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Abstract
1.	 Ash	Dieback	 (ADB)	has	been	present	 in	 the	UK	since	2012	and	 is	expected	to	
kill	up	to	80%	of	UK	ash	trees.	Detecting	and	quantifying	the	extent	of	ADB	in	
individual	tree	crowns	(ITCs),	which	is	crucial	to	understanding	resilience	and	re-
sistance, currently relies on visual assessments which are impractical over large 
scales or at high frequency. The improved imaging capabilities and declining cost 
of	consumer	UAVs,	together	with	new	remote	sensing	methods	such	as	structure	
from	motion	photogrammetry	 (SfM)	 offers	 potential	 to	 quantify	 the	 fine-	scale	
structural	and	spectral	metrics	of	ITCs	that	are	indicative	of	ADB,	rapidly,	and	at	
low- cost.

2.	 We	extract	high-	resolution	3D	RGB	point	clouds	derived	from	SfM	of	canopy	ash	
trees taken monthly throughout the growing season at Marden Park, Surrey, UK, 
a	woodland	impacted	by	ADB.	We	segment	ITCs,	extract	green	chromatic	coordi-
nate	(gcc),	and	test	the	relationship	with	visual	assessments	of	crown	health.	Next,	
we quantify spatial patterning of dieback within ITCs by testing the relationship 
between internal variation of gcc and path length, a measure of the distance from 
foliage to trunk, for small clusters of foliage.

3. We find gcc correlates with visual assessments of crown health throughout the 
growing season, but the strongest relationships are in measurements taken after 
peak	greenness,	when	the	effects	of	ADB	on	foliage	are	likely	to	be	most	preva-
lent. We also find a negative relationship between gcc and path length in infected 
trees,	indicating	foliage	loss	is	more	severe	at	crown	extremities.

4.	 We	demonstrate	a	new	method	for	identifying	ADB	at	scale	using	a	consumer-	
grade	 3D	 RGB	 UAV	 system	 and	 suggest	 this	 approach	 could	 be	 adopted	 for	
widespread rapid monitoring. We recommend the optimum time of year for data 
acquisition,	which	we	find	to	be	an	important	factor	for	detecting	ADB.	Although	
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1  |  INTRODUC TION

Ash	 Dieback	 (ADB)	 is	 caused	 by	 the	 invasive	 fungal	 pathogen	
Hymenoscyphus fraxineus and has been present in the UK since 2012. 
It	is	expected	to	kill	up	to	80%	of	UK	ash	trees	(Coker	et	al.,	2019),	
impacting the UK economy negatively by billions of pounds through 
the	 loss	 of	 ecosystem	 services	 (Hill	 et	 al.,	2019).	 In	 any	 epidemic,	
identifying infection is a crucial first step for monitoring and re-
sponse	(Chan	et	al.,	2021; Liebhold et al., 2017).	Currently,	the	main	
method	for	identifying	the	presence	of	ADB	and	the	severity	of	its	
impact are ground- based surveys of crown cover for large trees, 
or	 visual	 assessments	 of	 branch	 damage	 for	 smaller	 trees	 (Pliûra	
et al., 2011; Stocks et al., 2017).	These	visual	assessments	are	time	
consuming and ineffective over large scales, leading to insufficient 
observations for effective monitoring. Large- scale classification of 
ADB	 is	of	particular	 importance	 as	 a	degree	of	 genetic	 resistance	
has been shown in a small proportion of individuals. This has led 
to interest in identification of healthy and hence potentially resis-
tant individuals for restoration but a fast and effective method for 
large- scale phenotyping of intermediate damage is currently lacking 
(Villari	et	al.,	2018).

Measurement from aerial platforms offers a high- resolution 
large- scale alternative to ground sampling. New, low- cost remote 
sensing methods utilising sensors mounted on consumer- grade 
uncrewed	 aerial	 vehicles	 (UAVs)	 offer	 a	 cheaper	 alternative	 to	
ground- based surveys for monitoring the effects of disease and 
disturbance	 (Dandois	 &	 Ellis,	 2013; Danson et al., 2018; Stone & 
Mohammed, 2017).	 UAV	 structure	 from	motion	 (SfM)—3D	 recon-
structions of objects created from thousands of overlapping im-
ages—provide	point-	level	red-	green-	blue	 (RGB)	colour	 information,	
linking tree and crown structural data with spectral data for the cal-
culation	of	vegetation	 indices	 (Vis;	Kerkech	et	al.,	2018; Shendryk 
et al., 2016).	 Previous	 work	 has	 shown	 greenness	 vegetation	 in-
dices	 calculated	 from	 RGB	 data	 correlate	 with	 crown	 health	 (e.g.	
green chromatic coordinate, gcc,	 and	 excess	 greenness,	 ExG;	 Reid	
et al., 2016),	 indicating	an	opportunity	to	measure	ADB	using	low-	
cost RGB sensors over large spatial and temporal scales.

The lifecycle of causal agent, H. fraxineus has a temporal effect 
on crown dynamics that could impact the effectiveness of crown 
health	monitoring	(Stone	&	Mohammed,	2017).	H. fraxineus is het-
erothallic,	 reproducing	 sexually	 once	 a	 year	within	 the	 previous	
seasons' leaf litter, displaying a seasonal life cycle played out en-
tirely on F. excelsior	leaves	(Gross	et	al.,	2012).	In	the	spring,	when	
new	 leaves	 appear,	 they	 grow	 unexposed	 to	H. fraxineus, which 

has not yet released spores, and appear asymptomatic of the dis-
ease.	Apothecia	are	 formed	during	 the	wet	 summer	months	and	
release ascospores, infecting the new leaf material in the canopy 
(Timmermann	et	al.,	2011).	Ascospores	are	deposited	on	the	leaf	
surface and penetrate the leaf cuticle via appressoria leading to le-
sions	on	the	leaves	approximately	2 weeks	after	infection,	and	ul-
timately,	severe	crown	defoliation	(Cleary	et	al.,	2013),	resulting	in	
changes to the overall crown “greenness” that can be clearly iden-
tified visually and with RGB sensors. Detection with RGB sensors 
may be most effective when leaves have become infected, wilted, 
and shed, which occurs later in the growing season. Eventually, 
severely affected trees develop epicormic growth, the rapid ap-
pearance	of	small	shoots,	on	their	branches	and	lower	trunk	(Gross	
et al., 2012).	 Although	 the	 effectiveness	 of	 surveillance	 timings	
has	been	explored	more	generally,	 (e.g.	Wardlaw	et	al.,	2008),	to	
date there has been no investigation into the most suitable period 
within	the	growing	season	for	ADB	detection	and	monitoring	from	
remote sensing data in the UK.

Although	 RGB-	derived	 VIs	 have	 been	 shown	 to	 be	 a	 reliable	
indicator	 of	 stand	 health,	 VIs	 alone	 cannot	 identify	 the	 causes	 of	
damage	to	the	canopy	(Reid	et	al.,	2016),	necessitating	additional	in-
terpretation. Numerous attempts have been made to identify forest 
disturbance types by analysing spectral signatures in airborne and 
spaceborne	hyperspectral	imagery	(Stahl	et	al.,	2023).	Hyperspectral	
data analysis is indeed a powerful tool, proven to be invaluable for 
plant	 phenology	 and	 health	 monitoring	 (e.g.	 Gamon	 et	 al.,	 2016; 
Seyednasrollah et al., 2019; Wang et al., 2023).	However,	the	coarse	
scale of commonly available satellite data makes individual tree 
crown	 identification	 impossible	 (Chan	et	al.,	2021),	whilst	 the	high	
cost of acquiring airborne hyperspectral imagery limits monitor-
ing	 (Dalponte	et	al.,	2012).	Recent	advances	 in	high-	resolution	3D	
remote sensing provide new measurements of forest structure in 
detail	that	far	surpass	traditional	surveying	(Lines	et	al.,	2022)	and	
may reveal new insights that draw links between disturbance symp-
toms	and	causal	agents	 (Stone	&	Mohammed,	2017).	The	cause	of	
dieback could influence the spatial patterning of crown damage in 
individual	 trees.	For	example,	Stephenson	et	 al.	 (2018)	 found	 that	
drought-	induced	dieback	in	giant	sequoias	occurred	in	shoots	prox-
imal to the main stem, in a process caused by drought- triggered 
senescence preferentially retaining younger shoots. The structural 
response	 to	 ADB	may	 be	 functionally	 different,	 as	 symptoms	 ini-
tially	 occur	 in	 the	 younger	 crown	 regions	 (Bengtsson	et	 al.,	2014; 
Skovsgaard et al., 2010),	which	may	lead	to	a	characteristic	spatial	
patterning in crown responses identifiable from aerial monitoring. 

here	 applied	 to	ADB,	 this	 framework	 is	 applicable	 to	 a	multitude	of	drivers	of	
crown dieback, presenting a method for identifying spectral- structural relation-
ships which may be characteristic of disturbance type.

K E Y W O R D S
disease	detection	and	monitoring,	RGB,	SfM,	spatial	patterning,	UAV
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Initial responses to H. fraxineus at the leaf- level include develop-
ment of necrotic lesions on petioles and young shoots, rachises 
and	leaflet	veins,	followed	by	leaf	wilting	and	shedding	(Kräutler	&	
Kirisits, 2012),	 leading	to	crown	dieback,	which	 is	accompanied	by	
epicormic growth.

Multiple studies have combined spectral and structural data in 
an attempt to improve disease classification accuracy by combining 
airborne	multi-		or	hyper-	spectral	data	with	LiDAR	data	(e.g.	Kantola	
et al., 2010; Shendryk et al., 2016).	However,	the	high	cost	of	col-
lecting airborne data combined with the computational difficulties 
of co- registering multi- sensor measurements limit their widespread 
utility	 (Dalponte	 et	 al.,	2012).	 Using	 RGB	 imagery	with	 SfM	 from	
UAVs,	 spectral	 and	 structural	 data	 can	 be	 collected	 concurrently	
at	ultra-	high	resolution	and	relatively	low	cost	(Cessna	et	al.,	2021; 
Stone & Mohammed, 2017),	 and	 the	 recent	 rapid	 increase	 in	 ac-
cessibility	of	UAV	 technology	now	make	 them	a	practical	 tool	 for	
widespread	 use.	 Although	multispectral	 LiDAR	 has	 been	 available	
for	some	time	 (Hopkinson	et	al.,	2016),	 it	has	not	yet	been	widely	
adopted	by	the	community,	due	to	the	complexity	and	cost.	The	ad-
ditional	RGB	data	in	SfM,	unavailable	from	conventional	LiDAR	data	
alone, has been shown to improve species classification, phenolog-
ical	stage	detection,	structure,	and	forest	health	monitoring	in	UAV	
data	 (Alonzo	et	al.,	2020),	 although	whether	accuracy	 is	compara-
ble	 to	 hyperspectral	 imagery	 and	 LiDAR	 fusion	 is	 unclear	 (Alonzo	
et al., 2020; Cessna et al., 2021).	Nevertheless,	SfM	models	gener-
ated	 from	high	 forward	overlap	 (>90%)	 imagery	have	been	shown	
to produce photogrammetric models capable of penetrating to the 
forest	 floor	 (Dandois	 et	 al.,	2015; Frey et al., 2018),	 and	have	 the	
potential to map fine- scale structural attributes of individual tree 
crowns	(ITCs)	at	higher	spatial	resolution	than	airborne	systems.	For	
example,	 using	 high-	resolution	 structural	 and	 spectral	 data	 from	
UAV-	derived	SfM,	Cessna	et	 al.	 (2021)	were	able	 to	detect	 crown	
defoliation by assessing the vertical gradient of greenness through 
the canopy.

In	 this	 study,	we	 use	UAV-	derived	 RGB	 SfM	 data	 to	 calculate	
multi- temporal whole- crown and 3D cluster- based greenness in 120 
canopy	ash	trees	at	Marden	Park,	Surrey:	A	Woodland	Trust-	owned	
mixed	broadleaved	woodland	impacted	by	ADB.	We	compare	expert	
visual	 ground	 assessments	 of	 crown	health	with	 our	UAV-	derived	
metrics and answer the following questions:

1.	 Can	 we	 accurately	 measure	 key	 2D	 (tree	 height,	 crown	 area	
and	maximum	 crown	 diameter)	 and	 3D	 (convex	 crown	 volume)	
structural metrics using low- cost consumer uncrewed aerial 
vehicle imaging and structure from motion photogrammetry.

2. Can we accurately detect ash dieback in individual tree crowns 
using low- cost consumer uncrewed aerial vehicle imaging and 
SfM photogrammetry?

3.	 At	what	time	in	the	growing	season	is	ash	dieback	detection	from	
uncrewed aerial vehicle data most effective?

4. Does ash dieback produce specific spatial patterns of greenness 
within individual tree crowns identifiable from uncrewed aerial 
vehicle, red- green- blue, structure from motion data?

2  |  MATERIAL S AND METHODS

2.1  |  Study site and expert assessment

Marden	 Park	 is	 a	 67-	ha	 ancient	 broadleaved	 woodland,	 located	
on	 the	North	 Downs	 in	 East	 Surrey,	 UK.	 The	 site	 is	 an	 Area	 of	
Outstanding	Natural	Beauty	(AONB)	and	a	Site	of	Special	Scientific	
Interest	(SSSI),	situated	on	a	chalk	plateau	~244 m.a.s.l.	We	estab-
lished	a	plot	of	size	0.6 ha	containing	120	canopy	ash	(F. excelsior)	
trees,	 of	 which	 47	 were	 visually	 assessed	 for	 dieback	 severity	
using	a	scoring	of	0%–100%	remaining	live	crown	on	18–19	August	
2021	(Metheringham	et	al.,	2022).	The	plot	has	a	crown	area	index	
(total	crown	area	divided	by	ground	area)	of	0.3,	as	calculated	from	
UAV	SfM	data	collected	in	May	2021	(detailed	description	of	can-
opy and understorey density provided in Supporting Information, 
Section SI3).	 The	 area	 is	 secondary	 broadleaf	 woodland,	 ap-
proximately	60 years	old	and	 is	 approximately	80%	ash	 (Fraxinus 
excelsior)	 dominant	 with	 beech	 (Fagus sylvatica)	 the	 secondary	
dominant species. Site access and permission to work was granted 
by the Woodland Trust.

2.2  |  UAV data collection and pre- processing

2.2.1  |  SfM	collection	and	pre-	processing

We collected images in September–October 2020 and each month 
May–August	2021	using	a	DJI	Mavic	Mini	UAV.	A	complete	growing	
season	was	captured	over	two	successive	calendar	years	(sampling	
was	 restricted	 by	 regulations	 related	 to	 control	 of	Covid-	19).	The	
UAV	has	a	take-	off	weight	of	249 g,	maximum	flight	time	of	30 mins,	
maximum	wind	 resistance	of	8 ms−1 and it is equipped with a the 
standard DJI Mini 12 MP RGB sensor with 83° field of view and ap-
erture	f/2.8.	Flights	were	carried	out	at	two	altitudes	(50 m	(ground	
sample	 distance	 (GSD):	 1.78 cm/2.17 cm	 nadir/oblique),	 and	 70 m	
(GSD:	2.49 cm/	3.04 cm	nadir/oblique)	above	take-	off	location,	which	
was	consistent	for	all	flights)	and	two	camera	angles	(nadir	flights	at	
−90°	referenced	to	the	horizon,	and	oblique	flights	at	−55°	degrees	
referenced	to	the	horizon).	Combining	flight	altitudes	provides	the	
higher ground sampling resolution of low altitude with the wider 
field	of	view	of	high	altitude	 (Roşca	et	al.,	2018),	while	combining	
nadir	with	high	oblique	angle	 imagery	(20–35°	off	nadir)	 increases	
point	 cloud	 resolution	and	accuracy	 (Nesbit	&	Hugenholtz,	2019).	
We captured images with a front overlap of 95% and side overlap 
of	80%	over	an	area	3.2 ha	centred	on	the	0.6 ha	study	plot	in	order	
to	avoid	edge	effects	distorting	reconstruction	(Mohan	et	al.,	2021).	
Consumer sensors have multiple parameters for image acquisition 
including focal length, shutter speed, and white balance; the ef-
fects of these parameters on image acquisition are interdependent 
and dependent on individual scene lighting conditions and camera 
angle, and, in the case of focal length, altitude and distance from 
canopy	(Frey	et	al.,	2018).	To	minimise	potential	differences	caused	
by maintaining parameters in images acquired across multiple flight 
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altitudes, camera viewing angles, sky conditions and seasonality, we 
set	these	camera	parameters	to	‘auto’	(Dandois	et	al.,	2017).	Flight	
paths were programmed using the automatic flight generation soft-
ware dronelink	(version	3.3.1)	and	were	consistent	for	all	flights.	We	
placed	nine	 checkerboard	ground	 control	 points	 (GCPs)	 in	 canopy	
gaps around the perimeter and in the centre of the plot, located 
to capture topographic variation in the X, Y, Z planes and designed 
to	be	clearly	visible	from	the	UAV	imagery,	for	SfM	point	cloud	re-
construction and co- registration of SfM and TLS point clouds. We 
recorded the precise location of their centres using a Leica Total 
Station	 in	 an	 arbitrary	 local	 cartesian	 coordinate	 system	 (m)	 and	
marked the location of each target with a wooden stake so the same 
location could be used in each data acquisition campaign. We re-
moved	UAV-	GPS	location	stamps	from	individual	images,	using	the	
Total Station measurement GCP locations for increased accuracy. 
We constructed SfM point clouds using Agisoft Metashape	(version	
1.7.4),	manually	 removing	 images	with	visible	 blur	 before	 aligning	
with ‘high’ accuracy, disabling generic preselection and generat-
ing	 a	 dense	 cloud	with	 ‘high’	 quality	 (Roşca	 et	 al.,	2018; Tinkham 
&	Swayze,	2021).	We	validated	 the	 accuracy	 of	 SfM	point	 clouds	
using	 co-	registered	 high-	resolution	 terrestrial	 laser	 scanning	 (TLS)	
data	(see	Section	2.3.2).

Point cloud filtering is an essential step to remove erroneous 
points in SfM point clouds caused by image blur and poor cam-
era	 alignment,	 or	 vegetation	movement	 caused	by	wind	 (Tinkham	
&	Swayze,	2021).	We	used	a	statistical	outlier	removal	 (SOR)	filter	
and Euclidean cluster filter to remove sparse outliers and isolated 
clusters	 from	raw	SfM	point	clouds.	An	SOR	filter	 removes	points	
with a distance greater than a user- defined number of standard de-
viations	(SD = 1)	from	the	neighbourhood	average	(k = 100),	remov-
ing sparse outliers. To remove small, isolated clusters missed by the 
SOR algorithm, we applied a Euclidean clustering algorithm with a 
defined	minimum	distance	between	points	of	0.5 m,	 and	 removed	
any that contained less than 1000 points, ensuring no removal from 
within individual tree crowns. Combining an SOR filter and Euclidean 
cluster filter in this way, both noisy isolated points along with larger 
groups of noise that can emerge from SfM processing are removed. 
We	applied	these	filters	using	the	Point	Cloud	Library	(PCL;	Rusu	&	
Cousins, 2011).	Finally,	we	downsampled	point	clouds	to	a	point-	to-	
point	minimum	distance	(resolution)	of	0.05 m	to	aid	computational	
time, while retaining fine- scale structural features of the point cloud 
(Owen	et	al.,	2021).

2.2.2  |  TLS	collection	and	pre-	processing

To segment individual trees from our SfM data, we used a co- 
registered TLS dataset of semi- automatically delineated trees to 
provide the most accurate results. Many current segmentation 
algorithms rely on cylinder fitting, requiring accurate reconstruction 
of	the	lower	stem	(e.g.	Burt	et	al.,	2019; Krisanski et al., 2021),	and	
are	therefore	less	effective	with	above-	canopy	captured	UAV	data	
due	 to	occlusion	 from	the	upper	canopy	 (see	Section	2.2.3).	We	

also used the same TLS dataset in an intermediate step to validate 
2D	 and	 3D	 crown	 metrics	 extracted	 from	 individual	 tree	 point	
clouds.	We	scanned	the	0.6 ha	plot	at	Marden	Park	 in	May	2021	
using	a	Riegl	VZ400i	TLS	in	May	2021.	Scan	locations	were	placed	
on	 a	 grid,	 10 m	 apart,	 (Owen	 et	 al.,	 2021; Wilkes et al., 2017);	
however, some scan locations were spaced further due to forest 
understorey vegetation density, with 58 scan locations in total. For 
each	location,	scans	were	collected	in	the	upright	and	horizontal	
positions capturing the full field of view of the scanner, resulting 
in 116 scans. We filtered the co- registered scans using an SOR 
and Euclidean filter as described in Section 2.2.1, using PCL and 
downsampled	 to	 0.05 m,	 matching	 the	 resolution	 of	 SfM	 point	
clouds. We semi- automatically segmented individual tree crowns, 
including	 stems	within	 a	 10 m	 buffer	 around	 the	 plot,	 using	 the	
Forest	 Structural	Complexity	Tool	 (FSCT;	Krisanski	 et	 al.,	2021),	
and followed this by manual refinement of point clouds. Finally, we 
labelled	 trees	 for	which	we	had	visual	 assessments	 (n = 47;	 total	
delineated	trees = 120)	using	a	co-	registered	stem	map	generated	
using a Leica Total Station and co- registered the TLS and SfM 
point clouds using GCP locations captured by both sensors using a 
3D	rotation	matrix	in	CloudCompare	(cloud compa re. org).

2.2.3  |  Individual	tree	segmentation	in	SfM	
point clouds

We followed a point neighbourhood approach to segment individual 
tree point clouds from the SfM data using delineated TLS point 
clouds	(see	Section	2.2.2; Figure 1).	This	enables	an	effective	buffer	
to be created around the TLS data to account for variation due to 
movement	or	growth.	A	K-	dimensional	tree	was	built	around	the	SfM	
plot point cloud and queried for nearest neighbours based on the 
TLS	point	cloud	(Figure 1a)	within	a	user-	defined	maximum	distance	
(0.25 m).	Nearest	neighbour	points	were	 then	matched	 to	 the	 raw	
SfM	cloud	 (Figure 1b,c)	 and	 individual	 SfM	 trees	were	 segmented	
(Figure 1d).	 SfM	 segmentation	was	 carried	 out	 using	 the	Open3D 
Library	in	Python	(Zhou	et	al.,	2018).

2.3  |  Extracting metrics

2.3.1  |  Automated	crown	base	detection

To determine crown greenness, we needed to separate crown and 
stem points to avoid erroneously including the trunk. For each indi-
vidual SfM tree point cloud, we segmented the tree crown by verti-
cally	slicing	the	tree	(slice height = 0.05 m)	and	measuring	the	width	
of each slice. Iterating downwards from the top of the tree, we de-
fined the base of the crown to be at the height at which the mov-
ing average of previous slices decreases by a factor of at least 0.5 
and	segmented	the	crown	above	this	line	(Figure 2).	We	performed	
this automatic crown segmentation separately for each tree in each 
survey.

http://cloudcompare.org
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2.3.2  |  Validating	SfM-	derived	ITC	point	clouds

To quantify crown greenness and spatial patterning of greenness in in-
dividual	tree	crowns	measured	by	UAV-	derived	SfM,	we	first	validated	
that our SfM- derived ITC point clouds were accurate by comparing 
widely	used	2D	(tree	height,	crown	area	and	maximum	crown	diameter)	
and	3D	(convex	crown	volume)	structural	metrics	with	those	from	the	
TLS- derived point clouds. We calculated tree height in TLS data as the 
maximum	minus	 the	minimum	point	Z values, and in SfM data as the 
maximum	 point	Z	 value	minus	 an	 Environment	Agency	 2018	 LiDAR-	
derived DTM, available at https:// envir onment. data. gov. uk/ 	 (last	 ac-
cessed	on	15	August	2023).	We	used	a	0.05 m	resolution	digital	terrain	
model	(DTM)	to	provide	accurate	ground	height	measurements	increase	
accuracy of estimated tree height in the latter instance, as ground points 
are	limited	in	UAV-	derived	data	due	to	occlusion	from	the	top	of	canopy.	
In	both	instances,	we	calculated	crown	area	and	maximum	crown	diam-
eter using the R package concaveman	(Gombin	et	al.,	2020)	and	convex	
crown volume using the R package geometry	(Habel	et	al.,	2023).

2.3.3  |  Crown	greenness	and	spatial	patterning

We	used	green	chromatic	coordinate	(gcc)—the	normalised	green	channel	
values	of	 individual	tree	crown	points—gmean ∕

(

rmean + gmean + bmean

)

. 
gcc	is	a	commonly	used	metric	for	UAV	timeseries	and	phenology	analy-
sis	(Berra	et	al.,	2016; Larrinaga & Brotons, 2019; Park et al., 2019),	and	

has	been	shown	to	be	more	robust	than	other	RGB	VIs,	such	as	excess	
greenness	(ExG),	where	measurements	have	been	taken	under	a	range	
of	lighting	environments	(Sonnentag	et	al.,	2012),	as	is	the	case	in	this	
study.

To quantify spatial patterns of dieback in individual tree crowns 
in	 order	 to	 determine	 if	 they	 are	 indicative	 of	ADB,	we	 calculated	
the path length of each point in our SfM ITCs using the open- source 
Python module TLSeparation	(Vicari	et	al.,	2019).	The	path	length	is	
the distance of a point from the ground along the structure of the 
tree and is a measure of position within the trees' transport system. 
In	trees	under	stress,	we	would	expect	points	at	the	extremities,	for	
example	with	 longer	path	 lengths,	 to	experience	dieback	from	em-
bolism first. To calculate path length, the individual tree point cloud 
(crown	 and	 stem)	 is	 first	 represented	 as	 a	 network	 graph	 where	
points are nodes with connecting edges. Using the network graph, a 
shortest path analysis computes the distance from each node, along 
each	edge,	to	the	lowest	point	in	the	point	cloud	(Vicari	et	al.,	2019),	
assigning a shortest path length to each point in the point cloud. 
Finally, to reduce noise we clustered groups of points using a 
density-	based	spatial	clustering	of	applications	with	noise	(DBSCAN)	
algorithm,	which	is	effective	at	grouping	3D	data	(Giri	et	al.,	2021).	
For	each	cluster	(mean size = 8	points),	we	then	calculated	cluster	gcc 
as mean point gcc, and path length to centre of the cluster as the 
median within cluster point- level path length. Point density varied 
spatially,	but	with	an	approximate	average	of	1000 pts/m2 making a 
cluster	approximately	4 × 4 cm.

F I G U R E  1 Example	schematic	showing	the	individual	SfM	tree	segmentation	process.	(a)	A	semi-	automatically	segmented	TLS	tree	
(~14,000 pts/m2)	segmented	using	the	Forest	Structural	Complexity	Tool	(FSCT;	Krisanski	et	al.,	2021)	and	manual	cleaning;	(b)	a	section	of	
raw	SfM	point	cloud	(grey	points);	(c)	a	section	of	raw	SfM	point	cloud	(grey	points)	with	the	segmented	TLS	tree	(coloured	points)	overlaid.	
and	(d)	a	segmented	SfM	tree	point	cloud	(~1000 pts/m2)	extracted	within	a	maximum	point	distance	(0.25 m)	from	a	KD-	tree	built	from	the	
segmented	TLS	tree	point	cloud	using	the	Open3D	library	in	Python	(Zhou	et	al.,	2018).	TLS	tree	was	scanned	on	2020-	03-	15	and	SfM	tree	
was	scanned	on	2021-	07-	21,	demonstrating	the	ability	of	this	method	to	capture	the	same	tree	throughout	the	growing	season.

https://environment.data.gov.uk/
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2.4  |  Statistical analyses of whole- tree and within 
crown gcc

We tested the relationship between individual tree crown gcc values 
collected	 in	 each	month	 of	 the	 survey	 (September–October	 2020	
and	May–August	 2021)	 with	 visual	 assessments	 of	 crown	 health,	
surveyed	 during	 18–19	 August	 2021,	 using	 linear	 models	 in	 the	
open-	source	statistical	software	R	(R	Core	Team,	2023):

here gcctree is individual tree crown gcc, PLC is per cent live crown es-
timated from visual assessments and a and b are parameters to be fit. 
Visual	 assessments	of	 crown	health	 comprised	expert	estimation	of	
per	cent	 live	crown	within	the	projected	crown	area	 (Metheringham	
et al., 2022).

To understand the spatial patterns of dieback in infected tree 
crowns, we categorised trees into two groups based on a thresh-
old generated from the subset of trees that were visually assessed. 
From this group, we took the minimum gcc value of trees with >70%	

live crown and categorised all trees with gcctree values above this as 
“healthy”	 (n = 35),	with	 the	 remaining	 trees	 classified	 as	 “infected”	
(n = 85).	We	based	this	threshold	on	a	visual	inspection	of	the	distri-
bution	of	greenness	values	across	per	cent	 live	crown	(Figure SI1).	
Fitting models separately to these ‘infected’ and ‘healthy’ groups, 
we tested the relationship between cluster gcc and path length by 
including an intercept only random individual tree effect to account 
for variation in gcc between individuals:

here gcci is the mean cluster gcc of cluster i in individual j of infection 
category h, P is the median path length of cluster i, treeID is a random 
effect to account for gcc variation between individuals, and a and b are 
the parameters to be fit.

For Equation 1, we calculated the coefficient of determina-
tion	(R2)	to	determine	the	best	relationship	between	UAV-	derived	
gcc and visual assessments of crown health. For Equation 2, we 
compared slopes of the relationships between cluster gcc and path 
length.

(1)gcctree = a × PLC + b (2)gcci,h,j = ah + bh Pi + treeIDj

F I G U R E  2 Multiple	viewpoints	of	a	representative	healthy	and	infected	segmented	SfM	tree	point	cloud	showing	mean	cluster	gcc. 
Viewpoints:	(a)	anterior	view	showing	x and z	axes;	(b)	top-	down	transverse	view	showing	x and y	axes.	Colour	gradient	shows	mean	green	
chromatic	coordinate	(gcc)	of	clustered	crown	points	where	blue	is	low	and	red	is	high	gcc. Stem points not used in analysis are denoted in 
grey. Dashed line shows automatically detected crown base. The base of the crowns was detected by slicing the point cloud into vertical 
slices	of	height	0.05 m	and	calculating	the	moving	average	of	slice	width.	The	base	of	the	crown	is	detected	when	the	moving	average	
decreases by a factor of at least 0.5. Crown points were clustered using a density- based clustering algorithm implemented using the Python 
module	DBSAN	(Pedregosa	et	al.,	2011).



    |  7 of 14FLYNN et al.

3  |  RESULTS

3.1  |  SfM is able to capture tree shape validated by 
TLS

Of the four structural metrics compared, we found very high corre-
lation	between	TLS	and	SfM	for	both	the	2D	(tree	height:	R2 = 0.98,	
p < 0.001;	 crown	 area:	 R2 = 0.99,	 p < 0.001;	 max	 crown	 diameter:	
R2 = 0.98,	 p < 0.001,	 Figure 3)	 and	 3D	 (crown	 volume:	 R2 = 0.96,	
p < 0.001,	Figure 3)	metrics,	indicating	that	SfM-	derived	point	clouds	
are suitable to measure the structural properties of ITCs. SfM un-
derestimated	crown	volume	(Figure 3d)	compared	to	TLS,	which	is	

likely due to insufficient penetration through the crown from the 
airborne sensor.

3.2  |  gcc performs well as a method to identify 
severity of ADB impact

We found a statistically significant correlation between measured ITC gcc 
and	visual	assessment	of	crown	health	for	four	of	the	six	surveys	(2021-	
06- 11: R2 = 0.29,	p < 0.001;	2021-	07-	21:	R2 = 0.49,	p < 0.001;	2021-	08-	
17;	R2 = 0.49,	p < 0.001;	2020-	09-	10	R2 = 0.45,	p < 0.001;	Figure 4).	We	
found no correlation between ITC gcc values and visual assessments at 

F I G U R E  3 Comparison	of	(a)	TLS	and	SfM	Height	measurements	(b)	TLS	and	SfM	crown	projected	area	measurements	(c)	TLS	and	SfM	
measured	maximum	crown	diameter	and	(d)	TLS	and	SfM	measured	crown	volume.	TLS	and	SfM	measurements	taken	in	May	2021.	1:1	line	
is the dashed line. TLS tree height was calculated as Zmax – Zmin and SfM height was calculated as Zmax – EA	LiDAR	DTM.	Area/	diameter	and	
volume measurements were calculated using the R packages concaveman and geometry, respectively.
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the	beginning	(2021-	05-	12:	p > 0.05)	and	end	(2020-	10-	13:	p > 0.05)	of	
the growing season, which may be due to lower overall foliage levels. 
The positive correlation between gcc and visual assessments throughout 
the leaf on season demonstrates that gcc is a consistent indicator of tree 
health. gcc	peaked	in	June	(2021-	06-	21;	Figure SI2),	however	stronger	
correlations occurred in measurements taken after peak greenness, 
suggesting gcc measured later in the growing season may be a better 
indicator	of	crown	health	for	trees	infected	with	ADB.

To account for high correlations that may occur from gcc esti-
mates and visual assessments of per cent live crown remaining 
being acquired at similar dates, we tested the relationship between 
the same gcc values and visual assessments carried out in 2019 and 
2020. We present these results in Figure SI3 and found similar pat-
terns to comparisons with 2021 per cent live crown.

3.3  |  gcc declines towards the edges of crowns of 
trees affected by ADB, but increases in healthy trees

As	 the	 strongest	 correlations	 between	 gcc and visual assessments 
of	 crown	 health	were	 found	 in	 ITCs	measured	 in	 2021-	07-	21,	we	

used these data to quantify spatial patterns of dieback and found 
opposite trends in healthy and infected trees. We found a statisti-
cally significant positive relationship between path length and gcc 
in	the	35	trees	classified	as	healthy	(a = 0.0002;	95%	CI = 0.00016,	
0.00024; p < 0.001;	Figure 5)	meaning	that	in	healthy	trees	the	outer	
regions of the crown are greener than in the centre. In infected trees 
we found the opposite pattern; we found a statistically significant 
and strong negative relationship between gcc and path length in 
the	85	trees	classified	as	 infected	 (a = −0.001;	95%	CI = −0.00096,	
−0.00104;	p < 0.001),	 suggesting	 that	ADB	 initially	 infects	 the	 ex-
tremities of the crown.

4  |  DISCUSSION

4.1  |  A low- cost method for ADB detection and 
monitoring with RGB information

Our results, testing the relationship between ITC gcc and visual as-
sessments	of	crown	health,	show	that	UAV-	collected	RGB	data	can	
both	 detect	 ADB	 and	 assess	 its	 severity,	 providing	 a	 significantly	

F I G U R E  4 The	relationship	between	visual	assessment	of	crown	health,	defined	as	per	cent	live	crown	and	green	chromatic	coordinate	
(gcc)	throughout	the	growing	season.	Visual	assessments	of	crown	health	were	carried	out	18–19	August	2021.	Solid	black	lines	show	
statistically	significant	correlations	and	grey	envelopes	show	95%	confidence	intervals.	A	representative	growing	season	was	captured	
across both 2020 and 2021 seasons due to covid restrictions.
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lower- cost method for disease detection and monitoring than air-
borne	hyperspectral	 sensing	 (e.g.	Chan	 et	 al.,	2021),	 and	 support-
ing previous findings that information on plant physiological stress, 
chlorophyll	content	and	leaf	area	index	(LAI)	alters	the	magnitude	of	
gcc	(Reid	et	al.,	2016; Sankaran et al., 2010; Yang et al., 2014).	Such	
broad spectral band metrics have been shown to be powerful eco-
logical tools, and are better suited for near- sensing applications, as 
short	wavelengths	are	impacted	by	atmospheric	scattering	(Nijland	
et al., 2014).	While	hyperspectral	data	certainly	contain	more	infor-
mation, our data show that there are large gains to be made at low- 
cost with broad spectral bands. Indeed, previous work has found only 
small	improvements	of	narrow	band	over	broad-	band	VIs	(Elvidge	&	
Chen, 1995; Gitelson et al., 1996; Richardson et al., 2018;	Vincini	
&	Frazzi,	2011),	 further	 strengthening	 the	case	 for	 the	use	of	off-	
the-	shelf	and	accessible	consumer	RGB-	equipped	UAVs	for	disease	
detection and monitoring. Low- cost RGB information has been im-
pactful in other ecological applications; for instance, the Phenocam 
network uploads publicly available half- hourly images of sites cov-
ering a wide range of plant functional types, environments, and 
climates	(Seyednasrollah	et	al.,	2019),	and	has	revolutionised	under-
standing of global deciduous phenology with accessible and cheap 
sensors, considerations that are particularly important in regions 

with	 limited	 access	 to	 highly	 expensive	 technical	 instrumentation	
and	computing	resources	(Manfreda	et	al.,	2018; Richardson, 2019; 
Sethi et al., 2023).

Although	 we	 found	 good	 correlation	 between	 gcc and visual 
assessments	of	 crown	health,	 there	was	unexplained	variation	 re-
maining in the model. gcc has previously been shown to have high 
correlation to visual assessments, as spectral bands measured in 
the visible wavelengths capture information that is interpretable by 
the	human	eye	 (Soudani	et	al.,	2021).	However,	 the	different	view	
point of above vs below canopy sampling may introduce additional 
error,	as	perspective	may	alter	the	damage	visible	to	the	sensor	(Ho	
et al., 2022).

Although	we	relied	on	high-	resolution	TLS	data	to	segment	trees	in	
UAV-	derived	SfM	data,	recent	progress	in	individual	tree	segmentation	is	
likely	to	see	the	development	of	a	full	end-	to-	end	pipeline	with	exclusive	
use	of	low-	cost	UAV	data.	For	example,	the	Forest	Structural	Complexity	
Tool, used here to segment TLS trees, could work more efficiently with 
UAV	data	with	additional	training	data	 (Krisanski	et	al.,	2021).	The	re-
cently	released	Segment	Anything	model	(SAM;	Kirillov	et	al.,	2023)	and	
Detectree2	(Ball	et	al.,	2023),	as	well	as	multiple	neural	network	applica-
tions based on the PointNet	architecture	(e.g.	Wielgosz	et	al.,	2023; Yu 
et al., 2022)	show	promise	to	accurately	segment	trees	 in	2D	and	3D	

F I G U R E  5 Linear	mixed	models	showing	the	relationship	between	cluster	path	length	and	cluster	gcc	in	35	healthy	(solid	line)	and	85	
infected	(dashed	line)	trees.	Trees	were	classified	as	healthy	or	infected	using	a	gcc threshold derived from visual assessments of crown 
health.	ITC	points	were	clustered	using	the	Python	module	DBSCAN	(Giri	et	al.,	2021).	Ribbons	represent	95%	confidence	intervals.
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UAV-	derived	 data.	 These	 advances	 in	 segmentation	 algorithms,	 com-
bined	with	increased	affordability	of	lightweight	consumer	UAVs	hold	the	
potential to revolutionise ecological applications of low- cost 3D spectral 
data. Similarly, we used a total station to survey the precise location 
of GCPs. With the price- point of real- time kinetic positioning- enabled 
consumer	UAVs	rapidly	decreasing,	along	with	global	navigation	satel-
lite	systems	such	as	the	emlid	reach	series	(e.g.	Krofcheck	et	al.,	2019)	
and	 mavic	 3	 enterprise	 series	 (e.g.	 Barazzetti	 et	 al.,	 2023)	 becoming	
more	accessible,	the	need	for	GCPs	may	become	redundant	(Tomaštík	
et al., 2019),	opening	the	opportunity	for	more	rapid	data	collection	with	
fewer	specialised	equipment	costs.	However,	in	dense	forest	canopies,	
UAV-	derived	SfM	data	will	 suffer	 from	 lower	penetration	 through	the	
canopy	due	to	a	larger	effective	pixel	size,	meaning	LiDAR	data	is	likely	
to produce more accurate segmentation.

4.2  |  ADB detection from UAV data is most 
effective after peak greenness

A	key	determinant	 in	 the	efficiency	and	accuracy	of	 forest	health	
monitoring is timing; a successful survey should be carried out 
when	the	symptoms	of	the	pathogen	are	most	prevalent	(Wardlaw	
et al., 2008).	We	 found	 the	strongest	correlation	between	gcc and 
visual assessments of crown health in data collected immediately 
after	peak	greenness,	in	July,	with	the	next	strongest	correlations	for	
the	August	and	September	surveys.	Here,	we	demonstrate	that	ideal	
survey	 timing	broadly	 follows	 the	patterns	we	would	expect	 from	
prior	knowledge	of	ADB	dynamics,	where	ascomata	of	H. fraxineus 
typically	 form	 in	 July–August	 (Timmermann	 et	 al.,	 2011)	 and	
lesions	 appear	 on	 leaves	 approximately	 2 weeks	 after	 inoculation	
(Gross	 et	 al.,	 2012).	 Although	 it	 has	 previously	 been	 found	 that	
ADB	 surveys	 are	 best	 carried	 out	 in	 the	 summer	 leaf-	on	 months	
(Stocks	et	al.,	2017),	we	present	analysis	defining	the	best	month	for	
detection. While precise timings are likely to be impacted year- to- 
year by environmental and climatic factors such as temperature, soil 
moisture and rainfall, we show a clear pattern of higher correlations 
after	peak	greenness,	corroborated	by	the	previous	2 years'	data.

A	key	benefit	of	UAV-	derived	monitoring	is	ease	of	data	acquisi-
tion; collecting data cheaply and quickly means repeat surveys can 
be	carried	out	with	high	temporal	resolution	(van	Iersel	et	al.,	2018)	
requiring minimal operator training. This means that repeat mea-
surements of gcc, shown here to correlate to visual assessments of 
crown	 health,	 could	 be	 taken	 routinely,	 allowing	 the	 rate	 of	 ADB	
severity progression and shifts in phenological patterns to be moni-
tored,	providing	key	metrics	for	managing	impacts	of	disease	(Stone	
& Mohammed, 2017).

4.3  |  Spatial patterns of dieback can help to 
identify causes of disturbance

In this study, we provide evidence that characterising spatial patterns 
of greenness within ITCs may help identify dieback drivers. Our results 

show an opposite relationship between gcc and path length in infected 
versus	healthy	trees.	This	finding	supports	evidence	that	UAV-	derived	
SfM data can refine detection and map fine- scale location- specific 
foliage	 changes	 (Cessna	 et	 al.,	 2021)	 previously	 only	 possible	 with	
multi-		and	hyper-	spectral—LiDAR	fusion	(Cho	et	al.,	2012; Dalponte 
et al., 2012; Kantola et al., 2010; Shendryk et al., 2016).	Studies	using	
high- resolution 3D data to quantify internal patterns of dieback have 
so far been limited, however there is a growing body of evidence for 
driver-	characteristic	spatial	patterning.	For	example,	trees	influenced	
by drought events have been shown to display early senescence, 
which	 can	 retain	 young,	 distal	 buds	 and	 shoots	 (Jump	 et	 al.,	 2017; 
Munné-	Bosch	&	Alegre,	2004),	and	simple	visual	assessments	of	tree	
crown	 imagery	 have	 shown	 dieback	 proximal	 to	 the	 lower	 stem	 in	
trees	impacted	by	drought	(Stephenson	et	al.,	2018).	Similarly,	defolia-
tion caused by spruce bark beetle appears to occur in the older foli-
age, situated in the upper, inner canopy, and has been shown to be 
measurable	by	UAV-	derived	SfM	data	(Cessna	et	al.,	2021).	Here,	we	
quantify	the	spatial	patterns	of	defoliation	associated	with	ADB,	while	
improving classification by filtering signal from below canopy vegeta-
tion,	which	is	known	to	influence	quantification	of	ADB	severity	(Chan	
et al., 2021).	However,	more	work	using	3D	measurements	of	internal	
ITC dieback is needed to understand fine- scale spatial variation in re-
sponse	to	multiple	specific	drivers	of	disturbance.	Although	here	ap-
plied	to	ADB,	this	framework	is	applicable	to	a	multitude	of	drivers	of	
dieback, presenting an ideal method for identifying spectral- structural 
relationships which may be characteristic of disturbance type.

We found a stronger relationship between cluster path length 
and gcc	 (defined	by	95%	CIs)	 in	 infected	trees	than	healthy	ones;	
however,	this	may	be	caused	by	the	smaller	sample	size	(n = 35	for	
healthy	 trees).	Once	ADB	 is	 present	 in	 a	 geographical	 region,	 it	
spreads quickly and therefore many of the healthy trees are sit-
uated close to infected ones and may be inoculated at an early 
stage	of	 infection	 (Stocks	et	al.,	2017).	On	the	other	hand,	 trees	
classified	 as	 healthy	 in	 close	 proximity	 to	 trees	 classified	 as	 in-
fected, and not showing the spatial patterns of dieback, could 
indicate genetic resistance. More work is required to draw links 
between genetic breeding values and measurements of dieback 
severity to understand if genetic resistance can be predicted via 
remotely sensed data.

5  |  CONCLUSIONS

We show ITC gcc is a good indicator of crown health in trees infected 
with	ADB	by	comparing	with	visual	assessments	of	per	cent	live	crown.	
We also used repeat measurements to identify that the best time of 
year	 for	ADB	 surveillance	 is	 during	 the	 growing	 season,	 after	 peak	
greenness. Finally, we map the fine- scale spatial patterns of internal 
crown	greenness	to	help	identify	ADB	in	remotely	sensed	data.	Our	re-
sults	demonstrate	a	new	low-	cost	method	to	detecting	ADB	and	map-
ping	 severity,	 previously	only	possible	with	expensive	hyperspectral	
imagery, demonstrating the importance of fine- scale structural data 
for quantifying forest dynamics and ecological monitoring. This builds 
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on	previous	work,	for	example	classifying	tree	species	from	structural	
information	alone	(Allen	et	al.,	2022; Terryn et al., 2020),	highlighting	a	
movement towards the co- measurement of structural and functional 
traits	with	high-	resolution	remote	sensing	(Lines	et	al.,	2022).

We demonstrate the power of structural measurements to 
detect fine- scale ecological signal by showing that the spatial ar-
rangement of greenness in ITCs can be indicative of causal agents 
of dieback. We therefore propose that this work demonstrates the 
opportunity to map dieback in ITCs from various causes, providing 
a new framework for classifying drivers of disturbance through an 
intercomparison of remotely sensed data.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting Information section at the end of this article.
Supporting Information SI1.	 Expert	 visual	 assessments	 of	 crown	
health.
Figure SI1.	 Histogram	 showing	 the	 number	 of	 trees	 taken	 from	 a	
subset	for	which	we	had	expert	visual	assessments	of	crown	health	
(percent	live	crown).
Supporting Information SI2. Monthly measurements of gcc.
Figure SI2.	 Boxplot	 plot	 showing	 average	 individual	 tree	 gcc 
measurements taken in September–October 2020 and each month 
May–August	2021	using	a	DJI	Mavic	Mini	UAV.

Supporting Information SI3. Relationship of gcc values with visual 
assessments of crown health measured in 2019 and 2020.
Figure SI3. The relationship between visual assessment of crown 
health,	defined	as	percent	 live	crown	measured	 in	 (a)	2019	and	(b)	
2020,	and	green	chromatic	coordinate	(gcc)	throughout	the	growing	
season.
Table SI1. Correlation between visual assessments of tree health 
carried out in 2019, 2020 and 2021.
Supporting Information SI4. Description of forest density and 
topography.
Figure SI4.	Digital	Terrain	Model	(DTM)	of	area	and	surrounding	area	
of	the	plot	(black	line)	at	Marden	Park.
Figure SI5. Crown map of trees used in the analysis.
Figure SI6. Photograph of the plot understorey captured at Marden 
Park in May 2021 during the TLS survey, showing vegetation density.
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