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Abstract 
 

Inflammatory bowel diseases (IBD) are chronic idiopathic disorders that cause inflammation 

of the gastrointestinal tract. These chronic conditions affect over 2.5 million people in Europe 

alone, with a direct healthcare cost of €4.6-5.6 billion annually (Jairath, V., & Feagan, B. G., 

2020). While the IBD burden has increased rapidly in recent decades in most Western 

countries, this rate of increase seems to be slowing down. Conversely, newly industrialised 

regions are currently seeing a spike in incidence rates. To date, paediatric inflammatory bowel 

disease (PIBD) incidence and prevalence information can be found in just over 100 

publications that cite figures from 35 different countries reporting significant spatial and 

temporal variations with a few clear patterns. The current literature often combines mostly 

heterogeneous information from studies using various methods with limited spatiotemporal 

coverage. Despite over 200 genetic loci being linked to IBD, only 10-15% of the disease risk 

is attributed to genetic factors (Shouval, D. S., & Rufo, P. A., 2017). Therefore, we 

hypothesised that certain external risk factors might be linked to developing PIBD, similar to 

other chronic diseases, such as rheumatoid arthritis and asthma. In the paediatric population 

specifically, given the limited exposures and co-morbidities compared to the adult population, 

environmental and socio-economic factors may play a particularly significant role in the 

development of the disease. 

 

In this prospective study, I developed several methods for collecting, processing and analysing 

PIBD incidence and prevalence data. The main six aims of the project were the following: 

i. Develop and establish methods to collect international PIBD data uniformly 

ii. Organise and prepare these data 

iii. Develop the project-specific analytical methods 

iv. Estimate the incidence and prevalence of the disease 

v. Collect and prepare the risk factors data from multiple international datasets 

vi. Study the effects of these factors on the disease epidemiology 

 

The methods involved the development of two separate databases that were created to collect 

clinical and epidemiological data, refining the calculation of disease incidence by adjusting for 

different reporting centres, and compiling a novel dataset of suspected risk factors for the 

disease while focusing on interpolated pollutants.  
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After designing an automated Electronic Data Capturing system (EDC), I conducted five 

annual data collection rounds, gathering over 500 responses from 140 PIBD experts worldwide. 

The estimation and mapping of the incidence and prevalence revealed significant 

spatiotemporal trends with recent years and latitudes closer to the north presenting a significant 

positive correlation with the incidence. The risk factors were extracted from validated sources 

and used as predictors after being processed and transformed using various computationally 

intensive methods. The processing and harmonisation of the predictor data, which involved 

handling misaligned information formats and diverse types of territorial units, was one of the 

most challenging aspects of this project. The final geostatistical analysis of the PIBD incidence 

revealed that the most significant findings were the particulate matter (PM10) and carbon 

monoxide, followed by carbon dioxide and chlorine with inorganic compounds (HCl). The 

latter pollutant is a novel finding as it has not been reported previously in the literature. Further 

geostatistical analysis of the phenotype ratio of the disease, Crohn’s and Ulcerative colitis, 

revealed the importance of sun exposure, population density and three pollutants from the 

broader family of volatile organic compounds in the development of the disease. The PIBD 

phenotype ratio analysis was repeated based on the environmental questionnaire of the 

inception cohort clinical study and showed that the patient demographics, the preferred source 

of water, and surprisingly, contact with certain animals were also potentially important 

predictors of the type of diagnosis.  

 

Our incidence and prevalence findings are consistent with most of the partially established 

spatiotemporal patterns of PIBD in the literature. This provides validation of the methods used 

and strengthens our findings. The statistical methods developed in this project were based on 

several spatial interpolation models, disease mapping techniques, Linear Mixed-effects Models 

(LMM), spatial regression, model fit diagnostics and the development of study-specific 

functions used to adjust the reported data. The spatial interpolation methodology was optimised 

with a series of simulations, while the LMM and spatial regression were employed to address 

the autocorrelation in our data.  

 

The following chapters provide detailed insights into the methods and results of this thesis 

followed by a discussion of our findings. 
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Project structure, ongoing studies and useful 
information 
 

This work is part of the PIBD-SETQuality project, a Horizon 2020 multinational project funded 

by the European Commission as part of the Research and Innovation action scheme (Grant 

agreement ID: 668023). The PIBD-SETQuality supports two registries, the Inception Cohort 

and the Safety Registry.   

 

The Inception Cohort is a prospective observational study recruiting children with newly 

diagnosed inflammatory bowel disease since early 2017. The maximum number of recruitment 

partners reached 21 sites in the United Kingdom, Italy, Germany, France, Israel, Malaysia, 

Japan, South Korea and the Netherlands. Besides clinical data and regular follow-ups, the 

Inception Cohort collects detailed exposure information from each newly diagnosed patient 

using several Electronic Case Report Forms (eCRFs) and questionnaires. Examples of the 

environmental questionnaires collecting the information used in the analysis of the phenotype 

ratio of the disease are provided in the appendix. For each subject, this includes geographical 

information, socio-economic data, previous medications and vaccinations, as well as dietary 

and lifestyle information. This study collects a large set of environmental exposures from the 

time of birth to the time of diagnosis. Thus far, the Inception Cohort has recruited 771 patients, 

with 376 to be based in the United Kingdom (UK). 

 

The Safety Registry is a separate entity and an entirely epidemiological database initially 

designed to estimate the incidence and prevalence rates of rare and severe complications in the 

PIBD population. However, we expanded this project to ensure it also collects PIBD incidence 

and prevalence information from the general population, providing insights into the 

spatiotemporal distribution of PIBD. These data are unique as we have estimated incidence and 

prevalence rates across multiple countries in parallel using identical collection and validation 

methodologies and the most current data based on country (or centre)-specific databases and 

registries when available. Currently, the project has exceeded 140 active PIBD experts and is 

collecting information from areas covering over 30 million individuals under the age of 19. 

The Safety Registry provides the core datasets used to estimate the incidence and prevalence 

of PIBD in this PhD.  
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It is important to clarify that the inception cohort is a phase IV clinical study that offers 

individual patient data that we used to analyse the risk factors that affect the disease phenotype. 

In contrast, the safety registry is an epidemiological study that collects aggregated data, over 

specific patient catchment areas as discussed in the methods. In 2.1.2, the specific forms and 

data collection methodologies are discussed in further detail. Finally, the data from both the 

clinical and epidemiological studies were combined with several additional datasets of risk 

factors which were extracted from the European Environment Agency, NASA and 

EUROSTAT to prepare the datasets for the final analyses. 
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Work undertaken by the PhD candidate 
 

The synopsis of my role in this project includes the database design and setup of the data 

management methodologies, the support of the ongoing studies, the collection of additional 

external data, the development of analytical methods and finally, the data analysis itself.  

  

At the beginning of this project, I was responsible for designing the 2 study databases with the 

support and supervision of Professor Nick Croft and our collaborators from Erasmus MC 

University in the Netherlands, the associate Professor Lissy de Ridder and Dr Martine 

Aardoom. The finalised electronic data capturing (EDC) systems included 9,000 fields for the 

Safety Registry and 4,016 for the Inception Cohort. Much work was dedicated to developing 

system automations on the EDC server based on R Application Programming Interfaces (API). 

These automations aimed to streamline data quality checks and enable real-time interaction 

between the system, study participants, and data entry staff, thereby reducing errors and 

queries. 

  

I was also involved in the study support, developing the Safety Registry study network, and 

adding new participants. Beyond the technical requirements of these tasks, I received the help 

and support of Professor Nick Croft and the team in the Netherlands, including Dr Renz 

Klomberg. Based on the clinical input of the group, I was also responsible for updating the 

system regularly in terms of the structure, content and the eCRFs.  

  

The external data collection was also a significant volume of the work in this project, as the 

predictor data were available in various sources and formats. The complexity of this step 

increased after several of the datasets that the initial analytical methods were based on were 

updated, changed, or even discontinued by Eurostat. Exporting the data was also challenging 

in some cases due to the large volume of the required files. Frequently, this task required the 

development of APIs or several repetitive steps when the APIs were not an available option.  

  

The data preparation and management were likely one of the project's most challenging and 

time-consuming aspects. I have applied multiple interpolation methods on more than a hundred 

external datasets that had to be interpolated as part of the change of spatial format to match our 

outcome data. Also, the spatial information from different sources was often based on 



 

Page | 10  

 

 

 

incompatible geodetic formats, meaning that I had to reproject the data which was often a 

complex task for specific grid-based geodetic systems. 

  

Very importantly, with Dr Silvia Liverani's guidance, I have developed a series of steps that 

combine several methods, allowing us to calculate and validate the disease incidence and 

prevalence in the studied areas and combine it with many investigated predictors. These steps 

were later programmed as functions in R, leading to the development of an R-based set of 

functions that receives patient data with geographical information in various formats as input 

and performs spatial analysis using the processed risk factors.  

  

The model testing and optimisation was a multi-step process during which I received support 

from Silvia Liverani in multiple instances. Again, with the support and help of Silvia Liverani 

and Nick Croft, I have carried out all the analyses in this project, including the generation of 

tables and figures. In addition, my supervisors provided guidance for interpreting the results 

which set the foundation for the discussion.  

 

Finally, during my PhD, I supported the team with the data management and statistical analysis 

required for several posters and publications, listed in the following section. The publication 

“Incidence and Characteristics of Venous Thromboembolisms in Paediatric-Onset 

Inflammatory Bowel Disease” (Aardoom et al., 2022), where I was responsible for the data 

management and statistical analysis, is a very relevant example to the Safety Registry.   
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1. INTRODUCTION 
 

1.1. PIBD: General Notes 
 

Paediatric-onset Inflammatory Bowel Disease (PIBD) refers to the manifestation of 

Inflammatory Bowel Disease (IBD) occurring in individuals before the age of 18. It includes 

the conditions of Crohn's disease (CD), ulcerative colitis (UC) and IBD-Unclassified (IBD-U).  

When it is not possible to be certain whether the phenotype is consistent with Crohn’s or UC, 

it is more likely to be UC in most cases. The distinction of Paediatric IBD is crucial because 

the disease's onset in children and adolescents often presents with different clinical features, 

disease distribution, and genetic predispositions compared to adult-onset IBD. Variation in 

PIBD can be considerable due to several factors: genetic variations influencing susceptibility 

and disease presentation, environmental factors such as diet, exposure to infections, and use of 

antibiotics, which may impact disease onset and progression. Moreover, the clinical 

presentation of PIBD can vary significantly; some patients may have mild symptoms and 

localised disease, while others experience severe, extensive, and often more aggressive disease 

activity. This variability poses challenges for diagnosis, treatment, and management, 

underscoring the need for a tailored and multidisciplinary approach to care for paediatric 

patients with IBD. 

 

This body of work is focused on the epidemiology of IBD in the paediatric population. The 

incidence of PIBD has risen dramatically in recent decades (Elis et al., 2012; Schwarz et al., 

2017), with the prevalence in some countries expected to reach 1% of the population by 2030 

(Kaplan and Windsor, 2021). In this thesis, PIBD incidence refers to the number of new disease 

cases that develop in a specific paediatric population during the study period. The latter is the 

population at risk and is presented as person-years. In contrast, the PIBD prevalence is the total 

number of individuals who have the disease in the paediatric population at a specific time or 

over a specified time, regardless of when they first developed the condition. Currently, there is 

solid evidence that countries with increasing trends of urbanisation and industrialisation 

present the highest increase in IBD incidence. Moreover, fully "westernised" countries have 

the highest but relatively plateaued IBD incidence (Kaplan and Windsor, 2021). Despite some 

known suspected risk factors, the exact cause of IBD/PIBD remains unknown. 
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Thus far, a large-scale epidemiological study that investigates the potential causes, examining 

a large number of possible predictors, is not available. Several projects have attempted to study 

the epidemiology of PIBD and identify causal factors. These studies, however, are arguably 

limited in their geographical and population coverage. At the same time, in most systematic 

reviews and meta-analyses, the datasets were collected at different times and under different 

methodologies, which poses a significant limitation in the statistical analysis due to the 

inhomogeneity of the final dataset. Therefore, developing our PIBD epidemiological 

knowledge is crucial for evaluating existing and new etiological hypotheses to better define 

how environmental and demographic factors might influence the onset of the disease. 
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1.2. PIBD: Current views on the incidence 
 

To date, PIBD incidence information has been reported in just over 100 publications including 

figures from 35 different countries (Benchimol et al., 2011a; Hong et al., 2018; Huang and Aw, 

2020; Lopez et al., 2018; Schwarz et al., 2017; Sýkora et al., 2018). However, comprehensive 

incidence data from multiple studies and with adequate regional coverage are available only 

for a few countries. The current literature suggests that Canada, Germany, Slovenia, Sweden, 

Finland, Germany and the United Kingdom are countries with better characterised PIBD rates, 

compared to most other countries (Ashton et al., 2014; Benchimol et al., 2011a, 2009; Grieci 

and Bütter, 2009; Henderson et al., 2012; Lehtinen et al., 2016; Ludvigsson et al., 2017; 

Malmborg et al., 2013; Urlep et al., 2015, 2014; Wittig et al., 2019). A review of the currently 

available publications and systematic reviews reveals great spatial and temporal variations, yet 

with a few clear patterns that I will discuss in the following paragraphs. These studies were 

retrospective and exploratory in their majority. 

 

1.2.1. Temporal trends and data sources 
 

In their majority (>80%), the discussed epidemiological studies provided substantial evidence 

for an increasing PIBD incidence within each country. Finland, Sweden, Scotland, the United 

Kingdom, France, the Republic of Ireland, Spain, Greece, Italy, Denmark, Slovenia, several 

states and provinces in the US and Canada, Czech Republic, Singapore, Saudi Arabia, South 

Korea and Singapore were some of the countries which reported a continuously increasing 

incidence over time for an approximate period spanning from 1985 to 2015 (Benchimol et al., 

2014; Bequet et al., 2017; Castro et al., 2008; Coughlan et al., 2017; Dimakou et al., 2012; el 

Mouzan et al., 2014; Fernández et al., 2015; Hammer et al., 2016; Henderson et al., 2012; Hong 

et al., 2018; Hope et al., 2012; Jakobsen et al., 2011; Lehtinen et al., 2011; Malmborg et al., 

2013; Martín-de-Carpi et al., 2014, 2013; Ong et al., 2018; Schwarz et al., 2017; Sýkora et al., 

2018; Urlep et al., 2015, 2014; Virta et al., 2016a). Therefore, the temporal trends of PIBD 

incidence are well-characterised and consistent among several countries across different 

continents. In addition to the cited regions in West Asia, Europe and North America, the 

observed trends seem to be global, as increasing rates for both CD and UC have been reported 

from Australia and New Zealand in 2014 (Day et al., 2014), repeatedly from South America in 

2015 to 2019 (Selvaratnam et al., 2019), across Asia and East Asia in particular in 2008 (Thia 
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et al., 2008) and Africa in 2020 (Hodges and Kelly, 2020) with the latter to be the least 

characterised region in terms of PIBD and IBD incidence and prevalence. 

 

1.2.2. Spatial trends and North-South gradient 
 

Expanding our current understanding of the temporal PIBD trends to the geographical 

distribution of the disease is a more complicated task due to the lack of standardised practices 

employed by different PIBD studies and therefore their subsequent heterogeneity. These 

projects vary greatly in their data collection and analysis methods, completion date, diagnostic 

criteria, exclusion criteria and, in some cases, even clinical practices, depending on the country 

and clinical setting. In regards to the data collection methodologies used in previous studies of 

PIBD incidence, four main categories emerge i) the use of data from insurance companies, 

which we have seen recently in studies from Germany, Canada and South Korea, ii) the use of 

databases for medication expenditure claims, which are mostly used in the Baltic countries and 

in Finnish studies, iii) access of patient hospital records, which is common in most countries, 

iv) the use of dedicated IBD and PIBD registries and surveys completed by an active network 

of PIBD and IBD specialists. The latter data collection approach is used in this project and has 

also been used with success in several other countries previously. For example, one of the 

biggest survey-based PIBD registries was the SPIRIT registry (1996-2009), which revealed the 

incidence of the disease in Spain for the first time (Martín-de-Carpi et al., 2014). Additional 

concerns when reviewing the spatial distribution of the disease across different regions and 

studies are emerging as a result of inconsistencies with age cut-offs used in different studies. 

Most commonly, <18 years of age was the preferred cut-off in approximately half of the 

reviewed studies, while <19 and <16 were also used as cut-offs by several research groups. 

Lastly, to further underline the complexity of summarising the geographical trends of PIBD 

incidence, different incidence standardisation methods, including in some cases, none, have 

been used by different studies. 

 

Despite all the obstacles mentioned above that inflate the uncertainty in any comparisons 

between regions, admittedly, two main geographical patterns emerge from the available 

literature. For the northern hemisphere, countries and regions closer to northern latitudes are 

reported to have up to 10-fold higher PIBD incidence rates compared to the countries located 

further to the south. It is imperative to underline that any incidence comparisons between 
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different regions should occur only for similar periods due to the rise of PIBD incidence in the 

last 40 years. Focusing on Europe and for the 2000-2010 time period, in 2008, Scotland 

reported a PIBD incidence of 7.82 per 105 person-years (Henderson et al., 2012), which was 

the highest at the time for the United Kingdom, whilst Finland reported 15 new cases per 105 

(Lehtinen et al., 2011). Germany also reported similar PIBD incidence rates of 13.65 in 2009 

(Wittig et al., 2019), whilst Sweden reported 12.8 in 2007 for the county of Stockholm 

(Malmborg et al., 2013). In addition, Denmark also reported a high PIBD incidence in 2009 

(Jakobsen et al., 2011). Although the reported incidence from Denmark was 6.4 per 105 person-

years, the included population was <15 years of age and therefore, the expected incidence in 

the overall paediatric population is significantly higher. The Netherlands reported a PIBD 

incidence of 5.2 from 1999 to 2001 (van der Zaag-Loonen et al., 2004). However, considering 

the reporting year, this figure should be adjusted and increased to match the results from the 

other countries, given the well-recognised continuous increase in the annual disease incidence 

observed in all European countries. After grouping the higher latitude countries in Europe 

(above 53oN) with available PIBD incidence data in the 2000 to 2010 period, Poland was the 

only outlier, while the paediatric incidence of the disease is unclear in the Baltic countries. For 

the 2002 to 2004 period, the reported incidence in Poland was 2.7 cases per 105 person-years, 

which, however, was still higher than any available report from the south of Europe for the 

same time period (Karolewska-Bochenek et al., 2009). This discrepancy may be explained by 

the size of this country as it spans from 49 to 53oN. It is possible that countries of that size may 

have a within-latitude variation in the incidence of PIBD. In contrast to the figures from 

northern Europe, all countries with available PIBD incidence data in the south of Europe 

reported significantly lower rates. Italy reported a PIBD incidence of 1.39 in 2003 (Castro et 

al., 2008), and Spain reported 2.8 in 2009. In Greece, the average reported PIBD incidence for 

the 2000 to 2011 period is estimated at 1.9 patients per 105 person-year (Dimakou et al., 2012). 

This estimate was based on denominator data for the reporting unit that is known to us. Lastly, 

as expected, countries in between reported incidence figures that were significantly higher 

compared to the South but lower than the average reported incidence from the countries of the 

North. Specifically, Slovenia reported 5.14 for the 2000 to 2005 period (Orel et al., 2009), 

northern France reported 4.4 to 9.5 for the 1998 to 2011 period (Bequet et al., 2017), and the 

Czech Republic reported 3.8 in 2002 (Jabandziev et al., 2020). As discussed, these countries 

also reported a sharp increase in the incidence over time.  
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The main reason for our primary focus on the northern hemisphere is that approximately 90% 

of the global population is located above the equator. This fact, combined with the similar 

latitudes of the populated Australian regions and countries of New Zealand and South America 

(regions with available PIBD incidence data), poses difficulties in using data from these areas 

to investigate possible latitude effects on the PIBD incidence. Future studies in South America 

may confirm an equivalent pattern in the southern hemisphere as well.  

 

1.2.3. Outliers and differences between East and West 
 

Although the rapid incidence increase over time and the latitude effect are well-recognised 

patterns, some countries and regions, particularly in Eastern Europe and outside North 

America, appear to follow a different pattern. Eastern European countries are a good example 

of this deviation, while even at the northern latitudes, they present lower rates compared to the 

expected rates based on their location. Interestingly, these countries also present the steepest 

increase in their incidence rates. Hungary reported 0.7 PIBD incidence in 1981, subsequently 

increasing by a staggering 1770% increase in the following three decades (Lovasz et al., 2014). 

Although the reports for the Baltic countries are scarce, they appear to follow a similar pattern 

with the rest of Eastern Europe. From 1993 to 1998, for all age groups, only 29 patients were 

diagnosed in Estonia, suggesting that the annual incidence of PIBD was practically non-

existent at the time and certainly much lower than the European average (Salupere, 2001). A 

more recent study in Lithuania, again not specific to paediatrics, reported an IBD incidence of 

8.12, suggesting that the PIBD rates should not exceed 2.5 cases per 105 in the PAED 

population (Schwarz et al., 2). Similarly, the incidence rates in Romania and Russia are also 

particularly low and mainly driven by UC cases instead of CD (Goldiș et al., 2019; Khalif and 

Shapina, 2017). The current consensus is that this pattern is linked to a less ‘westernised’ 

lifestyle in these countries, and I will discuss the suspected risk factors in PIBD in the following 

sections. Lastly, outside Europe and North America, the PIBD incidence also follows the 

‘westernisation hypothesis’. An example is the paediatric incidence in Australia and New 

Zealand which is significantly higher compared to Asian and Latin American countries (Ng et 

al., 2017). Interestingly, several studies supporting the latter also reported a sudden incidence 

increase, especially in Asian countries (Huang and Aw, 2020). 
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1.2.4. Spatio-Temporal trend plateau 

 

An additional element that needs to be considered when describing the global trends of PIBD 

incidence is a 'stopping rule' for the continuously increasing disease rates. In several countries 

that have been traditionally reporting very high PIBD incidence rates, a plateau and in some 

cases, even a minor decrease has been observed in recent years (Huang and Aw, 2020). PIBD 

incidence reports from Slovenia suggest a possible decline in the country’s incidence rates 

(Urlep et al., 2015), while in most provinces in Canada, a plateau and, in some cases, even a 

decline has been observed over the last decade (Kaplan et al., 2019). It is noteworthy that 

Canada has been the country with the highest IBD incidence in the world over the last decade 

(Qin, 2011). Therefore, it should not be a surprise that it is also one of the first countries to 

report stable or declining incidence rates. Furthermore, similar trends have been reported in the 

US, with Wisconsin as a representative example (Adamiak et al., 2013), where the PIBD 

incidence has been stable at 9.5 new cases per 105 person-years for almost a whole decade. 

 

1.2.5. Trends in IBD phenotypes 
 

A thorough study of PIBD epidemiology should also factor in the different phenotypes of the 

disease. As discussed in 1.1, IBD includes CD, UC and, less frequently, IBD-U, which in 

clinical practice is often grouped with UC due to the similar location of the presenting 

symptoms. In a very simplistic analogy, one can picture this as an epidemiological study of the 

Influenza virus ('the flu'). Depending on several factors, in some seasons, the flu spreads by 

type B and in other seasons is spread by type A (Zhang, 2015). The CD and UC diagnoses are, 

in fact, two very distinct IBD phenotypes with major differences in their presentation, 

pathogenic mechanisms and therapeutic approaches. Very importantly, differences may also 

be found in some of the risk factors for each phenotype as several studies have previously 

suggested. For instance, smoking has been reported to be a protective factor for UC, while it is 

deemed a risk factor for CD (Carbonnel et al., 2009). According to the literature, it is widely 

accepted that CD is the most prevalent IBD and PIBD phenotype. In our prospective PIBD 

clinical study, the Inception Cohort (ClinicalTrials.gov identifier: NCT03571373), the CD, UC 

and IBD-U rates are 58%, 33% and 9%, respectively. Most reports from North America, Asia 

and Europe are in agreement with these ratios. However, in eastern European countries and 

Finland, the UC incidence and, subsequently, prevalence are higher than the CD. Specifically, 

https://www.interglot.com/dictionary/en/en/translate/noteworthy
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in Finland, the paediatric UC incidence has been repeatedly reported to be much higher 

compared to the CD incidence (Lehtinen et al., 2011; Virta et al., 2016b), while in Russia, 

Romania and Estonia, a similar rate, favourable to UC has also been reported by the majority 

of available studies from these regions (Goldiș et al., 2019; Khalif and Shapina, 2017; Salupere, 

2001). Older studies in Greece reported a very low CD incidence, however, this trend has been 

changing for this region in the last two decades (Archimandritis et al., 2002; Economou et al., 

2007; Tsianos et al., 1994). 

 

1.2.6. PIBD and Demographics 
 

The demographics of PIBD are well-established and reported in a great number of studies 

(Johnston and Logan, 2008; Ashton et al., 2014; Fernández et al., 2015; Ludvigsson et al., 

2017; Urlep et al., 2015; Forss et al., 2022; Kern et al., 2022; Kaplan et al., 2019). Although 

the patterns vary between countries, several studies have reported that both the incidence of 

IBD and the ratio of the diagnoses between males and females change with age (Ludvigsson et 

al., 2017; Urlep et al., 2015). Several studies have reported that in the young paediatric 

population, the CD phenotype is more common in males, while the UC phenotype is prevalent 

in females. However, as the paediatric population enters the later stages of life, this pattern 

tends to exhibit reduced prominence; in some instances, it may even reverse for the adult 

population (Johnston and Logan, 2008). The impact of age on the incidence of PIBD and IBD 

overall is substantial. Several studies have reported a marked rise in disease occurrence, at 

times resembling an exponential function, from the initial years of life up to the age of 18. This 

pattern has been observed in Germany, the United Kingdom, Sweden, Spain and Canada 

(Ashton et al., 2014; Fernández et al., 2015; Forss et al., 2022; Kern et al., 2022; Kaplan et al., 

2019).  

 

Understanding the disease distribution by age is an essential step for the precise incidence 

calculation, which is subsequently necessary for the study of the epidemiology of the disease. 

This also applies to the geographical and temporal PIBD incidence characteristics. 

Understanding the distribution of the disease over time and space is central to the knowledge 

of its development, spread, and dynamics.  
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1.3. PIBD: Risk factors 
 

Inflammatory Bowel Disease is known to have a genetic component, with research suggesting 

that genetic factors contribute to a person's susceptibility to the condition. Although studies 

have identified genetic variants that are associated with IBD, the precise mechanisms by which 

these genetic factors contribute to IBD development are not yet fully understood. It is important 

to note that while genetics plays a role, IBD is a complex condition with various contributing 

factors, including environmental and lifestyle effects. Only a very small percentage of the 

disease cases, including primarily early onset cases, is reported as a monogenic disease (Loddo 

and Romano, 2015). Studies recruiting homozygotic twins reported a 20-50% concordance for 

CD and percentages as low as 10% for U confirming the significant role of the environmental 

effects on the disease development (Halme, 2006; Quigley, 2012). These studies also identified 

several genes with different expression levels between twins, which are associated with 

different previous environmental exposures. Such differences between individuals with 

identical DNA provide significant evidence underlying the importance of the environmental 

effects on the incidence of the disease. 

 

1.3.1. Paediatric Population Epidemiology 
 

This project focuses on the collection of paediatric incidence and prevalence of IBD data. 

Although obtaining paediatric data often presents limitations, it also has several advantages, 

especially regarding risk factor identification. The paediatric population tends to have limited 

exposure to substances and medications that might influence the results (for example, smoking, 

alcohol, blood pressure medication and others). Moreover, the paediatric population has 

significantly lower rates of comorbidities that often influence the incidence and progression of 

the studied disease. Lastly, from a geospatial perspective, individuals in a paediatric population 

are also expected to have fewer relocations prior to presenting the disease, and therefore, their 

environmental exposures can be followed up with much less effort compared to adults. 

However, the disadvantages of a paediatric population in an epidemiological study are the 

comparatively limited sample size and the risk of missing cases that might have been diagnosed 

in adult clinical settings instead of paediatric units. 
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1.3.2. Risk factors in IBD, a critical approach to previous 
studies 

 

Several studies investigating the effects of risk factors in IBD and PIBD can be found in the 

current literature. However, there are limitations in the previously published research on this 

topic which may have an impact on the validity of their results. Therefore, we should use strict 

filters on the currently available list of suspected risk factors before choosing the predictors 

that will be used to analyse our data. In the following paragraphs, I will provide a few examples 

of such studies that I have reviewed to optimise the methods used in this project. 

 

In 2005 a Belgian study reported a significant association between the month of birth and 

Crohn's disease incidence (Joossens et al., 2005). Specifically, a higher risk was reported for a 

four-month season peaking in April and August. In particular, June was reported as the month 

with the most potent protective effect. However, this study did not have pre-defined hypotheses 

and endpoints and also did not adjust for multiple comparisons. This study suggests that any 

combination of months (seasons) could be a different level of the predictor, while the individual 

months were also included as individual predictors. Assuming that the investigators defined a 

season as four months, four seasonal combinations are available, while 12 single months are 

also available predictor options. This inflates the type 1 error, and the chances for a false 

positive increase from 5% to 56%, invalidating the p-value cut-off of the study. Moreover, the 

four months period seems to be inconsistent as half of the individual months in each peaking 

period had an odds ratio in favour of the opposite effect. It should be noted that our Inception 

Cohort data do not confirm these findings while a year earlier, a similar Israeli study with the 

same limitations suggested a peak in the winter season (Chowers et al., 2004). 

 

A French study in 2011 identified lower rates of sun exposure as a predictor of a higher Crohn's 

Disease prevalence rate (Nerich et al., 2011). Although this might be an accurate finding, since 

many other studies have also suggested it, the observed correlation was directly linked to the 

geographic latitude. As with many other countries, the latitude in France is frequently linked 

to several socio-economic factors and health indicators that might be important confounding 

factors. For instance, in the book Health in France 2002, an almost identical pattern was 

reported for the health inequalities and disparities and the standardised mortality ratios within 
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the country. Arguably, this finding could be linked to health inequalities instead of sun 

exposure. 

 

A last example to challenge a negative result in contrast to the previous examples is a Canadian 

study that found no associations between measles vaccinations and the onset of paediatric IBD 

(Shaw et al., 2015). The study included patients and controls to a 1:7.13 ratio, with 97% and 

94% vaccination rates, respectively. For this recruitment ratio, the study is severely 

underpowered and could only detect a significant difference if the vaccination rate in the 

control group was lower than 92%. This percentage seems unrealistic, making the design of 

the study problematic. 

 

Additional issues with the current literature are related to the generation of subgroups that 

reduce the validity of the results from a statistical standpoint. It is quite common in IBD 

research to separate the IBD sample into its two main phenotypes, UC and CD, while less 

frequently, further divisions based on age groups are applied. The great number of subgroups, 

in combination with the number of questions and examined risk factors, can often lead to false-

positive findings if the necessary adjustments are not made. Following these rules is often 

challenging in practice and for "real-world-evidence" studies. However, due to the lack of a 

specific protocol and pre-defined hypotheses, it is crucial that the basic statistical rules are 

followed in order to maintain the global type I error within a reasonable range (Chen et al., 

2017).  

 

1.3.3. Defining environmental exposure and risk factors 
 

In the last decade, a new concept that describes the interaction of environmental exposures with 

an individual's health emerged in the field of epidemiology. The exposome is a term used to 

describe the complementary role of the environment to the genome (DeBord et al., 2016). A 

literature search reveals that this notion, although not new in its entirety, is gaining popularity 

exponentially as it formally defines the totality of exposures that individuals experience from 

conception until death and its impact on chronic diseases. Hence, the definition of exposome 

can be used as a framework for summarising the risk factors for this study. This step will enable 

us to classify all possible exposures and determine which domains of the exposome we can 

investigate and where this project's limitations lie regarding accounting for all the potentially 
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important stressors. Simply put, I will attempt to identify all possible routes in which non-

genetic exposures may contribute to the IBD onset and I will specify the ones that we can 

account for in the data analysis. 

 

The exposome is divided into three domains, the internal, the specific external and the general 

external (DeBord et al., 2016; Vrijheid, 2014). The internal factors are unique to the individual, 

including metabolic factors, gut microflora, inflammation, oxidative stress, and more (Wild, 

2012). This is the type of exposure we cannot include in our analysis as such an approach would 

require us to collect biomarkers from a vast healthy population starting from birth until a large 

enough sample of patients emerges within the monitored population. Specific external factors 

include contaminants, diet, physical activity, tobacco use, infections, and lifestyle factors. This 

domain is covered by the Inception Cohort as we collect a very wide range of specific external 

factors from each newly diagnosed patient. Considering that we also collect detailed 

geographical information from each patient, we can also estimate the exposure of each 

individual to a large number of additional environmental factors including pollutants, sun 

irradiation and more. The latter are the general external exposures including outdoor pollutants, 

urban environment information, climate information and overall factors that are usually 

measured at the community and regional levels. Additional examples of the latter are the health 

and lifestyle indicators in a specific area, such as diabetes and average sugar consumption. Both 

the specific and general external factors can be powerful predictors in our analysis. The 

advantage of using specific factors is preciseness, while in the use of general external factors, 

the advantage lies in the much larger sample size. Nevertheless, it is possible to combine the 

findings using both approaches and validate our results. 

 

1.3.4. Risk factors in IBD, current knowledge 
 

1.3.4.1. Specific external factors 
 

In the myriad of suspected and studied risk factors in IBD, as our starting reference point, we 

will use the comprehensive topical review on the Environmental Factors and Predisposition to 

IBD published by the European Crohn’s and Colitis Organisation (ECCO) in 2016 (Maaser et 

al., 2016). This report includes several suspected risk factors in IBD, frequently separated for 
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the phenotypes of CD and UC. In the following paragraphs, the focus will be on the specific 

external factors as described by the exposome definition. 

 

Several studies have considered prenatal and perinatal factors as risk factors in IBD in the 

last two decades. In particular, caesarean section has been reported as a risk factor, but several 

studies also contradict this finding. ECCO associated this possible effect with the intestinal 

microbiota composition encountered at birth. A recent study expanded this to the hygiene 

hypothesis, which will also be discussed as a specific factor (Beaugerie et al., 2018). Given the 

contradicting results and considering that the rate of caesarean section deliveries depends on 

the region and the local medical practices, we will only include this factor in the exploratory 

outcomes. Breastfeeding has also been studied previously, again, with contradicting results 

from several studies. According to more recent studies, the results might have been 

contradicting because the duration response effect means that at least 3 or 6 months (depending 

on the study) are required to reduce the risk (Gearry et al., 2010). Since the duration of 

breastfeeding is not collected by the Inception Cohort, we will not include this factor in the 

exploratory outcomes. Additional factors include the gestation period, birth weight, birth 

length, as well as infections, age and smoking status of the mother during pregnancy. Of these 

factors, smoking is a well-known factor of importance in IBD and therefore the maternal 

smoking status will be included in the primary analysis.  

 

Childhood vaccinations have been studied repeatedly in the IBD population; to date, there is 

no solid evidence to demonstrate an association. Some reports, such as Burisch et al., 2014b, 

suggest a difference in the vaccination rates for Diphtheria and Polio between the two different 

IBD phenotypes. However, the dataset was obtained from Eastern and Western Europe, and 

this effect could be attributed to the fact that the phenotype and vaccination rates are quite 

different between the two regions, suggesting an expected correlation and not causation 

(Burisch et al., 2014b). In fact, comparing the vaccination rates between UC and CD patients 

in Eastern and Western Europe shows no significant differences. Therefore, the vaccination 

data from the Inception Cohort will also be included in the exploratory outcomes.   

 

The hygiene hypothesis is, according to many scientists, one of the most critical factors in the 

development of IBD (Gearry and Dodgshun, 2012; Koloski et al., 2008). According to this 

hypothesis, childhood exposure to very hygienic conditions may be linked to the incidence of 
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the disease. Extremely hygienic environments could impair immune development and 

predispose the population to immunological diseases. This notion fits almost perfectly with the 

timeline between a country's development status -which, as expected, is linked to sanitation 

improvements- and its IBD rates. Interestingly, countries that are classified as "developed" by 

the conventional metrics have very high IBD rates, while developing countries present low but 

rapidly increasing IBD rates. Nevertheless, we cannot exclude the possibility that other factors 

linked to a region's development status may be the fundamental driving forces of the IBD 

incidence. Adding this theory as a specific external factor in our study is somewhat complicated 

as it is a composite variable that includes many factors. For this reason, it is also challenging 

to quantify this measure as an arbitrary scoring system would introduce bias. However, since 

this is a well-recognised factor that may affect the immune system, we will be using proxy 

factors as suggested by the literature to investigate its influence on PIBD incidence as one of 

the primary outcomes (Saidel-Odes and Odes, 2014). The proxy factors that we will use include 

information about exposure to pets, other animals, and the number of siblings and household 

details. 

 

Dietary habits are also an important specific external exposure. There is a plethora of studies 

on this topic, with many of them suggesting that very high fat and sugar intake could increase 

IBD incidence (Maaser et al., 2016). Studies using animal models also suggested similar 

results. Capturing such patterns is a particularly complicated task, and therefore, in the 

Inception Cohort, we are collecting limited information about any types of food that our 

patients exclude from their diet. This simplified factor will be included as a potential risk and 

examine if the patients exclude anything in particular from the diets (i.e., vegetarian). 

Expanding on dietary habits, caffeine and alcohol consumption will not be included in the 

analysis as our population's expected exposure rates are particularly low. 

 

Supplements (Vitamin D), antibiotics and pain relief medications (NSAIDs and Aspirin) 

are also important in the study of IBD risk. Vitamin D deficiency has been reported multiple 

times as a risk factor for IBD. Low vitamin D levels in newly diagnosed IBD patients are 

frequently reported, while a recent study published late in 2018 identified 79% of all recently 

diagnosed IBD patients as vitamin D insufficient or deficient (Chetcuti Zammit et al., 2018). 

The same study also presented findings suggesting a correlation between the severity of the 

symptoms and Vitamin D. Additionally, this is consistent with the multiple reports that suggest 
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a negative correlation between sun exposure and IBD. These reports also fit the geographical 

gradients of the disease from south to north. This will be further discussed in the general 

external factors paragraphs. 

 

Antibiotics also seem to be positively associated with the onset of IBD. In 2011, a Canadian 

study with a substantial sample size of 24,.580 subjects and a 1:10 case-control design reported 

a significant association between new IBD cases and antibiotic administration (Shaw et al., 

2011). Recent use of Antibiotics may trigger IBD, and it is also an indicator of a recent infection 

that could also be the trigger of IBD. More studies and meta-analyses suggest this connection, 

especially for the CD phenotype (Ungaro et al., 2014; Virta et al., 2012). However, antibiotics 

may also be given to the patients to treat the symptoms prior to diagnosis, making this a difficult 

predictor to study.  

 

Aspirin and NSAIDs (Non-Steroidal Anti-Inflammatory Drugs), in particular, have also been 

linked to new IBD cases. In recent years, retrospective and prospective studies have reported 

this finding with exceptionally high odds ratios of 1.87, 2.96 and 6.2 indicating a large effect 

size (Chan et al.,2011; Felder et al., 2000; Gleeson and Davis, 2003). Aspirin and NSAIDs 

(Non-steroidal anti-inflammatory drugs), in particular, have also been linked to new IBD cases. 

Considering the substantial evidence supporting the association of vitamin D, antibiotics, 

NSAIDs and Aspirin with new cases of IBD, we will also include these factors in the primary 

outcome analysis. Arguably, the pain medication and antibiotics may not be directly linked to 

the aetiology of the disease and may be proxy measures of an underlying condition associated 

with the onset of IBD. 

 

Additional factors are also considered as specific external factors in IBD. As discussed, 

smoking and alcohol do not apply to our study due to the low exposure rates in the paediatric 

population. Similarly, recreational drug use, oral contraceptives, hormone replacement therapy 

and occupation will also be excluded. Lastly, although stress, anxiety and depression are 

included in the Inception Cohort data collection, the information is gathered at diagnosis, 

meaning that the presenting symptoms will affect the results. These items will also be excluded 

since we can only obtain this information after diagnosis. 
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1.3.4.2. General external factors 
 

Unlike the specific external factors, which include the exposures of each individual in our 

analysis, the general external factors include the exposures over an area and, subsequently, a 

group of individuals. Any underlying associations between the disease and the studied 

exposures are expected to be observed across different areas, establishing a pattern. Some of 

the already discussed factors can also be studied on this higher level.  

 

Prenatal and perinatal factors are not consistently documented in detail in all European 

countries. However, the mother's age at birth is available on the regional level in Europe and 

will be included in the primary analysis complementing the prenatal analysis since this 

information is not available in the Inception Cohort. 

 

Solar irradiance is expected to be a significant predictor in our analysis, and it can also be 

used as a proxy for vitamin D levels. Since sun exposure is the most recognised risk factor, we 

can use it as a validation metric in our project with the expectation that we will also be able to 

replicate these findings (Fletcher et al., 2019; Ghaly et al., 2019; Holmes et al., 2019, 2018; 

Limketkai et al., 2014; Lu et al., 2015; Nerich et al., 2011; Olmedo-Martín et al., 2019). 

 

Pollutants are a less-studied group of general external risk factors in IBD, with the first 

available study published in 2010. However, almost all relevant studies have identified 

significant associations between air pollutants and the incidence of IBD (Ananthakrishnan et 

al., 2011; Beamish et al., 2011; de Silva et al., 2017; Opstelten et al., 2016; Salim et al., 2014). 

Our study offers an up-and-coming platform for studying pollutants and their connection with 

PIBD. The paediatric population is expected to have fewer relocations, allowing us to estimate 

their exposure level to each pollutant more accurately. This characteristic of the paediatric 

population could explain why some studies have observed these effects specifically in the 

young population (Kaplan et al., 2010). Also, our population is expected to have limited 

exposure to other chemicals, known for their toxicity, compared to adults. Lastly, the data 

collection in the Safety Registry covers a sizeable paediatric population from several European 

countries. As part of the EU legislation, each member country must provide detailed 

information about every pollution source from factories, businesses, and other organisations, 

while sampling stations also provide hourly measurements for 50,000 locations across Europe. 
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This results in a database with multiple million entries including all sources of pollutants in the 

last few years combined with the source details, duration, validation status and more. For these 

reasons, this project will thoroughly investigate the link between pollution and PIBD.  

Due to the pollution datasets' size and level of detail, we can obtain a very accurate picture of 

their spatiotemporal distribution for the European region. However, since approximately 500 

pollutants are available in the European Environmental Agency (EEA) databases, we must 

select the specific compounds that will be included in our analysis. According to the WHO, the 

pollutants with the most substantial evidence of health effects are particulate matter (PM), 

ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) (Brook et al., 2010; Goshua et 

al., 2022). According to the United Kingdom Air Information Resource (UK-AIR and the 

British Department for the Environment, Food and Rural Affairs, toxic organic micro-

pollutants (TOMPS), Benzene, 1,3-Butadiene, Carbon monoxide (CO), as well as Lead (Pb) 

and other heavy metals, should also be included in the list. The US Environmental Protection 

Agency also includes Carbon monoxide and Lead in this list. Compared to every previous study 

of IBD/PIBD, the novelty in this project is that it incorporates the most detailed pollution 

dataset, which we wish to utilise and validate previous findings regarding the effects of heavy 

metals, O3, CO, NO2 and PM on the gut (Beamish et al., 2011) and PIBD specifically. We 

have also investigated the influence of Butadiene, Volatile Organic Compounds (VOC), toxic 

organic micro-pollutants and other pollutants on disease incidence for the first time. The 

additional pollutants that will be included in our analysis will be selected based on their 

coverage. Only pollutants that are present in at least 10% of the studied area will be added to 

our predictor dataset. 

 

Socioeconomics and demographics have always been factors of interest in real-world data 

studies. Although associations between socio-economics and IBD have been suggested by 

many investigators (Bernstein et al., 2001; Blanchard, 2001; Farrokhyar et al., 2001; Piovani 

et al., 2019), these are expected to be spurious relationships rather than causal. For instance, 

unemployment cannot cause disease but could be associated with the prevalence of disease 

since it affects the lifestyle, quality of life, access to certain services and more. Although we 

will include the demographics and socioeconomic factors in our analysis, we will be critical of 

any relevant results as health disparities that might be present (Benchimol et al., 2011b).  
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Geographical location is a profound factor closely linked to IBD and PIBD incidence, as 

discussed in the previous paragraphs. However, this information is not useful in the aetiological 

study of the disease. In essence, a geographical region cannot be a risk factor but only an 

indicator of the true risk factors that may be present in the region or a common characteristic 

in the group of individuals who live at this location. One of the metrics used in spatial analysis 

aims at eliminating any spatial correlations in the residuals of the final model, meaning that the 

model can explain the difference in the sample using the predictors that have a causal 

relationship with the disease, which is detailed in the methods section. The same rationale 

applies to the urbanisation status, which has been repeatedly suggested as a risk factor by 

numerous studies and comprehensive meta-analyses (Soon et al., 2012).   

 

Lastly, the water quality and source are a less straightforward general external risk factor 

previously documented in the literature since 1990 (Aamodt et al., 2008; Hermon-Taylor, 1993; 

van Kruiningen and Freda, 2001). This is included under the geographical location since it has 

been proposed that the evidence of clusters may suggest a shared exposure for certain groups 

that share the same water supply. Using the Inception Cohort data, we can identify phenotype 

patient clusters, and while using the Safety Registry data and pollution data from EEA, we can 

investigate potential associations on the regional level. 

 

1.4. Maps and Exposures: Territorial units, maps and predictor 
data sources 

 

This section is included in the introduction to discuss the source, details and characteristics of 

the datasets and variables included in the study.  

 

1.4.1. Eurostat (NUTS, GISCO and INSPIRE datasets) 
 

Eurostat is the statistical office of the  EU. It is responsible for collecting, processing, and 

disseminating statistical data for the EU and its member states. Eurostat's main tasks include 

collecting and compiling statistical data from EU member states. Eurostat works with national 

statistical institutes to ensure that data is collected and reported consistently and comparably 

across the EU. Eurostat also processes data using statistical methods and produces various 

statistical publications and databases. Disseminating data and information is an essential 
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function of the agency. It ensures that the data and publications become available to the public 

through its website and other channels, including data visualisations and interactive tools. 

Eurostat's data is widely used by researchers, policymakers, and the general public, and it is 

considered a reference source of information for the EU. The statistical authorities of 

Switzerland and the European Economic Area are also included in the available datasets. 

During the design of this project, the United Kingdom was still included in the Eurostat 

summaries.  

 

The maps we used throughout the project for data collection, disease and pollution mapping 

and analysis were provided by GISCO (the Geographic Information System of the 

COmmission). The primary responsibility of GISCO is to offer geospatial reference data and 

related services to Eurostat, the Commission, and the general public of Europe. Its objective is 

to encourage and stimulate the use of geographic information within the European Statistical 

System and the Commission. It also organises Commission-wide geographic information 

operations and shared policies. The GISCO maps provided administrative boundaries with their 

statistical units in the NUTS format (Nomenclature of territorial units for statistics). This 

Nomenclature uses four levels in a hierarchical structure, meaning that the smaller territories 

are included in the larger territories (Table 1). The first level is NUTS0 which is the country 

level, followed by NUTS1 which includes major socioeconomic regions (e.g.. Scotland). The 

NUTS2 level is assigned to basic regions for the application of regional policies (i.e., 

Oxfordshire), and it includes the NUTS3 level which is the most detailed level of the NUTS 

classification and was the territorial unit that was used in our project for data collection and 

analysis. Specifically, for the UK, the Office for National Statistics has integrated the NUTS 

framework, providing UK-specific datasets and areas of higher resolution. The United 

Kingdom was one of the countries that also developed NUTS4 and NUTS5, also known as 

LAU1 and LAU2, respectively. These Local Administrative Units (LAU) are essential for 

future work that may require using maps with higher resolution and precision. The following 

Table 1 summarises several areas for the NUTS0 to NUTS5 levels for the United Kingdom. 
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Table 1 The EUROSTAT territorial units in the UK 

The six levels of NUTS units that were available up to May 2026 for the United Kingdom 
 

Level (UK) 
 

Number of 

territories/Administrative 

units 

 

Description 

NUTS0 1 Country level 

NUTS1 12 Population range: 3-7 million 

NUTS2 40 Population range: 0.8-3 million 

NUTS3 173 Population range: 0.15-0.8 million 

LAU1 (NUTS4) 415 Population range: 1,000-2.2 thousand 

LAU2 (NUTS5) 10126 Population range: 0-36.4 thousand 

 

The NUTS maps are available to download by Eurostat in 5 different formats, 5 versions from 

2001 to 2019 in 3 geometry types, several resolution levels and 3 different coordinate reference 

systems. The maps used in this project were released in 2013 and 2016 and are based on the 

shapefile format using the polygon geometry type and 3 different coordinate reference systems 

(EPSG: 3035, EPSG: 4326 and EPSG: 3857).  

 

An additional valuable source of spatial information for European countries is Infrastructure 

for Spatial Information in the European Community (INSPIRE). An EU legislation known as 

INSPIRE sought to improve public sector organisations' exchange of environmental spatial 

information and public access to environmental data throughout Europe. The pan-government 

equivalent of INSPIRE in the UK is called UK Location, and it aims to enhance the sharing 

and reuse of location data in the public sector. Although the INSPIRE and UK Location 

datasets were initially used in this project, they were excluded from the final analysis due to 

the great heterogeneity regarding the available formats, spatial units and areas covered. 

Depending on the findings of our study, these datasets may be necessary for a more detailed 

review of the effects that specific exposures may have on the incidence of PIBD. 

 

1.4.2. European Environmental Agency (EEA) and 
Department for Environment, Food and Rural Affairs 
(DEFRA) datasets 

 

The European Environment Agency (EEA) is tasked with disseminating reliable, unbiased 

environmental information from 41 European or adjacent to Europe countries, providing 

information to decision-makers and the general public. The EEA provides several million data 

points with information on over 400 pollutants, detailed location information, type of 
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measurements, verification information and additional information, including the time and 

method of measurement. The datasets include pollutants found and released in the air, water 

and soil while distinguishing pollutants with local effects from long-range transboundary 

pollutants. Much of the data included in the EEA databases are available due to the existence 

of articles requiring organisations and businesses to declare and submit their pollutant release 

and transfer to relevant European registries. This results in a comprehensive list of databases 

that include sampled pollution data, emission data from individual industrial plants and 

emission data from several diffuse sources. 

 

The agency also provides a variety of complementary datasets that may be important for 

specific ecological and epidemiological studies. For instance, EEA provides maps with the 

spatial distribution of Anopheles maculipennis, a mosquito species responsible for malaria 

transmission in European countries until 1970. In addition, the environmental agency provides 

a series of additional maps with health indices summaries, climate, transport, agriculture, 

waste, and land cover data.  

 

The Department for Environment, Food and Rural Affairs (DEFRA) offers access to various 

environmental spatial data in the UK. The United Kingdom's air quality regulations require 

that the UK undertakes air quality assessments on an annual basis under the Air Quality 

Standards Regulations 2010 (AQSR). Therefore, several datasets become available annually, 

including essential pollutants such as particulate matter, Benzene, Nitrous Oxides, Sulphur 

Oxides, Ozone and others. Several of these datasets are publicly available and have been pre-

processed and derived using interpolation methods (in some cases also based on scaling of the 

measurements) by UK-AIR, which is hosted and maintained by Ricardo Energy and 

Environment on behalf of DEFRA. 

 

1.4.3. National Aeronautics and Space Administration 
(NASA) 

 

The Prediction of Worldwide Energy Resources (POWER) project provides solar and 

meteorological data sets from National Aeronautics and Space Administration (NASA) 

research to support renewable energy, building energy efficiency and agricultural needs. They 

are supported by NASA Earth Science's Applied Sciences Program. 
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One of the first initiatives the Applied Science Program supported to encourage the use of 

NASA's data assets was the Surface Meteorology and Solar Energy (SSE) project. When first 

launched in 1997, the SSE data-delivery website was designed to simplify retrieving the data 

sets. The surface insolation measurements are derived from satellite observations. The Modern-

Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) assimilation 

model serves as the foundation for the meteorological parameters.  

 

Inception Cohort 
 

In addition to the large-scale epidemiological approach in the Safety Registry study, we also 

analysed data collected prospectively from the Inception Cohort PIBD study, which provided 

patient-level information and more detailed exposome information. An Inception Cohort is a 

study design in which a group of patients diagnosed with a specific disease or condition is 

enrolled at the time of diagnosis and followed over time. The goal of an Inception Cohort study 

is to understand the natural history of the disease, identify risk factors for progression or 

complications, and evaluate the effectiveness of different treatment options. Therefore, during 

the PIBD Inception Cohort, we collected detailed information on the patient level, covering a 

comprehensive set of questions from the environmental exposures prior to diagnosis to the 

clinical follow-up data.  

 

1.5. Managing spatial information: Common practices and 
challenges 

 

Disease mapping and spatial data analysis are processes that include several steps and require 

multiple techniques and methodologies. The following and final sections of the introduction 

will provide information on the types of spatial format and geodetic reference systems that are 

relevant to our project, followed by an expansion on the problem of spatial misalignment.  

 

1.5.1. Types of spatial information and geodetic reference 
 

Spatial data can be available in different formats and geometry types. In this project, the 

processed data were available as point data or point data grid, lattice format or a polygon grid, 

and continuous surfaces known as rasters. The spatial point data are coordinates with longitude 

and latitude information combined with the quantity of the measured variable at each point. 
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Often, point data may be organised in a grid, meaning that all data points are placed at an equal 

distance from each other. Most environmental datasets from EEA are available as point data, 

while the NASA meteorological data can be obtained via APIs in a point data grid format. 

Datasets based on the lattice format include observations over several spatial polygon regions 

supplemented by a neighbourhood structure. Each unique polygon represents a distinct 

territory, and they may be either regular and equally spaced following a grid format or irregular. 

The latter format is often based on the administrative boundaries of each area. The NUTS3 

Eurostat maps are based on an irregular lattice format. Lastly, the raster maps are images where 

each pixel represents an area with an assigned value for the variable of interest. Raster maps 

with a high resolution present the spatial information as a continuous surface.  

 

Spatial information is linked to a geodetic reference system which is also known as the geodetic 

reference datum. This allows geodetic coordinates to accurately represent a location's position 

on the map using a specific reference frame. There are two types of datum, horizontal and 

vertical. Although it may not seem intuitive, the horizontal datum is used to determine the 

latitude or longitude (or different values depending on the coordinate system used). 

Conversely, the vertical datum is used to determine the elevation of a point, usually from the 

sea level (often, alternative methods are used as the sea elevation may vary depending on the 

time and location). In this project, we have encountered a great variety of geodetic reference 

systems, which we have converted to the Geographic Coordinate System (GCS), as discussed 

in the methods section. The GCSs are spherical and, most frequently, ellipsoidal coordinate 

systems using latitude and longitude. The GCS specifications are listed in the EPSG Geodetic 

Parameter Dataset, named after the European Petroleum Survey Group (EPSG) that was 

responsible for creating the registry. Some of the most common EPSG codes are EPSG:4326, 

EPSG:3035, EPSG:3857 and EPSG:7789. Any Eurostat shapefile NUTS map is currently 

available in the first three coordinate reference systems. The EPSG:3857, also known as Web 

Mercator or WGS 84/Pseudo-Mercator projection and is now available on google maps and 

other online platforms [Figure 1]. EPSG:3857 is based on the Mercator projection, which is 

widely used worldwide, although this projection overestimates the areas closer to very high 

and very low latitudes.  

 

Due to the limitations of the rather popular EPSG:3857, the GCS of choice in this project is 

EPSG:4326, also known as WGS 84. EPSG:3857 uses a coordinate system projected from the 
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surface of the sphere, and in previous versions, it treated the Earth as a perfect sphere. However, 

EPSG: 4326 (WGS 84) uses a coordinate system on the surface of a sphere or an ellipsoid of 

reference. In a simplistic summary, the Mercator projection uses a coordinate system based on 

a flat surface projection. In contrast, the WGS 84 uses a reference system based on a curved 

surface, a globe. As shown in Figure 1, the coordinate origin of WGS 84 is meant to be located 

at the Earth's centre of mass with an uncertainty of fewer than 5 centimetres. The longitude is 

the angle between the Prime Meridian (longitude of 0 degrees) and the point of interest. Any 

locations west of the Prime Meridian have a negative angle, and areas to the east have positive 

degrees. The maximum and minimum longitudes meet and overlap in the Pacific Ocean and 

are 180o and -180o respectively. The latitude angle starts at the equator (latitude of 0 degrees) 

and receives positive and negative values for the northern and southern hemispheres. Areas in 

the Northern Hemisphere can have latitudes ranging from 0o to 90o, while those in the Southern 

Hemisphere can range from 0o to -90o
. 

 

Figure 1. The WGS 84 coordinates system. 

 

Because Earth is an imperfect ellipsoid, area-specific datums are often considered more 

accurate for specific areas of coverage that they have been designed for compared to WGS 84. 

For instance, the DEFRA datasets use the Ordnance Survey National Grid reference system, a 

Britain-specific reference grid. Instead of longitude and latitude, this system uses easting and 

northing values. These values are based on the distance between each point on the grid. This 

means that by estimating the distance between two points using the WGS 84 projection and 
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having a commonly known point on the map, we can reproject the UK-specific grid code to 

WGS 84 coordinates. This was one of the necessary geodetic conversions in our project. Given 

the longitude and latitude of two locations, the haversine formula calculates their great-circle 

distance. The law of haversines, a more general formula in spherical trigonometry that connects 

the sides and angles of spherical triangles: 

𝐷(𝑥, 𝑦) = 2 arcsin [√sin2 (
𝑥1−𝑦1

2
) + cos(𝑥1) cos(𝑦1) sin2 (

𝑥2−𝑦2

2
)] (1) 

The use of the globally standardised WGS 84 system is prevalent in many epidemiological 

studies, and it was also the preferred choice for our project. 

 

1.5.2. Spatial autocorrelation 
 

Spatial autocorrelation is a measure of the association that observations may have depending 

on their proximity to each other. Most test statistics rely on the assumption of independent 

observations, which is one of the key reasons why understanding and measuring spatial 

autocorrelation is crucial. The assumption that observations are independent of one another is 

violated if autocorrelation is present in datasets with geographical information. Spatial 

autocorrelation, when present, can be negative or positive. A hypothetical instance of negative 

autocorrelation could be illustrated by observing a prosperous region that reduces the 

likelihood of its neighbouring regions becoming wealthy, as competition between the regions 

restricts overall economic growth. An example of positive autocorrelation would be observing 

wealthy regions, due to collaboration, to increase the probability of their neighbouring regions 

to also get wealthy. This information is essential for the mapping, and the analysis of the study 

outcome, as a major part of the observed variance might be explained by autocorrelation instead 

of the analysed predictors. A widespread measure of autocorrelation is Moran's index, a test 

that considers both the location and measured values of the spatial observations. For a measured 

outcome, the test investigates whether observations that are closer to each other tend to have 

similar, higher, or lower values compared to the mean. In order to perform the test, the criteria 

for the observations considered to be neighbours need to be defined. This is possible by 

assigning weights for each region or data point. The matrix of weights defines the neighbouring 

relationship that each region or data point has with any other region or data point in our sample. 

The formula for the Moran's I statistic is: 
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𝐼 =  

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)
𝑛

𝑗=1

𝑛

𝑖=1

(∑ ∑ 𝑤𝑖𝑗

𝑛

𝑖=1

𝑛

𝑖=1

) ∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

  (2) 

 

• where 𝐼 is the Moran's I statistic,  

• 𝑥𝑖 is the value of a variable at location 𝑖,  

• 𝑥𝑗 is the value of a variable at location 𝑗  

• while 𝑤𝑖𝑗is the weight that determines the spatial relationship between 𝑖 and 𝑗.  

 

As we can see in (2), the numerator depends on the difference between point 𝑖 from the mean 

and point 𝑗 and the mean multiplied by the corresponding weight that we have assigned in the 

combination of points 𝑖 and 𝑗. The denominator allows us to standardise the value 𝐼. The null 

hypothesis of this test is that the outcome is randomly disbursed geographically; said another 

way, under the null hypothesis of no spatial autocorrelation, the observations are independent 

identically distributed, while I is normally distributed with a mean equal to:  

E[𝐼] = −
1

𝑁−1
  

The Moran's I statistic was used repeatedly in our analysis and in section 2.4.1 the spatial 

weights are discussed in further detail.  

 

1.6. The challenge of spatial information misalignment 
 

Spatial information misalignment refers to the problem of mismatch or inconsistency between 

spatial datasets that are used in a particular analysis or application. This can occur when data 

sets have different spatial resolutions, projections, or coordinate systems. Misalignment can 

also occur when data sets have different temporal resolutions or are collected at different times. 

Frequently, this occurs due to the use of different sampling methods, which ultimately leads to 

having multiple spatial scales for the same area (Fuentes et al., 2006; Gryparis et al., 2009; 

Hund et al., 2012; Jandarov et al., 2017; Ntirampeba et al., 2018; Sumetsky et al., 2020; Utazi 

et al., 2019; Zhang et al., 2016). Subsequently, the spatial information misalignment can lead 

to errors or inaccuracies in the analysis or application of the data. It can also make comparing 

or combining data from different sources particularly challenging. For example, if datasets that 
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are used to map air pollution have different spatial resolutions, the resulting map may not 

accurately reflect the actual distribution of pollution. There are several scenarios of spatial 

misalignment depending on the location of observations, type of measurement and intended 

use of each variable in the statistical analysis. 

 

In this study, we have employed a mix of methods to address the issue of spatial misalignment. 

We have reprojected datasets to a standard coordinate system and resolution, and utilised 

interpolation techniques and aggregation to combine data from multiple sources and correct 

the misalignment. 

 

1.6.1. Cases of spatial misalignment 
 

Similar to our study, the most common type of misalignment is the spatial type which occurs 

when the sampling locations are different between the outcome and predictor covariates. For 

instance, if we want to study the association between air pollution and IBD in a region, we 

could survey 10,000 households and record the observed cases of IBD while gathering the air 

pollution data from each available monitoring site in the same region. Subsequently, the 

covariate of air pollution will be misaligned with the health outcome, given that we do not have 

an air quality measurement at the location of each household. In this example, the mismatch is 

caused by the different locations of the disease cases and the measured risk factor. However, 

in studies with multiple risk factors, this could also occur for different covariates that present 

disparities in their sampling locations.   

 

The second most frequent type of misalignment, also present in our study, is the spatial support 

type which occurs when using different scales and types of measurement for the outcome and 

covariates of interest. A typical scenario of spatial support mismatch occurs when areal data 

are provided by different sources using different administrative units. An example of 

discrepancies in spatial support that we have encountered can be observed for regions between 

the Eurostat datasets from 2013 and 2016 due to boundary shifts and the discontinuation of 

some administrative units. The spatial support misalignment also includes cases of surface-to-

point, area-to-point, and other types of scale mismatches. Even the spatial type mismatch 

discussed in the previous paragraph can be considered a particular case of spatial support 

misalignment. 
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The third type of misalignment is the modifiable areal unit problem which is linked to spatial 

aggregation and the grouping effect (Pacifici et al., 2019). The spatial aggregation problem 

occurs when the outcome or a covariate, especially for count data, is aggregated to larger areas 

to match the other variable in the dataset. Spatial aggregation may change the results of 

inferences for estimated parameters (Wittig et al., 2019). Lastly, the grouping effect is related 

to differences in the size and shape of the areal units used in the data collection and analysis 

(Pacifici et al., 2019). For example, the average area size of Scotland's NUTS3 (2016) territorial 

units is 33 times larger than the average NUTS3 area size of greater London. Therefore, it is 

more likely that an environmental factor will influence a whole NUTS3 territory in London 

than a vast NUTS3 territory in Scotland. 

 

Hence, prior to the geostatistical analysis, we need to assess the i) sampling locations, ii) level 

and scale of measurements, iii) use of each variable as an outcome or a covariate, iv) groupings 

of observations v) and the desired spatial support for the inference. In this study, the outcome 

of incidence is collected as the rate of aggregated cases for the paediatric population of each 

NUTS3 area. As discussed in the methods 2.2.2, the NUTS3 regions covered by a reporting 

unit will be assigned an incidence value as an aggregate rate of the new PIBD cases for this 

unit, which underlines that the modifiable areal unit problem is also present in our dataset. The 

socioeconomic, health, and environmental covariates employed in this study are based on the 

NUTS3 spatial support. However, the main volume of environmental covariates was provided 

by NASA and EEA, and they are available in a point-location spatial support for different 

sampling locations. Therefore, the data misalignment for this project is challenging as both 

location and spatial support misalignment issues are observed among the covariates and 

between the covariates and the outcome.  

 

1.6.2. Spatially misaligned data and change of support 
 

The current literature provides a limited number of approaches to address the spatial 

misalignment problem (Hund et al., 2012; Jandarov et al., 2017; Liang and Kumar, 2013; 

Sumetsky et al., 2020). Some of these approaches are based on interpolation methods, such as 

Kriging, for areal and point data that we can employ to predict variables for the under-sampled 

locations. Gryparis 2007, also has suggested extensions of Kriging interpolation (Benchimol 
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et al., 2009), while others have suggested Gaussian process modelling and Bayesian smoothing 

(Grieci and Bütter, 2009; Ludvigsson et al., 2017) as well as kernel smoothing (Lehtinen et al., 

2011). Other methods for areal data also include up or downscaling. Going back to the PIBD 

surveying example, these methods would be employed to estimate the pollutant variable at the 

location of each household with a known outcome and then estimate the regression parameter 

of interest using the predicted covariates and the known outcome. 

 

While a wide range of methods is available for the misaligned data, the modifiable areal unit 

problem (MAUP) still remains a more complex issue in spatial statistics. Davis (2004) 

suggested using as much disaggregate data as possible to avoid aggregation-related issues, 

which is a preferred approach when population density data are available (Hope et al., 2012). 

Wong 1991 and Fotheringham et al. 2000, have also suggested the sensitivity analysis 

approach, which can identify the MAUP but with a minimal contribution to correcting the issue 

(Jakobsen et al., 2011; Martín-de-Carpi et al., 2013). 

 

Overall, the choice of methods for changing spatial support to align the study data should not 

introduce bias and should maintain as much information as possible to preserve statistical 

power. As underlined by Gryparis et al., 2009, in exposure assessment epidemiological studies, 

such as this one, the exposure should not be assumed to be constant over the region of interest 

in order to reduce exposure measurement error and maintain high power. The second point 

made by Gryparis that was relevant to our study was that for studies of chronic diseases, the 

analyses rely mainly on exposure heterogeneity induced by spatial variability that should be 

maintained as much as possible during the change of special support. 

 

1.7. Overarching hypothesis, aims and objectives 
 

After reviewing the literature and finding evidence of notable environmental aspects in the 

development of PIBD, this project's overarching hypothesis is that specific environmental 

factors are linked to the incidence of Paediatric Inflammatory Bowel Disease in the areas under 

investigation. 

 

To investigate this hypothesis, we must address the following questions: 
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1. Can the developed set of methodologies be employed successfully to identify the disease 

incidence in the studied regions? 

To address this question, it is necessary to collect a sufficient amount of data that enables the 

estimation of disease incidence in the regions of interest. Additionally, it is crucial to ensure 

that the incidence reported from the same adjacent regions has been consistent over the 

different collection years since this is a critical indicator of data quality. Finally, comparing our 

findings with established patterns in the literature, such as the PIBD incidence latitude trend, 

can serve as an additional validation step in answering this question. 

 

2. Are there any spatial and temporal effects present? 

To verify the presence of spatial patterns, it is necessary to demonstrate significant differences 

in the incidence of the disease between different countries and regions. These differences must 

be reported consistently over time to ensure their validity. Similarly, to validate any potential 

temporal effects, the time-related trends should be observable within each reporting region over 

multiple collection years. 

 

3. Are any environmental exposures associated with the disease incidence rates?  

This requires establishing and validating the analytical methods to combine and analyse our 

data while considering the underlying spatiotemporal structures. Employing these methods 

should help us detect the presence of significant associations between the observed disease 

incidence and certain risk factors.  

 

4. Are any of the variables included in the recruited patients’ exposome affecting the 

disease phenotype?  

This would require applying the appropriate methods that will provide statistical evidence of 

strong associations between the patients' specific characteristics and the probability of 

presenting a particular disease phenotype. 

 

To answer these questions, five aims were set: 

 

1. Design PIBD databases: 

o The first database was designed to store, manage and perform quality controls 

on data collected from the Inception Cohort clinical study.  
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o The second database was designed to store and manage data collected from the 

PIBD safety epidemiology registry.  

2. Develop analytical methods: 

o The estimation of disease incidence required the development of algorithms to 

process the received information and manage duplicates, overlaps, changes of 

reporting experts, the difference in recruitment age limits and other centre-

specific variables in order to estimate the disease incidence rates for each 

covered area.  

o The alignment of spatial data required the development of methods that allowed 

us to combine information that was collected in various spatial formats.  

o The disease incidence analysis required the development of analytical processes 

to investigate the effects of the studied risk factors, geography and time on the 

frequency of the disease cases.  

3. Estimate and analyse disease incidence: 

o Using the developed methodology, we have calculated the incidence and 

prevalence of PIBD in total and for each phenotype in various areas in Europe.  

o The spatiotemporal patterns of the disease were analysed to help us understand 

the disease distribution and validate our methodology.  

4. Collect and prepare the external risk factors data: 

o Identified, extracted and, in some cases, calculated risk factors such as 

pollutants, population density, demographics and other predictors.  

o Aligned all spatial information to prepare for the analysis using the developed 

methodologies that included extraction of information based on the location and 

spatial interpolation. 

5. Study the effects of these factors on the disease incidence and phenotype: 

o This required the validation of the developed methods based on simulated 

examples. 

o Based on the geostatistical analysis and modelling, we investigated the effects 

of space, time and risk factors on the incidence of the disease. 
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2. METHODS 
 

2.1. Data: collection and management 
 

Data collection and management are two of the most critical processes of clinical research, as 

they help ensure that the data collected is accurate, complete, and reliable. In this section, I will 

detail all the data sources utilised, the demographics of the population, methods used to gather 

data, techniques applied in processing, the purpose of collecting the data, and how they were 

utilised. Data collection in clinical research typically involves using standardised forms, 

questionnaires, and other tools to collect information from study participants. This information 

can include demographic information, medical history, and outcome measures. Data can be 

collected in various formats, such as observations, interviews, surveys, and clinical 

measurements. In environmental clinical studies, the data collection process expands to the 

collection of data from environmental factors such as air pollution and exposures that may be 

linked with health and disease outcomes.  

 

In this project, as discussed in the introduction, we have collected data from the Inception 

Cohort, a prospective clinical study, and the PIBD Safety Registry, a large-scale 

epidemiological study which we combined with data from various agencies, including 

Eurostat, EEA and NASA. Furthermore, we have also used data from PIBD health records 

from patients diagnosed in the Royal London Hospital (RLH). The RLH PIBD health records 

were not part of the data analysis but were used as supplementary material for the refinement 

of our methods. This dataset provided additional evidence and information for the adjustment 

of the incidence that was reported by centres with an upper age limit of patients different to 18 

years (2.2.1). 

 

While the Inception Cohort dataset includes a plethora of variables, for this project, we have 

extracted the environmental questionnaire data only, which provides information about the 

previous exposures each patient has had up to the time point of diagnosis. Furthermore, the 

PIBD Safety Registry collected information from multiple centres worldwide regarding the 

covered areas, new and existing patients seen, and the rare and severe complications seen in 

their practices. Lastly, additional data from Eurostat provided the maps and administrative units 
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used for data collection and analysis while the EEA, NASA, DEFRA and other sources were 

used to extract the risk factors information, as shown in Table 2. 

 

Table 2 Summary of the data sources and main variables extracted. 

This table summarises the source of information and the data extracted, highlighting the 

important variables and their use. 

 

Source Data Collection method Storage 

PIBD Inception 

Cohort 

Environmental 

Questionnaire 

REDCap EDC – entered by 

clinical research staff and 

patients 

REDCap EDC – stored at the external 

servers of a data centre in Liverpool, 

Exported directly in csv format 

PIBD Safety 

Registry 

Annual 

Denominator 

data form 

REDCap EDC – entered by 

participating centres (PIBD 

experts) 

REDCap EDC – stored at the Queen Mary 

University servers in London, Exported 

directly in csv format 

PIBD Safety 

Registry 

Monthly report 

form 

REDCap EDC – entered by 

participating centres (PIBD 

experts) 

REDCap EDC – stored at the Queen Mary 

University servers in London, Exported 

directly in csv format 

Hospital Records 
Hospital PIBD 

records 

Infoflex EDC – entered by 

PIBD clinicians at Royal 

London Hospital 

Infoflex EDC – Kept at NHS servers, 

Exported directly in csv format 

EEA Pollution data 
Uploaded by from European 

Environment Agency 

Extracted from the European Environment 

Agency from AirBase and the European 

Pollutant Release and Transfer Register (E-

PRTR)] 

Eurostat NUTS Maps 

Uploaded by GISCO - the 

Geographic Information 

System of the COmmission 

Extracted from the Eurostat website under 

the GISCO: Geographical information and 

maps 

Eurostat NUTS Data Uploaded by Eurostat 
Extracted from the Eurostat website under 

the data/database navigation tree  

Eurostat 
Population 

Density 

Uploaded by GISCO - the 

Geographic Information 

System of the COmmission 

Extracted from the Eurostat website under 

the GISCO: Geographical information and 

maps   

NASA 
Sun radiation and 

climate data 

Uploaded by NASA Earth 

Science's Applied Sciences 

Program 

Downloaded using R and APIs  

DEFRA and 

NAEI (National 

Emissions 

Inventory) 

Pollution data 
Uploaded by DEFRA and the 

NAEI team 

Downloaded using the Defra Data Services 

Platform, the Defra pollution inventory and 

NAEI website under the Spatial emissions 

and maps  

INSPIRE Pollution data 

Uploaded by the European 

commission as part of the 

INSPIRE Directive 

Downloaded from the INSPIRE knowledge 

database 

Recent use of 

Antibiotics 
Specific 

 REDCap EDC – entered by 

clinical research staff and 

patients 

Inception Cohort 

Recent use of 

NSAIDs and 

Aspirin 

Specific 

 REDCap EDC – entered by 

clinical research staff and 

patients 

Inception Cohort 

Exposure to air 

pollutants  
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients (& EEA) 

Safety Registry/Inception Cohort 

Exposure to solar 

irradiance 
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EEA) 

Safety Registry/Inception Cohort 
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Socio-economics 

- Parents' 

employment 

Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EUROSTAT) 

Safety Registry/Inception Cohort 

Socio-economics 

- Parents' income 
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients 

Inception Cohort 

Demographics – 

Parents’ ethnic 

background 

Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients 

Inception Cohort 

Recent 

Migration (1st 

generation) 

Specific 

 REDCap EDC – entered by 

clinical res earch staff and 

patients(&EUROSTAT) 

Safety Registry/Inception Cohort 

Previous 

infections 
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EUROSTAT) 

Safety Registry/Inception Cohort 

Geographic 

Location 
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EUROSTAT) 

Safety Registry/Inception Cohort 

Urbanisation Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EUROSTAT) 

Safety Registry/Inception Cohort 

Water quality 

and source 
Specific/General 

 REDCap EDC – entered by 

clinical research staff and 

patients(& EEA) 

Inception Cohort 

 

The collected data must be managed and stored to ensure its integrity, security, and 

accessibility. This typically involves the use of databases to store and organise the data. Data 

management procedures should be in place to ensure that the data is accurate and complete and 

that any errors or inconsistencies are identified and corrected. In the table below, the collection 

and storage of each dataset is presented in detail Table 3. 

 

Table 3 Summary of the data source, collection, processing, and storage. 

Source Data Collection method Storage 

PIBD Inception 

Cohort 

Environmental 

Questionnaire 

REDCap EDC – entered by 

clinical research staff and 

patients 

REDCap EDC – stored at the external servers of a 

data centre in Liverpool, Exported directly in csv 

format 

PIBD Safety 

Registry 

Annual 

Denominator 

data form 

REDCap EDC – entered by 

participating centres (PIBD 

experts) 

REDCap EDC – stored at the Queen Mary University 

servers in London, Exported directly in csv format 

PIBD Safety 

Registry 

Monthly 

report form 

REDCap EDC – entered by 

participating centres (PIBD 

experts) 

REDCap EDC – stored at the Queen Mary University 

servers in London, Exported directly in csv format 

Hospital Records 
Hospital PIBD 

records 

Infoflex EDC – entered by 

PIBD clinicians at Royal 

London Hospital 

Infoflex EDC – Kept at NHS servers, Exported 

directly in csv format 

EEA Pollution data 
Uploaded by from European 

Environment Agency 

Extracted from the European Environment Agency 

from AirBase and the European Pollutant Release 

and Transfer Register (E-PRTR)] 
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Table 4 Summary of risk factors included in the primary analyses with exposome domain 

and analysis plan. 

Exposure Type Dataset 

Caesarean section Specific  Inception Cohort 

Breastfeeding Specific Inception Cohort 

Smoking status during pregnancy Specific Inception Cohort 

Age of mother at birth General Inception Cohort 

Vaccination history Specific Inception Cohort 

Hygiene hypothesis - Pets Specific Inception Cohort 

Hygiene hypothesis – Birth order Specific Inception Cohort 

Hygiene hypothesis – Siblings Specific Inception Cohort 

Hygiene hypothesis – Family size Specific Inception Cohort 

Diet - Exclusions Specific Inception Cohort 

Vitamin D levels at diagnosis Specific Inception Cohort 

Recent use of Antibiotics Specific Inception Cohort 

Recent use of NSAIDs and Aspirin Specific Inception Cohort 

Exposure to air pollutants  Specific/General Safety Registry/Inception Cohort 

Exposure to solar irradiance Specific/General Safety Registry/Inception Cohort 

Socio-economics - Parents' employment Specific/General Safety Registry/Inception Cohort 

Socio-economics - Parents' income Specific/General Inception Cohort 

Demographics – Parents’ ethnic background Specific/General Inception Cohort 

Recent Migration (1st generation) Specific Safety Registry/Inception Cohort 

Previous infections Specific/General Safety Registry/Inception Cohort 

Geographic Location Specific/General Safety Registry/Inception Cohort 

Urbanisation Specific/General Safety Registry/Inception Cohort 

Water quality and source Specific/General Inception Cohort 

 

The stored data were subjected to quality controls. The quality of the data is essential for the 

validity of the research. The methods used to ensure the data integrity of the project are 

discussed in the following paragraphs. Data security was also critical in our clinical and 

epidemiological research, as the data collected contained sensitive participant information. All 

patient data in our studies were protected from unauthorised access, alteration, or deletion. 

Lastly, the study has received approval from the Health Research Authority in the UK and local 

regulators for each country where patients were recruited in the Inception Cohort. The Safety 

Registry did not require ethics approval since it did not collect any patient-identifiable 

information used in this PhD, and only aggregate data were collected and analysed for the study 

of PIBD epidemiology.  
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2.1.1. Inception Cohort 
 

As discussed in the previous paragraphs, the environmental eCRF data from the Inception 

Cohort were used in our analysis. This is an invaluable dataset as it provides broad exposome 

information from PIBD patients at the time of disease diagnosis. The high level of exposome 

detail is related to the great number of questions that the participants or their guardians have 

answered in conjunction with the availability of the patient's residence location prior to the 

diagnosis. Of the 770 prospectively recruited patients, 598 have answered the environmental 

questionnaire (Table 5). 86% of the recruited patients submitted their postcode partially or 

fully. Thus, information on the patient location was available for 513 patients with 300 

postcodes located in the UK and 123 in the Netherlands.  
 

Table 5 The demographics of the patients who filled the environmental questionnaire. 

The patients who had their environmental questionnaire filled and were considered for 

inclusion in the PIBD phenotype analysis. 

 

 

Sex Count 

Male 354 

Female 244 

 

Diagnostic 

Impression 

Following 

Investigation Count  

CD 350 

UC 198 

IBD-U 47 

 

Country Count 

UK 325 

NL 126 

IT 43 

IL 33 

RS 29 

FR 14 

MY 11 

JP 8 

JP 7 

UAE 2 

 

Age Count 

0 1 

1 1 

2 3 

3 5 

4 4 

5 5 

6 12 

7 11 

8 22 

9 20 

10 43 

11 39 

12 55 

13 65 

14 91 

15 100 

16 75 

17 38 

18 9 
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2.1.2. Safety Registry and Reporting network 
 

The PIBD-SETQuality Safety Registry is an electronic registry that tracks rare and severe 

complications in children and adolescents with IBD. The registry was created by PIBD-NET 

and began in the UK in October 2016 and was soon after expanded in the Netherlands, followed 

by several other countries in Europe, the Middle East, Asia, Oceania and North America. 

Participating physicians are asked to report any complications seen monthly and to fill out an 

annual survey to with information about their practice and the number of patients under their 

care. We named this annual survey "Denominator data form" and used it to collect information 

about the number of new and current patients seen in each centre, the age of the patients who 

are being transferred to adult care and the catchment area for the referrals (Figure 2). The 

catchment area of a clinic refers to the geographic area from which it draws its patients. In this 

project, the catchment areas were selected by the responders using the Eurostat map of 

territories called NUTS combined with census data. The selected NUTS regions that were 

reported under the catchment areas combined with the population information, provided the 

estimate of the denominator population for each reporting centre. Therefore, this registry 

provided the data source for estimating the general population covered by each centre and the 

number of patients needed to estimate the corresponding incidence and prevalence per centre. 

The general population covered was estimated based on the catchment areas in conjunction 

with their population density and was used as the denominator for estimating the disease 

incidence and prevalence.  
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Figure 2. Example of the survey used to collect denominator data.  

Details about the number of new patients, areas covered and the practice of the PIBD experts 

were requested. 

 

As the Safety Registry increased in size, new centres joined at various times while a few centres 

stopped reporting. These changes posed a challenge to the estimation of the disease incidence. 

To address these changes, we have calculated all estimates per reporting unit and area and not 

per participant. Each area that was covered by a centre with at least one report is included in 

the incidence calculations. Finally, any reporting participant who was not dormant for more 

than three months was considered active. Figure 3 below shows the total number of active 

participants during the study period. 
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Figure 3. Network development and number of active participants.  

The number of active participants in the Safety Registry has been increasing since 2016, 

expanding its coverage. 

 

2.1.3. NUTS data integration of and misalignment handling 
 

The Eurostat data, which are based on the NUTS system, were exported and combined with 

the NUTS maps that GISCO has made available also via Eurostat. These are polygon maps 

based on the shapefile format. Using the same administrative units has allowed combining the 

information from the Eurostat database with the shapefiles. The following paragraph describes 

the process of merging the extracted Eurostat data with the GISCO maps. The first step is to 

select the dataset of interest from the Eurostat database, as shown in Figure 4. 
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Figure 4. Example of themes for the NUTS datasets that are available to download from 

Eurostat.  

Despite the great number of themes, only datasets with NUTS3 information were included in 

our study. 

 

The second step is ensuring that the dataset complies with the NUTS hierarchy desired for the 

mapping and analysis. Most frequently, the information is available in NUTS0, 1 and 2 formats 

but not in NUTS3 as the latter requires significantly greater resources to gather. The third step 

is to ensure that the correct filters have been applied and export the data. Depending on the 

request, these filters may include age groups, sex groups and years of data collection. At this 

step, ensuring that the extracted dataset uses the same version of the NUTS classification is 

vital. The NUTS maps were updated in 2006, 2010, 2013, 2016 and 2021. These updates were 

partial or minor for most regions. However, they have also introduced some major changes 

affecting the maps of Scotland, a few regions of England, France, and a small number of other 

regions in Europe. The third step is merging the data with the base shapefile using the NUTS3 
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id as the unique identifier to perform the data join. In this step, it must be clarified that several 

supportive files are needed to map and analyse a shapefile. A shapefile is the file that includes 

the feature geometry with the extension ".shp”, which requires an additional file with the ".shx” 

extension containing the indexing of the feature geometry. However, another file with a “.dbf” 

extension is also required to store any information about the different areas that are included in 

the feature geometry files. This is the attribute information file and essentially is the database 

containing all values of the variables that correspond to each area of the map. Lastly, a “.cpg” 

extension file identifying the character set to be used and a “.prj" extension file that provides 

the coordinate system and projection information are optional but essential files used for 

mapping a shapefile. The attribute information file needs to be amended using specialised 

software to merge the data with the shapefile. Figure 5 below shows the results of merging the 

2016 population density data with the 2013 version of the NUTS shapefile. This example was 

selected to demonstrate the potential compatibility issues between the NUTS maps and datasets 

depending on the release year and version. The NUTS0 mapping is complete, while the NUTS1 

level shows incompatibility issues in east Poland and France. The NUTS2 level requires further 

attention as the incompatibility issues affect France, South of Scotland and the Republic of 

Ireland. Lastly, the NUTS3 level reveals additional nomenclature changes for Lithuania. This 

is an example of spatial misalignment that we have encountered in our data. 
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Figure 5. Choropleth map of Europe shows the population density for the NUTS0 to NUTS3 

regions.  

Population density was one of the predictors in our analysis. In this scenario, the information 

is fully compatible with the NUTS2016 map, but the map we have to use is based on the 

NUTS2013 format and is partially compatible with the population density data. Areas with no 

data due to incompatible administrative units appear white. a) When plotting the population 

density on the NUTS0 level (country level), the information is available in all areas. b) At the 

NUTS1 (i.e., Scotland, England, Wales) level, some incompatibilities appear. France is a great 

example of this, with only the greater Paris area to show compatibility between our data and 

the map. c) and d) as we proceed to lower tiers for smaller areas the number of incompatible 

regions increases. 

 

For most Eurostat variables, this incompatibility issue can be addressed by appropriately 

filtering and matching the Eurostat data with the compatible GISCO maps. In continuation of 

the previous example of the population density mapping, Figure 6 shows the complete 

population density NUTS3 map of Europe. This map was created by extracting the population 
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density and assigning the values to the 2013 and 2016 maps which are then combined in Figure 

6. 

 

 

Figure 6. Choropleth map of Europe shows the population density for the NUTS3 regions 

in 2013 and 2016. 

 

Whilst filtering and matching the Eurostat data with the compatible GISCO maps is a helpful 

approach for presentation and visual inspection purposes, in several cases, the incompatibility 

observed between the administrative units used for the data collection of our study and some 

of the Eurostat predictors remains an obstacle. This was the first major spatial data 

misalignment problem encountered in this project, and the following paragraph describes the 

methods used to address it.  

 

In the population density example, the Safety Registry data collection was performed using the 

NUTS2013 polygons. Therefore, the predictor of population density must become available in 

the NUTS2013 format as well. The first step was to identify and use the map (shapefile) that 

is fully compatible with the variable of population density. For this example, the compatible 

shapefile was the 2016 version. The second step was the interpolation of the variable that 

converts the NUTS2016 population density map into a continuous raster map. In the third step, 
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the raster file was converted to point data of high density. The creation of point data allowed 

step 4 to take place, as in this step, all the generated spatial points were summarised for each 

misaligned NUTS2013 polygon. This allowed us to transfer the population density information 

from the NUTS2016 map to the regions of the NUTS2013 map that had incompatibility issues. 

Although this is a computationally intensive method, it is a robust approach for estimating the 

values in the misaligned regions. However, this approach requires the selection of an 

appropriate interpolation method. For variables where the data misalignment is present only in 

some regions -similarly to this example- the common NUTS2013 and NUTS2016 polygons 

where the information is aligned can be used to validate the selected interpolation technique 

and the broader methodology. In our example for the common NUTS2013 and NUTS2016, we 

compared the original and interpolated values to conclude that the inverse distance-weighted 

interpolation with high-resolution settings had the best performance. The performance of the 

interpolation methods is shown in 2.4.2. In our example, where some NUTS2013 areas have 

missing values, we have produced a complete NUTS2016 map, as shown in Figure 6 which 

was subsequently interpolated, as shown in Figure 7. The values of the interpolated maps were 

then assigned to the NUTS2013 maps resulting in the choropleth shown Figure 8. The final 

NUTS2013 map remains the same for the areas that did not have misaligned data, and it has 

incorporated new values based on the interpolation of the NUTS2016 map only for the areas 

with missing data due to misalignment. The original NUTS2013 map and the corrected version 

are compared in Figure 8.  
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Figure 7. The interpolated map of the population density in Europe in 2016 is based on the 

NUTS2016 map. 

 

 

Figure 8. The NUTS 2013, 2016 interpolated and combined map of the population density 

in Europe.  

The NUTS2016 map is used to produce an interpolated map that we use to fill in the 

information in the misaligned areas of the 2013 map. 

 

A potential limitation of the proposed method is related to the interpolation step. Extracting 

information from one support vector (NUTS 2016 in our example) and merging it with another 

(NUTS 2013 in our example) relies on the assumption that the interpolated dataset will provide 

the true values for the queried regions. To investigate the accuracy of the interpolation using 
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the 2016 map, we generated the interpolated dataset and then re-assigned the interpolated 

values to the same support vector (NUTS2016 map). Performing a linear regression for the 

regional data we set the original values as the outcome and the interpolated, re-assigned values 

as the predictor. This way we estimated the extent of disagreement between the observed and 

predicted values for each region. The analysis returned an R squared of 96.76%. Further 

analysis showed that the R squared value was improved significantly by the smaller cell size 

and a reduction of the neighbouring regions' settings in the Inverse Distance Weighting (IDW) 

interpolation.  

 

The Eurostat predictors that were included in the analysis were selected based on their 

relevance with the researched topic and the availability of information on the NUTS3 level. 

Although the relevance of several variables may not be apparent, these were included as proxy 

predictors that may indicate an effect from another variable not included in our data. For 

instance, fertility is unlikely to be linked with the incidence of IBD. However, certain 

environmental factors that influence fertility (i.e., exposure to chemicals) may also affect the 

incidence of IBD. Hence, the variable of fertility may work as a proxy predictor for the 

chemical with the hypothetical effect of this example. All Eurostat variables that were included 

in the study are summarised in the table below Table 6. 

 

Table 6 Codes and description of Eurostat datasets with NUTS3 information. 

Variable (EUROSTAT Code) Description 

(demo_r_pjanaggr3), 

(demo_r_pjangrp3), (demo_r_d3dens), 

(demo_r_gind3), (demo_r_pjanind3) , 

(cens_11ag_r3) 

Population on 1 January by age, sex and NUTS 

3 region, and additional data on demographics 

and population  

(cens_01rsctz) Population by sex, citizenship and NUTS 3 

regions  

(cens_11ms_r3), (cens_11fs_r3) Population by marital status, by family status 

and NUTS 3 region 

(cens_11fts_r3) Families by type, size and NUTS 3 region  

(cens_11dwob_r3) Conventional dwellings by occupancy status, 

type of building and NUTS 3 region  



 

Page | 69  

 

 

 

(cens_01rdhh) Dwellings by type of housing, building and 

NUTS 3 regions  

(cens_01rheco), (cens_01rhagchi) Private households by composition, size, age 

group of children and NUTS 3 regions  

(demo_r_gind3) Population change - Demographic balance and 

crude rates at the regional level (NUTS 3)   

(demo_r_births), (demo_r_fagec3) Live births (total) by NUTS 3 region and 

live births by age group of the mothers and 

NUTS 3 region  

(demo_r_find3) Fertility indicators by NUTS 3 region  

(demo_r_deaths), (demo_r_mweek3), 

(demo_r_magec3) 

Deaths (total) by NUTS 3 region  

and by week, sex, 5-year age group and NUTS 

3 region  

(cens_01reisco) Employed persons by sex, age group, 

educational attainment level, occupation (ISCO-

88) and NUTS 3 regions  

(reg_area3)  Area by NUTS 3 region 

(aei_fm_ms) Manure storage facilities by NUTS 3 regions 

(aei_pr_soiler) Estimated soil erosion by water, by erosion 

level, land cover and NUTS 3 regions  

(ef_r_nuts) Structure of agricultural holdings by NUTS 3 

regions - main indicators  

(bd_esize_r3), (bd_hgnace2_r3), 

(bd_size_r3) 

Employer business demography by size class 

and NUTS 3 regions plus Business demography 

and high growth enterprise by NACE and NUTS 

3 regions plus Business demography by size 

class and NUTS 3 regions   

 (crim_gen_reg) Crimes recorded by the police in NUTS 3 

regions 
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2.1.4. EEA, NASA, DEFRA and NEI data integration 
 

The disease incidence and prevalence results from the PIBD Safety Registry were combined 

with the environmental and NUTS data for the epidemiological analysis. As mentioned in the 

previous paragraphs, the environmental data were extracted from several validated sources. In 

the following paragraphs, the methods used for each source type are presented. 

 

The European Pollutant Release and Transfer Register Regulation (E-PRTR) has been 

publishing data on many pollutant releases across Europe over more than 15 years. In this 

project, we have selected the 2016-2019 air quality datasets that contain information on 458 

air pollutants. Although some pollutants are also included in the INSPIRE datasets, as 

discussed in the following paragraphs, other pollutants such as Benzene, Cadmium, Arsenic 

and Nickel are unique for this project and should be investigated thoroughly. Benzene, in 

particular, is a volatile organic compound that has been linked to potential changes to the 

human microbiome and could also be linked to the development of IBD. 

 

The EEA E-PRTR datasets required interpolation and special handling compared to the other 

predictor datasets of this project. The information in these datasets is organised in point data at 

the locations where pollutant releases have been reported. However, considering that the spatial 

interpolation methods have been developed to predict the values of a variable at unknown 

locations, a random sampling approach to gathering the data is an essential assumption that 

must be met. In contrast, in the E-PRTR interpolation, every unknown location is surrounded 

by point locations of reported emissions. Thus, the interpolation will return an over-inflated 

prediction for each interpolated point on the map. Figure 9 shows an example of this limitation, 

where a few sources of a pollutant seem to affect an unrealistic vast area on the map simply 

because every observation of the dataset has a high value of the pollutant quantity since this is 

an emissions-only report. The proposed solution to this problem was to introduce additional 

point data locations on the map where the interpolated pollutant is either zero or at the global 

average for the examined regions. This interpolation design aligns with the assumption that the 

E-PRTR report is complete and that no additional pollutant releases exist in the examined 

region.  
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The INSPIRE Directive established an infrastructure for the dissemination of spatial 

information in Europe to support environmental policies and policies or activities which may 

have an impact on the environment. The available INSPIRE data are high-detail and resolution 

datasets and include NO2 and NOx, O3, PM10, PM2.5 and information for the phytotoxic 

ozone dose (POD) related to different kinds of vegetation. These high-resolution maps can be 

converted to our standard NUTS format by simply producing summary statistics for each 

NUTS3 polygon. Below are two examples showing the NOx and PM2.5 conversion for the 

INSPIRE raster format to the NUTS3 of the project (Figures 9 & 10). 

 

 

Figure 9. The interpolated NOx (continuous surface-raster) in Europe for 2019, followed by 

aggregation into the NUTS3 format. 
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Figure 10. The interpolated PM2.5 (continuous surface-raster) in Europe for 2019, followed 

by aggregation into the NUTS3 format. 
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DEFRA collects and maintains datasets providing crucial information about the pollution 

levels in the UK's environment. These datasets contain information about air pollution, water 

pollution, soil pollution, and others, along with their geographical locations. The datasets 

include several pollutants such as Benzene, CO2, NOx, PM, SO and other sources of pollution. 

Although these datasets are UK-specific, they were included in this project as they can provide 

detailed predictor datasets for UK-specific subgroup analyses. The UK, followed by the 

Netherlands, had the highest participation levels and may reveal results with smaller effect 

sizes in country-specific subgroup analyses. The processing of these datasets required three 

steps. The first step required the change of the geodetic reference used by DEFRA from the 

British National Grid used by the Ordnance Survey to the WGS84 coordinate system. The 

second step was the interpolation of the point data to a continuous raster map, followed by the 

last step, which was integrating the interpolated information into the NUTS3 map (Figure 11).  

 

 

 

Figure 11. Conversion of interpolated DEFRA Benzene pollution dataset using the NUTS3 

territory format. 

 

The NAEI dataset, similarly to the DEFRA, is a UK-specific set of pollutants with a very high 

resolution. Although the very high resolution of this dataset may be redundant given the size 
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of the NUTS3 polygons on which our analysis is based, the NAEI data include additional 

variables that allow an even more thorough investigation of the pollutant effects on the PIBD 

incidence in the UK. 

 

2.1.5. Database design and maintenance 
 

A significant portion of the workload in this project was devoted to database design and 

management throughout the study. Both the PIBD Inception Cohort and Safety Registry 

databases were designed manually, de novo. Both systems were built as relational databases 

using REDCap, our web-based electronic case report form data capture platform REDCap that 

is particularly versatile while providing features such as data validation and audit trails, making 

it a compliant data management system. The relational design of the databases allows data 

storage in the form of related tables. Subsequently, the data management and manipulation can 

be completed in a structured way. The relationships between the tables were established using 

the unique patient (Inception Cohort) or participant ID (Safety Registry) in conjunction with 

the time and arm of the study.  

 

The Inception Cohort database is an extensive clinical database with 133 users, 780 records, 

and 4014 fields spread in 41 repeated forms organised in 5 arms, including multiple study 

visits. For this PhD project, three forms were extracted from two different arms for a single 

visit, the baseline. These were the screening and recruitment form, the Race and Origin 

Information Form and the Environmental questionnaire. The screening and recruitment form 

captures information on the diagnosis, age and inclusion criteria, followed by the race and 

origin information form that captures detailed information about the ethnic background of the 

patient. The third form is the environmental questionnaire, a 183 field eCRF collecting 

information about the patient's location and exposome, including a broad range of questions 

from a type of heating and washing practices to pets, vaccination history and water supply. 

 

The Safety Registry database is separated into two different databases, and it is based on the 

same system and principles as the Inception Cohort. The registry's central database is based on 

two forms, the monthly surveys and the rare and severe complication follow-up forms. The 

supplementary database contains the denominator data form. The monthly surveys are being 

sent to the participants to collect "Yes/No" responses about any rare and severe complications 
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that the reporting centre might have encountered in the previous month. This form is fully 

automated to ensure it is sent to the participants at the beginning of each month. Depending on 

the complications reported as "seen", it also triggers specific follow-up forms. The participants 

also receive up to three reminders for the monthly surveys and the follow-up forms as required. 

The automations of the database are based on over 100 calculated fields that were added on 

REDCap. Using "if" statements that were designed for this project, the system assigns scores 

to each participant. Depending on the syntax of the automated survey invitation rules in the 

system, these scores can trigger several forms.  

 

The denominator data form contains detailed spatial information for over a thousand regions 

from 41 different countries with 38 maps and instructions to assist the participants in selecting 

the areas that their practices are covering. When the participants choose their country, the 

system will reveal the NUTS2 regions (or equivalent for regions outside Europe). Similarly, 

depending on the NUTS2 selections, the system will reveal the relevant NUTS3 options for the 

participants to choose from. The form has been designed with interactive features allowing the 

participants to provide accurate reports from their databases, estimates when the database 

information is not available and the ability to save the form and return it later. This combined 

with more features that were intergraded into the system, was in place to maximise the 

participants' engagement and survey completion rate. Lastly, REDCap was linked to an API 

system that we developed and ran in R programming language, feeding us live data and reports 

to recognise data discrepancies in real-time. This allowed for a shorter follow-up time, 

increasing the chances of a successful query resolution.  

 

According to the action log of the REDCap system, the database design required over 50,000 

actions (adding/removing/amending fields and rules). Despite the effort and time needed for 

its design, the major advantage of this system is that it requires very little maintenance. The 

Inception Cohort database currently does not require any action. In contrast, the Safety Registry 

requires a small number of actions to maintain the contact details of the participants and update 

the automation rules annually.  
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2.2. Data: preparation, validation and analysis 
 

Data validation in clinical research refers to the process of ensuring that the data collected 

during a study is accurate, consistent, and reliable. This involves verifying the data for 

completeness, consistency, and accuracy before entering the information into a database or 

using it for analysis. The goal of data validation is to minimise errors and increase the validity 

and reliability of the results. Data validation procedures may include checking for missing or 

inconsistent data, reviewing data for accuracy, comparing data to external sources, and 

conducting statistical checks to identify outliers. The following paragraphs present the methods 

used to validate our data, followed by several sections discussing the data preparation methods 

used in this project.  

 

The datasets of this project have been extracted from over 10,000 submitted eCRFs. Due to the 

high volume of data that I had to process, individual eCRF checks were not feasible, and the 

validation approach in the Safety Registry was focused on discovering inconsistencies and 

following up on missing data. In the Inception Cohort, I communicated regularly with the sites, 

and the entered data was monitored live using APIs scanning the data. In contrast, the 

correspondence with the sites in the Safety Registry was limited as more than 100 sites have 

been participating, and these have not got allocated data managers on site. Thus, a major part 

of the data quality checks was based on validation tests and automations. The primary purpose 

of the validation tests on the Safety Registry data is the detection of inconsistencies and 

outliers. The methods employed to achieve this were based on using funnel plots, the Tietjen-

Moore test, and z scores to detect outliers.  

 

A funnel plot is a graphical representation usually applied in meta-analysis to detect publication 

bias and small-study effects. This study used funnel plots to assess bias and significant 

variations in the reported incidence and prevalence from the participating sites. A funnel plot 

is a scatter plot of the effect size against its standard error. If the results from different sites are 

symmetrically distributed around the mean effect, this would suggest the absence of reporting 

bias. This ensures that centres that tend to see fewer or more new and current patients than 

expected are not more or less likely to report the results to the study. For instance, if the plot is 

asymmetrical, with smaller sites having larger effect sizes and wider confidence intervals, it 

suggests the presence of reporting bias or "small-study effects”. As shown in Figure 12, funnel 
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plots also have two-sided confidence intervals (usually set at 95%) that become stricter as the 

standard error increases. In practice, this means that sites with larger sample sizes are expected 

to have higher precision. Therefore, only minor deviations from the expected mean will be 

considered acceptable and not exceed 95% C.I margins for larger sites. In contrast, the results 

from smaller sites are more likely to vary as they will have smaller precision. This means that 

even an extreme deviation from the mean may not be statistically significant if the site’s sample 

size is particularly small. Therefore, the funnel plots can aid us in summarising if the reported 

results vary significantly per site and if there is a specific trend of reporting bias favouring 

lower or higher incidence values. The effect size is calculated as the proportion (p) of PIBD 

patients (k) in the sample of the general paediatric population (n).  

 

• The proportion 𝑝 = 𝑘/𝑛 is the effect size.  

 

While the standard error is estimated as follows:  

• Standard error: 
√𝜎2

√𝑛
 = 

√𝑝(1−𝑝) 

√𝑛
 

• with variance  𝜎2 = 𝑝(1 − 𝑝)  and  standard Deviation √𝜎2   

 

A funnel plot example of the new-to-current patient ratio is performed on several proportions 

and summarised in the table below. It should be noted that all the analysed outcomes in the 

results section are proportions.  

 

Table 7 Definitions of incidence and prevalence outcomes for PIBD, CD, UC and IBDU and 

CD/UC and IBDU. 

N Numerator Denominator Compared per site 

1 New PIBD cases General Paediatric 

population 

PIBD Incidence  

2 Current PIBD cases General Paediatric 

population 

PIBD Prevalence  

3 New Crohn’s cases Total new cases New CD to total Ratio 

4 Current Crohn’s cases Current new cases Current CD to total Ratio 

5 New Ulcerative Colitis and IBDU 

cases 

Total new cases New UC to total Ratio 

6 Current Ulcerative Colitis and cases Current new cases Current UC to total Ratio 

7 New PIBD cases Current PIBD cases PIBD 

Incidence/Prevalence  



 

Page | 78  

 

 

 

 

Considering the number of funnel plots for each proportion, number of participating sites and 

multiple data collection rounds, a significant deviation in one assessment should not justify 

excluding a site from the analysis as random deviations are very likely. Only sites with 

significant deviations in multiple funnel plots were investigated further Figure 12. 

 

 

Figure 12. Funnel plot of the incidence-to-prevalence ratio reported by 52 sites in 2019.  

The yellow and blue curves are the 95% and 99% confidence intervals. Twelve sites were 

outside the margins, with sites 51, 5, 17, 1 and 22 deviating significantly from the expected 

ratio. 

 

In conjunction with the funnel plots, t-scores, the Tietjen-Moore and z scores tests were 

performed to detect outliers. The latter tests were performed for variables that we found to be 

approximately normally distributed in the Safety Registry and Inception Cohort. Results with 

a Z score exceeding the value of 3 were considered outliers. Due to sample size limitation, the 

t-scores were used only for the within–centre comparisons to ensure that the multiple reports 

over the several data collection years are consistent. The Tietjen-Moore test was used to test 

specific hypotheses of a certain number of outliers to be present. The first step of the test 

requires the calculation of the absolute residuals:  
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• 𝑟𝑖 = |𝑦𝑖 − 𝑦̅𝑖| 

In the second step of the test, the 𝑦𝑖 values are sorted based on their absolute residuals 𝑟𝑖 in 

ascending order. In the third step, we calculate the test statistic where the 𝑦𝑖 are sorted. The 𝑦̅ 

is the overall mean for all observations and 𝑦̅𝑘 is the mean after the 𝑘 most extreme 

observations have been removed. The number of the most extreme observations must be 

selected when formulating the hypothesis for the test.  

The test statistic: 𝐸𝑘 =
∑ (𝑦𝑖−𝑦̅𝑘)

𝑛−𝑘

𝑖=1

∑ (𝑦𝑖−𝑦̅)
𝑛

𝑖=1

, with the critical region for this test to be determined by a 

simulation based on the sample size of the dataset.  

 

2.2.1. Safety Registry analysis: PIBD Incidence adjustment 
 

In the Safety Registry, the denominator data form filled out by the participating centres also 

included information about the age of the patients transitioning to adult care services. This 

information is essential for adjusting the disease incidence as our final incidence figures were 

produced for the 0-18 years population. Therefore, centres with a patient age limit of 17 or 

lower may underreport the disease incidence as they are expected to encounter fewer newly 

diagnosed patients compared to centres that see patients up to 18 . In contrast, centres with an 

upper age limit above 18 are expected to report an inflated number of cases and incidence. To 

address this issue, we have adjusted the denominator population (the general paediatric 

population) to reflect the upper age limit for the patients seen in each clinic. For instance, 

considering the stable birth rate in Europe (Sobotka et al., 2011), over an extended period, a 

clinic that treats patients only up to the age of 10 will have roughly half the number of the 

patients compared to another clinic in the same location that treats patients up to the age of 20. 

While this issue can be solved with a proportional adjustment of the general paediatric 

population that was included as the denominator, the variations in the upper age limit of each 

centre are introducing additional complications. Using data from the Inception Cohort study, 

the Royal London Hospital PIBD database, and several sources from the literature (1.2) we 

have identified that the relationship between PIBD incidence and age does not follow a uniform 

distribution as shown in Figure 13. 
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Figure 13. The probability distribution function of new patients diagnosed with PIBD from 

birth to the age of 18.  

The two distributions suggest a rapid increase in the incidence from the age of 8 onwards. 

Please note that the two populations share approximately 10% of the patients, a percentage 

that is relatively small to explain the high correlation observed. The high correlation reinforces 

our assumptions about the exponential increase in the incidence. 

 

Based on these findings, even after adjusting the denominator data to match the age limit of 

each clinic, a further correction is required to ensure that the final incidence estimate reflects 

the expected results for the 0-18 population. Based on Figure 14, a site with a 0–10-year-old 

population will report an incidence reduced by 5-fold compared to another site with a 0–18 

population. Thus, appropriate statistical modelling should be used to determine the necessary 

correction.  
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Figure 14. The cumulative distribution function of new patients diagnosed with PIBD from 

birth to the age of 18.  

Both distributions follow a very similar trend. 

 

Seo-Hee Kim et.al 2022, Wittig et.al 2019, Anders Forss et.al. 2021 and others have conducted 

PIBD incidence studies using administrative health records or insurance data and reported an 

incidence increase of PIBD by age. Similarly, to our data, these authors also reported a decline 

in the incidence following the rapid increase observed after age 8. However, the age that this 

incidence decline starts remains to be determined, as Forss suggests, the incidence may decline 

close to the age of 20, while Kim suggests figures closer to the age of 14. Based on a dataset 

of 37,555 cases of IBD, Kim also proposed that in recent years, the peak incidence of PIBD 

has shifted significantly towards younger age groups, which is in line with our data from the 

Inception Cohort and Royal London Hospital (Figures 15 & 16).  
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Figure 15. The probability distribution function of new patients diagnosed with PIBD from 

birth to the age of 18.  

The distribution of patients reported by Wittig et al. was reported in age groups (1-5, 5-10, 

10-15 and 15-18). The trends within the reported groups have been approximated. 

 

 
Figure 16. The cumulative distribution function of new patients diagnosed with PIBD from 

birth to the age of 18. 
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To adjust the incidence for the clinic age limit, we have generated a function that explains the 

observed relationship between incidence and age that we have discussed in the previous 

paragraphs. The fitted model is a cubic regression model, a type of polynomial regression 

model in which the relationship between the incidence and the age is modelled as a third-degree 

polynomial. The equation for the line of best fit is: 

Incidence =  0.4482 − 0.1443 ⋅ age +  0.01494 ⋅ age2 −  0.000449 ⋅ age3 

 

This model reached significance for all coefficients and was used to fit a curved line through a 

set of data points, which in this case were the average of the three sources presented in Figures 

15 & 16 allowing for a more complex relationship to be modelled (Figures 17-19). 

 

 
Figure 17. Fitting the incidence with the age adjustment.  

The model was developed using the average of the observations from the literature, Royal 

London Hospital, and Inception Cohort to predict the expected PIBD incidence per age 

group. 

 

A comparison of the predicted against the observed incidence values (Figure 18) showed that 

the performance of the model was acceptable, with an R squared exceeding 90% allowing us 

to use it for the adjustment of the incidence.  
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Figure 18. The probability distribution function of previous studies and available data 

compared to the developed model. 

 

 
Figure 19. The cumulative distribution functions of previous studies and available data 

compared to the developed model. 
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Based on the developed model, we adjusted all results from clinics that were not using an 18 

upper-age limit according to the Table 8 Instructions with the steps required to adjust the 

reported incidence in centres that do not have 18 as the upper age limit. Table 8 below. 

This ensured that the results from each participating centre were now comparable. 

 

Table 8 Instructions with the steps required to adjust the reported incidence in centres that 

do not have 18 as the upper age limit.  

Please note that the corrections for the sites seeing patients older than the age of 18 assume 

that the incidence remains stable from 18 onwards. 

 

Upper age limit Adjustment 

required based 

on modelling 

Step 2: Final 

Formula 

7 13.13752791 Incidence x 13.14 

8 10.40681928 Incidence x 10.41 

9 7.798638149 Incidence x 7.8 

10 5.613555363 Incidence x 5.61 

11 4.020177474 Incidence x 4.02 

12 2.938905296 Incidence x 2.94 

13 2.221151822 Incidence x 2.22 

14 1.743875065 Incidence x 1.74 

15 1.424398328 Incidence x 1.42 

16 1.211389397 Incidence x 1.21 

17 1.074670171 Incidence x 1.07 

18 1 Incidence x 1 

19 0.985990005 Incidence x 0.986 

20 0.973712469 Incidence x 0.974 

21 0.962864753 Incidence x 0.963 

22 0.953210830 Incidence x 0.953 

 

2.2.2. Safety Registry analysis: Incidence and Prevalence 
calculation 

 

The incidence and prevalence are both measures used in epidemiology to describe the 

frequency and distribution of a disease in a population. In our study, incidence referred to the 

number of new cases of IBD that occurred in the paediatric population up to the age of 18 per 

annum. In our study, this is expressed as a rate, and in almost all cases, we reported the PIBD 
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incidence as the number of new cases per 100,000 individuals up to the age of 18 per annum. 

We also referred to this as 105 person-years. 

 

Prevalence, on the other hand, refers to the total number of cases of a disease that exist in a 

population at a particular point in time. In our study, prevalence referred to the number of all 

IBD cases, new and previous, in the paediatric population up to the age of 18 at the data 

collection time. This was also expressed as a rate, and in almost all cases we reported the PIBD 

prevalence as the number of all cases per 100,000 individuals up to the age of 18. To calculate 

the incidence and prevalence, first, we collected information on the number of new and current 

patients seen by the PIBD experts participating in the Safety Registry in the last year. In the 

next step, we also collected information on the areas that each PIBD expert and their clinic 

were covering. The available options for the selected areas in Europe are based on the NUTS3, 

a nomenclature of territories discussed in the introduction and previous paragraphs. Using the 

available demographics from Eurostat, we have assigned the total paediatric population in each 

NUTS3 area, which allowed us to estimate the population that each clinic is covering. The sum 

of the paediatric population in the areas that a centre is covering is the denominator data for 

that centre. The denominator data allows the calculation of the incidence and prevalence per 

100,000 individuals in the paediatric population. As shown in the results (3.1), the overlap of 

clinics that claimed the same regions as covered was low in our study and varied with the 

collection year. When a NUTS3 area is shared between two or more clinics, the denominator 

population was split accordingly. The incidence assigned to the shared regions was the average 

of the incidence calculated for the clinics that claimed the same region. Lastly, in several cases, 

when the same clinic submitted multiple responses due to multiple PIBD experts participating 

from the same site, one response was kept. The selected response was preferred based on the 

data quality, where responses that were based on local databases were favoured against 

estimates. Also, the reporting consistency of the PIBD experts and other metrics (including 

CD/UC and incidence to prevalence ratio) were also used. In some cases, the selection was 

based on correspondence with the experts.   
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2.2.3. Safety Registry analysis: Conversion of lattice data to 
centroids 

 

To handle the multiple spatial misalignment issues in our data, there were instances whereby 

the aggregated patient data for each NUTS area needed to be converted to point data. The 

Inception Cohort disease phenotype analysis was the only analysis in this work that was based 

on the individual point data for each patient. All other analyses were based on the population 

centroids. The centroids were selected as the most appropriate representation of where the 

population lies within a polygon. The motivation for estimating the centroids is to identify the 

location with the minimum distance from all residents within a territory. By calculating the 

population-weighted mean centroids for each polygon region, we can obtain a point-location 

estimate that represents most of the population at risk within a region. Consequently, risk 

factors that are close to the centroids will also be close to most residents within that region and 

are expected to have a more substantial influence on the measured outcome and vice versa. 

This addresses the modifiable areal unit problem and grouping effect, in particular. By using 

this approach, for a small territory such as Westminster in London, most of the population is 

expected to be exposed to a risk factor within that region. However, for a large territory such 

as the Highlands in Scotland, the number of individuals that will be exposed to a risk factor 

within that region depends on the exact location of the covariate within this region (a pollutant 

in the north should have a minimal effect as it is located hundreds of kilometres away from the 

95% of the population in that area).  However, this method was used for particularly small 

areas based on postcodes in the Netherlands.  

 

The general estimate for the median centre is calculated by the following function: 

 

𝑑𝑖
𝑡 = √(𝑋𝑖– 𝑋𝑡)2 + (𝑌𝑖– 𝑌𝑡)2 + (𝑍𝑖– 𝑍𝑡)2 

Where: 

• x, y and z are the coordinates for each feature  

• i and t is each candidate location within the examined area 

 

The centroid estimation is an iterative algorithmic process with each step (t) being a candidate 

centroid location (feature). The algorithm converges when the location (Xi, Yi, Zi) that 

minimises the Euclidean distance d to all features (i) is found. In our case, we are interested in 
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the 2-dimensional centroids (longitude, latitude), and we also want to weigh the centroids 

according to the population density.  

 

Therefore, the previous estimate becomes: 

 

𝑑𝑖
𝑡 = √(((𝑋𝑖– 𝑋𝑡)2 + (𝑌𝑖– 𝑌𝑡)2)) ∗ 𝑊𝑖 

Where:  

• x and y are the coordinates for each location i 

• W is the population density at each location  

• t is each candidate centroid location within the examined area 

 

2.2.4. Inception Cohort analysis: Obtaining the coordinates 
of patients 

 

In the environmental questionnaire of the Inception Cohort study, the residence information 

was submitted by 549 patients. 80% of these patients were residing in the UK and the 

Netherlands, while the remaining 20% were based in eight different countries. Interestingly, 5 

of the patients that were recruited in the study were residing in Spain (1), Austria (3) and 

Denmark (1), which are countries not participating in the study. Considering the small number 

of patients in some of the participating countries, the patient location was obtained only for the 

United Kingdom and the Netherlands.  

 

In the Netherlands (NL), the postcodes are based on an alphanumeric format with four digits 

followed by two letters. Most NL-based patients followed the data protection study instructions 

and provided only the first part of their postcode. In the United Kingdom, the postcodes are 

also based on an alphanumeric format and contain two parts separated by a single space, the 

outward and the inward code. Similarly, to the patients in the Netherlands, most study 

participants in the UK provided only the outward code of their postcode. The environmental 

questionnaire provides patient-level data with location information. Each patient was assigned 

a map location, and the risk factor factors were subsequently added to this location. Thus, the 

dataset of the Inception Cohort is point locations of patients with individual patient and 

environmental exposure data. The UK postcodes were only available with coordinates, while 
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the NL postcodes were available as areas. These areas were converted into centroids, and the 

following processing steps were identical for both countries. Each centroid was assigned the 

value of the underlying continuous surface of each rasterised pollutant. The information 

available in the NUTS format was also assigned to the overlapping centroids. The steps 

required to convert the Dutch lattice postcode data into point data and align them with the UK 

Inception Cohort patients are shown in Figure 20 below. 

 

It should be noted that this dataset was not used for the study of the PIBD incidence but for the 

study of the differences in the rates between Crohn's Disease and Ulcerative colitis grouped 

with IBD-U. As discussed in the introduction, several reports in the literature suggest that 

certain environmental factors affect these conditions differently, and this dataset offers an 

excellent opportunity to investigate these effects. The study of the PIBD incidence is not 

possible using the Inception Cohort dataset as the patient point data are insufficient without 

control data.  
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Figure 20. The steps of preparation of the Dutch patients with location information 

This dataset was used in combination with the UK Inception Cohort data to analyse the disease 

phenotype. The steps from the first image on the top left are described as follows: 

the base NUTS3 map is used; 2. the postcode areas are merged with the base map; 3. each 

postcode area is converted to a centroid; 4. the centroids receive the values of the interpolated 

pollutants; 5. the postcodes with the exposure information are extracted ready for the analysis. 

The last panel shows how each postcode centroid had been assigned a value for the exposure 

of the example. 

 

2.2.5. Interpolation of pollutants 
 

As the incidence information is collected using the NUTS3 lattice dataset format, it can be 

combined with several predictors that have also been collected on the same territory level. 

However, most environmental factors have been sampled or reported at specific point locations 

that are not aligned with the locations of the NUTS3 regions. Therefore, we needed to estimate 

the exposure of each population centroid or NUTS3 region to these factors. To estimate the 

exposure, we interpolated the predictors geographically. The literature suggests several 

interpolation methods, which may vary depending on the type of exposure that we wish to 

interpolate. The preciseness of the interpolation at a location without a measurement depends 

on several factors, including the distance from the other locations with available measurements, 

their number, variance, and geographical distribution.  

 

Since collecting data from all locations within a study area to observe a phenomenon or 

measure a variable of interest is usually difficult or impractical, it is common to measure the 

quantity of interest at selected sample sites and use predicted values to estimate values at all 

other locations. These sampling sites may be distributed randomly or follow a specific 

sampling strategy. By combining the information from the measured locations and predicting 

the quantity of the variable of interest in the remaining locations, we can create a continuous 

surface of the variable. Since a truly continuous map would require an infinite number of spatial 

units, in this context, the term means that the spatial units with the variable values follow a 

regular pattern (grid) and are sufficiently dense to create an effectively continuous surface. This 

section will discuss some of the interpolation tools that allow us to make predictions from 

sample measurements for all the locations required to create a continuous measurement for the 

spatial variables of interest. The importance of interpolation for this project has been paramount 

as these methods allowed us to combine information from different sampling sites and with 
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various spatial formats and geometries. Hence, spatial interpolation was essential in solving 

most of the spatial misalignment problems of our study.  

 

Inverse distance weighted methods and spline 

 

Inverse Distance Weighting (IDW) is a method of interpolation that estimates the value of a 

point based on the values of nearby points. The IDW algorithm assigns a weight to each nearby 

point based on the inverse of the distance between the target point and each data point. Points 

that are closer to the target point have a higher weight and thus have a greater influence on the 

final estimate. IDW is commonly used in environmental modelling to estimate values for un-

sampled locations. 

 

A spline is a piecewise polynomial function to approximate a set of data points. The polynomial 

functions used in spline interpolation are chosen to minimise the overall curvature of the spline. 

This results in a smooth and continuous function that passes through or closely approximates 

the set of data points. There are several types of splines, including natural splines, cubic splines, 

and B-splines, each with different properties and use cases.  

 

Kriging 

 

Kriging is a method of spatial interpolation that estimates a point’s value based on nearby 

points' values. The method is based on spatial autocorrelation, which is the idea that nearby 

points are more similar than points that are farther apart. Kriging uses statistical models to 

estimate the spatial structure of the data and uses this information to make predictions about 

the values at unsampled locations. In our study, Kriging was used to create continuous surfaces 

from point data, such as pollution data from several sampling locations. Kriging can be 

classified into two main types. The most common type is Ordinary Kriging (OK) which 

assumes the mean of the underlying studied variable is constant over the area of interest. 

 

The formula for ordinary Kriging is as follows: 

 

Z(u) = Ẑ(u) + λ(u) (Z(u) - Ẑ(u)) 

 

 

Where: 

• Z(u) is the estimated value of the variable at location u 
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• Ẑ(u) is the expected value of the variable at location u 

• λ(u) is the kriging weight for location u 

 

In contrast, Universal Kriging allows for a trend in the data, and it is used when there is a linear 

or non-linear trend (hence it is called universal) in the studied variable. The formula for 

universal Kriging is similar to the ordinary Kriging formula but includes a trend component: 

 

Z(u) = Ẑ(u) + λ(u) (Z(u) - Ẑ(u)) + T(u) 

 

Where: 

• T(u) is the trend component of the variable at location u 

 

In both cases, the estimates of Ẑ(u) and λ(u) are obtained from the spatial structure of the data 

using a statistical model such as a variogram. The trend component, T(u), is usually obtained 

using a regression model or a polynomial function. 

 

Kriging is considered one of the most accurate interpolation methods available, but it can be 

computationally intensive and requires a sufficient number of data points to produce reliable 

results. In our work, although Kriging was favoured in some cases of spatial interpolation. 

However, it was rejected in case that the interpolated variables were returning problematic  

variograms.  

 

A variogram is used in Kriging as a statistical measure that describes the spatial variability of 

a variable. It is used to model the spatial correlation structure of the variable of interest, such 

as an air quality measure. A variogram is calculated as the variance of the differences between 

values at two locations, as a function of the distance between those locations. In other words, 

it tells us how much the variable's values change as the distance between two locations 

increases. The result is a graph showing how the variable's variance changes with distance. The 

variogram is typically calculated by selecting pairs of data points that are a certain distance 

apart and calculating the variance of the differences between their values. These variances are 

then plotted against the distance between the points. The resulting graph is called the 

experimental variogram. The experimental variogram is then fitted to a mathematical model 

that describes the spatial structure of the variable. The most commonly used models are the 

parametric spherical, exponential, and Gaussian models. The parametric nature of these models 
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allows for a structured approach to modelling spatial correlation. The choice of model depends 

on the data and the specific application. The exponential covariance model decreases the 

correlation between points at an exponential rate as the distance between them increases. It is 

defined as:  

 

𝐶(ℎ) = 𝜎2 exp (−
ℎ

𝜑
)  

 

Where:  

• 𝐶(ℎ) is the covariance for lag distance ℎ, 𝜎2 is the variance, and  𝜑 is the range 

parameter.  

 

The exponential model is suitable for processes with a gradual decline in spatial correlation. It 

is often used when the spatial process is believed to be more random or when the data exhibits 

a rougher spatial structure. The squared exponential covariance model, also known as the 

Gaussian covariance model, decreases the correlation between points at a rate that is 

proportional to the square of the distance between them, leading to a smoother decline in 

correlation. The definition of this model is:  

 

𝐶(ℎ) = 𝜎2 exp (−
ℎ2

2𝜑2).  

 

The squared exponential model is appropriate for processes with a smooth spatial variation, 

where changes occur more gradually over space. Subsequently, this model assumes that spatial 

correlations diminish more smoothly compared to the exponential model. Lastly, the spherical 

covariance model unlike the exponential and squared exponential models, introduces a hard 

limit beyond which there is no spatial correlation. This makes it particularly suitable for 

datasets where spatial dependence is very likely present up to a certain distance and then drops 

to zero. The definition of this model is 0 for ℎ > 𝜑, with 𝜑 to be the range limit for the lag 

distance ℎ. Beyond 𝛼, we assume no spatial dependence is present. For ℎ < 𝜑, the definition 

becomes 𝐶(ℎ) = 𝜎2(1 −
3ℎ

2𝜑
+

ℎ3

2𝜑3
). In practice the model selection for each pollutant was 

based on the visual inspection of the variogram, the prediction and accuracy metrics of each 

model and expectation of the spatial extent of the correlation of the processed variable. Once 

the variogram model is chosen, it can be used to estimate the values of a variable at unsampled 
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locations using interpolation methods such as Kriging. In the following subchapter, a thorough 

example of Kriging application is shown. 

 

Empirical Bayesian 

 

Empirical Bayesian interpolation (EBI) is a method that combines the principles of Bayesian 

statistics and spatial interpolation to estimate the values of a variable at unsampled locations. 

It is instrumental when the data is sparse or has a high degree of measurement error. This 

method works by first estimating the parameters of the spatial interpolation model using the 

observed data and then using these parameters to make predictions about the variable at 

unsampled locations. The key difference between EBI and other interpolation methods is that 

EBI estimates the spatial model parameters using a Bayesian framework, allowing for the 

incorporation of prior information and uncertainty. The process of EBI can be broken down 

into three main steps. The first step is to estimate the parameters of the spatial model using the 

observed data. This is done by specifying a prior distribution (p(θ)) for the parameters and then 

using Bayesian inference to update the prior distribution based on the data. The posterior 

distribution of the parameters is given by: 

 

p(θ|y) =
p(y|θ)p(θ)

p(y)
  

 

Where: 

• θ is the vector of spatial model parameters 

• y is the vector of observed data 

• p(y|θ) is the likelihood function, which describes the probability of the observed data 

given the parameters 

• p(θ) is the prior distribution of the parameters 

• p(y) is the marginal likelihood, which is a normalising constant 

 

Once the spatial model parameters have been estimated, the variable can be predicted at 

unsampled locations using interpolation techniques such as Kriging. In the final step, we 

estimate the uncertainty or error in the prediction. This can be done by simulating the model 

with the estimated parameters and comparing the simulated values to the observed data. EBI is 

a powerful method that can provide more accurate and reliable predictions than traditional 

interpolation methods, mainly when the data is sparse or has a high degree of measurement 
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error. In our simulations, Empirical Bayesian Kriging (EBK) was the best performing 

algorithm for certain datasets. 

 

Additional techniques 

 

Triangulation with Linear Interpolation (TLI): This method uses the Delaunay triangulation of 

the known data points to create a set of non-overlapping triangles. The variable's value is then 

estimated at the unsampled location by interpolating between the values at the vertices of the 

triangle containing the location. 

 

Natural Neighbour Interpolation: The natural neighbour interpolation method is based on using 

the neighbours closest to the unsampled location to estimate its value. It uses the Voronoi 

diagram of the known data points to estimate the variable value at the unsampled location. 

 

Radial Basis Function (RBF) interpolation: This method uses a set of basis functions, such as 

Gaussian or inverse multiquadric, that are centred on the known data points. The values at the 

unsampled locations are estimated by a weighted sum of the basis functions. 

 

Interpolation example, sun irradiance with Kriging 

 

In this section, I describe the required steps for the interpolation of the average solar radiation 

in the United Kingdom as the average recorded values for June. The gridded dataset was 

extracted using the NASA APIs for R and included the average satellite measurements captured 

from 2010 to 2018 (Figure 21). These measurements were used for our interpolations. Radial 

basis functions, Empirical Bayesian Kriging, Inverse Distance Weighting, simple and ordinal 

Kriging were some of the methods we used to interpolate the sun exposure. Special attention 

is given to the kriging methodologies that we review in detail. The final model was selected 

under four criteria; overall accuracy, avoiding the use of a deterministic model, considering the 

autocorrelation and our ability to incorporate additional information to maximise the validity 

of each interpolation (Figure 22).  
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Figure 21. Preparation of the sun 

exposure data from NASA. 

The green dots are the centroids of each 

NUTS3 area, and the dots on the grid are 

the locations with extracted sun 

radiation exposures used in the 

interpolation. 

 

i) In completely deterministic models, one can interpolate by estimating a continuous 

surface which is a simple calculation of an unknown function. In contrast, a 

stochastic process also allows for errors and uncertainty in our estimates. The latter 

is preferred, especially for the dataset of pollutants where regional variations can be 

substantial. It is more beneficial to consider such variations as random fluctuations, 

which result in the addition of the error in the deterministic function, which is 

equivalent to the mean of the stochastic function, assuming that the error is 

randomly distributed. The three best-performing methods satisfy these criteria. 

ii) The spatial autocorrelation can also hold vital information that we must use for the 

final estimation of the interpolated surface. To underline the importance of spatial 

correlation, we can compare noise pollution to carbon dioxide. Both sources of 

pollution often originate from the same sources, such as traffic; however, the way 

they are distributed in space is quite different. After analysing the spatial correlation 

of the CO2, we can see that a sampling location can easily be interpolated in the 

surrounding area for a few kilometres, while our approach to noise pollution will 

be very different.   

iii) Different predictors, such as carbon monoxide and carbon dioxide, frequently have 

similar characteristics, sources and geographical distributions. Therefore, 

combining the information from different sources may improve the accuracy and 

preciseness of the interpolation.  
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In the following paragraph we show the results from four different interpolation methods 

(Figure 22) and emphasize on the Kriging methodology. 

 

 
Figure 22. Comparison of four different interpolation approaches for solar radiation in the 

UK.  

The interpolation results of the Inverse Distance Weighting (IDW), Radial Basis Functions 

(RBF), Empirical Bayesian Kriging (EBK) and Simple Kriging (SK). Please note that the final 

interpolation of sun exposure was performed with a higher resolution dataset (a more dense 

grid extracted from NASA). 

 

 

The basis of the Kriging approach is that we treat spatial variability as a model with two main 

components: the trend on a large scale and spatial autocorrelation on a smaller scale. Therefore, 

the most simplistic calculation for this is: 
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 𝑍𝑠 = 𝜇𝑠 + 𝜀𝑠 (1) 

 

Where: 

• Ζs is the value at the location s 

• μ is the conditional mean 

• ε is the error.  

 

In a general least square setting, we can obtain the prediction and error, and in combination 

with the prediction errors, we can estimate the following:  

 

𝑦∗ = x∗ 𝑏 + 𝑐’𝐶−1(𝑦 − 𝑋𝑏)(2) 

 

Where:  

• the b term is the coefficient(s) from the model 

• y* and x* are the outcome and predictor(s) values at the new unknown locations 

• (𝑦 − 𝑋𝑏) is a vector with all the residuals from the regression (mean of 0) which is pre-

multiplied by 𝐶−1  

• 𝐶−1 which is the inverse of the variance-covariance matrix (precision metric).  

• This term of the equation is pre-multiplied by 𝑐’, which is a row vector of covariances 

between the error at the new locations (e*) and the observed residuals (e).  

 

It should be noted that the residuals at the new locations (e*) are unknown; however, we do 

know how they covary, given that they covary as a function of distance. The latter is estimated 

using information from the Covariogram. Hence, we can calculate the term c' in (2) for every 

unknown location if we know its distance from the known locations and have an available 

variogram for our dataset. In other words, assuming that some autocorrelation is present in the 

residuals, we exploit this additional structure in the error term to obtain the covariance between 

the observed and predicted points.  

 

Ultimately, the simple Kriging prediction at a point Si is given by the expression: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 𝑌(𝑠𝑖) = 𝜇 + 𝑐(𝑠𝑖)′𝐶𝑖
−1𝜀𝑖(3) 

 

Where:  
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• Y(Si) is the value of interest at the location 

• μ is the constant mean  

• c', C and ε, as described in (2) 

 

Furthermore, the prediction variance is defined as follows: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎𝑝
2 = 𝜎2 − 𝑐𝑇(𝑠)𝐶−1𝑐(𝑠) (4) 

 

As we can see from (4), the larger the covariance, the higher the precision of the estimate since 

it will reduce the variation and the standard error for each prediction. Expanding on that, having 

a robust and well-characterised autocorrelation present and being close to the sampled locations 

will increase the preciseness of the predictions at each new unsampled location. In contrast, 

higher variance in the dataset and being farther apart from any sampled locations will inflate 

the standard error of the predictions.  

 

𝑆𝐸: 𝜎𝑖 = √𝑠 − 𝑐′(𝑠𝑖)𝐶𝑖
−1𝑐(𝑠𝑖) (5) 

 

In terms of the Semi-variogram calculations: 

 
(𝑠𝑒𝑚𝑖)𝐶𝑜𝑣𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚: 𝐶(ℎ) = 𝑠– 𝛾(ℎ; 𝑟, 𝑠, 𝑎) (6) 

 

Where: 

• h is each distance and  

• r, s, and α are the parameter estimates (discussed in the following paragraphs) 

 

The semi-variogram for the selected method, simple Kriging (and ordinary Kriging), when 

used to estimate the solar radiation surface in the UK from the gridded dataset is shown in 

Figure 23. The first step is the estimation of covariance depending on the distance, which 

reveals strong spatial correlation patterns, as we can see in the following semi-variogram. As 

already mentioned, the semi-variogram is an important tool that helps us measure the spatial 

dependence and provides the parameter estimates that explain the exact autocorrelation 

mechanisms, which may differ for each studied predictor. The rationale of a variogram is that 

the relative location of two points may influence their spatial relation in addition to the effects 

from their absolute geographical location. 
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Figure 23. Semi-variogram of solar radiation. 

The covariance increases with distance, suggesting, as expected, that the adjacent locations 

tend to share similar values. 

 

Before producing the components of the semi-variogram, we need to follow the steps of 

creating a correlogram. For a set of locations on the map and a given direction, we can calculate 

the correlation coefficient between the data points at each step of distance increment (lag 

h=0,1,2,3...). Understandably, this will be 1 for h=0 and should decrease as we move further 

away from the data points.  

 

 
Figure 24. Data points on a regular grid in connection with their pairs at a distance (h) for 

a given direction.  

This is used to develop a correlogram. Please note that one arrow is equivalent to one lag, two 

arrows in a row are equivalent to two lags and so forth. 
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Expanding this on an irregular grid, we proceed on the same principle by adding additional 

parameters. These are the angle tolerance, as shown in Figure 25, the direction of the vector, 

the lag distance, and the lag tolerance, which is usually ½ of the lag distance. Lastly, we also 

define the bandwidth as the distance that limits the surrounding points that will be included in 

the calculations. Figure 25 below shows the lag vectors with a specific start and end (tail and 

head, respectively). Each vector has a length (h), and for the location of the tail (u), the location 

of the head is u+h. Hence, the difference in the data values of interest between the head and the 

tail will be z(u)-z(u+h).   

 

 
Figure 25. The lag vectors have a specific start and end.  

An irregular grid of points (red), the selected rules and tolerance settings we use to estimate 

the correlations between the data points. 

 

Therefore, this is the motivation for developing the semi-variogram, which is calculated as 

follows: 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝛾(ℎ) =
1

2𝑁(ℎ)
∑ (𝑧(𝑢𝑖)) − 𝑧(𝑢𝑖 + ℎ|𝑥)2

𝑁(ℎ)

𝑎=1

 

 

This is essentially, the average squared difference over lag distance (h) for all possible pairs of 

data, halved. This calculation returns the semi-variogram, as shown in Figure 23 for the 

example of solar radiation. The parameters that we must obtain from the semi-variogram are; 

the sill, which is the maximum value of the semi-variogram, and represents the level of spatial 

autocorrelation that is reached at a distance beyond which there is no further spatial 
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dependence, the range, which is the distance h at which the sill is observed (when we move far 

enough to safely assume that correlations are present) and the nugget effect which is observed 

when the level of variability is very high at a very low h values (h close to 0). Often, the latter 

can be a measurement error as well. 

 

With all the requirements in place, the kriging process can now be run for each point on the 

map. For an unsampled location, simple Kriging will return the global mean with the necessary 

adjustment (based on what was described in the previous paragraphs) according to the 

surrounding observations and the autocorrelation information. Figure 2 shows an example of 

this estimation when five observations are available at a close distance from the unsampled 

location. If no observations are available, the prediction will be the global mean.  

 

 
Figure 26. Kriging interpolation based on the adjacent locations. 

The Kriging interpolation will estimate the value of the unsampled location using every data 

point within the predefined bandwidth. 

 

Simple Kriging is rarely used in practice, especially for irregular point data. The Kriging 

method that is most frequently used is ordinary Kriging, which calculates the local mean 

instead of the global mean for each prediction. Figure 27 shows the difference in the 

performance of the two interpolation methods when used on the Nitrous oxide point data for 

the Greater London area. 
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Figure 27. Comparison of simple (universal) Kriging (top) with ordinary Kriging.  

Interpolation of the Nitrous monoxide air samples taken in London and its surrounding areas 

between 2018 and 2019. 

 

Returning to the sun radiation example, the final estimates using ordinary Kriging are very 

similar to the surface provided by the governmental bodies regarding the solar radiation in the 

UK. This demonstrates our ability to convert point data to a continuous surface with prediction 

error information. The accuracy of our methods was subsequently assessed with simulations as 

discussed in the simulations section. 
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Figure 28. The UK sun irradiance map provided by Microgeneration Certification Scheme 

(left) compared to our estimates using interpolation methods (right).  

This figure shows the high similarity between the interpolated and the map that we consider 

the ground truth for solar sun irradiance. 

 

2.3. Spatial disease mapping and analysis methods 
 

This chapter contains the background and some considerations regarding common issues and 

statistical models that were encountered repeatedly during the data analysis. The following 

paragraphs are complementary to concepts covered already, such as autocorrelation, outlier 

handling, funnel plots and mapping methods.  

 

2.3.1. Aggregation methods 
 

To analyse the epidemiology of a disease and, in several cases, to inform and influence health 

policies, we need to understand its geographic distribution. Frequently, this requires 

aggregating our findings within each area included in the overall region of interest. Although 

this step seems straightforward, it may introduce bias as the spatial aggregation level used may 

alter the results. Roquette et.al. tested the effect of the aggregation level in the analysis of the 

geographical distribution of cancer mortality (Roquette et al., 2018). The researchers included 

three levels, NUTS3, municipalities (10-fold increase in the area count) and parishes 
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(additional 15-fold increase in the area count). Not surprisingly, the findings supported that a 

lower number of areas and higher spatial aggregation led to more reliable results with the caveat 

of a decreased capacity to identify small local clusters as larger geographic territories are more 

likely to mask the underlying heterogeneity. However, in terms of clustering and based on the 

Moran's I test, the mortality was found to be clustered for all three spatial levels that were used 

in the study. Burghardt et al., 2022; Jeffery et al., 2014 and others also conclude that the higher 

level of aggregation may mask certain phenomena and interactions while it improves the 

reliability and robustness of the disease distribution. According to the current literature, a 

specific proper scale for mapping disease is absent. The decision must be study specific, 

balancing the trade-off between increased noise and bias. In our case and based on the 

simulations in 2.4.3, given the very high level of detail in our predictors, a low level of 

aggregation is desired, and a greater number of regions increases the statistical power of the 

study. 

 

2.3.2. Spatial Weights 
 

Determining the spatial weight is a necessary step for the Moran's I value estimation. As 

mentioned repeatedly in the literature, Tobler's first law of geography states that "everything is 

related to everything else, but near things are more related than distant things" (Tobler, 2004, 

1959). This is the motivation for developing spatial weights matrices that can be used not only 

for Moran's I estimation but for other analytical processes, including a great number of spatial 

regression models that we will discuss in the next subchapter. Spatial weights are essentially 

model-specific adjacency definitions that describe the cases to consider neighbouring in our 

analysis. The spatial weights matrix 𝑊 is an 𝑁 × 𝑁 dimensional table with 𝑊𝑖𝑗 elements 

specifying the connection between each pair of the units 𝑖 and 𝑗.  

 

𝑊 = [

𝑊11   𝑊12    …   𝑊1𝑛

𝑊21   𝑊22    … 𝑊2𝑛

𝑊𝑛1   𝑊𝑛2    … 𝑊𝑛𝑛

] 

 

This matrix describes all possible connections and all the diagonal elements to be set as 0 

(diagonal elements of 𝑊11, 𝑊22 … 𝑊𝑛𝑛 refer to single units and not neighbouring ones). 

Any predictor 𝑥 should be treated as a vector that must be multiplied by the spatial weight 

matrix and produce a spatially lagged variable vector.  
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𝑊 = [

𝑊11   𝑊12    …   𝑊1𝑛

𝑊21   𝑊22    … 𝑊2𝑛

𝑊𝑛1   𝑊𝑛2    … 𝑊𝑛𝑛

] × [

𝑥1

𝑥2

𝑥𝑛

] 

 

The Rook weights are the simplest variant of the spatial weight’s matrix. The matrix reflects 

the status of a neighbouring relation in a binary format using weights of 1 and 0. The presence 

of a common edge (boarder) connecting two spatial units serves as the rook criterion's 

definition of neighbours, as shown in Figure 29.   

 

 
Figure 29. An example of Rook weights for the NUTS3 unit of Inverness, Nairn, Moray, 

Badenoch, and Strathspey 

In this example, the Rook and Queen methods returned the same matrices containing 770 

connections for the United Kingdom in total. 

 

An expansion of the Rook weights is the Queen weights. Depending on the type of polygons 

on a map, the Queen's criterion may include other relationships. The neighbouring areas are 

defined as spatial units with a common edge or vertex where two or more polygon edges meet. 
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This may double the number of non-zero weights for a grid map, but it has little or no impact 

in a more real-world scenario.  

 

Another popular weight-assigning method is the k-nearest neighbours (KNN), where every 

spatial unit must be linked to a specific number of its closest neighbours (Figure 30). Unlike 

the Rook and Queen methods, KNN considers the proximity of the areas prioritising the closest 

"k" spatial units (k is the number of units that will be assigned weights for their relationship 

with each unit in the sample). Most commonly, the distances are estimated using centroids. In 

this context, a centroid is the geometrical centre of each polygon area (we previously looked at 

population centroids).  

 

Depending on the analysed outcome, not restricting the distance between areas that will be 

assigned weights may lead to inaccurate results. As shown in Figure 30a, several islands are 

receiving weights that link them with other islands and remote areas, which may not reflect the 

true connections between these areas. Also, as shown in Figure 30b and Figure 30c, when the 

spatial unit size changes depending on the location, the proximity of the k number of spatial 

units for certain locations might also vary significantly. When adjacency is a critical factor (for 

instance, a policy of an area affecting a policy of its neighbouring areas), this approach is 

appropriate. In contrast, this approach may be invalid when the distance is the key factor (for 

instance, the contamination of the air from pollutant emissions). Using large weights 

extensively can also reduce the power of the Moran’s I test as the covariance term of the test 

statistic will be inflated in areas with no true spatial relationship thus diluting the effect of 

autocorrelation from the areas with true spatial relationship. 
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Figure 30. A visual presentation of the KNN spatial weight matrix appears as a network of 

spatial weights linking centroids of different areas.  

a) The k number was set at 8, resulting in 173 x 8 = 1384 connections for the 173 NUTS3 areas 

b) and c) Examples of the KNN spatial weights for the NUTS3 of Tower Hamlets in London 

and the NUTS3 including Inverness in Scotland. The size difference between these territorial 

units and their neighbours results in connections with significantly variable distances. 

 

A popular method that considers the distance between the spatial units proportionally is the 

inverse distance weights. In this approach, the weights are essentially transformations of the 

distances between the centroids, while we can also set a distance threshold for distant areas to 

receive a weight of 0 (Figure 31). 
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Figure 31. A visual presentation of the inverse distance weights matrix appearing as a 

network of spatial weights linking centroids of different areas.  

 

In this example, the image on the left (Figure 31) shows the number of connections, which is 

23,986, for the 173 NUTS3 areas. Each spatial unit has 138.65 no zero weight, suggesting that 

for the selected distance cut-off, each spatial unit was linked with 4 out of 5 available spatial 

units on the map. The figure on the right shows the NUTS3 territory including Inverness in 

Scotland and the non-zero weights for the areas that fall under the proximity threshold. Each 

assigned weight is calculated as the inverse of the distance. 

 

The weight calculations for any distance weight method (inverse, KNN, Kernel) depend on the 

geodetic datum. For maps using projected coordinates (i.e., Mercator projection, see 1.5.1), the 
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Euclidian distance should be used, while for spherical, ellipsoidal coordinates, arc distance or 

similar approaches should be used. 

 

2.3.3. Spatial Regression models 
 

For any dataset {𝑦𝑖, 𝑥𝑖}𝑖
𝑛 with 𝑦 as the outcome and 𝑥 as the predictor variable, the simple linear 

regression model would be written as 𝑦 = 𝑥𝛽 + 𝜀 or 𝑦 = 𝛽𝜊 + 𝑥𝛽 + 𝜀, with ε in {𝜀𝑖}𝑖
𝑛 as the 

error term (a residual for each observation). It is important to note the error term is the random 

difference between the observed and predicted outcome that the predictor values cannot explain 

and the coefficient 𝛽 (slope) is the effectively the effect size of the predictor on the outcome 

(for a unit change of x). When significant spatial relationships are present in the data, we expect 

to observe emerging patterns in the residuals when fitting the model. These patterns will 

indicate dependence in the residuals, which may be attributed to spatial dependence. Non-

independence in the residuals invalidates the fit and suggests that the analysis can improve 

significantly by switching to a spatial regression model. A great variety of spatial models can 

address most issues of spatial dependence and autocorrelation while improving the fit with the 

inclusion of additional information. In this section, we will discuss the Spatially Lagged X 

model (SLX), the Spatial Lag model (SAR) and the Spatial Error Model (SEM). 

 

The SLX model can be written as: 𝑦 = 𝑥𝛽 + 𝑊𝑥𝜃 + 𝜀, where W𝑥 is the mean of 𝑥 (predictor) 

of the neighbouring locations based on the prespecified spatial weights W. 𝜃 is the coefficient 

(slope) that accounts for the spatial dependency where the values of the predictor in the 

neighbouring locations can affect the value of the outcome in the location that is surrounded 

by these neighbouring locations. This relationship is described by the weight matrix and the 

value of 𝜃. An example of the relevance and importance of this approach to this study is the 

case of air pollution effects. When investigating the link between disease incidence and 

pollution, we must factor in that even areas with minor sources of pollution, may still be 

affected by high pollution levels from their surrounding areas. This also explains why this 

model is categorised as a local spatial model in contrast to the SAR and SEM models. 

 

The SAR model can be written as: 𝑦 = 𝜌𝑊𝑦 + 𝑥𝛽 + 𝜀, where W𝑦 is the mean of 𝑦 (outcome) 

of the neighbouring locations based on the prespecified weights W. 𝜌 is the coefficient (slope) 

that accounts for the spatial dependency of the outcome since its values in the neighbouring 
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locations can affect the outcome value in the location that is surrounded by these neighbouring 

locations. Based on the weight matrix and the adjacency definitions, 𝜌 describes the 

relationship of the outcome in location 𝑖 with the outcome in the surrounding and neighbouring 

locations. An example of the SAR model application is the study of hospital admissions per 

region. An area with low rates of the disease related to hospital admissions that are adjacent to 

areas with high disease incidence and admission rates is likely to be affected. This effect is 

described by many as "spatial spillover” (Li and Lv, 2021), where the observed outcome in 

some areas is not affected by the predictors, and it can be explained by autocorrelation effects. 

In contrast to SAR, this is a global spatial model as the value of 𝑦1 may affect the value of 𝑦2 

… 𝑦𝑖. 

 

The SEM model can be written as: 𝑦 = 𝑥𝛽 + 𝑢, 𝑢 = 𝜆𝑊𝑢 + 𝜀, where 𝑢 is the residual that can 

be described as a function of the neighbouring location residuals with some random error 𝜀. In 

this model, we have a "spillover" of the residuals and not the outcome as we described in the 

SAR model. This model increases the flexibility in the regression's error term, which may 

change over different locations (i.e., observed clusters). This variation in the 𝑢 term can be 

observed when a spatially related predictor which is significant is not included in the model. 

This may lead to areas where the model consistently under or overestimates the outcome. 

 

2.3.4. Mixed effects models 
 

Mixed effects models, also known as hierarchical linear models, are also a type of statistical 

modelling that we can use to analyse our data given the non-independence of the observations. 

These models allow for the analysis of both within-group and between-group variability 

simultaneously. As a generalisation of the linear regression models, they allow for the inclusion 

of random effects, which will account for the variability that is not explained by the fixed 

effects. The fixed effects are the coefficients, which will be the investigated predictors in our 

case, while the random effects are the intercepts and/or the slopes for each level of the random 

grouping variable. The intercept random effects account for the variation in the mean response 

across groups. In contrast, slope random effects account for the variation in the relationship 

between the independent and dependent variables across groups. The estimation of mixed 

effects models involves finding the values of the fixed and random effects that maximise the 
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likelihood of the data. This is typically done using iterative algorithms such as maximum 

likelihood estimation or restricted maximum likelihood estimation.  

 

To deal with autocorrelation in our data, we considered adding random intercepts for the 

grouping variable of interest and account for the correlation among observations within each 

group. We can also include random slopes for the time variable. Suppose the autocorrelation 

is present due to a time-dependent trend in the data. In that case, the model can also include a 

random slope to account for the correlation among observations at different time points. Lastly, 

adding an autoregressive term in case an observation at time t is related to the value of the 

previous observation at time t-1 may also improve the model fit. The mixed effects models 

used in this project are shown in 6.5 and explained in the context of our dataset. 

 

2.3.5. Geographically Weighted and nearest neighbour 
Regression 

 

The Geographically Weighted regression (GWR) differs from the spatial regression methods 

discussed in the previous paragraphs as it allows the coefficients to vary across space. By fitting 

a regression equation to each feature in the dataset, GWR evaluates a local model to analyse 

the studied outcome. For a data set of 1 …  𝑖 observations GWR will fit 1 …  𝑖 weighted 

regression models. GWR generates these separate equations by including the outcome and 

predictor variables falling within the neighbourhood of each target feature. Each 

neighbourhood's size and scope are determined based on the neighbourhood type and selection 

method parameters. GWR should be applied to large datasets with at least a few hundred 

features, which is inappropriate for small datasets. This type of regression can be applied using 

multiple predictors and will return intercept and coefficient values that vary across different 

locations. One of the most popular applications of GWR is the assessment of the heterogeneity 

in the factors affecting the outcome (for instance, income affects chances of hospital admission 

in the area 𝑎 but not in area 𝛽). The GWR models can be used on continuous, binary, and count 

outcome data. The neighbourhood selection, also called bandwidth, is the most important 

parameter when applying the GWR. The process involves fitting spatial kernel to the data. The 

weight 𝑊 of a data point is greatest at the location of the selected regression point 𝑖 (processed 

repeated for each point). As the distance between two points grows, the weight gradually 

decreases. Thus, a regression model is locally calibrated for each 𝑖 by shifting the regression 



 

Page | 113  

 

 

 

point throughout the area of interest. The data are weighted differently for each location so that 

the estimates that are produced are specific to that location. Two important parameters in the 

calibration process are the choice between adaptive or fixed kernel and the optimal bandwidth 

selection. The bandwidth is the limit that, beyond the weighted observations, is given a value 

of zero. With larger bandwidths, more observations are used to fit a local regression, and more 

observations receive non-zero weights. A fixed kernel uses a specific bandwidth, while an 

adaptive kernel uses a varying bandwidth to define the region around each regression. A fixed 

kernel may be problematic in datasets with areas (or points) with significantly varying density 

(similar to the example with the weights assignment in 2.3.3). In such a setting, the GWR will 

include many cases in areas of high density and a minimal number of cases in areas of low 

density. This imbalance may be corrected with an adaptive kernel, although these adjustments 

improve the precision while introducing bias, especially when the parametrisation occurs after 

we have seen the data.  

 

2.3.6. Denominator and Population density 
 

Population density measures the number of people in a given area, typically expressed as 

individuals per square kilometre or another grid-based scale. It describes the concentration of 

people in a region or country and can help identify areas of high or low population 

concentration. The population density maps are an essential element in the disease mapping 

work and contribute to a good understanding of the underlying population density. In this PhD, 

they are also necessary to estimate the disease incidence and prevalence. All estimates of the 

PIBD incidence and prevalence are based on using the population density in conjunction with 

the age NUTS3 demographics in each area.   

 

2.4. Validation of geostatistical methodology 
 

This chapter aims to assess and measure the effectiveness and potential of our methods in 

addressing the spatial misalignments while retaining the information in the gathered data and 

accurately depicting the true statistical correlation between environmental factors and disease 

incidence. This is achieved by testing the methods and settings used to determine the spatial 

weights, selection and refinement of the different interpolation methods and, finally, with the 

use of data simulations. These results are significant as they supported educated decision-



 

Page | 114  

 

 

 

making during the development and optimisation of the methods and helped with the validation 

of the final analysis. 

 

2.4.1.  Spatial weights selection 
 

The selection of spatial weights is an essential step for the spatial regression models, as 

discussed in the previous sections. These model-specific adjacency definitions describe which 

cases we will consider as neighbouring in our analysis. According to our simulations, where a 

randomly distributed pollutant is affecting the disease incidence in the NUTS3 areas, the 

preferred weights should be based on the distance between the analysed NUTS3 areas. Regions 

in proximity are more likely to share a population with similar characteristics and be exposed 

to the same risk factors. However, in our analysis, the Rook’s and Queen’s contiguity weights 

returned a significantly better model fit. This finding may seem counterintuitive considering 

that the Rook and Queen weights do not consider the distance but are based on shared boarders 

between the areas on the map. The areas in our study present auto-correlation on the basis of 

adjacency and not proximity which explains why the contiguity weights perform better. The 

NUTS3 regions have been created on the basis of the population size, which results in highly 

variable polygon sizes. This means that low density areas will have much larger size and vice 

versa. Clusters of large areas that are covered by the same clinic are more likely to have the 

same incidence compared to clusters of small areas that are covered by different units despite 

the proximity of the small areas. As shown in Figure 55a, any distance-based model will 

overlook the relationship between large regions despite being adjacent. Even if the weights are 

adjusted to include large areas as shown in Figure 55c, this will inflate the number of regions 

included in parts of the map with smaller regions (Figure 55d). In summary, although the 

distance-based weights are more appropriate for the analysis of incidence and pollution, in our 

study, the highly variable size of NUTS3 regions, in combination with the coverage patterns 

of participating units, require the use of contiguity weights.  
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Figure 55. The contiguity weights (e/f) against two distance-based weight options (a/b, c/d).   

In this example, in the Republic of Ireland, the c) and e) are capturing accurately the regions 

covered by the same unit while the a) shows no assigned weights with other regions which is 

expected to be inaccurate. In the same example, for the area of east London, both distance-

based approaches, as shown in b) and d), have included a great number of areas in the spatial 

weight assignment which is also expected to be inaccurate in contrast to f) which is 

representative of the expected coverage by our unit in east London. Therefore, the contiguity 

weights as shown in e) and f) create the most accurate weight matrix for our study. 

 

2.4.2. Interpolation methods 
 

In the previous sections, several interpolation methods were discussed due to their relevance 

to our project.  These techniques were used to align our spatial information into one harmonised 
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dataset.  However, any interpolation method comes with a degree of uncertainty regarding the 

produced estimates in the unsampled locations.  Therefore, investigating the performance of 

our interpolations is an essential validation requirement.  The pollution interpolation aimed at 

generating a continuous surface based on several available pollution measures at various 

locations in Europe.  Therefore, the validation process must measure the accuracy and precision 

of the interpolated surface.  In the following paragraphs, we describe the interpolation 

validation procedure.   

 

For this study, a validated continuous surface was utilised as the reference point for three 

different pollutants.  These maps were selected as the ground truth since they incorporate 

precise information from a range of sources, such as sampling, reported releases, and statistical 

modelling, and, therefore, are expected to be in close agreement with the true values of the 

pollutants examined.  Nonetheless, regardless of whether these maps are accurate for all 

regions, the primary goal of our validation method remains unaffected.  The focus of this 

validation is to assess the extent of information loss that occurs when we interpolate a pollutant 

and create a continuous surface based on a limited number of sampling points. 

 

In the first step, the quantities of the continuous ground truth pollution maps were averaged 

and assigned to each NUTS3 region (Figure 57). This created the NUTS3 ground truth maps 

used in the estimating the validation metric, an R squared. Following that, we randomly 

sampled several point locations from the continuous ground truth map (original raster). Using 

different interpolation methods, we generated a continuous surface using only the information 

from the randomly sampled locations. The generated quantities of the interpolated pollution 

map were averaged and assigned to each NUTS3 region creating the predicted NUTS3 

pollution estimates that were compared to the ground truth NUTS3 map. This allowed us to 

evaluate the proportion of the variance in the ground truth pollution map that was explained by 

our interpolated map which was generated based on the randomly sampled location. As shown 

in Figure 56, three pollutants with significant differences in their spatial distribution were 

included in the validation. These were the Nitrous oxides (NO2), Sulphur oxides (SO2) and 

Benzene in the UK.  
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Figure 56. DEFRA maps with UK pollution data  

The high-resolution ground truth DEFRA maps with UK pollution data used for the 

interpolation validation. 

 

The simulations were performed for two sets of sampled locations reflecting different levels of 

sampling detail. The following results in table 9 were produced from the lower detail sample 

where the sampled locations were required to exceed 20 kilometres of distance from each other 

while the minimum number of sampled locations for each NUTS3 area was set at one. This 

resulted to a dataset of 304 random sample points used for the interpolation. The Radial Basis 

Function, Inverse Distance Weight, ordinary Kriging and empirical Bayesian Kriging were the 

tested interpolation functions. The results for the highest-performing functions are summarised 

in the following table. 

 

Table 9 The performance of IDW, empirical Bayes and ordinary Kriging interpolation. 

R squared for Interpolation performance 

 Pollutants Benzene NO2 SO2 

IDW 87.00% 90.90% 86.75% 

Kriging 76.61% 85.32% 77.12% 

EBK 89.88% 92.09% 86.53% 

 

For the tested dataset, the IDW and empirical Bayes Kriging (EBK) functions demonstrated 

the highest performance. However, in datasets with a higher degree of autocorrelation, the 

empirical and ordinary Kriging (OK) demonstrated the best performance (similarly to the sun 

exposure example). Therefore, the EBK and OK were the preferred methods when Moran’s I 

exceeded 0.5, a value suggesting that high spatial autocorrelation is present. One major 

limitation of the EBK method is the 100-fold increase in the required computations compared 

to the IDW method, which reduces the feasibility of its application on large datasets. However, 
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this disadvantage of the EBK is linked to the reason for its superior performance. In contrast to 

the ordinal Kriging, the Empirical Bayesian Kriging does not assume a fixed variogram model. 

Instead, it uses a Bayesian approach to estimate the variogram parameters for each data point 

individually based on the local data structure. The estimated parameters are then used to 

interpolate values at unobserved locations. Finally, it is worth mentioning that the performance 

tends to improve as the number of sampled locations increases and the minimum distance 

between the sampled points is reduced. Specifically, a second set of simulations showed that 

decreasing the minimum distance between sampled locations from 20 km to 15 km can increase 

the R squared by at least 5%.  

 

In the following Figure 57, the steps of the interpolation validation are shown for the SO2, NO2 

and Benzene in the first, second and third column, respectively. The first row shows the ground 

truth continuous map as downloaded from DEFRA. These values are averaged per NUTS3 

region into the lattice ground truth map as shown in the second row. Using randomly sampled 

locations on the maps of the first rows we create an interpolated surface for each pollutant that 

is averaged per NUTS 3 region. In rows 3, 4 and 5 the interpolation-based lattice map is shown 

for each method-pollutant combination. Although the maps appear to be similar under visual 

inspection, the EBK method in the last row presented the best performance overall. 
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Figure 57. The ground truth maps (first and second rows) followed by the interpolated maps. 



 

Page | 120  

 

 

 

2.4.3. Simulation-based calculation of population exposure 
 

In the previous paragraphs and methods section, I outlined the steps required to prepare and 

analyse our spatial data. In a synopsis, the PIBD incidence, which is the outcome of interest, is 

collected in a lattice format and thereafter is combined with a limited number of Eurostat 

predictors that are also available for the same spatial support. In contrast, most of the predictor 

variables, predominantly the environmental exposures, are collected in a point data format. As 

shown in the previous paragraphs, these data points are interpolated and converted to 

continuous surfaces. The values of each interpolated surface that fall in each lattice area 

(NUTS3) are averaged as a metric of the exposure to each pollutant for the population in this 

area. Due to the use of the interpolation methods, these average values reflect the rate of 

exposure to the environmental factors that not only fall within that area but also from the 

adjacent locations.  

 

A key question is whether our approach is sensitive enough to detect the effects that the risk 

factors may have on the disease incidence. Under the alternative hypothesis, which is that the 

environmental factors (collected as data points) influence the incidence (collected from regions 

on the lattice map), the aim of this simulation is to determine whether we can capture this 

relationship accurately using interpolation methods combined with linear mixed effects models 

and spatial regression. Furthermore, the effects of the exposure mechanisms, sample and effect 

size requirements will be also investigated in the following paragraphs.  

 

To evaluate our proposed methodology, we simulated the incidence of disease within each 

NUTS3 polygon area based on point data information from nearby risk factors and 

hypothesised a coefficient for their effects on incidence. These simulations allowed us to model 

scenarios where certain risk factors, such as pollutants, impact disease incidence in adjacent 

areas to a specified degree, represented by the coefficient used in the simulations. Thereafter, 

we attempted to predict this coefficient using a linear regression model based on the 

interpolated risk factors instead of using the original format of point data. This mimics the 

process used in our real-world data analysis. In a simplistic example, if carbon dioxide is 

correlated with the incidence of the studied disease, the population in each NUTS3 area that is 

close to a source of CO2 pollution is expected to present higher incidence. In the following 

paragraphs we simulate this incidence-pollution relationship, creating a simulated outcome that 
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we then analyse using linear regression and the NUTS areas with the goal to identify the 

hypothesised effect accurately. 

 

Our simulations were based on certain assumptions that are summarised as follows: 

 

• In this work, an important assumption is that the effect of a risk factor on the population 

cluster at a specific location can be described as the product of a mathematical function 

of the distance and quantity of that factor at the known, adjacent sampled locations. 

These functions may vary (i.e., exponential, linear, having a cut-off), depending on the 

type of factor analysed and its specific patterns of spatial distribution. Our function is 

described as the exposure zi for the population cluster i in the following paragraphs. 

• The area surrounding an environmental factor is affected homogeneously. We assume 

that any two points on the map that are equally distant from an environmental factor 

source will have the exact same exposure to that factor. Hence, when converting the 

data points to a continuous surface, any physical barriers, wind direction and other 

factors that may influence the concentration of the pollutant will not be considered. 

However, this is not a major limitation for our analysis since several risk factors have 

detailed datasets available with thousands of sampling locations. 

• The duration of the exposure was assumed to be the same for all risk factors and 

individuals in the population. Therefore, the location and quantity of the risk factors are 

the main variables that can influence the incidence in our simulations. As an example, 

in this study, for each pollutant, a six-month exposure to a quantity of 1 is equal to the 

annual exposure to a quantity of 0.5. 

• The population is spatially distributed based on the population density map. 

Specifically, we used the UK population density map including just under 65-million-

point locations with the proximity between the points to be based on the population 

density as reported in the 2011 census. The simulation was made feasible after sampling 

1 in 10,000 point-locations. Considering that the population is a highly clustered 

variable, we can consider the sampled locations as population clusters of 10,000 

individuals.  

 

The simulations were run for the United Kingdom using the NUTS3 classification map (173 

or fewer territories depending on the simulation) and the DEFRA CO2 point data. The disease 
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incidence was simulated for each population cluster in all NUTS3 areas as a linear function of 

the exposure to the pollutant with a coefficient representing the strength of the CO2 effect. The 

probability of retrieving this coefficient in our analysis is the metric used to assess our model’s 

performance in the simulations. The simulated incidence of the disease at the location of cluster 

i depends on its exposures to the pollutant and is simulated as follows: 

 

Incidence𝑖 = b0 +  𝑏1 · 𝑧𝑖 + 𝜀𝑖 

 

Where: 

• b0 is the disease incidence without any environmental exposures 

• 𝑏1 the effect size of the pollutant 1 effect 

• 𝑧𝑖 the exposure of cluster i 

• and 𝜀𝑖 the random error for the cluster i 

 

This can also be expanded for multiple pollutants (z, y and x): 

Incidencei = b0 + 𝑏1 · 𝑧𝑖 + 𝑏2 · 𝑦𝑖 + 𝑏3 · 𝑥𝑖 +  𝜀𝑖 

The exposure for the population cluster i is calculated as follows:  

 

zi = (
𝑞𝑗

(𝑑𝑖𝑗)
2) +  (

𝑞𝑗+1

(𝑑𝑖𝑗+1)
2) + ⋯ + (

𝑞𝑚

(𝑑𝑖𝑚𝑗)
2)  

 

Where: 

• Zi is the pollution exposure estimate for the population cluster in location i and  

• dij is the distance between population cluster i and pollution sources j ∈ {1,2 ..m}. 

(Figure 58).  

 

In Figure 58 below, each yellow line shows the distance between the population clusters and 

sources of pollution. Please note that for the estimation of the exposure, the distance is squared, 

as the exposure is expected to decrease exponentially. Inversely, for clusters closer to the 

pollution sources the exposure increases exponentially. This is also reported widely in the 

literature (Bian et al., 2020; Crumeyrolle et al., 2019; Iwata et al., 2019; Lv et al., 2021; Zhang 

et al., 2019) where most studies describe that the exposure increases exponentially in areas 

closer to the source of the pollution.  
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Figure 58. The simulated interactions between the sources of pollution and population 

clusters.  

The CO2 sources of pollution are marked in red, and the population clusters are marked in 

black. The yellow lines show the distances dij that are used to calculate the simulated exposure 

Zi as described by the previous formula. 

 

Based on the total quantity of exposures in each population cluster, the simulated incidence is 

now calculated as described in the previous paragraph. In the next steps, as shown in Figure 

59, we replicate the analysis used for the real-world data. The sources of pollution were 

interpolated creating a continuous surface that we subsequently averaged over each NUTS3 

area. The incidence was also averaged for all population clusters within each NUTS3 area (in 

our real-world data we collected the average incidence directly). Repeating this process for all 

regions provide us with the average estimates of the interpolated pollution and incidence for 

the NUTS3 regions. This is the dataset that we went on to use in the data analysis. 
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Figure 59. Pollutant interpolation in the wider region and a selected NUTS3 area.  

The simulated incidence and interpolated exposure are averaged for each NUTS3 area which 

provides the dataset that we will use in our simulation analysis. Please note that in the steps 

described in the previous paragraphs, we have attempted to generate the simulated incidence 

in a manner that represents the observed incidence in our real-world study. 

 

After preparing the simulated dataset, the following parameters were investigated in terms of 

their effects on the analysis validity and statistical power: 

• Map and polygon size and shape 

• Effect size 

• Standard deviation of incidence 

• Density of pollution data points 

• The relationship between exposure and distance (such as linear or exponential) 

• Sample size 

 

The effect size is a very important parameter in the design of any clinical study as it directly 

affects the statistical power since large effects are easier to detect. Similarly, the standard 

deviation (SD) is equally important considering that lower SD values allow the detection of 

smaller effects. In this study, I will assess the effect size in conjunction with the SD using the 

standardised effect size which is a measure of the strength of the relationship between the 

pollution and incidence. This metric produces a quantity that can be used to compare the 

strength of different effects on a common scale and to interpret the practical significance of 

this effect in a meaningful way. A large effect size may not be detected if the SD is also very 
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large while a smaller effect size might be detected if the SD is also very low. Therefore, this 

metric is important as we can only understand the true power of the study when considering 

the effects in conjunction with the variance and standard deviation. In the following Figures 

61 & 62, we see the simulation results using three different UK maps (random missing areas 

introduced), and variable effect size-SD ratio (standardised effect size). The results show that 

for a standardised effect size of 5 or higher, the power of the study is nearly 100%. Very 

importantly, the power exceeds 80% for standardised effect sizes above 1.8. For a map with 

approximately 150 regions, this result means that the study is likely to detect a significant 

pollutant when 1 unit increase in exposure increases the incidence by approximately 12.6 

patients per 100,000 individuals.  

 

In the Figure 60, I provide an example of two population clusters that are exposed to different 

levels of pollution. Using the exposure formula, the estimates for cluster 1 and 2 respectively, 

are 0.035889 and 0.002088 meaning that the exposure difference is 0.0328. Considering that 

we can detect an incidence increase of 12.6 patients for 1 unit of exposure increase, in this 

example we can detect the increase of 0.031936*12.6= 0.41 patients per 100,000 individuals. 

Therefore, in this example, we can detect if the population of the cluster 1 has an incidence 

increase of 0.4 compared to the cluster 2 due to its the proximity to the sources of pollution. 

Finally, to put the CO2 ppm difference used in this example, in perspective, 10 ppm is a small 

fluctuation occurring throughout the day depending on the studied area (García et al., 2008). It 

is important note that although the example provided shows 2 population clusters, our 

following simulations are based on the entire UK. 
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Figure 60. Example of two population clusters being exposed to 3 sources of CO2 pollution 

that increase the CO2 locally by 1, 5 and 20 ppm.  

Intuitively, we can understand that the CO2 levels are expected to be higher in the cluster 1 

area. However, quantifying the exposure and analysing the effect is a complex task. Our 

simulations show that for this example, if the CO2 has an effect on the incidence, we could 

detect a difference greater than 0.4 new patients per 100,000 person-years 

 

 
Figure 61. The probability of study success per simulation. 

The estimated statistical power of the study (y-axis) for different combinations of map regions 

in the UK for the range standardised effect size (x-axis). It should be noted that the observed 

variation in the simulation results has two sources, the random error introduced in the 

incidence calculations and the random selection of NUTS3 regions in the UK map (min:150 

and max: 173). 
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Figure 62. The grouped simulated probability of study success 

The estimated statistical power of the study (y axis) for different combinations of map regions 

in the UK for groups of standardised effect size (x axis). This graph is the same as figure 61 

but with the results grouped for easier interpretation.  

 

Another important factor of the simulation was the investigation of the sample size. Although 

it is clear that a larger sample size would increase the power of the study, in the following 

analysis, we investigated the difference in the study power after increasing the sample size by 

2 and 3-fold with the latter to reflect the expected sample size of our study. As shown in Figure 

63, doubling the sample size from 150-173 regions to 300-346 regions improves the power 

significantly while a 3-fold increase improves the power even further but only marginally. To 

achieve a power of 80% or greater, the study requires a standardised effect size lower than 1.8, 

1.55 and 1.42 for the three tested sample sizes of 150, 300 and 450 regions. Returning to the 

previous example shown in Figure 60, the decrease of the standardised effect size from 1.8 to 

1.42 would reduce the minimum incidence difference that can be detected from 0.41 to 0.32. 

 



 

Page | 128  

 

 

 

 

Figure 63. The simulated probability of study success for three sample sizes.  

The estimated statistical power of the study (y-axis) for different combinations of map regions 

in the UK for groups of standardised effect size (x-axis) and three different sample sizes. The 

sample size reflects the size of the map in the analysis. 

 

The final factors investigated in the simulation were the shape and size of NUTS3 areas, the 

density of pollution data points and the relationship between exposure and distance (such as 

linear and exponential). The density and availability of point locations with pollution 

information were found to be less significant compared to the other factors investigated. Quite 

possibly this is explained by the use of the interpolation methods. The shape and size of the 

NUTS3 areas also had a marginal effect introducing a variation of less than 3% in the power 

of the study. However, the relationship between the size of exposure and distance from the 

pollutant was found to be a particularly important factor as any pollutants which are distributed 

in space in a linear manner reduced the power significantly. In contrast, when the quantity of 

the pollutant was modelled for the population location using a double inverse square root 

adjustment of the distance, the power of the study exceeded 80% for a standardised effect size 

of 0.7 for 150-173 regions and 0.4 for the larger tested sample sizes. When the adjustment was 

based on a logarithm transformation of the distance the increase in the power was even greater. 
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This important finding shows that risk factors that are measured at exponentially higher levels 

in their immediate surroundings are more likely to be detected in our study. 

 

 

Figure 64. The simulated probability of study success for a linear different pollution–

exposure mechanism. 

The estimated statistical power of the study (y-axis) for different combinations of map regions 

in the UK for groups of standardised effect size (x-axis). Overall, the results showed a 

significant increase of power when the quantity of the pollutant was modelled for the 

population cluster location using the inverse of a double square root adjustment of the distance 

used in the exposure calculation of the simulated incidence. 

 

2.4.4. Discussion of methods validation 
 

This chapter investigates the expected performance of our methods while testing different 

strategies and parameters to optimise our study-specific analytical approach. The subsequent 

spatial analysis used contiguity spatial weights and the interpolation of the point data was based 

on the IDW and Kriging methods depending in the variogram and autocorrelation in each 

predictor dataset. Furthermore, the simulation study evaluated the performance of the methods 

overall and specifically for detecting the effects of risk factors on the disease incidence. Several 

factors were considered, including map and polygon size and shape, effect size, standard 
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deviation, density of pollution data points, the relationship between exposure and distance, and 

sample size. 

 

The simulations showed that the relationship between exposure and distance is a critical 

parameter in detecting the effects of risk factors. Risk factors that affect areas closer to them 

exponentially increase statistical power dramatically. This mechanism is consistent with the 

existing literature on the spatial distribution of pollutants which reinforces the methodology of 

the study. The simulations also suggest that the density of the pollution point locations and the 

shape/size of the map areas had a rather small effect on the performance. This indicates that 

these factors can be standardised since they do not have a significant effect on the study's 

results. In contrast, the sample size was found to be an important factor, as more observations 

can improve the confidence in the predictions. Lastly, the simulations suggest that the effect 

size adjusted by the standard deviation is a major factor in identifying risk factors. The less 

noisy the data are and/or the stronger the effects, the easier it is to identify risk factors. This 

indicates that the study's power and validity will increase after removing erroneous reports and 

outliers that have been confirmed as inaccurate. 

 

Overall, the simulations suggest that the methods used in this study can detect risk factors with 

a standardised effect size of 0.4 or greater which as shown is considered to be a small 

difference. This is a promising finding, particularly because the study's final models explain 

part of the variance based on spatial models and therefore, the expected power of the study may 

be even higher. 

 

2.5. Software and computational methods 
 

The software used in this project includes QGIS, ARCMap, GEoda, Minitab and R. 

  

QGIS (Quantum GIS) an open-source Geographic Information System (GIS) software that we 

use to visualise spatial data, process maps and update the geodetic information when possible. 

QGIS is built on top of the Python programming language, and it provides a Python API 

(Application Programming Interface) that allows you to extend the functionality of the software 

using Python scripts and plugins (“QGIS.org, %Y. QGIS Geographic Information System. 

QGIS Association. http://www.qgis.org,” n.d.).  
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ArcMap is a GIS software developed by Esri, a leading provider of GIS software and solutions. 

ArcMap offers a Python scripting interface that can be accessed through the built-in Python 

window in GUI environment. The ArcPy module in Python is used to interact with ArcGIS 

tools, which allows users to automate various tasks and workflows in ArcMap. ArcMap was 

used for most of the plotted map in this thesis and for the initial testing of different interpolation 

methods (“ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems 

Research Institute,” n.d.).  

 

GeoDa is a free and open-source software designed for exploratory spatial data analysis and 

mapping developed by the Centre for Spatial Data Science at the University of Chicago. In this 

project we used GeoDa to investigate the presence of clusters, and investigate auto-correlation. 

Several maps in this thesis were also generated in GeoDa (Anselin et al., 2006). 

 

Minitab was first developed by researchers at the Pennsylvania State University and is a 

statistical software package that is commonly used for data analysis and statistical quality 

control. In this project Minitab was used exclusively for visualisations (Abegunde et al., 2016; 

Gilat et al., 1987; Hansen et al., 2011; “Minitab, LLC, 2021. Minitab, Available at: 

https://www.minitab.com.,” n.d.). 

 

Lastly, the main volume of work and computations in this project was performed in R. Several 

libraries were used for data management, mapping, interpolation of multiple spatial datasets, 

update of geodetic information, extraction of spatial information from raster files to point data, 

averaging of raster information over areal maps and more. The R packages used were: readr, 

sf, ggplot2, sp, ggspatial, raster, sgo, rgdal, rgeos, dismo, gstat, terra and spatstat (“R Core 

Team (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). 

  



 

Page | 132  

 

 

 

3. RESULTS – Safety registry reporting metrics 
 

3.1. Reporting summaries and metrics from the Safety Registry 
 

In the following paragraphs, I present the Safety Registry summaries of collated reports and 

collected data for the 2018 – 2022 period. These summaries include participation, coverage, 

and data retention descriptive statistics. 

 

3.1.1. Participating individuals and units 
 

Since the launch of the Safety Registry in October 2016, 230 different email addresses have 

been added to our database. This number may seem high, considering that the maximum 

number of concurrently active participants in our project was 140 PIBD experts. However, this 

can be explained by the fact that in recent years, several of these reporting physicians have 

changed practices and, therefore, email addresses multiple times. In other cases, they have been 

retired or moved elsewhere and, frequently, were replaced by a new PIBD expert. In addition, 

there are cases where multiple experts have been reporting for the same units. This, combined 

with the changes in the clinician location and participation, created the need for a smaller, 

internal database where every email and participant name submitting data to our system is 

linked to a clinical unit (such as a hospital, clinic, or practice). At the time of the analysis in 

late 2022, 148 unique units were identified from 33 countries since the beginning of the Safety 

Registry. The number of active units per country is summarised in the Table 10 below. 

 

Table 10 The number of units with confirmed details reporting to the Safety Registry by 

country. 

The count of participants and population numbers reflect all years of operation of the Safety 

Registry. Please note that the denominator information is not available for all countries. 

 

Country 

Count of 

participan

ts 

Population 

(all years) 
  Country 

Count of 

participants 

Population 

(all years) 

Netherlands 31 3,330,571   Ireland 2 1,246,426 

UK 18 10,219,257   Malaysia 2 N/A 

Germany 13 3,456,810   Portugal 2 579480 

Israel 13 N/A   Albania 1 N/A 



 

Page | 133  

 

 

 

Italy  11 8,107,268   Austria 1 241,872 

Switzerland 7 1,017,216   
Czech 

Republic 
1 661,885 

Canada 6 NA   Japan 1 N/A 

France 5 916,581   Korea 1 N/A 

Belgium 4 1,623,316   Lithuania 1 157,647 

Spain 4 1,784,844   Luxembourg 1 1 

Australia 3 NA   Poland 1 484,634 

Slovenia 3 353,173   Romania 1 1,618,982 

Sweden 3 655,994   Serbia 1 242,483 

USA 3 N/A   UAE 1 N/A 

Croatia 2 398,260   

Finland 2 581,259   

Greece 2 1,414,321  
  

 

Only data from participants who provided sufficient information were included in the analysis. 

As discussed in the methods, several forms were excluded according to the exclusion criteria 

Three levels of checks and exclusions were employed, the first level involved missing essential 

information (i.e., number of patients), the second level involved the unavailability of data 

required for calculating the incidence of PIBD in European countries, and the third level dealt 

with reports that covered the same unit. The total number of reports included in this project's 

analysis of the PIBD incidence and prevalence was 266, which was 62% of all the reports with 

denominator data submitted to the database. These reports cover a paediatric population that 

exceeds 30 million individuals. The number of reports at each review level, and the annual 

population coverage are summarised in Tables 11 & 12 respectively. 

 

Table 11 The number of forms received and kept after each review round.  

Each eCRF has been submitted by a single participant who completed the denominator data 

form online. At each review stage a percentage of the submitted forms was rejected. Most forms 

were rejected at the first review level. 
 

Year Rate of kept 

eCRFs 

Total 

Submitted (n) 

Review 1 Review 2 Review 3 

2018 63% 65 51 51 41 

2019 63% 71 48 48 45 

2020 59% 118 78 78 70 

2021 62% 79 55 51 49 

2022 62% 98 63 63 61 

Total 62% 431 295 291 266 

Lesions excluded at each level of review: 32% 1% 9% 
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Table 12 The reported annual paediatric population covered at each annual data collection 

round.  

The covered population fluctuates depending on the participation metrics as captured in the 

denominator data form. 
 

Year 2018 2019 2020 2021 2022 

Paediatric population 

covered 19,552,288 16,850,641 30,478,376 19,426,346 26,955,434 

 

The total population covered by the safety registry is summarised in Table 12. The minimum 

and maximum number of person-years per centre was 193,000 and 10,000,000 respectively 

while the median, lower (25%), and upper (75%) quartiles were 970,000, 500,000 and 

1,780,000 respectively. The geographical reporting coverage of the Safety Registry in Europe 

for the 2018-2022 period included 26 European countries is shown in Figure 32 below. 

 

 
Figure 32. The map of Europe shows the coverage of the Safety Registry as reported from 

2018 to 2022.  

Note that the map shows the areas covered for at least one year during the reporting period. 
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As discussed in the methods, a fraction of the submitted forms encountered the problem of 

overlapping coverage. This was related to cases where multiple centres claimed coverage of 

the same NUTS3 region (See section 2.2.2). In such instances, the population of that region 

was divided according to our predefined methods. In 2018 and 2021, the rate of overlapping 

regions did not exceed 5%, whereas, in 2019 and 2020, the overlap rate was under 10%. 

However, the latest data collection round in 2022 showed a higher overlap rate that reached 

almost 14.5% between different centres. The average rate of regions with unique coverage with 

no overlap in our study was calculated to be 91.76%, as shown in the below in Table 13. 

 

Table 13 The number and rate of the NUTS3 regions claimed by one or more centres per 

data collection year.  

In 2018, 95.5% of the covered regions were claimed by a single centre, as two different units 

claimed only ten regions. However, in 2022, 38 regions were claimed by at least two or more 

different reporting units. 

 

Number of 

centres claiming 

coverage of each 

region 2018 2019 2020 2021 2022 

Total/ 

Average 

1 

213 

(95.5%) 

159 

(94.1%) 

295 

(90.8%) 

209 

(95.0%) 

227 

(85.7%) 

1103 

(91.76%) 

2 

10 

(4.5%) 

10 

(5.9%) 

26 

(8.0%) 

11 

(5.0%) 

23 

(8.7%) 

80 

(6.66%) 

3 

0  

(0.0%) 

0  

(0.0%) 

4  

(1.2%) 

0  

(0.0%) 

14 

(5.3%) 

18 

(1.50%) 

4 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

1  

(0.4%) 

1  

(0.00%) 

5 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

0  

(0.00%) 
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4. RESULTS – Safety registry Reported Incidence  
 

4.1. International rates of PIBD incidence 
 

The final dataset was used to calculate the disease incidence in the participating European 

countries. The following tables and plots present the incidence results by country (Figures 33 

& 34 and Table 14). These summaries also include the pooled reported incidence using fixed 

and random effects approaches as discussed in the methods. Given the high degree of 

heterogeneity and our knowledge that the true variation in the incidence between countries is 

beyond what would be expected due to chance alone, the random effects model is favoured as 

a metric of the average incidence observed in the study sample. The pooled incidence based on 

the random and fixed effects models was reported as 8.53 95% (95% CI, 6.35 - 11) and 6.46 

95% (95% CI, 6.32 – 6.61) new cases per 100,000 paediatric person-years, respectively. 

However, the simple average of the reported incidence from all European sites was 7.25 new 

cases per 100,000 paediatric person-years.  

 

Table 14 The PIBD incidence estimates with their respective confidence intervals and sample 

size as reported by each country for 2018 – 2022.  

The number of reports that were included in the calculations in total and per year is also 

reported. 

 
Country Lower 

C.I. 

95% 

Estim

ate 

Upper 

C.I. 

95% 

Sa

mpl

e 

size 

2018 2019 2020 2021 2022 Million 

PAED-

Years 

Romania  1.51 1.89 2.34 4 0 1 1 1 1 4.50 

Italy 1.97 2.15 2.34 24 3 4 7 3 7 24.87 

Greece 2.19 2.66 3.21 4 1 0 1 1 1 4.17 

France 2.58 3.16 3.84 7 2 2 2 0 1 3.22 

Czechia  2.83 3.52 4.34 5 1 1 1 1 1 2.50 

Lithuania  2.58 4.23 6.53 3 0 0 1 1 1 0.47 

Switzerland 3.89 4.55 5.3 19 2 4 5 4 4 3.69 

Portugal 3.92 5.69 8 1 1 0 0 0 0 0.58 

Spain  5.21 5.81 6.44 11 0 3 2 3 3 6.06 

Belgium 6.19 7.01 7.92 13 3 1 3 2 4 3.72 

Croatia  5.58 7.07 8.84 4 0 1 1 1 1 1.09 

Germany 6.85 7.43 8.05 20 1 4 4 4 7 8.06 

Hungary  7.48 9.13 11 2 0 0 0 1 1 1.16 
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Netherlands 8.8 9.33 9.87 64 12 12 17 11 12 12.77 

Slovenia 7.71 9.50 11.6 6 2 1 1 1 1 1.02 

Sweden  8.34 9.57 10.9 6 0 2 1 1 2 2.27 

United 

Kingdom  

10.2 10.60 11 53 11 5 17 10 10 

26.19 

Serbia  8.9 11.50 14.6 4 0 1 1 1 1 0.58 

Ireland  13.9 15.10 16.2 4 0 1 1 1 1 4.43 

Finland 15.9 18.50 21.4 5 1 1 2 1 0 0.99 

Austria  23.7 28.30 33.6 4 0 1 1 1 1 0.47 

Poland 41.4 46.00 50.9 3 1 0 1 0 1 0.80 

 

The confidence in the reported incidence was analogous to the sample size which was the 

product of the participants, sample size and the number of reporting years per country. Figure 

33 below shows how the confidence is reflected on the size of the confidence intervals per 

country. 

 

 
Figure 33. Forest plot of the PIBD incidence estimates with their respective confidence 

intervals as reported by each country for 2018 – 2022.  
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Each box's size is analogous to each country's sample size. 

 

As shown in the funnel plot in Figure 34 there is no significant reporting bias in the reported 

incidence rates by country considering that the deviations are not asymmetrical. However, the 

number and extent of the deviations suggest there is substantial heterogeneity in the reported 

incidence rates between countries. The fact that more than half of the countries reported 

incidence rates that deviate considerably from the mean value, as shown in the funnel plot, is 

expected considering the incidence rates among different regions were also explained to vary. 

However, the extent of the variation is an important indication for the quality of the data 

reported per country. 

 

 
Figure 34. Funnel plot of the PIBD incidence results reported by country with 95% and 99% 

margins.  

It should be noted that the sample is per 1000 paediatric person-years. Austria and Poland 

appear to be significant outliers, a finding confirmed by additional tests for outliers. 
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4.1.1. Spatial analysis of the phenotype ratio of PIBD 
 

The effects of latitude and longitude were investigated with a Spearman correlation test 

between the reported incidence and the decimal degrees per country’s centroid. Although the 

longitude analysis did not return any significant results, the incidence differences that depend 

on the latitude were significant and can be summarised in 3 latitude groups, as shown in Figure 

35. The countries in central Europe (between 41° and 51° North) have reported an almost 2-

fold increase in the incidence compared to the countries in the South (<41° North), while 

countries in the North (>51° North) reported an almost 4-fold increase compared to the 

countries in the South.  

 

 
Figure 35. The PIBD incidence is grouped by the latitude of the reporting countries. 

 

To better understand the reported data and investigate the presence of potential outliers, we 

replotted the funnel plot after adjusting for the expected differences based on the latitude of 

each country (Figure 36). Assuming that the latitude can explain a part of the observed 

variance, we can eliminate these differences and study the remaining, unexplained variance by 

an appropriate adjustment for latitude. The adjustment adds the average Central-South 

difference to the countries of the South and subtracts the average North-Central difference from 

the countries in the North. The following Figure 36 shows the improvement of the results' 

homogeneity after the adjustment. Austria and Poland remain the main outliers of the sample, 

although the adjustment improved the deviation of the latter. The homogeneity of the results 

overall was improved substantially, however, Germany is now outside the 99% bounds, 
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possibly because it spans geographically from the Central to the Northern latitude groups and 

it was included in the latter. 

 

 
Figure 36. The funnel plot of the IBD incidence by country adjusted for the effect of latitude. 

The funnel plot shows that if we account for the latitude bases difference the results tend to 

be homogeneous, yet with notable variation. 

 

4.1.2. Temporal analysis of Incidence 
 

Further analysis of the results by country and year suggests that the year of collection may also 

explain some of the observed variances in our data. After removing Portugal from the analysis 

dataset, as it was the only country with no multiple reporting over different years, we performed 

a mixed effects linear regression model with the year set as the fixed effect of the model and 

the reporting country as the random effect. The latter was set as a random effect to account for 

the correlation between the observations gathered in multiple years from the same countries. 

The used model is written as follows: 
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𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗 =  𝛽0 +  𝛽0𝑖 +  𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖𝑗 +  𝑒𝑖𝑗 

Where:  

• 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗 is the observed incidence for the ith country at the jth collection time 

• 𝛽0 is the fixed intercept  

• 𝛽0𝑖 is the random intercept for the ith country 

• 𝛽1 is the fixed effect coefficient for the time, representing the fixed effect of time on 

the incidence 

• 𝑒𝑖𝑗 is the residual error, which represents the variability in incidence that is not 

accounted for by the time or the random effects 

 

The results suggested that the year of reporting had a significant effect on the reported PIBD 

incidence with a coefficient of 1.12 (95% C.I., 0.14, 2.11) and p-value of 0.025. It is worth 

noticing that the results were not affected when the random effect of the country was replaced 

with a random effect for the reporting unit. Finally, when introducing the covariate of the year 

as a factor, individual and specific to each year estimates were produced as shown in Figure 

37 and the incidence seems to increase gradually from 2018 to 2020, followed by a steep 

increase in 2021 and 2022. 

 

 
Figure 37. The effects of the year on the reported incidence.  

The effects of the year on the reported incidence per 100,000 paediatric person-years, based 

on the mixed effects linear model with the year is introduced as a factor. 
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The incidence results are presented in Figure 39 for 90 country-year combinations. Poland and 

Austria have been reporting exceptionally high PIBD incidence over multiple data collection 

years compared to the other countries. Furthermore, we can observe that the consistency of the 

reports varies between different countries. Comparing the average incidence reported per 

country in different years is an additional indication of data quality as described in the methods 

(2.1). In Figure 38 below, the variance in the responses is shown for each country. Very 

importantly, both suspected outliers, Poland and Austria, present a significantly higher variance 

than the other countries.  

 

 
Figure 38. The variance of the annual mean of the reported incidence per county. 

 

The high variance observed for Austria and Poland can be explained by the observed 

inconsistency in their reported numbers, as shown in the following Figures 39 & 40. Figure 

39 shows how the reports of these two countries vary compared to other countries while Figure 

40 shows the within variation per country. Very importantly, Figure 40 also shows the 

incidence increase for most countries over different reporting years. 
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Figure 39. The longitudinal summary of the reporting by country.  

The incidence results were ordered by the collection round and the incidence values. 
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Figure 40. The reported incidence by country was ordered per data collection year.  

In this forest plot, we can observe the increase in the incidence in several countries and the 

degree of consistency in their reporting. 
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4.1.3. Incidence of the clinical phenotype of IBD (Crohn's or 
UC/IBDU) 

 

Expanding on the incidence analysis, it is important to consider the ratio of Crohn's disease to 

Ulcerative Colitis and IBD-U. This figure is vital because some risk factors affecting each 

subtype may be different and subtype-specific, which is a crucial element for the analysis in 

the following chapters. Additionally, the consistency of the reported ratio between different 

sites and within each site and country at different years is an important data quality indicator 

(erroneous report should be highly inconsistent). As shown in Figure 41, the reported rate of 

CD to all PIBD cases spans from 41% to 71% across different countries. However, in contrast 

to the disease incidence data, no outliers were present in this summary.  

  

 
Figure 41. The ratio of the paediatric Crohn’s disease incidence to the total PIBD incidence. 

 

The phenotype ratio differences also show a trend based on the latitude shown in Figure 42. 

Specifically, the countries in central Europe have reported an 8% increase in the CD/PIBD 
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ratio compared to those in the South. Countries in North Europe reported a 10% increase 

compared to those in the South. A chi-square test of the CD against the UC/IBDU cases for the 

three different latitude groups returned p = 0.19, while the Cochran - Armitage trend test 

returned p = 0.082. Therefore, the latitude trend for the phenotype ratio favouring CD in the 

North countries was present but was not found to be significant. In contrast, both the chi-square 

and the Cochran - Armitage trend tests of the CD against the UC/IBDU cases for the three 

different longitude groups returned p < 0.001. Therefore, the longitude trend for the phenotype 

ratio was found to be significant (Figure 43). The longitude group definitions are <3.5°East, 

3.5°East to 15°East and <15°East. Even when the “traditional” definition of Eastern Europe 

(15°East) was used, the results remained significant. 

 

 
Figure 42. The ratio of Crohn's to PIBD incidence was grouped by the latitude of the 

reporting countries. 

A latitude trend for the phenotype ratio of PIBD was present but the effect size was not found 

to be significant. 
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Figure 43. The ratio of Crohn's to PIBD incidence was grouped by the longitude of the 

reporting countries.  

A significant longitude trend for the phenotype ratio of PIBD was present. This was a linear 

trend (3.5°East, 9.25°East and 15°East groups). 

 

The CD to PIBD ratio results is presented in Figure 44 for 90 country-year combinations. Most 

countries did not present a temporal trend for the disease phenotype ratio, although a few 

countries showed a decreasing pattern, with the UK presenting the strongest trend. 
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Figure 44. The ratio of Crohn’s to PIBD incidence is grouped by country and ordered by the 

time of reporting. 

Although in certain countries such as the UK, the CD to UC/IBDU ratio seems to decrease, 

overall, there are no evident temporal trends on most of the variation that appears to be 

random. 
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4.1.4. Discussion of PIBD incidence results 
 

In this chapter, we have presented the results of our study on the incidence of paediatric 

inflammatory bowel disease (PIBD) based on five years of prospective data collection. Our 

findings indicate a strong latitude trend, which aligns with the previous literature, and therefore 

supports the validity of our results. Furthermore, our analysis reveals a consistent and 

significant increase in the pooled incidence of PIBD across Europe during the study period 

from 2018 to 2022. As shown in Figure 40, our data show a significant and steady rise in 

incidence rates in several countries such as the U.K., the Netherlands, Ireland, Romania, and 

Slovenia. In addition, an incidence increase was also present in Switzerland, Sweden, Spain, 

Poland, Italy, Austria, and Croatia although the results from these countries were less 

consistent. Only 4 out of the 21 countries reported a decreasing incidence, which was not 

statistically significant due to the small effect and sample size. Interestingly, the observed 

incidence increases linearly from 2018 to 2020, followed by a steeper increase in the 2020 to 

2022 reporting period. Considering that the few outliers are not adequate to explain this 

increase, this raises the question of whether the COVID-19 pandemic may have influenced the 

referral pathways in a way that could inflate the reported incidence.  Although there are several 

studies reporting the effects of IBD on the COVID-19 incidence we were not able to find any 

studies reviewing the incidence of Crohn's disease and ulcerative colitis before and after the 

beginning of the COVID-19 pandemic (Allocca et al., 2020; Ungaro et al., 2021). The exact 

reasons for this increase are not yet clear and further research is needed to understand the 

underlying causes. However, there are some possible explanations for this increase. It is 

possible that COVID-19 introduced a delay in the diagnosis and treatment of the disease. 

During the pandemic, many people may have delayed seeking medical care due to concerns 

about exposure to COVID-19 or due to changes in healthcare delivery. This delay could have 

led to a worsening of symptoms and a delay in diagnosis, resulting in a higher incidence of 

IBD. However, in our data, we have observed a stable increase for both 2021 and 2022 which 

questions this theory. Another explanation may be related to changes in lifestyle. Lockdowns 

and restrictions implemented to slow down the spread of COVID-19 have led to changes in 

lifestyle, including decreased physical activity, changes in diet, reduced sun exposure and 

increased stress as well as other factors that have been linked to an increased risk of IBD. It is 

important to repeat that, as reported in the literature, sun exposure is a protective factor in 

PIBD. In this study, we are also reporting the latter as one of our secondary findings. 
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Furthermore, changes in gut microbiota related to the COVID-19 infection and medications 

used to prevent or treat it may also be related to this temporal trend. Disruption in the gut 

microbiota which has been linked to the development of IBD and, therefore could potentially 

increase the risk of developing IBD or worsen existing symptoms. Lastly, the possibility of 

immune dysregulation should also be considered. The COVID-19 infection and the immune 

response it triggers can lead to dysregulation of the immune system, which is also thought to 

play a role in the development of IBD. 

 

We also analysed the disease phenotype ratio, which can be used as an additional validation 

metric of the reporting quality and may reveal areas that are exposed to certain factors affecting 

one of the two phenotypes more than the other. The results varied between countries, and a 

clear longitude effect was identified, suggesting that Eastern Europe has higher levels of UC 

which we have also established from the literature. In addition, a latitude effect was also 

detected, but it was not significant. This can mean that the observed trend was either random 

or that the latitude effect on phenotype has a smaller effect size and requires a large sample 

size to be detected. The following data collection rounds will provide more clarity on this. 

 

Another finding from our analysis is that the consistency and variability in the reported 

incidence per country strengthen our suspicion that Austria and Poland are outliers due to 

inaccurate reporting. These two countries failed most outlier tests and Poland specifically 

reported a 10-fold higher incidence compared to the average and three-fold compared to its 

own average in the most recently submitted eCRF. However, considering that the phenotype 

ratio for these two countries was within the expected range, we can assume that the submitted 

patient numbers are accurate and that the reporting issues are related to erroneous reporting of 

their catchment areas. 

 

In summary, our study confirms the latitude trend in the PIBD incidence, and a significant 

longitude effect on the phenotype of the disease. Regarding the temporal effects, we have 

identified an apparent increase in the incidence of PIBD in Europe, with some countries 

reporting more consistent and significant increase than others. These results highlight the need 

for further research to understand this trend's underlying factors. 
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5. RESULTS – Safety registry Reported Incidence 
 

5.1. International rates of PIBD prevalence 
 

The prevalence results are presented by country in the following Table 15 and forest plots 

(Figures 45 & 46) These summaries also include the reported prevalence using fixed and 

random effects approaches, as presented in the incidence paragraphs. Similarly to the incidence 

analysis, given the high degree of heterogeneity, the random effects model is favoured as the 

most accurate estimate of the pooled prevalence that was reported in this study. The pooled 

prevalence based on the random effects and fixed effects models was 31.4 (95% C.I.: 30 to 

31.7) and 38.9 (95% C.I.: 30 to 48.8) cases per 100,000 paediatric person-years, respectively. 

However, the simple weighted average of the reported prevalence from all European sites was 

34.13 new cases per 100,000 paediatric person-years. 

 

Table 15 The PIBD prevalence estimates with their respective confidence intervals and 

sample size as reported by each country for 2018 – 2022. 

The number of reports that were included in the calculations in total and per year was also 

reported. 

 

Country Lower 

C.I. 95% 

Prevalence 

(/100,000) 

Upper C.I. 

95% 

Sample 

size 

2018 2019 2020 2021 2022 Million 

PAED-

Years 

Romania 4.93 5.60 6.34 4 0 1 1 1 1 4.50 

Czechia 12 13.40 14.9 5 1 1 1 1 1 2.50 

Italy 16.2 16.70 17.2 23 3 4 7 2 7 24.07 

Greece 15.5 17.00 18.5 3 1 0 1 0 1 2.91 

France 16 17.50 19 7 2 2 2 0 1 3.22 

Lithuania 14.2 17.80 22 3 0 0 1 1 1 0.47 

Spain 25.1 26.40 27.8 10 0 2 2 3 3 5.81 

Switzerland 25.6 27.30 29 19 2 4 5 4 4 3.69 

Croatia 29.3 32.60 36.2 4 0 1 1 1 1 1.09 

Hungary 30.5 33.80 37.3 2 0 0 0 1 1 1.16 

Slovenia 31 34.50 38.3 6 2 1 1 1 1 1.02 

Portugal 29.9 34.50 39.6 1 1 0 0 0 0 0.58 

Belgium 32.8 34.70 36.7 13 3 1 3 2 4 3.72 

Germany 33.8 35.10 36.4 20 1 4 4 4 7 8.06 

Sweden 36.8 39.30 42 6 0 2 1 1 2 2.27 
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Netherlands 38.9 40.00 41.1 62 12 11 16 11 12 12.48 

UK 45.5 46.30 47.1 52 11 5 17 9 10 26.06 

Serbia 44.1 49.70 55.8 4 0 1 1 1 1 0.58 

Ireland 47.7 49.70 51.8 4 0 1 1 1 1 4.43 

Austria 57.7 64.70 72.4 4 0 1 1 1 1 0.47 

Finland 158 166.00 174 5 1 1 2 1 0 0.99 

Poland 209 219.00 229 3 1 0 1 0 1 0.80 

 

The confidence in the reported prevalence is almost analogous to the sample size, which was 

the product of the reporting participants, sample size and the number of reporting years per 

country. Figure 45 below shows how the confidence is reflected in the size of the confidence 

intervals per country. Also, the prevalence estimates for Austria and Poland appear to deviate 

equally or more compared to the incidence results. 

 

 
Figure 45. Forest plot of the PIBD prevalence estimates with their respective confidence 

intervals as reported by each country for 2018 – 2022.  

Each box's size is analogous to each country's sample size. 

 



 

Page | 153  

 

 

 

As shown in the funnel plot in Figure 46, there is no significant reporting bias in the reported 

prevalence rates by country, considering that the deviations are not asymmetrical. However, 

the number and extent of the deviations suggest that heterogeneity is present in the reported 

prevalence rates between countries. Although, apart from Poland, the number and extent of the 

significant deviations from the median are noticeably lower for the prevalence than the 

incidence of the disease. 

 

 
Figure 46. Funnel plot of the PIBD prevalence results as reported by country per 1000 

PAED-years.  

Please note that Poland was an extreme outlier and was not included in the plot as it would 

require a scale adjustment. Austria was also an outlier, similar to the incidence results. The 

overall consistency of the prevalence is very high, considering that these values are not 

adjusted for the latitude effect. 
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5.1.1. Spatial analysis of the phenotype ratio of PIBD 
 

The prevalence differences that depend on the region can be summarised in latitude groups, as 

shown in Figure 47. These results are consistent with the incidence trends reported in the 

previous chapter with countries in central Europe (between 41° and 51° North) having reported 

an almost a 30% increase in the prevalence compared to the countries in the South (<41° 

North), while countries in North Europe (>51° North) also reporting an almost 3-fold increase 

compared to the countries in the South.  

 

 
Figure 47. The PIBD prevalence was grouped by the latitude of the reporting countries. 

 

5.1.2. Temporal analysis of Prevalence 
 

Further analysis of the results by year and country suggests that the year of collection can also 

explain some of the observed variances in our data. As expected, the temporal trend of the 

prevalence also shows an increase over time. Similarly, to the incidence analysis, the mixed 

effects linear regression model suggested that the year has a significant effect (p value = 0.018) 

on the reported PIBD prevalence. After introducing the covariate of the year as a factor, 

separate specific to each year estimates were produced as shown in Figure 48. The prevalence 

increases by a small percentage from 2018 to 2020, followed by a steep increase in 2021 and 

2022. 
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Figure 48. The reported increase in PIBD prevalence by year  

The effects of the year on the reported prevalence per 100,000 paediatric person-years were 

based on the mixed effects linear model where time was introduced as a factor. 

 

In Figure 50, the prevalence results are presented for 88 country-year combinations. Finland, 

Poland and Austria have reported higher PIBD prevalence over multiple data collection years 

and showed the highest variance compared to the other countries. Furthermore, we can observe 

that the consistency of the reports varies between countries. In Figure 49 below, the variance 

in the responses is shown for each country. Poland and Austria present high variance consistent 

with the incidence results, however, Finland presents an extreme value which is caused by 

inconsistent reporting between 2018/19 and 2020/2021 with extreme values reported in 

2018/19 as we can see in Figure 51. 

 

 
 

Figure 49. The variance of the annual mean of the reported prevalence per county. 
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The high variance observed for Austria, Poland and Finland can be explained by the observed 

inconsistency in their reported figures, as shown in the following Figures 50 & 51. 

 
Figure 50. The longitudinal summary of the reporting by country.  

The prevalence results were ordered by the collection round, followed by the incidence level. 
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Figure 51. The reported prevalence by country was ordered per data collection year.  

In this forest plot, we can observe the increase in the prevalence in several countries and the 

degree of consistency in their reporting. 
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5.1.3. Incidence to prevalence ratio of PIBD 
 

The ratio of Crohn's disease to Ulcerative Colitis and IBD-U was not investigated for the 

prevalence results as this information was not collected in the Safety Registry. However, an 

important figure that was investigated was the incidence-to-prevalence ratio (IPR). This ratio 

is an important metric that can be used as an indicator of the incidence progression over time 

and as an additional validation metric to assess the quality of the reported data by country and 

year (Figure 52).  In the following paragraphs we will report the observed IPR and estimate 

the expected IPR based in the methods described in 2.2.1 for comparison purposes. According 

to our data, the overall correlation between the reported incidence and prevalence was 0.776 

(Spearman Rho p<<0.0001), while the pooled random effects estimate of the IPR was 

calculated at 20% (95% C.I.: 18% to 22%) as shown in Figure 52. 

 

 
Figure 52. The reported incidence-to-prevalence ratio by country. 
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To study the reported IPR, we first needed to determine the expected IPR ratio. We can consider 

an example where we are following up a population of 100,000 individuals aged 0 to 18, split 

equally into 18 groups for each year of age. Assume that in this population, the probability of 

developing the disease each year is p and is the same for every year of age. Therefore, the 

expected number of new diagnoses in the youngest group of the population at year 1 of the 

follow-up is (
100,000

18
) ⋅ 𝑝. This is simply the product of the population fraction and the 

probability to develop the disease. Similarly, the probability of a new diagnosis at the age of 2 

is the same after excluding the patients already diagnosed with the disease in this age group 

(the previous year) which makes the calculation (
100,000

18
− (

100,000

18
) ⋅ 𝑝) ⋅ 𝑝 . In rare diseases, 

given the small incidence, the latter can also be written as (
100,000

18
) ⋅ 𝑝 since the number of 

patients who already have the disease is very small. Therefore for a rare disease, the prevalence 

in the population up to the age of 2 is 1 ⋅ (
100,000

18
) ⋅ 𝑝 + 2⋅ (

100,000

18
) ⋅ 𝑝, while for a population 

up to the age of 3, this will be  1 ⋅ (
100,000

18
) ⋅ 𝑝 + 2⋅ (

100,000

18
) ⋅ 𝑝 + 3⋅ (

100,000

18
) ⋅ 𝑝 and similarly 

for all age group upwards. This means that the prevalence in a population with n years of age 

is the nth triangular number multiplied by the expected number of cases per age group:  
𝑖(𝑖+1)

2
⋅

(
100,000

18
) ⋅ 𝑝. 

 

For an examined age i, since the incidence at the age i for the population is: 𝑖 ⋅ (
100,000

n
) ⋅ 𝑝 and 

the prevalence is 
𝑖(𝑖+1)

2
⋅ (

100,000

𝑛
) ⋅ 𝑝 the IPR is: 

 

𝑖⋅(
100,000

n
)⋅𝑝

𝑖(𝑖+1)

2
⋅(

100,000

𝑛
)⋅𝑝 

 = 
𝑖

𝑖(𝑖+1)

2

  = 10.5%  

 

However, in our case, as discussed in the methods section (2.2.1), the probability of a new 

PIBD diagnosis varies by age. Therefore, the different years of age contribute significantly 

different numbers of patients to the total prevalence. In the Tables 16 & 17 below, the 

calculations for both a constant (our previous example), and study-specific incidence by age 

group are presented. In Tables 16, the study-specific calculations are based on the function 

described in the incidence adjustment section (2.2.1) and assume that the PIBD incidence in 
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our population is 8.73 per 100,000 paediatric person-years. This is based on our findings 

(Chapter 4) using the random effects pooled estimate per country.  

 

Our calculations consider that each individual in the paediatric population is exposed to a 

variable risk annually, resulting in an expected incidence-to-prevalence ratio of 0.19 (Table 

16). The estimated expected IPR is in agreement with the observed IPR in our data since the 

latter is between 0.18 and 0.20, which are the pooled fixed and random effects IPR estimates 

(Figure 52). This indicates that the incidence adjustment was accurate and strengthens the 

validity of the overall incidence and prevalence estimates of the study. The following Figure 

53 shows the study specific calculation of the expected incidence for different age cut offs. 

 

 
Figure 53. Overall incidence up to each year of age and individual contribution by year. 

A stacked column plot showing how the expected incidence changes depending on the upper 

age limit of the population. Each column includes two parts. The lower part shows how many 

new patients are expected to present the disease at that age, while the upper part shows how 

many patients are expected to present the disease in all age groups before that year. For 

instance, the stacked columns for the age of 15 show that annually 6 patients per 100k 
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individuals are expected to present the disease in a population up to the age of 15. The lower 

part of the bar shows that the contribution of the age of 15 is 1 patient while the remaining 5 

are from the 0-14 age groups. 

 

The study-specific calculations of the expected incidence for different age cut-offs shown in 

Figure 53 are also summarised in Table 16 below. 

 

Table 16 The estimation of the expected incidence-to-prevalence ratio. 

The study-specific expected contribution of new PIBD cases per age group results in a 

prevalence that increases in a sigmoid-like function manner. The expected incidence in this 

example was 8.73 per 100,000 PAED-years and 45.95 per 100,000 paediatric with an 

incidence prevalence ratio of 0.19. 

 

Study-specific variable risk calculation 
Incidence and Prevalence expectations in a 0-18 population with 100,000 individuals 

Age group Incidence per age group 
New cases per 

age group 
All new cases up to 

this age group 

0-1 0.00000% 0.000 0.000 

1-2 0.00002% 0.001 0.001 

2-3 0.00008% 0.005 0.006 

3-4 0.00016% 0.009 0.015 

4-5 0.00081% 0.045 0.060 

5-6 0.00162% 0.090 0.150 

6-7 0.00262% 0.146 0.296 

7-8 0.00326% 0.181 0.477 

8-9 0.00525% 0.292 0.768 

9-10 0.00815% 0.453 1.221 

10-11 0.01153% 0.641 1.862 

11-12 0.01495% 0.831 2.693 

12-13 0.01798% 0.999 3.691 

13-14 0.02017% 1.120 4.812 

14-15 0.02108% 1.171 5.983 

15-16 0.02029% 1.127 7.110 

16-17 0.01735% 0.964 8.074 

17-18 0.01182% 0.657 8.730 

Total   8.73 (Incidence) 45.95 (Prevalence) 

IPR 0.190     

 

The calculations of the expected incidence under the assumption of a constant risk for all ages 

are summarised in Table 17 below. 
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Table 17 The expected contribution of new PIBD cases per age group  

For an equal chance of developing the disease across all groups results in a prevalence that 

increases linearly. The expected incidence in this example was 8.73 per 100,000 paediatric-

years and 82.94 per 100,000 paediatric-years with an incidence prevalence ratio of 0.11. 

 

Constant risk calculation 
Incidence and Prevalence expectations in a 0-18 population with 100,000 individuals 

Age group Incidence per age group 
New cases per 

age group 
All new cases up to this age 

group 

0-1 0.00873% 0.485 0.485 

1-2 0.00873% 0.485 0.970 

2-3 0.00873% 0.485 1.455 

3-4 0.00873% 0.485 1.940 

4-5 0.00873% 0.485 2.425 

5-6 0.00873% 0.485 2.910 

6-7 0.00873% 0.485 3.395 

7-8 0.00873% 0.485 3.880 

8-9 0.00873% 0.485 4.365 

9-10 0.00873% 0.485 4.850 

10-11 0.00873% 0.485 5.335 

11-12 0.00873% 0.485 5.821 

12-13 0.00873% 0.485 6.306 

13-14 0.00873% 0.485 6.791 

14-15 0.00873% 0.485 7.276 

15-16 0.00873% 0.485 7.761 

16-17 0.00873% 0.485 8.246 

17-18 0.00873% 0.485 8.731 

Total   8.73 (Incidence) 82.94 (Prevalence) 

IPR 0.11     

 

The calculated incidence from the time of birth up to each year of age is shown as calculated 

in Tables 16 & 17. Although in both scenarios, the total 0-18 incidence is the same (8.73 per 

100,000 paediatric person-years), the difference in the rate of incidence across the age groups 

has substantial effects on the expected prevalence (Figure 54). 

 



 

Page | 163  

 

 

 

 
Figure 54. The expected disease prevalence by age for the two different incidence patterns. 

A comparison of the incidence by year of age for a scenario with equal risk increase (grey) 

and increasing risk increase with older age (light blue). 

 

5.1.4. Discussion of PIBD prevalence results 
 

In this section, we have presented the results of our study on PIBD prevalence based on five 

years of prospective data collection. Our results indicate a strong latitude trend consistent with 

our incidence findings providing another validation mark. Our analysis also reveals a similar 

temporal trend to the incidence analysis, showing an increase in the pooled prevalence of PIBD 

across Europe during the study period from 2018 to 2020, followed by a steep increase in the 

2020-2022 period. As shown in Figure 51 our data demonstrate a significant rise in the 

prevalence rates for several countries, such as the U.K., the Netherlands, Ireland, France, and 

Poland. While the results were less consistent, a prevalence increase was also seen in Croatia, 

Finland, Germany, Hungary, Italy, and Spain. Only 3 of the 21 countries in our study reported 

a decreasing prevalence. These were Greece, Serbia, and Lithuania, and they were the 3 out of 

the 4 countries that had also reported a decrease in the incidence as well.  

 

Furthermore, we noted that three countries, Finland, Austria, and Poland, were outliers for 

prevalence reporting. Considering that the phenotype and incidence-to-prevalence ratios for 

these countries were not outliers, our findings provide more evidence that the reported 
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catchment areas of these countries may be inaccurate, especially for Poland and possibly 

Austria. 

 

As a final point, we have also investigated the incidence-to-prevalence ratio, which was found 

to be within the expected range, supporting the validity of the incidence calculation 

methodology. Any evidence confirming the accuracy of the age-based incidence adjustment 

strengthens the robustness of the subsequent geostatistical analysis. The IPR and the phenotype 

ratio that was analysed in the previous chapter, are crucial metrics for the quality assessment 

of the submitted data since it is implausible that countries or centres reporting inaccurate results 

would report these two ratios within the expected margins. 
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6. RESULTS – Safety registry analysis of incidence 
rates using Safety Registry population 

 

The aim of this chapter was to map the estimated incidence and predictors to get a better 

understanding of their spatial distribution, autocorrelation, clustering effects and the presence 

of outliers. The disease mapping and preparation of predictor data were followed by the 

geostatistical analysis, where a large number of suspected risk factors were investigated for 

their effects on PIBD incidence.  

 

6.1. Disease mapping, characteristics and spatial distribution 
of incidence 

 

 
Figure 65. The reported incidence in Europe was mapped using the NUTS3 regions with 

available EEA and Eurostat data that were included in the geostatistical analysis.  

Areas in green reported lower IBD incidence rates compared to the areas in red. The incidence 

was also reported in additional areas in Europe and in other continents which were excluded 

due to the data availability restrictions. 
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With the application of spatial empirical Bayesian smoothing, we were able to adjust and 

smoothen the spatial variable of incidence thus eliminating the influence of potentially small 

samples and extreme values. The map smoothing reduces unreliable information and provides 

a more stable incidence estimate. In the following Figure 66, the smoothened and final PIBD 

incidence map of the NUTS3 areas containing evaluable information for the geostatistical 

analysis is presented. 

 

 
Figure 66. The map of Europe has been filtered for the areas included in the geostatistical 

analysis.  

The choropleth map splits the NUTS3 regions into 4 quartile groups based on the reported 

incidence. Two regions are marked as outliers (highlighted in red). Italy, Greece, Romania, 

Finland, Croatia, Ireland and Slovenia show consistent results within their regions. Scotland 

stands out in the United Kingdom with the latter presenting significant variation overall. The 

Belgium, Netherlands and North Germany areas also present significant variation. 

 

Using Moran’s I, we measured the extent of spatial autocorrelation in the estimated outcome 

of incidence. The Moran’s I was 0.718 suggesting the presence of significant autocorrelation 
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in the observations. As shown in the following Figures 67 & 68 the incidence observations are 

spatially lagged and tend to be positively correlated in closer proximity.  

 

 
Figure 67. Correlogram of the incidence in the 2018 – 2022 period. 

The summary of the autocorrelation function. The x-axis of a correlogram represents the time 

lags, or the number of time units between the observation and its lagged value. The y-axis 

represents the magnitude of the correlation between the observation and its lagged value. 
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Figure 68. The autocorrelation of the reported incidence. 

The correlation of the disease incidence between the NUTS3 areas at different distances and 

the distribution of the distance between all the NUTS3 areas in our dataset. 

 

A local indicator of spatial association analysis suggests that the correlation is, as expected, 

influenced by the design of the study where neighbouring regions are more likely to be covered 

by the same clinic and therefore are assigned with similar incidence values. This demonstrates 

that the ID of the unit that claims coverage and geographical location of the NUTS3 areas are 

highly associated with the observed clusters. However, as shown in Figure 69, the observed 

clusters of low and high reported incidence appear to be separated based on their latitude.  
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Figure 69. Cluster of higher and lower incidence. 

Our data show that almost all NUTS3 clusters in the north appear to be clusters of high 

incidences, in contrast with the clusters in the south, which appear to be clusters of low 

incidence rates. The 47oN can separate these clusters almost perfectly. 

 

6.2. Predictor data 
 

In the analysis of the European countries, we processed several sets of environmental pollutants 

as discussed in the methods. The lists of the emission type for the ten most frequent release’s 

locations are summarised in the tables below for the air and water, respectively. 

 

Table 18 The most common EEA air pollutants used in the geospatial analysis.  

The most frequent air releases are not common in water bodies. 

 

Pollutant Name 
Sites -

Total Sites -Air Sites -Water 
Sites -

Soil 

Ammonia (NH3) 84,970 84,944 26 0 

Nitrogen oxides (NOx/NO2) 47,570 47,569 1 0 

Carbon dioxide (CO2) 41,185 41,185 0 0 

Sulphur oxides (SOx/SO2) 24,812 24,799 13 0 

Methane (CH4) 24,388 24,388 0 0 

Non-methane VOC 16,803 16,803 0 0 

Carbon monoxide (CO) 12,365 12,364 1 0 

Nitrous oxide (N2O) 11,802 11,802 0 0 

Particulate matter (PM10) 11,672 11,671 1 0 
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Table 19 The most common EEA pollutants released in water used in the geospatial analysis.  

The most frequently released pollutants in water bodies are also released in the air. 

 

Pollutant Name 
Sites -

Total 
Sites -

Water Sites -Air 
Sites -

Soil 

Zinc and compounds (as Zn) 38,948 29,734 8,634 580 

Total organic carbon (TOC)  29,815 29,491 271 53 

Total nitrogen 23,368 23,299 6 63 

Total phosphorus 21,251 21,135 0 116 

Nickel and compounds (as Ni) 29,063 19,905 8,735 423 

Copper and compounds (as Cu) 19,726 15,169 4,069 488 

Arsenic and compounds (as As) 17,136 12,104 4,881 151 

Chlorides (as total Cl) 11,550 11,466 4 80 

Lead and compounds (as Pb) 15,751 10,555 4,810 386 

 

In the following Figure 70, the spatial distribution of four of the interpolated pollutants is 

shown as an example of all the processed pollutants. These pollutants have been interpolated 

using the EEA E-PRTR pollutant releases data as described in the methods. 

 

 
Figure 70. Example of four interpolated pollutants. 

The pollutants that were used as the predictors in our analysis were interpolated as shown in 

this figure. This allowed us to merge them with the NUTS3 areas and prepare them for the 
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geostatistical analysis. The pollutants in this example were provided by the European 

Environment Agency's Pollutant Release and Transfer Register. 

 

The initial step before performing statistical modelling on the incidence data also involved 

investigating the correlation between the pollutant variables. To determine the level of 

independence among these variables, the distribution of each pollutant in the studied regions 

(NUTS3 regions with incidence data) was examined. As illustrated in Figure 71, the results 

revealed that about 25% of the pollutants exhibit a high correlation. This is a finding that needs 

to be considered before finalising our models describing the relationship between the pollutants 

and PIBD incidence since it suggests that some of the pollutants may be used interchangeably 

in the models. 

 

 
Figure 71. Cluster analysis of the pollutants in our dataset for the covered NUTS3 regions.  

Note that this is not an analysis of spatial clusters but rather an analysis of their similarity 

based on the Euclidean distance between the pollutants. 

 

The pollutants were also found to deviate significantly from the normal distribution. The 

Shapiro–Wilk test confirms that all pollutants are not normally distributed, with Methane being 

the closest one to normality and yet returning significant results in the Shapiro–Wilk test 

(p<0.00001). The following Figure 72 shows four examples of the pollutant frequency 

distributions.  
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Figure 72. Frequency distribution of the pollutants. 

The histograms of the four pollutants that were interpolated in the previous example in Figure 

70. These histograms show that a transformation could improve the distribution of the 

pollutants. 

 

Considering that the predictor data are skewed to the right and highly clustered at lower values, 

it becomes clear that a transformation would improve the spread of the data and contribute to 

a more robust fit in the subsequent modelling. In cases of datasets with clustered observations 

and a few extreme values, the latter characteristic may be particularly influential, affecting the 

model fit disproportionally compared to the other observations. Taking into account that the 

outcome of the Shapiro–Wilk test statistic W spans from 0 to 1, with 1 being a perfect match 

to a normal distribution, we hope to perform a transformation that improves W. After 

performing a logarithmic transformation (base 10 logarithm) to the predictor data, the 

average W increased from 0.191 to 0.96. In the figure below the distributions of the four 

pollutants of the previous example are shown after the transformation (Figure 73).  
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Figure 73. Frequency distribution of the log-transformed pollutants. 

The histograms of the four pollutants in the previous example [Figure 70 and Figure 72]. The 

data transformation improved the distribution of the pollutants significantly. 

 

6.3. Model outliers 
 

In this section we discuss the presence, effects and handling of outliers in the outcome variable 

of incidence, as these observations may invalidate the analysis when they become highly 

influential.  

 

As discussed previously, the dataset contains two countries that could be considered as outliers, 

namely Austria and Poland, with Finland being a less probable outlier. In addition to the outlier 

analysis, further investigation into the within-country reporting revealed that Austria and 

Poland have each submitted one extreme measurement at one data collection year which 

accounts for only a 0.2% of the total number of the incidence reports. However, despite their 

small contribution to the overall data, these outliers can have an outsized influence on the 

results. For example, in a simple linear regression using the interpolated polycyclic aromatic 

hydrocarbon pollution to explain the incidence, the inclusion of these two outliers can inflate 
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the model’s coefficient by 18%, which is more than 30 times greater than the next most 

influential case. This effect is illustrated in Figure 74 which shows that the Cook’s D values 

for these outliers are significantly higher than the rest of the observations. High Cook’s D 

values indicate that an observation has both high leverage and high residual values, which can 

have a detrimental effect on the fit of the model. 

 

 
Figure 74. The Cook's distance metric is used to identify influential data. 

The Cook’s D values for all cases in our test model using polycyclic aromatic hydrocarbon 

pollution to explain the disease incidence with and without the two outliers (Austria and 

Poland). This randomly selected pollutant shows the importance of using model fit diagnostics 

and the need for appropriate outlier management. 

 

Based on these findings and in conjunction with the findings of the data quality and outlier 

assessment metrics, these outliers were removed from the dataset prior to the risk factor 

analysis.  

 

6.4. Significant findings 
 

In this section, we outline the process of developing models to explain disease incidence using 

our predictor dataset and highlight the key variables that are likely to have a significant impact 

on the incidence of the disease. Our analysis is based on two approaches that consider the 

presence of autocorrelation in our data, namely spatial regression, and mixed-effects linear 
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models. The latter approach was also expanded to the analysis of each PIBD phenotype 

separately in 6.5. 

 

Pearson’s and Spearman’s correlation tests between the incidence and the pollutant levels 

revealed that 58% and 78% of the variables, respectively, were positively correlated with the 

outcome. Focusing on the Pearson coefficient, after adjusting the critical level of significance 

to address the inflation of the family-wise error rate, 27 pollutants were selected due to their 

significant correlation with the PIBD incidence. Within this group, only 2 pollutants showed a 

negative correlation meaning that 93% of the pollutants with the highest correlation were 

positively correlated with the incidence. In addition to the 27 selected variables, another 19 

pollutants that presented an absolute Spearman Rho over 0.35, were selected for further 

investigation using linear modelling and spatial regression. 

 

 

Figure 75. The average correlation of pollutant groups with the incidence. 

The average Spearman and Pearson correlation of the pollutants with the disease incidence, 

grouped by broad pollution category. 

 

6.5. Linear modelling of PIBD incidence 
 

The desired final model must satisfy several requirements as listed below: 

• Account for the spatial auto-correlation and clustering of the results reported by the 

same country 
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• Account for the non-independence of the incidence reports from the same NUTS3 

over the multiple collection rounds. 

• Weigh the results based on the population of the NUTS3 regions. 

• Estimate the effects of the pollutants on the incidence 

• Incorporate the effects of time on the incidence 

 

The model that satisfies all the listed requirements is a mixed effects linear regression (LMM). 

The variables of NUTS3 and country will be introduced with random intercepts where the 

NUTS3 areas are nested under the country. The variables of time and investigated pollutants 

will be introduced as a fixed effects in the model. Random slopes were not introduced in the 

models as there is no assumption that patients in different areas are expected to be affected in 

variable manner by the same pollution effects over time. Furthermore, in practice, adding 

random slopes did not improve the model fit. Lastly, by introducing the weights in our model, 

we are increasing the contribution of observations derived from large populations to the log-

likelihood as follows: log (𝐿(𝜃)) ∑ 𝑤𝑖log (𝑃(𝑦𝑖|𝑥𝑖, 𝜃))
𝑛

𝑖=1
. Considering the standardised 

NUTS3 size shown in Table 1 the weights will improve the model fit but are not expected to 

have a great effect. 

 

Therefore, the model is built as follows: 

 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗𝑘 =  𝛽0 + 𝛽0𝑗 + 𝛽𝑖(𝑗) + 𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽2 ⋅ 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡1𝑖𝑗  + 𝛽3 ⋅ 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡2𝑖𝑗

+ 𝑒𝑖𝑗𝑘 

Where:  

• 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗𝑘 is the observed incidence for the ith NUTS3 in the jth country at the kth 

data collection round 

• 𝛽0 is the fixed intercept 

• 𝛽0𝑗 is the random intercept for the jth Country 

• 𝛽𝑗(𝑖) is the random intercept for the ith NUTS3 within the jth Country (nested) 

• 𝛽1 is the fixed effect coefficient for the time, representing the fixed effect of time on 

the incidence 

• 𝛽2and 𝛽3 are the fixed effects coefficients for the pollutants 1 and 2, representing their 

fixed effects on the incidence 
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• 𝑒𝑖𝑗 is the residual error, which represents the variability in incidence that is not 

accounted for the time or random effects 

 

Based on the results, it appears that only a small proportion (13%) of the variables that were 

significant in the initial correlation analysis remained significant in the univariate mixed effects 

model (LMM) analysis. The most important risk factors are summarised in Table 20. The 

LMM models were fit using single predictors, predictors combined with the variable of time, 

and predictors paired with an interaction term. The models were evaluated based on the Akaike 

information criterion (AIC) and the t-value estimate of each term per tested model. The latter 

refers to the t-statistic associated with each fixed effect in our linear mixed effects model, and 

it measures the magnitude of the estimated fixed effect in relation to its standard error. This 

value is calculated by dividing the estimated fixed effect by its standard error, and therefore, 

larger absolute t-values provide more substantial evidence against the null hypothesis of the 

fixed effect being equal to zero. In our analysis any t-values with an absolute value greater than 

1.96 were considered statistically significant at a significance level of 0.05.  

 

The variable with the strongest effect on the outcome was particulate matter 10 emissions 

(PM10), which was found to be a significant risk factor in all models followed by Carbon 

monoxide (CO), Carbon dioxide (CO2) and Chlorine with inorganic compounds (HCl) as 

shown in Table 21. None of the combinations of pollutants returned significant results, but the 

variable "Other gases" had an important effect in the opposite direction, suggesting that it may 

be a protective factor (or being correlated with one). Overall, these findings suggest that the 

initial correlation analysis may have overestimated the importance of some variables and that 

using the LMM model can help to identify the most important risk factors more accurately for 

the outcome of interest. The results also highlight the importance of considering individual 

predictors in combination with other variables, such as time and interaction terms, when 

assessing the effects of multiple risk factors on an outcome.  

 

Table 20 Summary of significant PIBD incidence risk factors based on the LMM analysis. 

Variable Name  AIC t- value 

Particulate matter (PM10) 5895.45 3.42 

Carbon monoxide (CO) 5895.63 3.40 

Carbon dioxide (CO2) 5901.13 2.42 

Chlorine and inorganic compounds (HCl) 5902.24 2.18 
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Although, all four variables shown in Table 20 were significant when combined with the fixed 

effect of time in the LMM model, in the following step we present the fit diagnostics for PM10 

which had the strongest fit. 

 

Table 21 The model with the best fit and lowest AIC score. 

Model AIC 
Fixed effect 

term 

Term t-

value 

Incidence ~ PM10 + Time 

  

5895.45 

  

PM10 3.42 

Time 5.588 

 

When fitting the following model from Table 21: 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗𝑘 =  𝛽0𝑗 + 𝛽0𝑖 +  𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽2 ⋅ 𝑃𝑀10𝑖𝑗 +  𝑒𝑖𝑗𝑘 

we observe that the residuals deviate significantly from the normal distribution and present 

high heteroscedasticity, while the random effects intercept estimates also deviate significantly 

from normality (Figure 76). 

 

 
Figure 76. LMM fit summaries of the PM10 + Time model. 
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The panels above a) indicate a significant deviation of the residuals from the normal 

distribution, b) and c) show that the random intercepts are also deviating from the normal 

distribution due to a few outliers, which may be problematic for the accurate estimation of the 

variance and covariance structure of the random effects and d) showing the high and 

heterogeneous heteroscedasticity. 

 

By removing Poland as a major outlier in our dataset and using a square root transformation 

on the incidence, we were able to significantly improve the model's fit as shown in Figures 76 

& 77. When the model was fitted with the transformed incidence, we observed that the 

residuals were closer to a normal distribution and the intercept estimates of the random effects 

for the country improved significantly (Figure 77). In addition, we almost fully eliminated the 

heteroscedasticity, and the residual moving average term was reduced by a factor of 10 (Figure 

77). A final remark about the selected LMM is that it shows no signs of multicollinearity, as 

the correlation between its fixed effects is minimal at 0.025. Although only the diagnostics of 

the PM10 + time model are presented here both the transformation of the incidence, and the 

removal of the outliers improved the fit of all significant pollutants listed in Table 20. 

 

 
Figure 77. LMM fit summaries of the PM10 + Time model with the transformed outcome. 
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The panels above a) indicate a significant improvement in the distribution of the residuals, b) 

and c) show a significant improvement in the distribution of the random intercepts for both the 

regions and countries and d) show the low and significantly more homogenous 

heteroscedasticity. Please note that the scale of the y axes in Figure 77 were adjusted due to 

the great improvement goodness of fit of the latter optimise model. 

 

Table 22 Improvement of the final model with the lowest AIC score. 

The updated model excluded 2 outlying observations and used the transformed incidence. 

 

Model AIC Fixed effect term Term t-value 

Incidence ~ PM10 + Time 5895.45 
PM10 3.42 

Time 5.588 

Incidence (transformed) ~ PM10 + Time  

(exc. outliers) 
2174.4 

PM10 3.243 

Time 5.801 

 

Acknowledging that several actions were undertaken to refine the mixed effects linear models 

is important. While these efforts markedly enhanced the models' fit, it is pertinent to note that 

the optimisation process was not comprehensive. As shown in the preceding sections, the 

transformation of pollutant variables was imperative due to their significantly skewed 

distribution. Similarly, modifying the outcome variable enhanced model fit, albeit without 

substantially altering the analytical results. However, further refinements, including expanding 

the regressors and attempting to add terms of higher order, were not explored, delineating an 

avenue for future research. 

 

6.6. Spatial regression 
 

Following the LMM approach, we have also fit a spatial regression model using the mapped 

incidence for each NUT3 area as shown in Figure 65 and the predictor dataset (example of 

predictors used in Figure 70). The advantage of this approach is that it can account for spatial 

autocorrelation and address more complex spatial patterns that may not be captured by LMM 

models. To fit the spatial regression, the results collected at different times were averaged per 

NUTS3 region. Only a single case was removed from this dataset, the discussed NUTS3 region 

of Poland. For the spatial regression, the Rook contiguity weights were calculated (based on 

our findings in 2.4). As shown in Figure 78, a small number of regions were isolated and in no 
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contact with other areas meaning that they did not share any spatial information in the spatial 

analysis. However, the majority of NUTS3 regions shared a border and, therefore, spatial 

weights with multiple other regions. 

 

 
Figure 78. Number of NUTS3 areas with spatial relationships 

The counts of the NUTS3 areas in our dataset (y axis) by the number of other regions (x axis) 

they share spatial with.  

 

The spatial regression returned several predictors as potentially significant variables and 

explained a great proportion of the observed variance based on the spatial auto correlation and 

clustering effects. As discussed in the methods (2.3.3), the spatial error regression model was 

the most appropriate for our data due to the presence of clusters. The model with the best fit 

reached an R squared of 65% and included two significant predictors: the particular matter 10 

and Chlorine with inorganic compounds (HCl). As shown in the following table, the model 

returns an increased Lambda suggesting a high degree of spatial autocorrelation (Table 23). 

 

Table 23 The 3 significant predictors in the incidence spatial regression model. 

Variable Coefficient Std. Error z-value P value 

Constant -0.10 1.41      -0.07      0.943 

Particular matter 0.33 0.15 2.24 0.025 

Chlorine and inorganic compounds 

(HCl) 0.36 0.13 2.88 <0.004 

Lamda (autocorrelation parameter) 0.70 0.03 20.59 <<  0.000 
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Using the spatial weights and coefficients of the spatial model, as summarised in Table 23, we 

can obtain the predicted values and residuals and investigate the model fit. As shown below in 

Figure 79, the predicted map presents very similar patterns and disease distribution compared 

to the observed map in Figure 66, suggesting a good fit for the spatial regression.  

 

 
Figure 79. Spatial empirical Bayes mapping of the predicted incidence  

The map of the predicted incidence is based on the spatial regression model (main map) 

compared with the observed incidence map from Figure 66 (additional map). Although the 

colour scale used varies between the maps, the values present high concordance. The predicted 

values on the main map were estimated using the spatial weights and coefficients of the final 

spatial error regression model. 

 

The study of the residuals, as shown in Figure 80, confirms that most areas have a good fit 

with marginal deviations between the observed and expected incidence. The only extreme 

residuals were found in Finland, suggesting that according to our model, the pollution and 

spatial relationships cannot explain sufficiently the high reported incidence in that region.  
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Figure 80. Residual analysis of the spatial regression.  

The residuals of the spatial regression model indicate a good fit in most countries, with only a 

few minor discrepancies. Specifically, the fitted incidence was slightly higher for several 

reporting areas in Germany and slightly lower in all reporting areas in. However, the model 

showed a significant outlier in Finland, where the predicted incidence was substantially lower 

than the observed values. 

 

In the final step of the spatial analysis, we utilised the coefficients from the spatial regression 

and combined the average values of PM10 and Chlorine with inorganic compounds for each 

NUTS3 region (Figure 81) to estimate the expected PIBD incidence for all NUTS3 regions in 

Europe (Figure 82). It is important to note that these estimates, as displayed in Figure 82, do 

not incorporate any spatial information, and are solely based on the pollution measures.  
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Figure 81. The interpolated map of the two most significant findings is based on spatial 

modelling. 

The raster map of the interpolated PM10 and Chlorine with inorganic compounds was used to 

estimate the predicted PIBD incidence in Europe [Figure 82] based on the coefficients of our 

spatial regression model. 

 

Although the prediction map in Figure 82 provides useful information, it should be interpreted 

with caution and not compared directly to the reported incidence map. This is because the 

prediction map is solely based on pollution measures and does not consider some additional 

factors that could affect the reported mapped incidence of PIBD. For example, although areas 

such as Scotland may appear primarily green on the prediction map which indicates low 

expected incidence, this could be misleading. For Scotland the large areas in green include only 

a small fraction of the population and the overall incidence estimates are influenced mostly by 

smaller areas such as Edinburgh and Glasgow, which are predicted by the model to have a high 

incidence. Therefore, it is essential to consider the importance of aggregation methods when 

interpreting the prediction map. (This consideration was also discussed in 2.3.1). 
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Figure 82. The predicted PIBD incidence in Europe based on the spatial regression model. 

The predicted PIBD incidence was calculated for all NUTS3 regions based on the spatial 

regression model coefficients and the EEA interpolated maps of the pollutants that were found 

to be significant in our analysis. 

 

6.7. Linear modelling of CD and UC with IBDU incidence 
 

As discussed in the introduction, certain risk factors may have different effects on the CD and 

UC phenotypes. Thus, we have repeated the LMM analysis, testing the fixed effects of time 

and pollutants, with the outcome of PIBD incidence split by the two disease subtypes. The two 

investigated outcomes were the CD and UC/IBDU incidence. As shown in Figure 83, the four 

pollutants that were found to be significant, combined with time, in the PIBD analysis were 

also significant in the analysis of the individual phenotypes. Furthermore, five additional 

pollutants that did not exceed the significance threshold for PIBD were significant when 

analysed for the individual phenotypes. A surprising observation in the results is that certain 

pollutants exceeded the significance threshold of both phenotypes individually but not when 

combined into the PIBD incidence outcome. Further investigation of this occurrence revealed 

that the discrepancy is caused by a higher intercept estimate of the PIBD model compared to 

the individual CD and UC/IBDU models. 
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Figure 83. Summary of the significant effects of pollutants on the CD, UC/IBDU and PIBD 

incidence. 

The t-test values of the fixed effect show the magnitude of the effects per pollutant on the PIBD, 

CD and UC/IBDU incidence. These results are also summarised in the following table 24. 

Please note that any values above 1.96 are equivalent to a p-value <0.05. Time was included 

as a fixed effect in all models. 

 

As shown in Figure 83 and Table 24 below, the pollutants are ordered by their significance in 

the univariate analysis with PIBD as the outcome.  

 

Table 24 Summary of all pollutants that exceeded the significance threshold for at least 

one phenotype.  

This table summarises the t-values of all pollutants that exceeded the significance threshold 

for any phenotype. The fixed effect of time was significant in all models. The t-value for time is 

included in the table as an example of the PM10 model. 
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t-values of the pollutant fixed effects in the LMM models 

Pollutant CD UC PIBD 

Carbon monoxide 3.0 3.2 3.6 

Particulate matter PM10 3.1 2.9 3.3 

Carbon dioxide CO2 2.4 3.4 2.5 

Chlorine and inorganic compounds 2.4 2.1 2.1 

Anthracene 3.4 2.9 2.0 

Nitrogen oxides (NOx and NO2) 2.1 3.1 1.9 

Sulphur oxides (SOx and SO2) 2.1 2.0 1.8 

Arsenic and compounds 2.7 3.0 1.8 

Lead and compounds 2.7 3.1 1.7 
    

Time (for PM10 model) 5.4 6.3 5.38 

 

6.8. Additional findings, sun irradiance and population density 
 

In the following paragraphs, we will analyse the predictors of population density and sun 

exposure separately and in addition to the previous models due to their distinct characteristics. 

Population density is expected to be correlated with several predictors, while sun irradiance is 

anticipated to have a strong correlation with latitude, which has a significant and well-

established link with the disease incidence. The primary focus of our investigation will be to 

determine if these predictors can be incorporated into the existing models of our research. We 

will examine if they are essential and whether they will replace existing terms or explain 

additional portions of the observed disease incidence variance. In the following three analyses 

we update: i) the LMM PIBD incidence model, ii) the spatial regression PIBD model and iii) 

the CD - UC/IBDU LMM model. 

 

6.8.1. Updated Linear modelling of PIBD Incidence 
 

The same mixed effects analysis was repeated based on the following model, as described in 

6.5: 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗𝑘 =  𝛽0 + 𝛽0𝑗 + 𝛽𝑖(𝑗) +  𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽2 ⋅ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗  + 𝑒𝑖𝑗 

 

The sun exposure was found to be a significant protective factor for PIBD while in contrast, 

the population density shows a less significant but positive correlation with the disease 

incidence. The t-value of the univariate model for solar exposure and population density is 
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shown below in comparison with the four significant findings from the LMM pollution analysis 

(Table 25).  

 

Table 25 Summary of significant risk factors for solar exposure. 

Variable Name  AIC t- value 

Particulate matter (PM10) 5895.45 3.42 

Carbon monoxide (CO) 5895.63 3.40 

Carbon dioxide (CO2) 5901.13 2.42 

Chlorine and inorganic compounds (HCl) 5902.24 2.18 

Sun irradiation 5897.54 -2.62 

Population density 5900.32 2.02 

 

Furthermore, the addition of the solar exposure into the existing PIBD incidence model from 

section 6.5 of this thesis, is reducing the PM10 significance marginally while improving the 

overall fit significantly as shown in Table 26. A similar performance is observed for the rest 

of the significant pollutants. However, the population density was not added in these models 

as it marginally improved the fit when the sun irradiance and pollution terms were already 

included. 

 

Table 26 The updated LMM model with solar irradiation, PM10 and time. 

Model AIC Fixed effect term Term t-value 

Incidence ~ PM10 + Time 
  

2174.4 
PM10 3.243 

Time 5.80 

Incidence ~ PM10 + Time + Sun 

irradiation 
  
  

2137.7 

PM10 2.65 

Time 5.38 

Sun irradiation -2.57 

 

Therefore, we can conclude that sun irradiation appears to be a strong protective factor in the 

PIBD risk. 

 

6.8.2. Updated spatial regression for PIBD incidence 
 

Similarly to the previous PIBD incidence analysis that was based on pollution exposures, the 

LMM model fit is followed by a spatial regression analysis. The results of the spatial regression 
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model with the addition of sun irradiation as a predictor are shown in Table 27 and are 

compared against the model that does not include sun exposure.  

 

 

 

 

Table 27 Results of the PIBD incidence spatial regression model based on the sun and 

pollution exposures.  

The results from the spatial regression model that did not include the solar exposure are shown 

in brackets for comparison purposes. 

 

Variable Coefficient Std. Error z-value P value 

Constant -1.17 (-0.1) 1.52 -0.77 0.0243 (0.943) 

Particular matter 10 0.32 (0.33) 0.15 2.11 0.0353 (0.025) 

Chlorine and inorganic 

compounds (HCl) 0.46 (0.36) 0.13 4.11 0.0008 (0.004)  
Sun Exposure -0.037 (NA) 0.009 -4.07 0.0001 (NA) 

Lamda (autocorrelation 

parameter) 0.67 (0.7) 0.03 18.79 << 0.00 (<< 0.00) 

 

Table 27, shows that the sun exposure has a significant negative effect on the PIBD incidence. 

Adding the sun exposure predictor in the spatial regression did not change the importance of 

the PM10 and Chlorine with inorganic compounds (HCl). 

 

6.8.3. Updated linear modelling of CD and UC with IBDU 
incidence 

 

In a separate LMM analysis for CD and UC/IBDU, solar exposure was strongly associated with 

lower CD incidence rates, while the population density showed a significant positive effect 

with CD. In contrast, for UC/IBDU, the solar exposure showed a negative effect that was not 

significant, while the population density presented a very strong positive effect. These findings 

are summarised in the following Table 28. 

 

Table 28 Summary of the fixed effects of population density and sun exposure  

The summary of the fixed effects of population density and sun exposure on the two PIBD 

subtypes is based on univariate LMM models with time. 
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Phenotype Predictor t- value 

UC with IBD-U Population Density 3.75 

UC with IBD-U Sun exposure -1.53 

CD Population Density 2.28 

CD Sun exposure -2.48 

 

The introduction of population density and solar exposure reduced the number of predictors 

that remained significant in the LMM modelling. The best fitted LMM models for the CD and 

UC/IBDU incidence are summarised below (Table 29). For CD, the pollutant with the highest 

t-value and best fit was again PM10 (based on AIC). However, replacing it with the chlorine 

inorganic compounds also returned a similar fit (marginally inferior). For CD, carbon 

monoxide was the pollutant with the highest t-value and best fit. However, replacing it with 

Anthracene also returned a similar fit (inferior). The best fitted mixed models for the CD and 

UC incidence are summarised in the following Table 29.  

 

Table 29 Final LMM models with the best fit for the UC/IBDU and CD incidence 

UC/IBDU Incidence LMM model  CD Incidence LMM model 

Term t-value Term t-value 

Year (Time)  5.401 Year (Time)  4.918 

Population Density  2.015 Sun Exposure -2.662 

Carbon monoxide (CO)  2.488 PM10  2.218 

 Population Density  2.176 

 

These results suggest that sun exposure is a strong protective factor while PM10, Carbon 

Monoxide, Chlorine with inorganic compounds remain important findings. The population 

density may also be important as it improves the overall fit when UC and CD are assessed 

separately. Lastly, the pollutant of anthracene also emerged as a finding that requires further 

attention. However, further investigation revealed that this pollutant is extremely clustered, 

localised and essentially present in two regions with high CD incidence. Therefore, it appeared 

to be a potential finding although it explained only a very small fraction of the disease variance. 

 

6.8.4. Discussion 
 

In this subchapter, we have mapped the disease incidence and predictors and investigated 

important properties of our data, such as the distribution characteristics, presence of clusters, 

outliers, autocorrelation, and other important properties. This work, in conjunction with model 
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fitness diagnostics, allowed us to prepare our data and use appropriate methodologies for the 

geostatistical analysis. The disease incidence was studied for the PIBD cases and for the two 

disease phenotypes separately. Overall, from hundreds of predictors examined, we have 

identified sun exposure, population density, particulate matter 10, the year of data collection, 

carbon monoxide/dioxide and Chlorine with inorganic compounds (HCl) as the most important 

factors that were strongly associated with the observed incidence of the disease and its 

individual subtypes.  

 

The mapping of the disease incidence reveals a very strong spatial autocorrelation (AR) in the 

reported incidence. The main AR sources are adjacency, the latitude and the data collection 

methods, as all regions covered by the same clinic were assigned the same incidence values. 

The presence of spatial autocorrelation in the data also suggests that the incidence of PIBD and 

its subtypes is likely influenced by local environmental factors. This, combined with the 

repeated measures aspects of our data, introduces a multidimensional source of autocorrelation 

which requires the use of specific models for the analysis of the incidence. Our analyses were 

based on two types of models, linear mixed effects models and spatial regression. Very 

importantly, our results underline the importance of tailoring the analysis methodologies to the 

characteristics of our data. Although many pollutants were correlated with the disease 

incidence, we were able to reject several variables that were not significant in the final analyses. 

 

As this is the first and largest epidemiological study of its kind, focusing on the effects of the 

environment and specific pollutants on PIBD while considering hundreds of possible risk 

factors, it is crucial to validate our findings by identifying common points with similar previous 

studies. Specifically, our main protective factor finding, sun exposure, has also been reported 

as a finding in the literature. Several articles have reported sun exposure and vitamin D to be 

protective against IBD, especially Crohn’s (Jørgensen et al., 2010; Kappelman et al., 2007). 

This is aligned with our findings as we have identified the sun as a protective factor in PIBD 

and primarily for Crohn’s disease. Furthermore, according to our results, PM10 was identified 

as a major risk factor in PIBD affecting both the UC and CD phenotypes, which as a finding is 

also in agreement with the literature (Ding et al., 2022; Kaplan et al., 2010b). According to our 

findings, population density is also a risk factor in PIBD. We were able to identify only one 

study with similar findings (Ng et al., 2019). However, considering the high correlation 

between population density and the great number of environmental exposures in highly 
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urbanised settings, this finding was not unexpected. Moreover, carbon monoxide and dioxide 

were also identified as significant risk factors for PIBD. This, again, has also been suggested 

previously, but the evidence is very limited (Ding et al., 2022). However, the one novel 

association in our study is the link between Chlorine and inorganic compounds with the PIBD 

incidence. Chlorine and inorganic compounds such as hydrogen chloride (HCl) are widely used 

in various industries today, while this chemical is found in plastics, solvents, textiles, and 

pharmaceuticals. It is also commonly used as a disinfectant in water treatment to kill bacteria 

and other pathogens. The uses of this chemical are very closely aligned with the “westernised 

lifestyle” and urbanisation, making it a promising risk factor that must be investigated further. 

In addition, this risk factor was processed and interpolated with a very high confidence, as close 

to 9,000 observations across Europe were used to determine its spatial distribution. As outlined 

in the validation section (2.4), precise results are greatly dependent on having a high level of 

confidence in the interpolation of the risk factor. 

 

7. Analysis of the disease phenotype in the Inception 
Cohort population 

 

The aim of this subchapter is to map the patients recruited by the several centres participating 

in the Inception Cohort and understand the spatial distribution of the disease phenotype. This 

patient level analysis does not include healthy control data and therefore, the disease incidence 

is not analysed. The studied outcome in this chapter is the variation of the disease phenotype 

depending on the location, exposures and exposome of the individual patients. Similarly, to the 

geostatistical work in the Safety Registry, this analysis also includes a large number of 

suspected risk factors. Although the sample size of this dataset is smaller compared to the 

Safety Registry, it is available on the patient level and has been validated and submitted by 

trained stuff.  

 

7.1. Available data 
 

The Inception Cohort dataset includes 432 prospectively recruited patients with available 

information from a detailed environmental questionnaire and follow-up data over one to five 

years depending on the time of the recruitment. The specific external exposome (1.3.4.1) 

analysis included four continuous variables and 230 factors. This specific external exposome 
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dataset included various types of exposures such as medications received, dietary habits, pets, 

water source, type of dwelling and more. Within this dataset, a subgroup of patients provided 

postcode information allowing the calculation of the approximate residence coordinates for 

432 individuals that were living in the UK and the Netherlands at the time of the study as shown 

in Figure 84 below. Based on the geographical information of the patients, individual patient 

exposure data were extracted successfully for 113 types of environmental exposures. 

 

 
Figure 84. The locations of patients recruited in the UK and Netherlands were included in 

the patient-level data phenotype analysis. 

The patients tend to cluster in specific locations which are closer to the Inception Cohort 

recruitment sites. 

 

7.2. Findings 
 

The aim of this subchapter is to perform a patient-level analysis and report factors that may 

have significant effects on the disease phenotype. It must be pointed out that variables with 

reports of significant variations in the CD/IBD ratio should not be interpreted as risk or 

protective factors. In the following analysis we report variables that appear to have significantly 

different effects on each disease phenotype but without control data we cannot determine 

whether they increase or reduce the incidence for any phenotype in a disproportional manner, 

or they have opposite effects on CD and UC/IBDU. The investigated predictors were examined 
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univariately as terms in a logistic regression model and in combinations of two including their 

interaction terms. Considering the number of predictors and patients in our study, any analysis 

with additional interaction terms or single 3-way interaction terms will result to an extreme 

number of several thousand examined combinations.  

 

In the broader dataset with the 432 patients, 7 variables were found to be significant predictors 

of the disease phenotype and are summarised in the Table 30 below. 

 

Table 30 The results of the univariate logistic regression analysis of the disease phenotype. 

The exposome variables were studied to assess if they could be used to predict the CD 

diagnosis over the UC/IBDU. The most significant predictors are included in this table with 

their respective p-values. 

Variable Format p value (logit) 

Subject's Age at Diagnosis Continuous 0.0006 

Owing "Other" Pets/animals were  Factor 0.0041 

Biological Father's Ethnic Background Factor 0.0159 

Varicella Vaccine Factor 0.0218 

Consecutive years did you take multivitamins? Factor 0.0259 

BCG Vaccine Factor 0.0317 

Water supply Factor 0.0456 

 

In our sample, older age at diagnosis is favouring CD phenotypes against the UC and IBD-U. 

As shown in Figures 85 & 86 below, the CD diagnoses in the early years were marginally less 

common but increased rapidly after the age of 10. It should be noted that 36.7% of the youngest 

30 patients in our study presented CD, while the percentage increases by age reaching 66.7% 

for the oldest 30 patients recruited. Very importantly, because the phenotype was split into two 

different outcomes, an important interaction was not captured by the logistic model. As shown 

in Figure 85, the effect of age on the phenotype depends on the sex of the patient.  
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Figure 85. The cumulative number of new CD and UC/IBDU cases in the Inception Cohort 

by age. 

Younger age favours the UC/IBDU phenotype marginally up to the age of 10 where the CD 

phenotype becomes more prevalent. Both phenotypes show an increase of PIBD diagnoses 

after the age of 10. 

 

 
Figure 86. The cumulative number of new CD and UC/IBDU diagnoses in the Inception 

Cohort by sex and age. 

The CD rates were found to be higher for both females and males. However, the main driver 

of the increase in PIBD is the steep increase in CD diagnosis in males older than 10 years. 

 

As shown in Table 30, exposure to pets is also an important predictor. When this question is 

answered by the patients as “other”, it also favours the CD phenotypes in the Inception Cohort 

population. While the overall CD rate in our sample is 58.1%, this percentage decreases to 
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56.3% for the patients who did not own a pet from the “other” category and increases to 73.2% 

for those who did (60 out of the 83 patients, 2-proportions test p = 0.002). The “other” category 

included primarily rodents and rabbits. It should be noted that from the 67 households with 

rodents and rabbits, 78% of the patients presented CD. 

 

Furthermore, black ethnic backgrounds of the biological father seem to favour the CD 

phenotype. The results were similar for the black ethnic background of the biological mother 

too, but the effect size was marginally smaller hence increasing the p value of the test. 75% 

and 90% of the patients with a black mother and black father respectively were diagnosed with 

Crohn’s disease, while all non-white ethnic groups presented higher CD rates compared to the 

white ethnic background patients. Repeating the analysis for patients with at least one 

biological parent with black ethnic background showed that this group’s phenotype ratio 

changes by 27.3% (95% C.I:13.7, 41), favouring the CD diagnosis (2-proportions test p= 

0.00009, exact test p= 0.006). 

 

The variable of consecutive years of multivitamins use was rejected upon further investigation. 

The results suggest that receiving multivitamins in the year before the diagnosis reduces the 

percentage of CD compared to UC and IBD-U. However, the CD rate increases again 

significantly for all groups receiving multivitamins for both longer and a shorter time periods.  

 

The two types of vaccines that appeared to be significant in the analysis were the Varicella and 

BCG vaccines (Table 30). The latter, when received at least at one dose was associated with 

lower CD rates, while the Varicella vaccine was associated with higher CD rates (two 

proportion tests p-value: 0.045 and 0.031, respectively). It is essential to clarify that this 

association is not significant after factoring in the required adjustment of the significance level, 

to account for the multiple comparisons. Furthermore, as stated in the introduction, the reported 

effects may be increase or decrease the risk for both phenotypes resulting to change in the 

phenotype ratio.  

 

Lastly, upon further investigation, the water supply finding reveals a strong association 

between the consumption of bottled/non-bottled water and the rate of CD. A two-proportion 

test comparison of the group consuming bottled water against the groups consuming water 
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from the main supply (filtered or unfiltered) shows a 19.2% higher rate of CD, in the latter 

group with a p-value of 0.0029.  

 

7.2.1. Spatial regression phenotype analysis of the 
Inception Cohort patients 

 

By incorporating the geographical information provided by 423 patients, it becomes possible 

to identify the exposures of each patient to the interpolated risk factors similarly to the previous 

subchapter. This expanded analysis involves adding the values of all risk factors at the 

participant's location and incorporating their corresponding values associated with that location 

to the patient data. The univariate logistic regression analysis that was used for the specific 

exposome analysis in the previous paragraphs, was used to identify environmental pollutants 

that warranted further investigation. A spatial regression with the selected pollutants returned 

three variables of interest with positive and negative associations to the disease phenotype ratio. 

These variables are summarised in the following Table 31. 

 

Table 31 The environmental pollutants that may affect the PIBD phenotype ratio. 

Variable 
Effect on CD/UC-

IBDU ratio 
Format 

p-value 

(logit) 

Logistic 

model AIC 

Hydrofluorocarbons 

(HFCs) 
Increase Continuous 0.029 534.1 

Chlordane Decrease Continuous 0.036 535.4 

Tetrachloroethane Increase Continuous 0.037 533.8 

 

Upon further investigation of potential interactions among the predictors in our dataset, no 

associations were found to be significant after accounting for a large number of combinations 

of factors and levels (>1000). Multiple testing increases the likelihood of false positive findings 

since each additional combination of factors included in the model raises the probability of 

such findings. As shown in Figure 87 the dataset was highly clustered since the patient location 

were most frequently close to the clinic that recruited the patients. Although we can account 

for the clustering effect this reduces the variability and area coverage required to identify true 

effects. In contrast to the lattice data analysis in the previous chapters, the sample size becomes 

irrelevant in point locations dataset when they are all found in the same areas. 
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Figure 87. The patient spatial weights and the distribution of spatial dependencies count per 

the patient. 

Panel a) shows the spatial relationships among all patients with neighbouring observations, 

while panel b) displays the number of spatial dependencies per patient. 

 

In summary, the Inception Cohort analysis revealed strong associations between the disease 

phenotype and certain variables, such as age at diagnosis, specific types of pets, parents' ethnic 

background, and water source. Additionally, five predictors were identified as potentially 

significant, namely, BCG and Varicella vaccines, as well as Hydrofluorocarbons (HFCs), 

Chlordane, and Tetrachloroethane, with the latter three to be revealed through geostatistical 

analysis. 

 

7.3. Discussion 
 

In this subchapter, we have investigated the ratio of PIBD subtypes using patient level data 

from the Inception Cohort and mapped patients recruited in the UK and the Netherlands. 

Although both CD and UC phenotypes involve chronic inflammation of the gastrointestinal 

tract and fall under the IBD category, their molecular mechanisms underlying their 

pathogenesis differ (Podolsky, 2002). Subsequently and as discussed in the introduction, 

certain IBD risk factors may be different for the CD and UC phenotypes. Therefore, these 

factors can be studied in our dataset when the CD cases are essentially used as control data to 

study the risk factors in UC and vice versa for the CD risk factors. To understand further our 
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findings from the Inception Cohort phenotype analysis, in the following paragraphs we will 

study the relevance of our results with the current literature. Similarly to the incidence, 

prevalence analysis, this is important for the validation of the results and the identification of 

potentially novel findings.  

 

In this subchapter we showed that in the studied population, age does not only increase the 

overall risk of IBD but disproportionately increases the Crohn's disease risk for males over 10 

years old. As discussed in the introduction, several studies have reported that the disease 

incidence and the ratio of the diagnoses between males and females changes with age 

(Ludvigsson et al., 2017; Urlep et al., 2015). Several studies have reported that in the paediatric 

population, the CD phenotype is more common in males, while the UC phenotype is prevalent 

in females  (Sýkora et al., 2018 ; Ha et al., 2010). However, the difference observed in our data 

significantly exceeds any results reported in the literature. This may suggest a recent change 

related to the specific characteristics of the population recruited in the Inception Cohort. 

 

The exposure to certain types of pets, such as rabbits and rodents, was also associated with a 

higher incidence of CD in our study. There have been several studies investigating the 

association between exposure to pets and the incidence of Crohn's disease and ulcerative colitis 

(Cholapranee and Ananthakrishnan, 2016). While the evidence is not consistent and the 

strength of the association remains unclear, a large review and meta-analysis reported that the 

exposure to pets and farm animals at an early age reduces the overall risk of IBD significantly 

(Cholapranee and Ananthakrishnan, 2016). Cholapranee, also reported that this effect was 

marginally greater for UC compared to CD. Our results could possibly reflect the same effects 

but with specific types of pets having an even greater protective effect against the UC type. 

Alternatively, it is also possible that rodents as pets could be a risk factor for paediatric IBD, 

but this has not yet been identified in the literature, as previous studies have grouped animals 

into broad categories. 

 

Our study also identified an association between black ethnic background and a higher 

incidence of CD compared to UC and IBDU. The effects of race on the IBD phenotype varies 

significantly depending on several factors including the location, immigration patterns and the 

methods of the conducted study. According to current literature, it is more likely for the white 

population to present a higher CD to UC ratio compared to the black population(Aniwan et al., 
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2019; Barnes et al., 2021; Misra et al., 2019), making this the first finding of our study that 

contradicts the literature. However, considering the fast-changing incidence of IBD, it should 

be noted that there are no recent relevant published data. Therefore, we cannot formally assess 

the effects of race on the diagnosis phenotype in the paediatric population based on previously 

published information.  

 

Additionally, our results suggested that the source of water consumed by patients may also play 

a role in the development of IBD. Specifically, we found that consumption of bottled water 

was associated with reduced risk of CD compared to UC. Studies that analysed data from 

thousands of subjects have also revealed associations between water source and water quality 

with the presentation of PIBD. Vanhaecke et al., 2022 reported that the consumption of bottled 

water was associated with smaller IBD rates compared to the other sources. However, the 

reported effect size was rather small and not significant. Holik et al., 2020 conducted a very 

relevant study investigating specifically the drinking water and its effects on patients with IBD. 

Holik reported that the rural and well water supply increased the CD - UC ratio by a small 

percentage. He also reported that the rate of CD to UC was 37% higher in patients consuming 

low quality water, although this was reported as not statistically significant. The effects of 

drinking water on IBD have been studied by others (Aamodt et al., 2008; Hermon-Taylor, 

1993; van Kruiningen and Freda, 2001) and given the current literature, we cannot verify that 

there is an effect on IBD overall. However, our findings combined with the literature suggest 

that water quality may affect more the CD phenotype compared to the UC and due to the small 

effect size, the detection of this is challenging.  

 

Finally, our study identified five suspected factors that may influence the disease phenotype. 

The suspected pollutants, Hydrofluorocarbons (HFCs), Tetrachloroethane and Chlordane, are 

not reported in the literature in relation to the IBD. It is important to underline that the spatial 

analysis of the Inception Cohort was considerably limited compared to the Safety Registry 

analysis. This is related to the geographic coverage of the Inception Cohort which is equal to a 

small fraction of the Safety Registry. The patients included in this analysis were based in certain 

parts of the Netherlands, Greater London, Midlands and the areas close to Edinburgh and 

Glasgow in Scotland. Furthermore, it seems that the patient location is clustered compared to 

the general population, reducing the variability of exposures dramatically. Therefore, the 

findings of the spatial analysis will not be investigated further. Similarly, the final two 
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suspected findings of BCG and varicella vaccinations were borderline significant findings that 

have not been reported to the literature previously. Therefore, it is very likely that they are not 

influencing the incidence of IBD and its phenotype ratio.  
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8. DISCUSSION 
 

8.1. Summary of findings 
 

In this chapter, I have outlined and summarised the study findings parallel to the relevant 

literature. 

 

8.1.1. Incidence and prevalence findings 
 

Overall, the results of this study were consistent with established research findings, which 

supports our methods for data collection and incidence analysis. In terms of the geographical 

trends of PIBD, as previously discussed, countries located closer to northern latitudes tend to 

have higher incidence rates compared to those situated further South. Our results indicate a 

strong increasing latitude trend in PIBD incidence rates, which agrees with the previous 

literature. In terms of the country-specific comparisons, as shown in the final incidence map in 

Figure 66, common patterns reported in large systematic reviews emerge. For instance, the 

higher incidence in Scotland compared to the rest of the UK emerges while the low incidence 

in Greece and Italy is also confirmed. Similarly, the increased reported incidence in Finland is 

also in agreement with the literature. Lastly, data from Austria and Poland were the main 

discrepancies in our data, but as discussed, this is related to the reporting error of the catchment 

areas. In our future work, we will have the option to rectify this retrospectively and 

prospectively. 

 

Additionally, as discussed in the introduction, the incidence of PIBD has been rising in all 

European countries, apart from countries in Eastern and Southeast Europe. Our findings reveal 

a marginal decrease in the disease incidence in countries such as Serbia, Lithuania, Hungary, 

and Greece. Temporally, although our results are generally consistent with current literature, 

we observe a steep increase in PIBD incidence rates from 2020 onwards, which may be related 

to the COVID-19 pandemic. The role of viruses in IBD risk and development has been studied 

by several research groups reporting that there are viral infections that can influence the 

development of IBD because of their interaction with the patient’s microbiota (Tarris et al., 

2021; Ungaro et al., 2019). Other studies have investigated the role of norovirus, rotaviruses 

and cytomegalovirus, with the latter being  confirmed as a risk factor in IBD (de Hertogh 
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and Geboes, 2004; Mavropoulou et al., 2019). The cytomegalovirus (CMV) infection increases 

the risk for IBD through several possible mechanisms, including increasing gut permeability 

which is a known mechanism in the CMV pathogenesis, expression of vascular cell adhesion 

molecule-1, or increased interleukin-6. Recent studies have also shown that COVID-19 

introduces microbiota alterations (Delgado-Gonzalez et al., 2021; Ungaro et al., 2022). Studies 

in murine models demonstrated how the virus could increase susceptibility to inflammation 

and colitis development due to decreased antimicrobial peptides and the alteration of gut 

microbiota (Delgado-Gonzalez et al., 2021). Furthermore, other studies also reported that 

COVID19 increases the gastro-intestinal symptoms of IBD patients (Ungaro et al., 2022). In 

summary, the literature provides examples of mechanisms where COVID-19 may increase the 

IBD risk. However, the rate of increase in our study was too high to be explained by COVID-

19 alone. Therefore, we should consider the possibility of the impacts on the lifestyle as 

discussed in 3.2.5. or major reporting and patient management changes after the pandemic. 

However, the latter seems unlikely considering that the increased incidence was reported in 

both 2020-2021 and 2021-2022 at an essentially identical rate. 

 

Geostatistical analysis findings 

 

Although IBD has a genetic component, environmental and lifestyle factors play a more 

significant role in its development. As discussed in the introduction, several studies suggest 

that a low percentage of cases are due to genetics alone. The environmental effects are 

significant, as evidenced by differences in gene expression between homozygotic twins and 

other studies. Hence the need to identify the underlying environmental factors is a key 

epidemiological aim. As mentioned in the introduction, although the current literature on the 

topic is developing, a few environmental factors have been reported repeatedly with high 

confidence. Sun exposure/vitamin D is one of the most representative examples of such factors. 

This was also a finding in our study that we can report with high confidence. Furthermore, 

PM10, COx and Chlorine with inorganic compounds were important findings in our analysis. 

PM10 is an important predictor for various chronic diseases and recently has been associated 

with IBD as well. PM10 is often a proxy for PM2.5 which due to its size is more difficult to 

measure. PM10 pollution refers to the presence of particulate matter with a diameter of 10 

micrometres or less in the air. These particles are small enough to be inhaled deep into the 

lungs and can cause respiratory and cardiovascular problems, especially in vulnerable 



 

Page | 204  

 

 

 

populations such as children, elderly, and people with pre-existing health conditions. Sources 

of PM10 pollution can include traffic, industry, construction, and natural phenomena such as 

dust storms or wildfires. Therefore, PM10 seems to be a relatively broad indication of pollution 

which may explain the strong positive effect that it presented on the incidence of PIBD. Carbon 

oxides, although they are specific chemicals, they are also indicators of overall pollution. 

Carbon monoxide in particular, has been associated with IBD and this is an additional finding 

that we can confirm. The Chlorine with Inorganic compounds finding however, is novel. 

Inorganic compounds and halogens in particular, have not been associated with the 

development of IBD thus far. The EEA provides these data grouped which complicates the 

identification of the exact compound that is responsible for the observed effects. The E-PRTR 

(European Pollutant Release and Transfer Register Regulation) provides additional 

information on every pollutant source that we included in our dataset and analysis. Therefore, 

future work is required to identify which of the 9000 observations in the Chlorine with 

Inorganic compounds variable are associated with the disease incidence and what are their 

common characteristics. Lastly, the population density was also found to be significant in our 

study, again in agreement with some articles in the literature. However, this should not be 

accepted as a finding itself since population density alone cannot influence the disease. 

 

This is a proxy finding for the true underlying effect. Urban areas are frequently more polluted 

or may have a higher risk of infection, limited sun exposure and other differences compared to 

rural areas. This is possibly similar to the protective effect we see for the group of pesticides 

on PIBD as shown in Figure 75. It is unlikely that high level of pesticides in an area will reduce 

the rate of PIBD but it is possible that that low levels of pesticides are linked to urban settings 

and specific kinds of pollution that are also found in urban settings. Perhaps this may also be 

related to lifestyle choices that can vary between urban and rural settings. These are examples 

of proxy predictors and results that we need to consider before presenting a finding as 

significant. 

 

Phenotype ratio findings 

 

As previously reported in the literature, the ratio of CD to UC tends to decrease as we move 

from Western to the Eastern Europe (Goldiș et al., 2019; Khalif and Shapina, 2017). Again, in 

agreement with the literature, we have also identified this spatial trend in our data. Specifically, 
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we have observed a strong West-East reduction of the CD rate. Furthermore, we have also 

identified a less significant reduction from the North to the South. The patient-level analysis 

also returned two important factors that warrant further investigation, drinking water and 

having pets. The finding of pets contradicts the literature, as contact with animals, especially 

at a young age, seems to have a protective effect. However, there are no studies investigating 

specific types of pets, so we cannot exclude this as a possibility. Perhaps this might not be 

related to the pets but the type of food they consume or another indirectly linked to them 

predictor. The water source is essentially related to the water quality and therefore is not 

unexpected that the studies in different areas reported different results. In future research, in 

order to verify this finding from the Inception Cohort data, we should investigate whether this 

effect (bottled water protective for CD) is seen in patients from all participating countries or 

from specific countries only. 

 

8.2. Novelty of the study 
 

In terms of its design, this study can collect epidemiological information prospectively from 

hundreds of clinics in over 30 countries simultaneously, using the same methodology. This 

methodology is a vital and novel element, as we present here the most extensive study in scale 

in the field of PIBD epidemiology and reduce the heterogeneity that other studies might have, 

when combining data from different sources. Firstly, it is important to note that when 

combining information from different regions, various methods were used for data collection 

and analysis. Secondly, the observed differences might not reflect any underlying effects, but 

variations that were introduced from the methodological inconsistencies. To underline the 

importance of using harmonised methods, we can hypothesise a scenario where our methods 

introduce bias, such as underestimating the incidence of PIBD. Given the consistency of the 

methods used in our study, this bias is expected to be consistent across all regions. 

Consequently, the geostatistical analysis will remain unaffected, as it is based on the 

differences between the studied Nomenclature of Territorial Units for Statistics (NUTS3) areas 

instead of the actual values. Also, as we have seen from the literature review in the introduction 

and our results, the PIBD incidence is changing rapidly over time. This requires that the data 

collection from different regions occurs within a small-time margin; otherwise, any comparison 

will be invalid.  
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As mentioned, the coverage and scale of this study also makes it novel in the field of PIBD. As 

our network keeps expanding, we have exceeded 30 million general paediatric person-years 

and 10,000 PIBD patients-years in coverage in Europe alone. The data collected from 23 

European countries also provide significant geostatistical variation to capture the 

environmental effects on the disease incidence and prevalence. Therefore, this study can 

produce results that would traditionally require several studies combined with a systematic 

review and meta-analysis. 

 

The prospective nature of our study also makes it a unique project that can provide information 

on such a large PIBD population prospectively and with frequent updates. This is the only study 

in the field of IBD that is able to report the incidence and prevalence rates for each participating 

country annually, with the coverage in some countries such as the UK, Israel and the 

Netherlands reaching 100%. This makes our study very sensitive in detecting phenomena in an 

almost real-time manner, making it a novel characteristic, considering that alternative research 

methods would take require several years to detect such events. The suspected impact of 

COVID-19 on the incidence is an indicator of this potential.  

 

Regarding the methods, this was also the first study in the field of PIBD, and generally IBD, 

where the statistical analysis incorporated and adjusted for the effects of clustering and 

autocorrelation (that emerge from the spatial and temporal nature of our data). In total, we were 

able to identify three studies in IBD that have considered the autocorrelation, but these studies 

focused on mapping and not the analysis of the disease risk factors. Therefore, this is the first 

project in IBD employing such methods, including linear mixed effects models and especially 

spatial regression analysis. 

 

One of the main methodological novelties of this project lies in the management of multiple 

spatial datasets using different spatial support and formats. In this study, we have collected the 

incidence data using the NUTS3 that had misalignment issues due to nomenclature updates 

over different years. The pollution and environmental datasets were also misaligned as they 

were available in various formats, primarily in point data using several geodetic systems and 

random locations. Using conversions of geodetic reference systems, population and polygon 

centroids, interpolation, aggregation, and other methods, we overcame these misalignment 

challenges. After rigorous testing and several simulations, we have determined that Kriging 
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interpolation algorithms and EBK in particular, can be powerful tools depending on the extent 

and type of autocorrelation of the target, while IDW with small cell size and appropriate 

parameter settings that reflect the exposure mechanism can perform exceptionally well for 

certain pollutants. 

 

Finally, we can also make novelty remarks regarding the findings of our study. Upon 

investigating the factors and covariates that may drive the incidence of the disease, we 

identified specific novel associations. Surprisingly, a steep rise in disease incidence was 

detected from 2020 onwards, a fact that has yet to be reported by other studies. In addition, 

chlorine and inorganic compounds pollution is also a novel finding regarding the chemicals 

and environmental exposures. Lastly, from the list of lifestyle risk factors, the water source and 

rodents as pets were also novel associations. However, our data do not provide evidence that 

they are risk factors for IBD; rather that they may affect one of the two disease phenotypes or 

both, but in a disproportional manner.  

 

8.3. Limitations of this research 
 

In clinical research, it is important to acknowledge and address the limitations of the study 

design, data collection and analysis, as these limitations can affect the interpretation and 

generalisability of the findings and influence the conclusions drawn. Therefore, a thorough 

discussion of the limitations is a crucial component of our project. Identifying and addressing 

the limitations of our study is also an essential step in designing future research where these 

limitations are minimised. 

 

The first limitation is related to the Safety Registry, where the submitted data cannot be 

validated against their source. For instance, in the Inception Cohort, being a clinical study, 

when we suspect possible discrepancies in the entered data, we can crosscheck the submitted 

information against the clinical records of the patient after reaching out to the recruitment sites. 

However, in the safety registry, the information from the participating PIBD experts cannot be 

validated in a similar manner as frequently. In some cases, this has been possible, but it is not 

always expected as the safety registry relies on voluntary participation. As discussed in the 

methods and results chapters, we have used alternative approaches based on metrics focusing 

on outliers and the consistency across and within different centres to address these issues. 
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However, although this approach is likely to identify mistakes, it may also be biased against 

extreme results and sudden shifts over time that may seem inaccurate when applying our 

methodology. We have used a stringent criterion to remove observations with outlying metrics 

results to minimise this risk. Another disadvantage of these metrics is that they can only detect 

extreme reports and therefore, may overlook inaccurate reports that randomly fall closer to the 

expected values. Such a discrepancy can only be detected in centres that reported over multiple 

years, giving us the necessary information to verify the consistency of their reports.  

 

In addition to the difficulties encountered in verifying the results reported in the safety registry, 

another significant limitation identified is the inconsistencies in the catchment areas reported. 

The findings highlighted countries such as Poland, Austria, and Finland exhibiting notably high 

results that appeared implausible. Despite this, the validation metrics indicated that the figures 

submitted were consistent across different years and in relation to both the incidence-

prevalence ratio and the CD-UC/IBDU ratio. This suggests that the inaccuracies in the 

incidence and prevalence rates reported by these countries are likely attributed to issues with 

defining the catchment areas accurately, rather than inaccuracies in the number of new and 

existing PIBD cases managed by the reporting centres. The challenge lies in the reporting 

centres’ ability to precisely identify all the regions their patients originate from, leading to an 

underestimation of the clinic's coverage. As a result, a smaller denominator of person-years is 

applied to these centres, thereby artificially elevating the estimated incidence and prevalence 

rates. In future work, to address this limitation, we might consider obtaining patient-level data 

directly from the reporting centres to accurately define the catchment areas ourselves. 

Alternatively, we could add fields to the electronic reporting forms that allow reporting experts 

to indicate their confidence level regarding their defined catchment areas. This approach would 

enable us to filter the data, focusing only on areas where the confidence in the denominator 

data is high, thereby enhancing the accuracy of our incidence and prevalence estimates. 

 

Another limitation related to the reporting is the overlap between different reporting centres. 

As shown in Table 13, the overlap is limited in our study but nevertheless present. In these 

cases, we have assumed that the coverage is equally split between the centres claiming the 

same NUTS3 regions. However, we are in no position to know whether this is true, since it is 

likely for one centre to cover a larger part of the overlapped area. When this occurs, it will 

inflate the incidence for one centre and decrease it for the other one, as the denominator of that 
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region should not be split as 1:1 but in an imbalanced manner. In practice, considering that the 

reporting units are covering multiple regions, this has a small impact on the incidence estimate 

(~5%). 

 

We have also identified limitations in our geostatistical analysis, with the size of the mapped 

NUTS3 areas being one of them. Using the NUTS3 database was essentially our only option 

since it provided a platform of harmonised territorial units that we used for data collection, 

disease mapping and calculation of the disease incidence. The demographics, several predictors 

and denominator population were available for all countries by Eurostat on the NUTS3 level. 

The population determines the number of these territories and not the area size, meaning that 

low population density regions have a small number of geographically large NUTS3 territories. 

In practice, this means that in areas of low population density, we may overestimate the 

population exposure to certain risk factors. This is because these areas contain large NUTS3 

territories that are more likely to include locations with high pollution due to their size. Given 

their size, it is also possible that the population in these NUTS3 territories is far from the point 

of the location, leading to the overestimation of the exposure. In addition, in the rare cases 

where a large NUTS3 territory contains two or more population clusters that are far apart, it is 

challenging to produce an objective estimate for the average exposure of the total population 

in that area. This limitation falls under the general limitation of using aggregate data, a common 

practice in epidemiology. Patient-level data that we could use for the geostatistical analysis of 

the incidence would contribute to a significantly higher statistical power, as we discuss in the 

following section. 

 

An additional limitation is related to the assumption that newly diagnosed patients have not 

relocated outside the areas covered by each reporting unit. Assuming that for a specific 

exposure to influence the disease incidence, a certain amount of time, the accuracy of our 

results will be limited by a large number of patients who have relocated recently outside the 

regions covered by the reported clinic. Although we cannot control or adjust our data for this 

effect, studying the paediatric population exclusively reduces this effect significantly as this 

population relocates less frequently. 

 

Regarding the geostatistical analysis, it must be acknowledged that there is a potential bias in 

reporting the environmental factors, specifically the pollutants. Suppose any specific 
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contaminants are underreported in areas where lower PIBD incidence has been detected. In that 

case, a false association between the areas of low incidence and low pollution levels will 

emerge. This issue arises from the assumption that areas with no emissions and reported 

pollutant releases are low-pollution areas. However, it should also be noted that no evidence 

suggests that the European Environment Agency dataset is incomplete. A similar bias may also 

be present in the phenotype analysis, which uses questionnaire responses from the inception 

cohort patients. It is possible that for risk factors such as smoking and vaping, not all paediatric 

participants will be willing to share that kind of information with the site staff during the data 

collection. Therefore, this very likely to skew the relevant data making this risk factor 

potentially invalid for the analysis. 

 

8.4. Translational potential and future research 
 

The future goals in this work are related to both the Safety Registry and Inception Cohort 

studies. Although several centres in their Inception Cohort have reached their targets and 

stopped recruiting, most patients have many years of follow-up available and a proportion of 

them are still followed-up. Therefore, we would like to process additional data from these 

patients and investigate whether their geographical location, lifestyle choices and 

environmental exposures have affected the development of their disease and, subsequently, 

their quality of life. During my PhD, I have studied the phenotype ratio using this patient-level 

dataset, but future research must be expanded to the numerous clinical outcomes available from 

the Inception Cohort. Another significant finding that emerged from the Inception Cohort data 

which warrants further investigation is the sudden increase of CD in males older than 10. Based 

on the follow-up data of the Inception Cohort it may be possible identify additional explanatory 

factors, possibly associated to the patients’ sex that explain this increase. 

 

Regarding the Safety Registry, the immediate goal is to proceed with an additional collection 

round for 2023-2024 period and validate our findings prospectively. This would require setting 

specific hypotheses based on our current findings to confirm the significant predictors of PIBD 

incidence. This will include the four pollutants discussed in the previous paragraphs, solar 

exposure, population density and the potential effects of the COVID-19 pandemic. If the 

expansion of the Safety Registry proves to be too challenging, as an alternative, we will 

consider expanding in targeted areas only, where according to our results and subsequent 
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modelling, are expected to present the highest or lowest PIBD incidence in Europe. Continuing 

the data collection and ensuring that the database remains operational is a crucial task itself, as 

this would provide insights on the incidence trends almost in real-time, as discussed in the 

previous paragraphs. This may be of great value in detecting important factors that influence 

the incidence in different regions over time. The disease prevalence data collection is also 

important as it supports the calculations of the incidence of rare and severe complications in 

PIBD, which is the primary function of the Safety Registry. This is, however, out of scope for 

this project. Another future goal is to expand the Safety Registry further and increase the 

number of active participants. Adding more regions in the geostatistical analysis will increase 

the statistical power of our analysis and may subsequently help us identify additional important 

factors. Finally, two important additional future goals, related to the data and methodology of 

the Safety Registry, are the collection of patient-level data and the expansion of the predictor 

data over different time periods. The latter would allow us to also incorporate the “lag effect” 

from the time of exposure until the time of disease presentation. It will also allow us to quantify 

the exposure needed before the development of the disease, assuming that this fits the 

underlying disease mechanism (i.e., three years or longer of exposure to high PM10 increases 

the incidence by 15%). Although increasing the temporal granularity is important, an increase 

of the spatial granularity with the use of patient-level data would be the single most important 

improvement in the accuracy and precision of the study. In our last data collection round, most 

participants responded positively to our request for patient-level data with location information 

in the future. Such a task would be challenging as it would require local ethics approvals, but 

it would also provide high-detail environmental exposure data for thousands of patients across 

several European regions. This would eliminate a lot of the uncertainty related to the use of 

aggregate data and further increase the validity of our results. 

 

Successful epidemiological and clinical projects in general, should have a translational 

potential. This is the potential for our research findings to be translated into practical 

applications that can improve patient outcomes and inform clinical practice. The Safety 

Registry has already supported our work that may influence the clinical practice related to the 

management and prevention of the rare complications in PIBD. In the context of my PhD, the 

translational potential may refer to the application of research findings to improve the 

diagnosis, treatment, and management of PIBD in clinical settings. For example, findings on 

the environmental and lifestyle factors associated with PIBD incidence and prevalence may 



 

Page | 212  

 

 

 

inform targeted interventions aimed at reducing exposure to these factors in affected 

populations. Similarly, geostatistical analysis of PIBD incidence and prevalence may help 

identify high-risk regions, inform the allocation of healthcare resources, and develop targeted 

interventions in these areas. Most importantly, identifying the risk factors of PIBD, a disease 

with a major environmental component, can provide targets for basic research to help us 

understand the underlying mechanism of IBD. This would ultimately improve patient outcomes 

and inform clinical decision-making in preventing, diagnosing, and treating PIBD. 
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Appendix 
 

The PIBD safety registry relies on a network of 150+ currently active participants with 

specialisation in paediatric Gastroenterology. We have established an online registry of rare 

and serious complications of paediatric IBD by sending a monthly E-card to experts like 

yourself and collating all responses to a dedicated database. 

 

Safety registry additional information 

 

Appendix Figure 1 

 

A world map featuring the locations of all reporting PIBD experts illustrates the expansive 

reach of our safety registry. Initially, the registry aimed to gather data on the incidence of rare 

and severe complications associated with PIBD. To estimate this incidence, it was necessary 

to collect information on the number of patients each PIBD expert was managing at the time 

they completed the electronic surveys; this figure served as the denominator for calculating the 

incidence of these rare complications. Building upon this objective, we extended our data 

collection to include information about the catchment areas covered by the PIBD experts. This 

additional data helps us estimate the total population under 18 years of age that each reporting 

centre is responsible for, which in turn serves as the denominator for calculating both the 

incidence and prevalence of PIBD. 

 

Within the registry, whenever a complication is reported, we also gather follow-up data that 

aids in identifying significant risk factors and potentially refining the management of these 

cases. Although we have documented 150 complications to date, our goal is to collect even 

more comprehensive data, enabling us to conduct detailed analyses of each complication type. 
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Inception cohort protocol synopsis 

 

 

PHASE: IV WITH NO DIRECT BENEFIT 

DESCRIPTION: European prospective inception cohort and 

safety registry: 

• a registry will be specifically designed to 

analyse effectiveness and safety signals of 

current treatment strategies in routine 

practice and to correlate them to individual 

risk factors 

• in combination with a safety registry, 

incidence and prevalence of severe and rare 

complications of the disease will be 

estimated 

• this will ultimately lead to improvement of 
treatment algorithms and paediatric IBD 
patient outcomes 

STUDY 
POPULATION : 

Children with newly diagnosed IBD (age 0-17 years). 

Patients included in the inception cohort will be 

followed up until 20 years from inclusion. To identify 

patients with rare and serious complications of IBD the 

safety registry will prospectively identify these 

conditions through both the inception cohort and the 

wider European networks of paediatric 

gastroenterologists (PIBD-NET and PEDDCReN). 

INCLUSION: Inception cohort: 
− New patients, 0-17 years of age, with a 

confirmed diagnosis of IBD (Crohn's 
disease, Ulcerative colitis, IBD- 
Unclassified) within 2 months of inclusion 
based on history, physical examination, 
laboratory, endoscopic, radiological and 
histological features according to the 
revised Porto criteria 

− Informed consent of patient (if indicated) 
and parents has been obtained 

− Concerning the patients of whom 
biological specimens will be included: 
patients should nor have started IBD 
treatment yet 

Safety registry: 
Any child with IBD <19 years old with complications 

as detailed in the safety monitoring list (or future 

updates of the list of conditions) can be reported. For 

more detailed phenotyping including patient 

identifiable information and for collection and analysis 

of biological specimens such as DNA consent will be 

required. 
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EXCLUSION − Inability to read and understand 
the patient and family information 
sheets 

− Informed consent of patient or parents has 
not been obtained when required 

− Patients on similar treatments as for IBD 
but for other conditions, or known with 
conditions directly affecting the IBD 

 

 

PRIMARY 
OBJECTIVE 

The primary objective of the PIBD-NET inception 

cohort is to search for predictive factors for outcome, 

specific serious adverse events (SAEs) and for 

predictors factors for therapy outcomes. 

SECONDARY 
OBJECTIVES 

The secondary objective is the identification of rare 

complications of disease or treatment in paediatric 

IBD patients. This will be performed by: 

− Establishment a pan-European monitoring 
system for identifying patients with rare and 
serious complications of PIBD and its 
treatments 

− Identifying and characterising patient's 
clinical phenotype with these complications 
with the aim of being able to better predict 
and therefore prevent the complications 

− looking for immunological and/or genetic 
predictors/risk factors of these 
complications. 
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STUDY DESIGN: 
The PIBD-Net inception cohort and safety registry 
(WP7) is an observational study supported by the 
European H2020 program. 

Inception cohort: 
An observational registry including a subcohort of 
patients, in which biological specimen will be 
collected, will be set up and collection of safety 
signaling on a wide scale will be performed. 
A robust and highly secured prospective 
multicenter long term database tool for PIBD will 
be created. 
A total of 1000 patients Children (age 0-18 years) 
with new-onset IBD will be included during a 3-year 
period. Per year 200 CD patients and 100 UC 
patients will be included. Moreover, within these 
three years, in specific centers able to perform 
these immunological techniques, 150 children 
(age 0-17 years), with new- onset IBD will be 
included for collection of biological specimens. 
Patients will be closely monitored for disease 
progression during preferably twenty years of 
follow up to examine effectiveness, identify 
treatment or disease related risks as well as 
complications related to disease progression. It 
will also allow to collect longitudinal data on 
psychosocial outcomes and health-related costs. 

Safety registry: 
A pan-European safety registry of rare 
complications of drugs and the disease will be 
created. Investigators will monthly be requested to 
identify patients with rare and serious 
complications according to the safety monitoring 
list. 

Nature and extent of the burden and risks 
associated with participation, benefit and 
group relatedness: Both the inception cohort 
study and the safety registry do not bring any risks 
for the patients. The burden is considered minimal. 
Since disease phenotype, course of the disease 
and benefits and risks of treatment differ between 
children and adults, this study cannot be performed 
in adult patients. 

RECRUITEMENT 36 Months 

STUDY 
DURATION 

Total Duration of the study: 4 years 
20 years of follow up 
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Environmental questionnaire examples 

 

Appendix Figure 2 Inception cohort environmental questionnaire samples 
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