aclanthology.org/2020.lrec-1.849
https://aclanthology.org/2020.lrec-1.849


126 Bibliography

Evaluation Conference, pages 6874–6882, Marseille, France. European Language Resources

Association.

Timo Schick and Hinrich Schütze. 2021a. Exploiting cloze-questions for few-shot text classifica-

tion and natural language inference. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume, pages 255–269,

Online. Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just size that matters: Small language models

are also few-shot learners. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 2339–2352, Online. Association for Computational Linguistics.

Christopher Schröder, Andreas Niekler, and Martin Potthast. 2022. Revisiting Uncertainty-based

Query Strategies for Active Learning with Transformers. In Findings of the Association for

Computational Linguistics: ACL 2022, pages 2194–2203, Dublin, Ireland. Association for

Computational Linguistics.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021. Get your vitamin C! robust fact verification

with contrastive evidence. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 624–643, Online. Association for Computational Linguistics.

Thomas C. Scott-Phillips and Simon Kirby. 2010. Language evolution in the laboratory. Trends

in Cognitive Sciences, 14(9):411–417.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for

text generation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 7881–7892, Online. Association for Computational Linguistics.

Prithviraj Sen, Marina Danilevsky, Yunyao Li, Siddhartha Brahma, Matthias Boehm, Laura

Chiticariu, and Rajasekar Krishnamurthy. 2020. Learning explainable linguistic expressions

with neural inductive logic programming for sentence classification. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

4211–4221, Online. Association for Computational Linguistics.

https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.1016/j.tics.2010.06.006
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.345
https://doi.org/10.18653/v1/2020.emnlp-main.345


127

Burr Settles. 2009. Active Learning Literature Survey. Technical Report, University of Wisconsin-

Madison Department of Computer Sciences. Accepted: 2012-03-15T17:23:56Z.

Burr Settles. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning. Springer International Publishing, Cham.

H. S. Seung, M. Opper, and H. Sompolinsky. 1992. Query by committee. In Proceedings of the

fifth annual workshop on Computational learning theory, COLT ’92, pages 287–294, New

York, NY, USA. Association for Computing Machinery.

Shaden Shaar, Nikolay Babulkov, Giovanni Da San Martino, and Preslav Nakov. 2020a. That is a

known lie: Detecting previously fact-checked claims. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 3607–3618, Online. Association for

Computational Linguistics.

Shaden Shaar, Alex Nikolov, Nikolay Babulkov, Firoj Alam, Alberto Barrón-Cedeño, Tamer

Elsayed, Maram Hasanain, Reem Suwaileh, Fatima Haouari, Giovanni Da San Martino, and

Preslav Nakov. 2020b. Overview of checkthat! 2020 english: Automatic identification and

verification of claims in social media. In Conference and Labs of the Evaluation Forum.

Baoxu Shi and Tim Weninger. 2016. Discriminative predicate path mining for fact checking in

knowledge graphs. Know.-Based Syst., 104(C):123–133.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news detection on

social media: A data mining perspective. SIGKDD Explor. Newsl., 19(1):22–36.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical networks for few-shot

learning. In Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,

pages 4077–4087.

Dominik Stammbach and Elliott Ash. 2020. e-fever: Explanations and summaries forautomated

fact checking. In Conference for Truth and Trust Online.

Shane Storks, Qiaozi Gao, and Joyce Y. Chai. 2019. Commonsense Reasoning for Natural Lan-

guage Understanding: A Survey of Benchmarks, Resources, and Approaches. arXiv:1904.01172

[cs]. ArXiv: 1904.01172 version: 1.

https://minds.wisconsin.edu/handle/1793/60660
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1145/130385.130417
https://doi.org/10.18653/v1/2020.acl-main.332
https://doi.org/10.18653/v1/2020.acl-main.332
https://api.semanticscholar.org/CorpusID:225073877
https://api.semanticscholar.org/CorpusID:225073877
https://doi.org/10.1016/j.knosys.2016.04.015
https://doi.org/10.1016/j.knosys.2016.04.015
https://doi.org/10.1145/3137597.3137600
https://doi.org/10.1145/3137597.3137600
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://api.semanticscholar.org/CorpusID:226239683
https://api.semanticscholar.org/CorpusID:226239683
http://arxiv.org/abs/1904.01172
http://arxiv.org/abs/1904.01172


128 Bibliography

Zafar Habeeb Syed, Michael Röder, and Axel-Cyrille Ngonga Ngomo. 2019. Unsupervised

Discovery of Corroborative Paths for Fact Validation. In The Semantic Web – ISWC 2019,

Lecture Notes in Computer Science, pages 630–646, Cham. Springer International Publishing.

Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. 2021.

Improving and Simplifying Pattern Exploiting Training. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, pages 4980–4991, Online and Punta

Cana, Dominican Republic. Association for Computational Linguistics.

Marta Tatu and Dan Moldovan. 2007. COGEX at RTE 3. In Proceedings of the ACL-PASCAL

Workshop on Textual Entailment and Paraphrasing, pages 22–27, Prague. Association for

Computational Linguistics.

James Thorne and Andreas Vlachos. 2018. Automated fact checking: Task formulations, methods

and future directions. In Proceedings of the 27th International Conference on Computational

Linguistics, pages 3346–3359, Santa Fe, New Mexico, USA. Association for Computational

Linguistics.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018a. FEVER: a

large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana.

Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos, and Arpit Mittal.

2018b. The fact extraction and VERification (FEVER) shared task. In Proceedings of the

First Workshop on Fact Extraction and VERification (FEVER), pages 1–9, Brussels, Belgium.

Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos, and Arpit Mittal.

2019. The FEVER2.0 shared task. In Proceedings of the Second Workshop on Fact Extraction

and VERification (FEVER), pages 1–6, Hong Kong, China. Association for Computational

Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas

https://doi.org/10.1007/978-3-030-30793-6_36
https://doi.org/10.1007/978-3-030-30793-6_36
https://doi.org/10.18653/v1/2021.emnlp-main.407
https://aclanthology.org/W07-1404
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/W18-5501
https://doi.org/10.18653/v1/D19-6601


129

Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,

Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony

Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-

haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi

Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,

Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,

Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:

Open foundation and fine-tuned chat models.

Andreas Vlachos and Sebastian Riedel. 2014. Fact checking: Task definition and dataset construc-

tion. In Proceedings of the ACL 2014 Workshop on Language Technologies and Computational

Social Science, pages 18–22, Baltimore, MD, USA. Association for Computational Linguistics.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan,

and Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying scientific claims. In Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

7534–7550, Online. Association for Computational Linguistics.

David Wadden, Kyle Lo, Lucy Lu Wang, Arman Cohan, Iz Beltagy, and Hannaneh Hajishirzi.

2022. MultiVerS: Improving scientific claim verification with weak supervision and full-

document context. In Findings of the Association for Computational Linguistics: NAACL 2022,

pages 61–76, Seattle, United States. Association for Computational Linguistics.

Nancy X. R. Wang, Diwakar Mahajan, Marina Danilevsky, and Sara Rosenthal. 2021. SemEval-

2021 task 9: Fact verification and evidence finding for tabular data in scientific documents (SEM-

TAB-FACTS). In Proceedings of the 15th International Workshop on Semantic Evaluation

(SemEval-2021), pages 317–326, Online. Association for Computational Linguistics.

William Yang Wang. 2017. “liar, liar pants on fire”: A new benchmark dataset for fake news

detection. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 422–426, Vancouver, Canada. Association for

Computational Linguistics.

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.3115/v1/W14-2508
https://doi.org/10.3115/v1/W14-2508
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067


130 Bibliography

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus

for sentence understanding through inference. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana. Association

for Computational Linguistics.

Evan Williams, Paul Rodrigues, and Valerie Novak. 2020. Accenture at CheckThat! 2020: If you

say so: Post-hoc fact-checking of claims using transformer-based models. arXiv:2009.02431

[cs]. ArXiv: 2009.02431.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,

Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick

von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,

Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. HuggingFace’s Transformers:

State-of-the-art Natural Language Processing. arXiv:1910.03771 [cs]. ArXiv: 1910.03771.

Dustin Wright and Isabelle Augenstein. 2020. Claim check-worthiness detection as positive

unlabelled learning. In Findings of the Association for Computational Linguistics: EMNLP

2020, pages 476–488, Online. Association for Computational Linguistics.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-Graber. 2020. Cold-start active learning through

self-supervised language modeling. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 7935–7948, Online. Association for

Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021. BARTScore: Evaluating Generated Text

as Text Generation. In Advances in Neural Information Processing Systems, volume 34, pages

27263–27277. Curran Associates, Inc.

Fabio massimo Zanzotto, Marco Pennacchiotti, and Alessandro Moschitti. 2009. A machine

learning approach to textual entailment recognition. Nat. Lang. Eng., 15(4):551–582.

Majid Zarharan, Mahsa Ghaderan, Amin Pourdabiri, Zahra Sayedi, Behrouz Minaei-Bidgoli,

Sauleh Eetemadi, and Mohammad Taher Pilehvar. 2021. ParsFEVER: a dataset for Farsi fact

extraction and verification. In Proceedings of *SEM 2021: The Tenth Joint Conference on

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://arxiv.org/abs/2009.02431
http://arxiv.org/abs/2009.02431
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2020.findings-emnlp.43
https://doi.org/10.18653/v1/2020.findings-emnlp.43
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
https://doi.org/10.1017/S1351324909990143
https://doi.org/10.1017/S1351324909990143
https://doi.org/10.18653/v1/2021.starsem-1.9
https://doi.org/10.18653/v1/2021.starsem-1.9


131

Lexical and Computational Semantics, pages 99–104, Online. Association for Computational

Linguistics.

Xia Zeng, Amani S. Abumansour, and Arkaitz Zubiaga. 2021. Automated fact-

checking: A survey. Language and Linguistics Compass, 15(10):e12438. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/lnc3.12438.

Xia Zeng and Arkaitz Zubiaga. 2021. QMUL-SDS at SCIVER: Step-by-step binary classification

for scientific claim verification. In Proceedings of the Second Workshop on Scholarly Document

Processing, pages 116–123, Online. Association for Computational Linguistics.

Xia Zeng and Arkaitz Zubiaga. 2022. Aggregating pairwise semantic differences for few-shot

claim verification. PeerJ Computer Science, 8:e1137. Publisher: PeerJ Inc.

Xia Zeng and Arkaitz Zubiaga. 2023. Active PETs: Active Data Annotation Prioritisation for

Few-Shot Claim Verification with Pattern Exploiting Training. In Findings of the Association

for Computational Linguistics: EACL 2023, pages 190–204, Dubrovnik, Croatia. Association

for Computational Linguistics.

Xia Zeng and Arkaitz Zubiaga. 2024. MAPLE: Micro analysis of pairwise language evolution

for few-shot claim verification. In Findings of the Association for Computational Linguistics:

EACL 2024, pages 1177–1196, St. Julian’s, Malta. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. Bertscore:

Evaluating text generation with BERT. In 8th International Conference on Learning Represen-

tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Zhiwei Zhang, Jiyi Li, Fumiyo Fukumoto, and Yanming Ye. 2021. Abstract, Rationale, Stance:

A Joint Model for Scientific Claim Verification. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, pages 3580–3586, Online and Punta Cana,

Dominican Republic. Association for Computational Linguistics.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. 2018. Detection

and resolution of rumours in social media: A survey. ACM Comput. Surv., 51(2).

https://doi.org/10.1111/lnc3.12438
https://doi.org/10.1111/lnc3.12438
https://doi.org/10.18653/v1/2021.sdp-1.15
https://doi.org/10.18653/v1/2021.sdp-1.15
https://doi.org/10.7717/peerj-cs.1137
https://doi.org/10.7717/peerj-cs.1137
https://aclanthology.org/2023.findings-eacl.14
https://aclanthology.org/2023.findings-eacl.14
https://aclanthology.org/2024.findings-eacl.79
https://aclanthology.org/2024.findings-eacl.79
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2021.emnlp-main.290
https://doi.org/10.18653/v1/2021.emnlp-main.290
https://doi.org/10.1145/3161603
https://doi.org/10.1145/3161603


132



133

Appendix A

Preliminary Study: QMUL@SCIVER

A.1 Introduction

Abstract Retrieval

Rationale Selection

Label Prediction

claim c

Top K abstracts

Identified abstracts

Identified rationales

"Enough_Info" classification verdict NOT _ENOUGH_INFO

"SUPPORTS" classification

verdict SUPPORT S

verdict REFUT ES

TF-IDF similarity ranking

BioBERT abstract classification

BioBERT rationale classification

negative
positive

positive
negative

Figure A.1: Overview of our step-by-step binary classification system.

As online content continues to grow at an unprecedented rate, the spread of false information

online increases the potential of misleading people and causing harm. Where the volume of
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information shared online is difficult to be managed by human fact-checkers, this leads to an

increasing demand on automated fact-checking, which is formulated by researchers as ‘the

assignment of a truth value to a claim made in a particular context’(Vlachos and Riedel, 2014).

Though a body of research focuses on conducting fact-checking in the politics domain,

scientific claim verification has also gained increasing interest in the context of the ongoing

COVID-19 pandemic. The SCIVER shared task provides a valuable benchmark to build and

evaluate systems performing scientific claim verification. Given a scientific claim and a corpus

of over 5000 abstracts, the task consists in (i) identifying abstracts relevant to the claim, (ii)

delving into the abstracts to select evidence sentences relevant to the claim, and (iii) subsequently

predicting claim veracity.

This chapter presents and analyses team QMUL-SDS’s participation in the SCIVER shared

task. In particular, we explore creative approaches of solving the challenge with limited resources.

Figure A.1 provides an overview of our system. Given claim c, our system first retrieves top K

TF-IDF similarity abstracts out of the corpus, then uses a BioBERT binary classifier to further

identify desired abstracts on top of that. With retrieved abstracts, our system then uses another

BioBERT binary classifier to select rationales. We finally do label prediction in a two-step fashion,

i.e. first make verdicts on “ENOUGH_INFO” or not and, if positive, then make verdicts on

“SUPPORTS” or not. While many other systems make use of external datasets, e.g. FEVER

(Thorne et al., 2018a), our system focuses on efficient use of the SciFact dataset (Wadden et al.,

2020). Furthermore, in the interest of keeping the efficiency of our system, we limit our model

choices to the size of RoBERTa-large (Liu et al., 2019), ruling out for example GPT-3 (Brown

et al., 2020) and T5 (Raffel et al., 2020), which were used in other participating systems. More

specifically, our system mainly uses RoBERTa (Liu et al., 2019) and BioBERT (Lee et al., 2020).

The latter is pre-trained on biomedical text and therefore is very close to our target domain. With

improved pipeline design, our system shows competitive performance with limited computing

resources, achieving the 6th position in the task and ranked 4th when distinct teams are considered

at the time. 1

1Code and models are available here.

https://github.com/XiaZeng0223/sciverbinary.git
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A.2 Related Work

Several approaches have been proposed to perform scientific claim verification in the three-step

settings proposed in SCIVER.

Upon publication of the SciFact dataset (Wadden et al., 2020), the authors introduced VERISCI

as a baseline system. It is a pipeline with three modules: abstract retrieval, rationale selection

and label prediction. The abstract retrieval module returns the top K highest-ranked abstracts

determined by the TF-IDF similarity between each abstract and the claim at hand. The rationale

selection module trains a RoBERTa-large model to compute relevance scores with a sigmoid func-

tion and then selects sentences whose relevance scores are higher than the threshold T . The label

prediction module trains a RoBERTa-large model to do three-way classification regarding sentence-

pairs, where the candidate labels are "SUPPORTS", "REFUTES" and "NOT_ENOUGH_INFO".

Empirically the system set the K value to 3 and the T value to 0.5. Due to its inspiring design,

reasonable performance and good efficiency, in this chapter we take VERISCI system as our

baseline.

After the publication of the SciFact dataset, several approaches have been published, some of

which chose to participate in the SCIVER shared task. We next discuss the top 3 ranked entries.

The VERT5ERINI system (Pradeep et al., 2021) ranked 1st on the leaderboard. This system

first retrieves a shortlist of top 20 abstracts by using the BM25 ranking score (Robertson et al.,

1994), which is then fed into a T5 model to rerank and retrieve the top 3 abstracts; it then trains

a T5 model to calculate relevance scores for each sentence, on which a threshold of 0.999 is

applied to select rationales; it finally trains a T5 model to do three-way classification for predicting

labels. This system has demonstrated the performance advantages of using T5, a model that is

substantially bigger than other language models.

The ParagraphJoint system (Li et al., 2021) ranked 2nd on the leaderboard. It first uses

BioSentVec (Chen et al., 2019a) to retrieve the top K abstracts and then jointly trains a RoBERTa-

large model to do rationale selection and label prediction in a multi-task learning setting. The

system is first trained on the FEVER dataset and then trained on SciFact dataset. Its application of

multi-task learning techniques proved to be very successful and inspires further research in this

direction.

The team who ranked 3rd on the leaderboard, Law & Econ (Stammbach and Ash, 2020), fine-

tuned their e-FEVER system on SciFact dataset, which requires usage of GPT-3 and training on
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FEVER dataset. Despite the big difference on model sizes, our system achieves close performance

to the e-FEVER system on the leaderboard.

A.3 Approach

Following the convention of automated fact-checking systems (Thorne et al., 2018a) and the

VERISCI baseline system, we explore novel ways of tackling the challenge by handling the three

subtasks: abstract retrieval, rationale selection and label prediction.

A.3.1 Abstract Retrieval

Abstract retrieval is the task of retrieving relevant abstracts that can support the prediction of a

claim’s veracity. Inspired by the baseline system, which retrieves the top K (K = 3) abstracts

with the highest TF-IDF similarity to the claim, initially we attempted a similar method with a

state-of-the-art similarity metric, i.e., BERTscore (Zhang et al., 2020). It computes token similarity

using BERT-based contextual embeddings. However, the results we achieved were not satisfactory

and was ruled out in subsequent experiments.

Instead of completely relying on available metrics, we investigated performing abstract

retrieval in a supervised manner. In contrast to previous work (Pradeep et al., 2021) which

performed reranking, we formulate it as a binary classification problem. We first empirically limit

the corpus to the top 30 abstracts with highest TF-IDF similarity to the claim. We fine-tuned

a BioBERT model (Lee et al., 2020) with a linear classification head, which we name as the

BioBERT classifier thereafter, to do binary classification on the top 30 TF-IDF abstracts, i.e.

predicting whether the abstract at hand is correctly identified for the claim at hand given the

pairwise input <claim c, title t of the abstract>. Due to the input length limits of BERT models,

we only use the title of the abstract at this stage, assuming that the title represents a good summary

of the abstract.

A.3.2 Rationale Selection

Rationale Selection is the task of selecting rationale sentences out of the retrieved abstracts. To

avoid manually tuning the threshold on various settings like the baseline system, we address the

problem as a binary classification task in a very similar manner to the last step. We continued

training the BioBERT classifier inherited from the abstract retrieval step to do rationale selection,

i.e. making binary predictions on whether the sentence at hand is correctly identified for the claim
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at hand given sentence pair <claim c, sentence s>. As our classifier model only outputs binary

predictions with its linear head on individual sentence pair cases, there is no need to apply various

ranking thresholds. Aiming to achieve better overall pipeline performance, our models are trained

on abstracts retrieved in the first step, rather than oracle abstracts.

A.3.3 Label Prediction

Label prediction is the task of predicting the veracity label given the target claim and rationale

sentences selected in the preceding step of the pipeline. A good selection of relevant abstracts and

rationales therefore is vital in the capacity of the veracity label prediction system.

The baseline system we initially implemented trained a RoBERTa-large model to do three-

way classification into one of “NOT_ENOUGH_INFO”, “SUPPORTS” and “REFUTES”. We

observed that, while the model was in general fairly accurate, it performed poorly in predicting

the "REFUTES" class due to the scarcity of training data pertaining to this class. However, it is

known that claims belonging to the “REFUTES” class are particularly difficult to collect, and that

automated fact-checking datasets tend to create them synthetically by manually mutating naturally

occurring claims originally pertaining to the “SUPPORTS” class (Thorne et al., 2018a; Wadden

et al., 2020; Sathe et al., 2020). With the aim of improving model performance on this class

without using extra data, we try to decrease wrong predictions accumulated by wrong predictions

on the other labels. For instance, the model may predict a claim to be “NOT_ENOUGH_INFO”

while it should be “REFUTES”, which makes it a false positive for the “NOT_ENOUGH_INFO”

class and a true negative for the “REFUTES” class. If the model has better performance on the

“NOT_ENOUGH_INFO” predictions, it would in turn help the performance on the “REFUTES”

class.

Hence, we explore label prediction within a two-step setting. First, we merge claims from the

“SUPPORTS” and “REFUTES” classes as “ENOUGH_INFO”. With this altered dataset, we train

a RoBERTa-large model as a neutral detector to do binary classification into “ENOUGH_INFO”

or “NOT_ENOUGH_INFO”. Second, we merge data from “NOT_ENOUGH_INFO” and “RE-

FUTES” to be “NOT_SUPPORTS” and train another RoBERTa-large model as a support detector

to do binary classification on “SUPPORTS” or “NOT_SUPPORTS”. Finally, when doing predic-

tions, we first use the neutral detector to predict “ENOUGH_INFO” or “NOT_ENOUGH_INFO”

and only if the first prediction is “ENOUGH_INFO” we use the support detector to predict

“SUPPORTS” or “NOT_SUPPORTS”. We take “NOT_SUPPORTS” instances as equivalent to
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“REFUTES” instances in the three-way classification.

A.4 Results

We perform various experiments on the SciFact dataset to identify the best models and techniques

to be submitted to the task. Unless explicitly specified, models are trained on the SciFact’s train

set and evaluated on the SciFact’s dev set.

A.4.1 Abstract Retrieval

We limit the candidate abstracts to the top 30 with the highest TF-IDF similarity scores, as this

setting achieves a high recall of 91.39%. With our binary classification method, we experimented

with BioBERT models that are pre-trained on close domain texts (Lee et al., 2020). To explore

the potentials of adapting pre-trained language models to the current settings, we also conducted

task adaptive pre-training (Gururangan et al., 2020) on the SciFact corpus with BioBERT-base for

50 epochs with batch size 1, which leads to a final perplexity of 2.68. This parameter choice is

made primarily based on our limited time and computational resources for the SCIVER shared

task participation. Further extensive exploration may lead to interesting results. This model is

denoted as BioBERT-base*.

Table A.1 reports performance of the baseline, BioBERT-base, BioBERT-base* and BioBERT-

large models on abstract retrieval. The baseline directly retrieves the top 3 abstracts with highest

TF-IDF similarity, which is also the method used in the VERISCI system (Wadden et al., 2020).

We also report abstract level pipeline performance with baseline rationale selector and baseline

label predictor to demonstrate its substantial impact on pipeline performance.

Our method achieves noticeable improvements over the baseline by largely decreasing the false

positive rate. More specifically, BioBERT-base has the highest precision score, BioBERT-base*

has highest F1 score and BioBERT-large has the highest recall score. With increased model size,

BioBERT-large has gained significant improvements on recall but suffers with a precision drop

compared to BioBERT-base and BioBERT-base*, which may suggest model underfitting. Overall

our approach leads to an approximate 10% increase over the baseline approach on abstract level

downstream performance.
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Abstract Retrieval

Method P R F1

Baseline 16.22 69.86 26.33

BioBERT-base 83.23 64.11 72.43

BioBERT-base* 81.61 67.94 74.15

BioBERT-large 62.75 74.16 67.98

Downstream Performance

Abstract Level Label Only

Method P R F1

Baseline 56.42 48.33 52.06

BioBERT-base 84.30 48.80 61.82

BioBERT-base* 84.92 51.20 63.88

BioBERT-large 79.71 52.63 63.40

Abstract Level Label + Rationale

Method P R F1

Baseline 54.19 46.41 50.00

BioBERT-base 81.82 47.37 60.00

BioBERT-base* 82.54 49.76 62.09

BioBERT-large 76.81 50.72 61.10

Table A.1: Comparison of abstract retrieval methods on the dev set of SciFact.

A.4.2 Rationale Selection

In order to improve the overall design of the system, we trained our rationale selection models

with abstracts retrieved by our abstract retrieval module rather than oracle abstracts. We use

abstracts retrieved by BioBERT-large due to its highest recall score. In this step, we experiment

with our binary classification approach to identify rationale sentences from retrieved abstracts for

the claim at hand. Given a sentence-pair <claim c, sentence s>, the model, which was trained to

do abstract selection in last step, is now trained to predict whether the sentence at hand is correctly

identified for the claim at hand.

Table A.2 reports results of the baseline, BioBERT-base, BioBERT-base* and BioBERT-large

models on rationale selection. We also present sentence level pipeline performance with oracle
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Sentence Selection

Method P R F1

Baseline 64.99 70.49 67.63

BioBERT-base 77.97 62.84 69.59

BioBERT-base* 74.38 65.03 69.39

BioBERT-large 77.08 63.39 69.57

Downstream Performance

Sentence Level Selection Only

Method P R F1

Baseline 74.48 59.02 65.85

BioBERT-base 83.81 56.56 67.54

BioBERT-base* 80.84 57.65 67.30

BioBERT-large 80.75 58.47 67.83

Sentence Level Selection + Label

Method P R F1

Baseline 66.90 53.01 59.15

BioBERT-base 74.90 50.55 60.36

BioBERT-base* 72.41 51.64 60.29

BioBERT-large 72.08 52.19 60.54

Table A.2: Comparison of rationale selection methods on the dev set of SciFact.

citepd abstracts 2 and baseline label predictor.

Our method leads to an increase in precision score, a small decrease in recall score and a small

increase in F1 score. Interestingly, the three BioBERT variants don’t show clear performance

differences, despite substantial differences in model sizes. A small improvement on downstream

sentence-level performance is achieved overall.

2It includes abstracts that are of "SUPPORTS", "REFUTES" and "NOT_ENOUGH_INFO" relations to
the claims’ veracity. It is also referred as oracle abstracts with NOT_ENOUGH_INFO (NEI) setting in
SciFact dataset paper.
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A.4.3 Label Prediction

For label prediction, we use the two-step approach that leverages RoBERTa-large as described

in §A.3.3. This approach is denoted as TWO-STEP thereafter. Table A.3 reports performance

results for the label prediction task with oracle citepd abstracts and oracle rationales. The baseline

is the RoBERTa-large three-way classifier used on VERISCI. Our TWO-STEP method leads to

a 4% increase in accuracy, macro-F1 and weighted-F1 over the baseline. We further present

confusion matrices for each system for analysis, where R stands for “REFUTES”, N stands for

“NOT_ENOUGH_INFO” and S stands for “SUPPORTS”. As the confusion matrix shows, our

method successfully improves the overall predictions on the “REFUTES” class without leveraging

extra data.

Furthermore, Table A.4 reports results on the abstract-level label prediction with various

settings of upstream modules. Interestingly, both methods show noticeably decreased performance

when given an evidence of lower quality. From the oracle evidence to the evidence retrieved

by our system, the baseline module’s F1 performance dropped by 19.70% and the TWO-STEP

module dropped by 20.26% in absolute values; from the oracle evidence to the evidence retrieved

by the baseline system, the baseline module’s F1 score dropped by 30.14% and the TWO-STEP

module dropped by 37.26% in absolute values.

Despite that, our TWO-STEP method always outperforms the baseline method when given

improved evidence. Its F1 score is 2.02% - 2.58% higher than the baseline on improved evidence

retrieval settings. When given oracle citepd abstracts and oracle rationales, our method achieves

84.78% F1 score.

A.4.4 Full Pipeline

Table A.5 reports full pipeline performance on the SciFact dev set. The baseline is the VERISCI

system. We compare pipeline systems with different evidence retrieval models, i.e., BioBERT-

base, BioBERT-base* and BioBERT-large, combined with the two-step label predictor using

RoBERTa-large.

Overall our system achieves substantial improvements over the baseline. Across the evaluation

metrics, our precision scores are 15.75%-23.37% higher than the baseline system, recall scores

are 3.82%-14.21% higher and F1 scores are 10.11%-16.08% higher than the baseline in terms of

absolute values. Interestingly, BioBERT-base obtains the highest precision score, BioBERT-base*
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Label Prediction Performance

Method Accuracy Macro-F1 Weighted-F1

Baseline 81.93 80.19 81.85

TWO-STEP 85.98 84.69 85.84

Confusion Matrix of Baseline

R N S

R 47 17 7

N 6 104 2

S 8 18 112

Confusion Matrix of TWO-STEP

R N S

R 53 7 11

N 2 107 3

S 12 10 116

Table A.3: Comparison of label prediction methods with oracle citepd abstracts and oracle
rationales.

the highest recall score and BioBERT-large the highest F1 for most of metrics.

Table A.6 compares full pipeline performance on SciFact test set with models trained on

the combination of SciFact train set and dev set. OURSYSTEM uses BioBERT-large for abstract

retrieval and rationale selection with two-step label prediction, all trained on trained set and dev

set. We used BioBERT-large evidence selector and two-step label predictor as our system due to

its overall best performance. This submission ranked No. 6 on the leaderboard.

A.5 Discussion and Future Work

Our intuitive step-by-step binary classification system achieves substantial improvements over the

baseline without demanding additional data or extra large models.

An improved evidence retrieval module has made the main contributions to the performance

boost. Our system makes an effort to improve the abstract retrieval module after applying a

scalable traditional information retrieval weighting scheme, TF-IDF. Instead of handling it as

a re-ranking task and manually selecting thresholds (Pradeep et al., 2021), we formulate it as a
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Oracle Abstract + Oracle Rationale

Method P R F1

Baseline 90.75 75.12 82.20

TWO-STEP 88.54 81.33 84.78

OurSystem Abstract + OurSystem Rationale

Method P R F1

Baseline 76.92 52.63 62.50

TWO-STEP 73.62 57.42 64.52

Baseline Abstract + Baseline Rationale

Method P R F1

Baseline 56.42 48.32 52.06

TWO-STEP 43.31 52.63 47.52

Table A.4: Comparison of label prediction methods with various upstream modules.

binary classification task, which makes better use of the available training data and decreases

the false positive rate effectively. When applying a similar approach to rationale selection, our

model, which is only trained on the SciFact dataset, still achieves improvements over the baseline

model, which makes use of the FEVER dataset first. Furthermore, our model is less dependent on

parameters than other systems, which is ideal in practical settings where one would like to apply

the model on new datasets without having to find the best parameters for the dataset at hand.

In addition, our TWO-STEP label prediction module also makes positive contributions to

overall improvements. The difference on the label prediction performance is very noticeable on

different upstream settings. Unsurprisingly, both methods have the best performance with F1

scores higher than 80% on the oracle setting, which is the closest to their training data. Interestingly,

this performance fluctuation leads to the following observation: a label prediction module that

has better performance on the oracle evidence doesn’t necessarily have better performance when

given the incorrect evidence. Regarding our TWO-STEP label prediction method, it shows that our

neutral detector is not robust enough on the pipeline setting. One possible solution is to train it

on evidence retrieved by previous modules rather than on the oracle evidence so that it learns to

optimise for the pipeline setting.
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Nevertheless, this problem is inevitable for a pipeline system that has multiple machine

learning modules, as errors in each of the modules will accumulate throughout the pipeline. A

better system design is desired such that it tackles the challenge in a more systematic way. A

promising approach is to train a model to learn three subtasks in a multitask learning manner so

that it may optimise for better overall performance.

A.6 Summary

In this chapter, we have proposed a novel step-by-step binary classification approach for the

SCIVER shared task. Our submission achieved an F1 score of 55.35% on the test set, ranking 6th

among all the submissions and 4th among all the teams. We show that (1) concerning evidence

retrieval, a classification based approach is better than a ranking based approach with manual

thresholds; (2) two-step binary label prediction has better performance than three-way label

prediction with limited training data; (3) a more systematic design of automated fact-checking

system is desired.
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Label Only

System P R F1

Baseline 56.42 48.33 52.06

BioBERT-base + TWO-STEP 79.56 52.15 63.00

BioBERT-base* + TWO-STEP 78.91 55.50 65.17

BioBERT-large + TWO-STEP 73.62 57.42 64.52

Label+Rationale

System P R F1

Baseline 54.19 46.41 50.00

BioBERT-base + TWO-STEP 75.91 49.76 60.11

BioBERT-base* + TWO-STEP 73.47 51.67 60.67

BioBERT-large + TWO-STEP 69.94 54.55 61.29

Selection Only

System P R F1

Baseline 54.27 43.44 48.25

BioBERT-base + TWO-STEP 77.64 52.19 62.42

BioBERT-base* + TWO-STEP 72.00 54.10 61.78

BioBERT-large + TWO-STEP 72.76 57.65 64.33

Selection+Label

System P R F1

Baseline 48.46 38.80 43.10

BioBERT-base + TWO-STEP 68.29 45.90 54.90

BioBERT-base* + TWO-STEP 64.00 48.09 54.92

BioBERT-large + TWO-STEP 64.83 51.37 57.32

Table A.5: Comparison of full pipeline performance on the dev set of SciFact.
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Label Only

System P R F1

Baseline 47.51 47.30 47.40

OURSYSTEM 74.32 49.55 59.46

Label+Rationale

System P R F1

Baseline 46.61 46.40 46.50

OURSYSTEM 72.97 48.65 58.38

Selection Only

System P R F1

Baseline 44.99 47.30 46.11

OURSYSTEM 81.58 58.65 68.24

Selection+Label

System P R F1

Baseline 38.56 40.54 39.53

OURSYSTEM 66.17 47.57 55.35

Table A.6: Full pipeline performance on SciFact’s test set.
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Appendix B

Related Tasks

B.1 Claim Detection

Claim detection plays a crucial role in automated fact-checking systems as all other components

need to rely on the output of this stage. It aims to relief the burden of identifying claims for

fact-checkers and help them by minimising the volume of online content they need to deal with.

B.1.1 Approaches

The claim detection component is responsible for selecting claims that need to go through the rest

of the fact-checking pipeline due to needing to be checked, i.e. needing verification. For instance,

a factual statement such as “He voted against the first gulf war” can be deemed a claim that should

be fact-checked. In contrast, a piece of opinion such as “I think it’s time to talk about the future”

is not a claim that should be fact-checked (Hassan et al., 2017a).

Going further, one can also distinguish between check-worthy and non-check-worthy claims

(Nakov et al., 2021b). For example, one could argue that “the government invested more than 10

billion last year in education” is a claim that is worthy of fact-checking, whereas a claim such as

“my friend had a coffee this morning for breakfast” may not be worthy of fact-checking.

Researchers typically formulate the problem as one having a set of sentences as input (e.g.

originating from a debate or conversation), and is tackled as a classification task, where a binary

decision is made on whether each input sentence constitutes a claim or not, or a ranking task,

where input sentences are ranked by check-worthiness, to prioritize most check-worthy claims.
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B.1.2 Datasets

In recent studies, several datasets were built with the purpose of enabling training machine learning

models to predict check-worthy claims, as shown in Table B.1. The vast majority of datasets

cover sentences pertaining to the political domain, as a result of events that synchronously occur

with the US elections. In contrast, the CheckThat! Lab released English and Arabic datasets that

contain a small number of instances related to COVID-19 in early 2020.

Table B.1: Check-worthiness claim detection Datasets

Name Size Annotation type Language

ClaimBuster (Arslan et al., 2020) 23,533 Sentences Manual English

CW-USPD-2016 (Gencheva et al.,

2017)

5,415 Sentences From Existing Annotation English

TATHYA (Patwari et al., 2017) 15,735 Sentences From Existing Annotation English

Konstantinovskiy et al., (Konstanti-

novskiy et al., 2021)

5,571 Sentences Based on the annotation

scheme, sentences labelled

into 7 categories then

grouped into 2 categories

English

CT-CWC-18 (Atanasova et al., 2018) 8,946 (En),7,254 (Ar)

sentences

From Existing Annotation English/Partially

translated to

Arabic

CT19-T1 (Atanasova et al., 2019a) 23,500 sentences From Existing Annotation English

Shaar et al., (Shaar et al., 2020b) 962 tweets Manual English

CT20-AR (Hasanain et al., 2020) 7.5K tweets Manual Arabic

TrClaim-19 (Kartal and Kutlu, 2020) 2287 tweets Manual Turkish

FactRank (Berendt et al., 2021) 7037 sentences Manual Dutch

In addition, publicly available datasets have a variety of sizes. For instance, ClaimBuster

(Arslan et al., 2020) and CT19-T1 (Atanasova et al., 2019a) are the largest datasets, while CW-

USPD-2016 (Gencheva et al., 2017), CT-CWC-18 (Atanasova et al., 2018), CT20-AR (Hasanain

et al., 2020), and FactRank (Berendt et al., 2021) are a degree of magnitude smaller, followed by

other smaller datasets.
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Datasets have binary-class for either single-label or multi-labels, depending on the annotation

process. The annotation process comes in diverse types. Some datasets are automatically built

by collecting claims from fact-checking websites, while other datasets rely on manual annota-

tions given specific definitions of check-worthiness. Crowd-sourcing platform has also been

demonstrated to be helpful (Hassan et al., 2015).

Moreover, the majority of datasets are available in the English language as opposed to a

smaller number of datasets in the Arabic language. Most of these Arabic datasets are generated

from translations of originally English datasets, except for CT20-AR, which is originally Arabic

content. In addition, there is one dataset in Dutch and another one in Turkish, while datasets in

other languages are not yet available.

B.1.3 Check-Worthy Claim Detection

ClaimBuster is the first automated fact-checking system that consists of integrated components

tackling the entire fact-checking pipeline, starting off from the claim detection component. Its

claim detection component called “claim spotter” classifies input sentences into one of (1) a

factual claim, (2) an unimportant factual claim, or (3) a non-factual claim. This in turn assists

fact checkers by prioritising the most check-worthy claims by ranking them based on accuracy

measures such as Precision at k (P@K) (Hassan et al., 2017a). To develop this, a multi-class

Support Vector Machine (SVM) classifier was built which used features such as bags-of-words,

Part-Of-Speech (POS) tags, and Entity Types (ET). The model achieved competitive performance

and was considered as the baseline to beat in subsequent works (Hassan et al., 2017a).

Another model called “CNC” (i.e. “Claim/not Claim”) (Konstantinovskiy et al., 2021) builds

on top of InferSent embeddings (Conneau et al., 2017), combining them with part-of-speech tags

and named entities found in texts, which are fed to a Logistic Regression classifier. Authors of

CNC had as their main goal the improvement of the recall score achieved by their system, arguing

that fact-checkers don’t want to miss out any claims (no false negatives) while they can deal with

some false positives. While improving in terms of recall, CNC also achieved superior performance

in F1 score.

Apart from classic machine learning models, neural networks have also been studied for

the claim detection task. For example, in the CheckThat! Lab 2019 shared task, LSTM neural

networks and Feed Forward Neural Networks were the most effective models used by the top two

participants. Along with the use of neural networks, top participants also showed the usefulness
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of context (i.e. surrounding sentences) in improving claim detection performance (Elsayed et al.,

2019). The use of context was studied in more detail in another work conducted outside the shared

task, in this case by (Atanasova et al., 2019b). They studied the inclusion of context and discourse

features along with sentence-level features. They used a Feed-Forward Neural Network (FNN) as

the model, which was then evaluated as a ranking task, proving the effectiveness of context and

discourse features.

While all aforementioned works focused on English claims, there have also been efforts in

other languages. For example, the ClaimRank model (Jaradat et al., 2018) was tested on Arabic

claims (translated from claims originally in English). The Arabic claim detection model used

Farasa (Abdelali et al., 2016) for tokenization, part-of-speech (POS) tagging, as well as MUSE

embeddings. The first experiments on original Arabic data (rather than translated) were conducted

in the CheckThat! 2020 shared task. Most participants proposed methods involves fine-tuning

pre-trained language models. For instance, the top-performing participant fine-tuned AraBERT

v0.1 with neural networks (Williams et al., 2020). Likewise, (Hasanain and Elsayed, 2020)

fine-tuned multilingual BERT (mBERT) with different classification models. Another recent

effort, called FactRank (Berendt et al., 2021), focused on claim check-worthiness detection for the

Dutch language, in this case using a convolutional neural network (CNN) along with Platt scaling

for an SVM model and a softmax to obtain the degree of check-worthiness.

B.1.4 Claim Matching

Another task that has recently emerged is claim matching, also referred to as identifying previously

fact-checked claims. For a claim spotted in the claim detection component, claim matching consists

in determining whether this is a claim that exists in the database and can be resolved by a previous

fact-check. The task is formulated as follows: given a check-worthy claim as input, and having a

database of previously fact-checked claims, it consists in determining if any of the claims in the

database is related to the input; in this case, the new claim would not need fact-checking again,

as it was fact-checked in the past. It is normally framed as a ranking task, where claims in the

database are ranked based on their similarity to the input claim (Shaar et al., 2020a). This task

comes right after the claim detection component, to determine if the claim is new, and can help

avoid the need for running the claim validation component for a particular claim when it is found

in the database.

There are two released datasets: one based on PolitiFact and the other based on Snopes.
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Initial explorations were conducted on using BM25 (Robertson et al., 1994) and BERT-based

models respectively as well as building a SVM reranker with features from both approaches

(Shaar et al., 2020a). Otherwise, CLEF2020-CheckThat! held a shared task on Verified Claim

Retrieval which uses the Snopes dataset. While the baseline system is a simple BM25 system,

shared task participants explored various scoring functions, including unsupervised approaches

such as Terrier and Elastic Search scores, classic supervised models such as SVM and various

BERT-based models (Shaar et al., 2020b). Buster.ai, the winning team, fine-tune a RoBERTa

(Liu et al., 2019) model on the task which was first fine-tuned on other fact-checking datasets

(Bouziane et al., 2020). Team UNIPI-NLE, achieving close performance to the winning team,

performed two cascade fine-tunings on a sentenceBERT (Reimers and Gurevych, 2019) model

(Passaro et al., 2020).

B.1.5 Discussion and Challenges

In this section, we discuss current progress in each of the components of the automated fact-

checking task, as well as highlight the main open challenges.

Conceptual Definition of Claim The definition of claim check-worthiness is brief (Allein and

Moens, 2020). Full Fact describe it as “an assertion about the world that can be checked”. In

contrast, (Konstantinovskiy et al., 2021) mentioned this definition is not enough to decide whether

this claim is worthy for check or not. Similarly, (Berendt et al., 2021) declared that not every

factual claim will be verified by fact checkers.

Narrow Domains Claims in the political domain are dominating the interest of journalists

and researchers, as can be seen in existing datasets. As an example, (Wright and Augenstein,

2020) investigated the development of a claim check-worthiness detection method that would

consistently perform over different domains, in this case rumours on Twitter, Wikipedia citations,

and political speeches. However, the method showed important challenges in trying to perform

well across domains. Recent research in claim detection has expanded to focus on health claims

too, particularly concerning the COVID-19 pandemic.

Annotation Issues Labelling of sentences as claims or non-claims is generally done manually

by non-experts (see Table B.1). An alternative to this is to derive labels from previously fact-

checked claims collected from fact-checking websites. The main caveat of this approach is that

fact-checking websites only list claims, rather than non-claims, which means that one needs to
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develop models that only leveraged instances of the positive class, i.e. positive unlabelled learning

(Wright and Augenstein, 2020) .

Imbalanced Datasets The majority of datasets are imbalanced where not check-worthy claims

outnumber check-worthy claims. While this is possibly due to the nature of the task, existing

models can have a tendency to overfit due to this imbalance, which calls for more research to

tackle the problem. For example, in the CheckThat! Lab 2020, (Williams et al., 2020) attempted

to mitigate the problem of overfitting by resampling the larger number of positive instances that

were augmenting data through translation between Arabic and English (Williams et al., 2020).

B.2 Other Related Tasks

There are some other popular tasks in natural language processing which are also related to the

accuracy, verifiability and credibility of information, which we briefly discuss next as topics

recommended for further reading:

Fake News Detection It is the task of determining whether a news article on the web is accurate

or not (Shu et al., 2017). Proposed classification approaches are typically centred on shallow

features of the articles: n-grams, characters, stop words, part-of-speech tags, readability scores,

term frequency, etc. Some more advanced approaches use additional metadata. However, these

approaches are more likely to merely capture patterns of different article styles, rather than to

sensibly distinguish reliable and unreliable articles (Hanselowski, 2020).

Rumour Detection It is the task of identifying unverified reports circulating on social media.

Predictions are typically made on language subjectivity and metadata on social media (Zubiaga

et al., 2018). Despite the relevance of these features, the truth value of a claim does not directly

depend on these features.

Clickbait Detection Being considerably different from automated fact-checking, clickbait detec-

tion does not require external evidence. Approaches with relatively shallow linguistic features

(Chakraborty et al., 2016; Chen et al., 2015; Potthast et al., 2016) have yielded reasonable

performance.

Commonsense Reasoning To perform commonsense reasoning (Storks et al., 2019), the model

needs to be able to do reasoning beyond the explicit information given in sentence pairs, which

is highly valued in automated fact-checking (Thorne and Vlachos, 2018). As a new frontier of
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artificial intelligence, novel studies have investigated learned knowledge in pre-trained language

models, commonsense integration from external knowledge bases, symbolic knowledge incorpo-

ration, etc. However, these tasks are currently under investigation and the field calls for major

breakthroughs. For more information, we refer to a recent survey (Storks et al., 2019) and a

tutorial (Sap et al., 2020).

B.3 Summary

In this chapter, we have presented related tasks for claim validation with special focus on claim

detection. Substantial progress has been made by applying pre-trained language models through

designed pipelines, but numerous open challenges still need further research. Claim Detection

faces challenges from conceptual definition, narrow domains, annotation issues and imbalanced

datasets. In addition, improvements over datasets quality, system integrity and model intepretabil-

ity are desired for claim validation.
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Appendix C

Additional Results

C.1 Detailed Performance Comparison across Few-Shot

Claim Verification Methods

Here we present a detailed numeric performance comparison of the methods discussed, as well as

alternative model checkpoints for PET1 and LLaMA 22.3 Tables C.1, C.2, C.3 and C.4 report on

FEVER, cFEVER, SciFact_oracle and SciFact_retrieved dataset configurations respectively.

FEVER F1 Accuracy

n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3776 0.0438 0.4771 0.0439

Llama-2-13b-chat-hf 0.4351 0.0613 0.5034 0.0506

Llama-2-70b-chat-hf 0.2617 0.0427 0.3800 0.0258

MAPLE 0.6155 0.0645 0.6459 0.0506

PET_microsoft/deberta-base-mnli 0.3394 0.0351 0.3582 0.0293

PET_microsoft/deberta-large-mnli 0.4978 0.1011 0.5193 0.0877

1We report all six model checkpoints used in Active PETs.
2We report all three models that have chat capabilities.
3When the same prompt we deigned for 7b model is used on 13b and 70b models, the model performance

is significantly lower and even fails to yield responses in many cases and vise versa. Hence, the results for
13b and 70b models in this section are generated with a prompt that is slightly different from the one we
used for 7b model. The prompt we used here is “Please perform the task of claim verification. Given a
claim and a piece of evidence, your goal is to classify them into one of the following classes: ‘SUPPORTS’,
‘REFUTES’ and ‘NOT_ENOUGH_INFO’. Here are a few examples: Claim: ‘train_claim_i’ Evidence:
‘train_evidences_i’ ‘train_labels_i’.”. The post-process remains the same.
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PET_roberta-large-mnli 0.2158 0.0516 0.2408 0.0670

PET_textattack/bert-base-uncased-MNLI 0.3731 0.0456 0.4089 0.0278

PET_textattack/roberta-base-MNLI 0.2190 0.0409 0.3139 0.0383

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.4214 0.0480 0.4509 0.0429

SEED_bert-base-nli-mean-tokens 0.2724 0.0689 0.3748 0.0494

2 Llama-2-7b-chat-hf 0.3827 0.0301 0.4796 0.0314

Llama-2-13b-chat-hf 0.3929 0.0504 0.4719 0.0393

Llama-2-70b-chat-hf 0.2745 0.0402 0.3883 0.0256

MAPLE 0.6514 0.0460 0.6724 0.0379

PET_microsoft/deberta-base-mnli 0.3773 0.0354 0.3870 0.0374

PET_microsoft/deberta-large-mnli 0.5897 0.0917 0.6023 0.0843

PET_roberta-large-mnli 0.2308 0.0463 0.2526 0.0617

PET_textattack/bert-base-uncased-MNLI 0.4151 0.0372 0.4338 0.0261

PET_textattack/roberta-base-MNLI 0.2661 0.0408 0.3349 0.0340

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.4689 0.0490 0.4904 0.0448

SEED_bert-base-nli-mean-tokens 0.3935 0.0822 0.4455 0.0667

3 Llama-2-7b-chat-hf 0.3760 0.0321 0.4702 0.0312

Llama-2-13b-chat-hf 0.3815 0.0371 0.4606 0.0299

Llama-2-70b-chat-hf 0.2792 0.0379 0.3930 0.0246

MAPLE 0.6768 0.0448 0.6911 0.0400

PET_microsoft/deberta-base-mnli 0.3977 0.0327 0.4069 0.0315

PET_microsoft/deberta-large-mnli 0.6586 0.0768 0.6649 0.0733

PET_roberta-large-mnli 0.2551 0.0406 0.2682 0.0513

PET_textattack/bert-base-uncased-MNLI 0.4429 0.0267 0.4524 0.0213

PET_textattack/roberta-base-MNLI 0.2810 0.0361 0.3389 0.0330

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.4999 0.0401 0.5186 0.0367

SEED_bert-base-nli-mean-tokens 0.4843 0.0714 0.5118 0.0615

4 Llama-2-7b-chat-hf 0.3621 0.0473 0.4562 0.0408
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Llama-2-13b-chat-hf 0.3790 0.0425 0.4598 0.0343

Llama-2-70b-chat-hf 0.2874 0.0382 0.3988 0.0248

MAPLE 0.6909 0.0399 0.7019 0.0368

PET_microsoft/deberta-base-mnli 0.4142 0.0292 0.4203 0.0293

PET_microsoft/deberta-large-mnli 0.6893 0.0628 0.6943 0.0603

PET_roberta-large-mnli 0.2786 0.0405 0.2993 0.0517

PET_textattack/bert-base-uncased-MNLI 0.4623 0.0211 0.4667 0.0186

PET_textattack/roberta-base-MNLI 0.3000 0.0353 0.3445 0.0326

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.5191 0.0364 0.5318 0.0326

SEED_bert-base-nli-mean-tokens 0.5331 0.0619 0.5495 0.0568

5 Llama-2-7b-chat-hf 0.3613 0.0468 0.4472 0.0367

Llama-2-13b-chat-hf 0.3781 0.0320 0.4592 0.0275

Llama-2-70b-chat-hf 0.2997 0.0371 0.4074 0.0247

MAPLE 0.6964 0.0403 0.7058 0.0368

PET_microsoft/deberta-base-mnli 0.4266 0.0270 0.4320 0.0274

PET_microsoft/deberta-large-mnli 0.7191 0.0584 0.7237 0.0564

PET_roberta-large-mnli 0.2941 0.0396 0.3188 0.0443

PET_textattack/bert-base-uncased-MNLI 0.4699 0.0173 0.4731 0.0153

PET_textattack/roberta-base-MNLI 0.3064 0.0293 0.3456 0.0293

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.5267 0.0358 0.5410 0.0318

SEED_bert-base-nli-mean-tokens 0.5714 0.0556 0.5821 0.0538

Table C.1: Detailed performance on FEVER. The reported results are mean and standard deviation
for F1 and accuracy scores on 100 runs.

cFEVER F1 Accuracy

n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3798 0.0346 0.4184 0.0226

Llama-2-13b-chat-hf 0.4769 0.0380 0.4831 0.0345
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Llama-2-70b-chat-hf 0.2793 0.0439 0.3620 0.0263

MAPLE 0.3276 0.0717 0.3622 0.0696

PET_microsoft/deberta-base-mnli 0.2401 0.0209 0.3072 0.0221

PET_microsoft/deberta-large-mnli 0.3519 0.0672 0.3795 0.0657

PET_roberta-large-mnli 0.2828 0.0594 0.3078 0.0555

PET_textattack/bert-base-uncased-MNLI 0.2721 0.0198 0.3151 0.0159

PET_textattack/roberta-base-MNLI 0.1850 0.0103 0.3175 0.0166

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3519 0.0382 0.3782 0.0302

SEED_bert-base-nli-mean-tokens 0.2834 0.0621 0.3640 0.0464

2 Llama-2-7b-chat-hf 0.3541 0.0228 0.4067 0.0180

Llama-2-13b-chat-hf 0.3745 0.0602 0.4007 0.0390

Llama-2-70b-chat-hf 0.2481 0.0363 0.3389 0.0209

MAPLE 0.3700 0.0788 0.3899 0.0748

PET_microsoft/deberta-base-mnli 0.2574 0.0175 0.3069 0.0215

PET_microsoft/deberta-large-mnli 0.3958 0.0633 0.4148 0.0581

PET_roberta-large-mnli 0.3147 0.0615 0.3329 0.0597

PET_textattack/bert-base-uncased-MNLI 0.2898 0.0172 0.3129 0.0162

PET_textattack/roberta-base-MNLI 0.1962 0.0159 0.3199 0.0200

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3621 0.0364 0.3846 0.0268

SEED_bert-base-nli-mean-tokens 0.3574 0.0621 0.4020 0.0538

3 Llama-2-7b-chat-hf 0.3638 0.0287 0.4041 0.0188

Llama-2-13b-chat-hf 0.3866 0.0534 0.4091 0.0359

Llama-2-70b-chat-hf 0.2515 0.0333 0.3448 0.0153

MAPLE 0.3993 0.0678 0.4112 0.0643

PET_microsoft/deberta-base-mnli 0.2665 0.0179 0.3059 0.0190

PET_microsoft/deberta-large-mnli 0.4081 0.0601 0.4215 0.0603

PET_roberta-large-mnli 0.3278 0.0565 0.3448 0.0549

PET_textattack/bert-base-uncased-MNLI 0.2965 0.0141 0.3107 0.0151

PET_textattack/roberta-base-MNLI 0.2046 0.0195 0.3196 0.0230
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PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3675 0.0374 0.3943 0.0242

SEED_bert-base-nli-mean-tokens 0.3857 0.0550 0.4180 0.0559

4 Llama-2-7b-chat-hf 0.3662 0.0243 0.4001 0.0157

Llama-2-13b-chat-hf 0.4158 0.0466 0.4284 0.0388

Llama-2-70b-chat-hf 0.2631 0.0337 0.3514 0.0169

MAPLE 0.4089 0.0677 0.4181 0.0648

PET_microsoft/deberta-base-mnli 0.2750 0.0202 0.3105 0.0198

PET_microsoft/deberta-large-mnli 0.4324 0.0424 0.4456 0.0420

PET_roberta-large-mnli 0.3504 0.0533 0.3652 0.0487

PET_textattack/bert-base-uncased-MNLI 0.3033 0.0143 0.3141 0.0139

PET_textattack/roberta-base-MNLI 0.2109 0.0196 0.3221 0.0209

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3710 0.0338 0.3972 0.0218

SEED_bert-base-nli-mean-tokens 0.4069 0.0477 0.4344 0.0467

5 Llama-2-7b-chat-hf 0.3709 0.0271 0.3932 0.0191

Llama-2-13b-chat-hf 0.4473 0.0417 0.4540 0.0367

Llama-2-70b-chat-hf 0.2752 0.0375 0.3575 0.0182

MAPLE 0.4208 0.0548 0.4299 0.0520

PET_microsoft/deberta-base-mnli 0.2838 0.0198 0.3148 0.0215

PET_microsoft/deberta-large-mnli 0.4488 0.0443 0.4606 0.0431

PET_roberta-large-mnli 0.3587 0.0497 0.3751 0.0424

PET_textattack/bert-base-uncased-MNLI 0.3049 0.0132 0.3129 0.0127

PET_textattack/roberta-base-MNLI 0.2121 0.0189 0.3200 0.0208

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3719 0.0311 0.4001 0.0200

SEED_bert-base-nli-mean-tokens 0.4164 0.0380 0.4409 0.0371

Table C.2: Detailed performance on cFEVER. The reported results are mean and standard deviation
for F1 and accuracy scores on 100 runs.

SciFact_oracle F1 Accuracy
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n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3746 0.0306 0.4549 0.0295

Llama-2-13b-chat-hf 0.3722 0.0481 0.4359 0.0375

Llama-2-70b-chat-hf 0.2502 0.0417 0.3706 0.0233

MAPLE 0.3938 0.0658 0.4333 0.0604

PET_microsoft/deberta-base-mnli 0.2459 0.0244 0.3112 0.0121

PET_microsoft/deberta-large-mnli 0.4467 0.0833 0.4699 0.0735

PET_roberta-large-mnli 0.2514 0.0537 0.2747 0.0569

PET_textattack/bert-base-uncased-MNLI 0.3696 0.0435 0.4059 0.0314

PET_textattack/roberta-base-MNLI 0.2352 0.0273 0.3338 0.0301

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3078 0.0255 0.3312 0.0257

SEED_bert-base-nli-mean-tokens 0.2996 0.0634 0.3757 0.0489

2 Llama-2-7b-chat-hf 0.3812 0.0233 0.4678 0.0237

Llama-2-13b-chat-hf 0.3489 0.0382 0.4180 0.0313

Llama-2-70b-chat-hf 0.2614 0.0329 0.3698 0.0176

MAPLE 0.4263 0.0571 0.4493 0.0575

PET_microsoft/deberta-base-mnli 0.2686 0.0170 0.3152 0.0120

PET_microsoft/deberta-large-mnli 0.5099 0.0772 0.5265 0.0673

PET_roberta-large-mnli 0.2824 0.0503 0.3014 0.0569

PET_textattack/bert-base-uncased-MNLI 0.3973 0.0337 0.4218 0.0266

PET_textattack/roberta-base-MNLI 0.2534 0.0280 0.3378 0.0304

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3068 0.0279 0.3401 0.0196

SEED_bert-base-nli-mean-tokens 0.3552 0.0648 0.3937 0.0600

3 Llama-2-7b-chat-hf 0.3998 0.0377 0.4662 0.0281

Llama-2-13b-chat-hf 0.3475 0.0395 0.4112 0.0315

Llama-2-70b-chat-hf 0.2739 0.0377 0.3753 0.0227

MAPLE 0.4487 0.0402 0.4655 0.0384

PET_microsoft/deberta-base-mnli 0.2841 0.0163 0.3237 0.0120

PET_microsoft/deberta-large-mnli 0.5508 0.0722 0.5639 0.0637
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PET_roberta-large-mnli 0.2936 0.0448 0.3159 0.0516

PET_textattack/bert-base-uncased-MNLI 0.4153 0.0253 0.4312 0.0197

PET_textattack/roberta-base-MNLI 0.2633 0.0256 0.3372 0.0276

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3047 0.0258 0.3427 0.0181

SEED_bert-base-nli-mean-tokens 0.4007 0.0593 0.4290 0.0593

4 Llama-2-7b-chat-hf 0.4002 0.0420 0.4542 0.0312

Llama-2-13b-chat-hf 0.3558 0.0365 0.4165 0.0306

Llama-2-70b-chat-hf 0.2939 0.0454 0.3888 0.0277

MAPLE 0.4520 0.0426 0.4661 0.0405

PET_microsoft/deberta-base-mnli 0.2932 0.0180 0.3265 0.0132

PET_microsoft/deberta-large-mnli 0.5698 0.0738 0.5781 0.0677

PET_roberta-large-mnli 0.2988 0.0540 0.3173 0.0585

PET_textattack/bert-base-uncased-MNLI 0.4197 0.0220 0.4361 0.0157

PET_textattack/roberta-base-MNLI 0.2743 0.0263 0.3416 0.0287

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3054 0.0269 0.3461 0.0187

SEED_bert-base-nli-mean-tokens 0.4289 0.0519 0.4499 0.0503

5 Llama-2-7b-chat-hf 0.3998 0.0463 0.4487 0.0328

Llama-2-13b-chat-hf 0.3611 0.0348 0.4231 0.0308

Llama-2-70b-chat-hf 0.2840 0.0709 0.3873 0.0370

MAPLE 0.4554 0.0356 0.4675 0.0356

PET_microsoft/deberta-base-mnli 0.3005 0.0172 0.3312 0.0139

PET_microsoft/deberta-large-mnli 0.5964 0.0706 0.6045 0.0641

PET_roberta-large-mnli 0.3087 0.0507 0.3281 0.0558

PET_textattack/bert-base-uncased-MNLI 0.4252 0.0233 0.4413 0.0147

PET_textattack/roberta-base-MNLI 0.2780 0.0222 0.3420 0.0249

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3072 0.0274 0.3496 0.0166

SEED_bert-base-nli-mean-tokens 0.4463 0.0478 0.4645 0.0465
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Table C.3: Detailed performance on SciFact_oracle. The reported results are mean and standard
deviation for F1 and accuracy scores on 100 runs.

SciFact_retrieved F1 Accuracy

n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3207 0.0299 0.3943 0.0243

Llama-2-13b-chat-hf 0.3757 0.0380 0.4265 0.0231

Llama-2-70b-chat-hf 0.3454 0.0598 0.4035 0.0338

MAPLE 0.4108 0.0878 0.4412 0.0831

PET_microsoft/deberta-base-mnli 0.2927 0.0341 0.3134 0.0302

PET_microsoft/deberta-large-mnli 0.3332 0.0525 0.3609 0.0450

PET_roberta-large-mnli 0.2448 0.0308 0.2830 0.0298

PET_textattack/bert-base-uncased-MNLI 0.3431 0.0263 0.3661 0.0180

PET_textattack/roberta-base-MNLI 0.2598 0.0317 0.3491 0.0238

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3162 0.0352 0.3477 0.0215

SEED_bert-base-nli-mean-tokens 0.2708 0.0470 0.3479 0.0288

2 Llama-2-7b-chat-hf 0.2914 0.0528 0.3586 0.0350

Llama-2-13b-chat-hf 0.3278 0.0524 0.3925 0.0266

Llama-2-70b-chat-hf 0.1682 0.0105 0.3338 0.0038

MAPLE 0.4484 0.0699 0.4654 0.0675

PET_microsoft/deberta-base-mnli 0.2988 0.0315 0.3147 0.0281

PET_microsoft/deberta-large-mnli 0.3601 0.0524 0.3834 0.0434

PET_roberta-large-mnli 0.2576 0.0300 0.2891 0.0281

PET_textattack/bert-base-uncased-MNLI 0.3514 0.0201 0.3633 0.0179

PET_textattack/roberta-base-MNLI 0.2944 0.0289 0.3549 0.0267

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3156 0.0333 0.3571 0.0199

SEED_bert-base-nli-mean-tokens 0.3233 0.0463 0.3623 0.0439

3 Llama-2-7b-chat-hf 0.1775 0.0363 0.3329 0.0056

Llama-2-13b-chat-hf 0.1788 0.0371 0.3359 0.0104
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Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000

MAPLE 0.4768 0.0511 0.4909 0.0464

PET_microsoft/deberta-base-mnli 0.2963 0.0308 0.3085 0.0249

PET_microsoft/deberta-large-mnli 0.3599 0.0518 0.3880 0.0419

PET_roberta-large-mnli 0.2557 0.0266 0.2853 0.0243

PET_textattack/bert-base-uncased-MNLI 0.3490 0.0212 0.3604 0.0179

PET_textattack/roberta-base-MNLI 0.3135 0.0251 0.3559 0.0250

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3102 0.0281 0.3580 0.0171

SEED_bert-base-nli-mean-tokens 0.3530 0.0382 0.3795 0.0367

4 Llama-2-7b-chat-hf 0.1667 0.0000 0.3333 0.0000

Llama-2-13b-chat-hf 0.1667 0.0000 0.3333 0.0000

Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000

MAPLE 0.4777 0.0449 0.4884 0.0429

PET_microsoft/deberta-base-mnli 0.3038 0.0278 0.3129 0.0252

PET_microsoft/deberta-large-mnli 0.3827 0.0494 0.4026 0.0453

PET_roberta-large-mnli 0.2616 0.0236 0.2862 0.0224

PET_textattack/bert-base-uncased-MNLI 0.3467 0.0240 0.3611 0.0195

PET_textattack/roberta-base-MNLI 0.3289 0.0284 0.3611 0.0245

PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3083 0.0253 0.3582 0.0173

SEED_bert-base-nli-mean-tokens 0.3581 0.0383 0.3820 0.0369

5 Llama-2-7b-chat-hf 0.1667 0.0000 0.3333 0.0000

Llama-2-13b-chat-hf 0.1667 0.0000 0.3333 0.0000

Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000

MAPLE 0.4846 0.0351 0.4941 0.0331

PET_microsoft/deberta-base-mnli 0.3054 0.0261 0.3163 0.0240

PET_microsoft/deberta-large-mnli 0.3825 0.0504 0.4043 0.0435

PET_roberta-large-mnli 0.2575 0.0274 0.2915 0.0225

PET_textattack/bert-base-uncased-MNLI 0.3467 0.0242 0.3624 0.0197

PET_textattack/roberta-base-MNLI 0.3348 0.0252 0.3600 0.0226
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PET_yoshitomo-matsubara/bert-large-

uncased-mnli

0.3066 0.0289 0.3638 0.0165

SEED_bert-base-nli-mean-tokens 0.3726 0.0361 0.3903 0.0367

Table C.4: Detailed performance on SciFact_retrieved. The reported results are mean and standard
deviation for F1 and accuracy scores on 100 runs.

C.2 MAPLE Classwise Performance within 5 Shots

Table C.5 presents MAPLE’s classwise performance. In general, MAPLE is most capable of

distinguishing NOT_ENOUGH_INFO samples from the others and the least capable when dealing

with REFUTES samples.

C.3 MAPLE Performance Comparison within 50 Shots

Figure C.1: F1 performance within 50 shots.

Figure C.1 illustrates the F1 results within the 50-shot setting. The experiments are conducted

on SEED, PET and MAPLE, as LLaMA 2 imposes high demand on computational budget.

MAPLE demonstrates superior performance in three out of four dataset configurations, specifically

FEVER, cFEVER, and SciFact_retrieved. Although it is not the top performing approach in the

SciFact_oracle setting, it holds the highest position until surpassed by SEED at 8 shots, followed

by PET at 30 shots.

On the FEVER dataset, MAPLE achieves significant improvements over the baselines when

provided with fewer than 50 shots. MAPLE starts with a very high performance around 0.6 and

converges around 20 shots, reaching approximately 0.8. Despite starting from a very low point,

SEED learns rapidly within 10 shots and converges around 20 shots with a score below 0.7. PET

demonstrates remarkable learning capabilities within 50 shots, as its performance steadily rises to

around 0.8.
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FEVER

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)

mean std mean std mean std

1 0.4737 0.1665 0.9177 0.1010 0.4550 0.1557

2 0.5144 0.1167 0.9442 0.0270 0.4955 0.1330

3 0.5593 0.1077 0.9531 0.0193 0.5181 0.0972

4 0.5762 0.0938 0.9550 0.0186 0.5416 0.0807

5 0.5821 0.0891 0.9584 0.0157 0.5487 0.0805

cFEVER

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)

mean std mean std mean std

1 0.3333 0.1540 0.3325 0.1679 0.3169 0.1363

2 0.3750 0.1367 0.3810 0.1415 0.3541 0.1191

3 0.4218 0.1159 0.4099 0.1263 0.3663 0.0926

4 0.4162 0.1119 0.4299 0.1154 0.3805 0.0885

5 0.4251 0.1044 0.4538 0.1005 0.3836 0.0773

SciFact_oracle

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)

mean std mean std mean std

1 0.3326 0.1764 0.5141 0.1518 0.3346 0.1568

2 0.3295 0.1326 0.5702 0.1192 0.3794 0.0961

3 0.3780 0.1168 0.5931 0.0741 0.3750 0.0766

4 0.3849 0.1090 0.5882 0.0879 0.3830 0.0737

5 0.3975 0.0992 0.5943 0.0656 0.3744 0.0746

SciFact_retrieved

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)

mean std mean std mean std

1 0.3369 0.1542 0.5438 0.1751 0.3519 0.1525

2 0.3612 0.1199 0.5910 0.1524 0.3930 0.1117

3 0.4030 0.0983 0.6407 0.1045 0.3868 0.0949

4 0.4063 0.0822 0.6409 0.0857 0.3859 0.0922

5 0.3994 0.0867 0.6555 0.0632 0.3989 0.0713

Table C.5: MAPLE Classwise F1 results. The reported results are mean and standard deviation
classwise F1 scores for each class on 100 runs.
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On the cFEVER dataset, MAPLE remains the best-performing method within 50 shots, al-

though with only a slight margin over SEED. Both MAPLE and SEED exhibit similar performance

curves, converging around 20 to 30 shots with scores approaching 0.5. PET shows a different

pattern, steadily learning over the range of 50 shots but ending with a lower score compared to the

other methods.

On the SciFact_oracle dataset, MAPLE starts strongly but shows limited improvements with

more data, converging within 8 shots at approximately 0.48. This may be attributed to the

challenging nature of the scientific domain. SEED and PET manage to surpass MAPLE in this

case, with SEED converging at 50 shots and achieving a score of around 0.55. PET surpasses

MAPLE after being provided with over 20 shots and surpasses SEED after receiving over 30

shots.

On the SciFact_retrieved dataset, unlike in the SciFact_oracle case, MAPLE maintains a clear

advantage within 50 shots. MAPLE starts above 0.4 and converges around 20 to 30 shots with

a score above 0.5. With retrieved evidence, both SEED and PET experience a performance dip

compared to the oracle evidence scenario. SEED also converges around 20 to 30 shots, but with a

score above 0.4. PET experiences a dip early on, around 10 shots, dropping to approximately 0.3,

despite starting around 0.35. Afterwards, it recovers and reaches above 0.45 at 50 shots, although

still lower than MAPLE.
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Appendix D

Runtime Reports

D.1 MAPLE with LoRA vs SFT Runtime Comparison

FEVER cFEVER SciFact_oracle SciFact_retrieved

LoRA runtime (from claim to evidence) 00:50:24 00:39:14 00:05:33 00:16:29

SFT runtime (from claim to evidence) 01:50:52 01:15:14 00:13:23 00:48:21

LoRA runtime (from evidence to claim) 00:50:23 00:39:12 00:05:18 00:16:28

SFT runtime (from evidence to claim) 01:37:58 01:14:39 00:11:41 00:35:12

Table D.1: LoRA vs SFT Runtime comparison. The time format is hours:minutes:seconds.

We present the runtime comparison of LoRA and SFT on performing Seq2seq training on T5-

small. While the efficiency gain varies on the given training data, table D.1 shows that significant

time savings across all experimented datasets.

D.2 MAPLE Overall Runtime

We present the runtime of MAPLE across four dataset configurations in Table D.2. The ex-

periments were conducted on a High-Performance Compute cluster provided by the university,

featuring 8 compute cores, 11G RAM per core, and a single NVIDIA A100 GPU. Seq2seq LoRA

training and SemSim transformation were applied to the entire dataset. The LR runtime denotes

the execution time for all few-shot experiments outlined in Section 5.2. It’s important to note

that the runtime is strongly correlated with the size of the unlabelled pool, as well as the length
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of claims and evidences. Consequently, it takes a few hours to run for large-scale datasets like

FEVER and cFEVER, as well as dataset configurations comprising lengthy instances such as

SciFact_retrieved, but considerably less time for SciFact_oracle. For improved efficiency, future

work may explore applying the SemSim transformation solely to the sampled few-shot training

instances per experiment.

FEVER cFEVER SciFact_oracle SciFact_retrieved

Seq2Seq runtime (from claim to evidence) 00:50:24 00:39:14 00:05:33 00:16:29

SemSim runtime (from claim to evidence) 00:50:16 00:37:34 00:06:22 00:26:06

Seq2Seq runtime (from evidence to claim) 00:50:23 00:39:12 00:05:18 00:16:28

SemSim runtime (from evidence to claim) 00:49:02 00:37:34 00:05:45 00:23:06

LR runtime 00:00:28 00:00:33 00:00:31 00:00:33

Total runtime 03:20:33 02:34:07 00:23:29 01:22:42

Table D.2: MAPLE runtime on four dataset configurations. The time format is
hours:minutes:seconds.

D.3 Active PETs Runtime

We use High Performance Compute cluster supported by the university. Each experiment is run

with 8 compute cores, 11G RAM per core and a single NVIDIA A100 GPU. Table D.3 reports

the average run time of executing a sampling iteration of 150 unlabelled instances and a training

iteration with the sampled data over three datasets. It serves as a good indicator for comparing

the efficiency among different active learning methods. As CAL requires an initial labelled set of

data, we report the total run time of an iteration of using the random method for 75 instances and

an iteration of using CAL method for another 75 instances. Table D.4 further reports the total run

time of the best method Active PETs-o on different datasets. The actual run time highly correlates

with the size of the unlabelled pool for each datasets.

Our key focus has been on resource-efficiency and performance, with a lesser focus on runtime,

hence there can be room for optimisation in future work, including: (1) optimising the code e.g.

through parallelisation of the ensembled models which are now run sequentially, (2) using DL

optimisation libraries such as deepspeed, and (3) using dynamic step sizes to reduce the number

of iterations, e.g. increase step size if initial iterations lead to balanced samples. In a real-world,

deployed scenario, one would also need to account for the time needed by humans to perform the
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annotation (in our case simulated).

All Six Models Average Single Model

Random 00:05:50 00:00:58

BADGE 00:07:52 00:01:19

CAL 00:14:59 00:02:30

ALPS 00:07:21 00:01:14

Active PETs 00:08:01 00:01:20

Active PETs-o 00:09:10 00:01:32

Table D.3: Average run time for a single iteration for each of the sampling methods. The time
format is hours:minutes:seconds.

CFEVER SciFact_retrieved SciFact_oracle

Active PETs-o 05:53:08 04:12:33 02:31:27

Table D.4: Total run time for running Active PETs with oversampling iteratively up to 300
instances on different datasets. The time format is hours:minutes:seconds.
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