
Ecol Solut Evid. 2024;5:e12343.	 ﻿	   | 1 of 14
https://doi.org/10.1002/2688-8319.12343

wileyonlinelibrary.com/journal/eso3

Received: 21 September 2023  | Accepted: 27 April 2024
DOI: 10.1002/2688-8319.12343  

R E S E A R C H  A R T I C L E

S p e c i a l  F e a t u r e :  I n n o v a t i o n  I n  P r a c t i c e

UAV-derived greenness and within-crown spatial patterning 
can detect ash dieback in individual trees

W. R. M. Flynn1,2  |   S. W. D. Grieve1,3 |   A. J. Henshaw1 |   H. J. F. Owen4 |    
R. J. A. Buggs5,6 |   C. L. Metheringham5,6 |   W. J. Plumb5,6,7 |   J. J. Stocks5,6 |   E. R. Lines5

1School of Geography, Queen Mary University of London, London, UK; 2Department of Plant Sciences, University of Cambridge, Cambridge, UK; 3Digital 
Environment Research Institute, Queen Mary University of London, London, UK; 4Department of Geography, University of Cambridge, Cambridge, UK; 
5School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK; 6Royal Botanic Gardens, Kew, Richmond upon Thames, UK and 
7Forestry Development Department, Dublin, Republic of Ireland

Correspondence
W. R. M. Flynn
Email: w.r.m.flynn@qmul.ac.uk

Funding information
UK Research and Innovation, Grant/Award 
Number: MR/T019832/1; The London 
NERC Doctoral Training Partnership, 
Grant/Award Number: NE/L002485/1

Handling Editor: Marc Cadotte

Abstract
1.	 Ash Dieback (ADB) has been present in the UK since 2012 and is expected to 
kill up to 80% of UK ash trees. Detecting and quantifying the extent of ADB in 
individual tree crowns (ITCs), which is crucial to understanding resilience and re-
sistance, currently relies on visual assessments which are impractical over large 
scales or at high frequency. The improved imaging capabilities and declining cost 
of consumer UAVs, together with new remote sensing methods such as structure 
from motion photogrammetry (SfM) offers potential to quantify the fine-scale 
structural and spectral metrics of ITCs that are indicative of ADB, rapidly, and at 
low-cost.

2.	 We extract high-resolution 3D RGB point clouds derived from SfM of canopy ash 
trees taken monthly throughout the growing season at Marden Park, Surrey, UK, 
a woodland impacted by ADB. We segment ITCs, extract green chromatic coordi-
nate (gcc), and test the relationship with visual assessments of crown health. Next, 
we quantify spatial patterning of dieback within ITCs by testing the relationship 
between internal variation of gcc and path length, a measure of the distance from 
foliage to trunk, for small clusters of foliage.

3.	 We find gcc correlates with visual assessments of crown health throughout the 
growing season, but the strongest relationships are in measurements taken after 
peak greenness, when the effects of ADB on foliage are likely to be most preva-
lent. We also find a negative relationship between gcc and path length in infected 
trees, indicating foliage loss is more severe at crown extremities.

4.	 We demonstrate a new method for identifying ADB at scale using a consumer-
grade 3D RGB UAV system and suggest this approach could be adopted for 
widespread rapid monitoring. We recommend the optimum time of year for data 
acquisition, which we find to be an important factor for detecting ADB. Although 
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1  |  INTRODUC TION

Ash Dieback (ADB) is caused by the invasive fungal pathogen 
Hymenoscyphus fraxineus and has been present in the UK since 2012. 
It is expected to kill up to 80% of UK ash trees (Coker et al., 2019), 
impacting the UK economy negatively by billions of pounds through 
the loss of ecosystem services (Hill et  al., 2019). In any epidemic, 
identifying infection is a crucial first step for monitoring and re-
sponse (Chan et al., 2021; Liebhold et al., 2017). Currently, the main 
method for identifying the presence of ADB and the severity of its 
impact are ground-based surveys of crown cover for large trees, 
or visual assessments of branch damage for smaller trees (Pliûra 
et al., 2011; Stocks et al., 2017). These visual assessments are time 
consuming and ineffective over large scales, leading to insufficient 
observations for effective monitoring. Large-scale classification of 
ADB is of particular importance as a degree of genetic resistance 
has been shown in a small proportion of individuals. This has led 
to interest in identification of healthy and hence potentially resis-
tant individuals for restoration but a fast and effective method for 
large-scale phenotyping of intermediate damage is currently lacking 
(Villari et al., 2018).

Measurement from aerial platforms offers a high-resolution 
large-scale alternative to ground sampling. New, low-cost remote 
sensing methods utilising sensors mounted on consumer-grade 
uncrewed aerial vehicles (UAVs) offer a cheaper alternative to 
ground-based surveys for monitoring the effects of disease and 
disturbance (Dandois & Ellis,  2013; Danson et  al.,  2018; Stone & 
Mohammed, 2017). UAV structure from motion (SfM)—3D recon-
structions of objects created from thousands of overlapping im-
ages—provide point-level red-green-blue (RGB) colour information, 
linking tree and crown structural data with spectral data for the cal-
culation of vegetation indices (Vis; Kerkech et al., 2018; Shendryk 
et  al.,  2016). Previous work has shown greenness vegetation in-
dices calculated from RGB data correlate with crown health (e.g. 
green chromatic coordinate, gcc, and excess greenness, ExG; Reid 
et al., 2016), indicating an opportunity to measure ADB using low-
cost RGB sensors over large spatial and temporal scales.

The lifecycle of causal agent, H. fraxineus has a temporal effect 
on crown dynamics that could impact the effectiveness of crown 
health monitoring (Stone & Mohammed, 2017). H. fraxineus is het-
erothallic, reproducing sexually once a year within the previous 
seasons' leaf litter, displaying a seasonal life cycle played out en-
tirely on F. excelsior leaves (Gross et al., 2012). In the spring, when 
new leaves appear, they grow unexposed to H. fraxineus, which 

has not yet released spores, and appear asymptomatic of the dis-
ease. Apothecia are formed during the wet summer months and 
release ascospores, infecting the new leaf material in the canopy 
(Timmermann et al., 2011). Ascospores are deposited on the leaf 
surface and penetrate the leaf cuticle via appressoria leading to le-
sions on the leaves approximately 2 weeks after infection, and ul-
timately, severe crown defoliation (Cleary et al., 2013), resulting in 
changes to the overall crown “greenness” that can be clearly iden-
tified visually and with RGB sensors. Detection with RGB sensors 
may be most effective when leaves have become infected, wilted, 
and shed, which occurs later in the growing season. Eventually, 
severely affected trees develop epicormic growth, the rapid ap-
pearance of small shoots, on their branches and lower trunk (Gross 
et  al.,  2012). Although the effectiveness of surveillance timings 
has been explored more generally, (e.g. Wardlaw et al., 2008), to 
date there has been no investigation into the most suitable period 
within the growing season for ADB detection and monitoring from 
remote sensing data in the UK.

Although RGB-derived VIs have been shown to be a reliable 
indicator of stand health, VIs alone cannot identify the causes of 
damage to the canopy (Reid et al., 2016), necessitating additional in-
terpretation. Numerous attempts have been made to identify forest 
disturbance types by analysing spectral signatures in airborne and 
spaceborne hyperspectral imagery (Stahl et al., 2023). Hyperspectral 
data analysis is indeed a powerful tool, proven to be invaluable for 
plant phenology and health monitoring (e.g. Gamon et  al.,  2016; 
Seyednasrollah et al., 2019; Wang et al., 2023). However, the coarse 
scale of commonly available satellite data makes individual tree 
crown identification impossible (Chan et al., 2021), whilst the high 
cost of acquiring airborne hyperspectral imagery limits monitor-
ing (Dalponte et al., 2012). Recent advances in high-resolution 3D 
remote sensing provide new measurements of forest structure in 
detail that far surpass traditional surveying (Lines et al., 2022) and 
may reveal new insights that draw links between disturbance symp-
toms and causal agents (Stone & Mohammed, 2017). The cause of 
dieback could influence the spatial patterning of crown damage in 
individual trees. For example, Stephenson et  al.  (2018) found that 
drought-induced dieback in giant sequoias occurred in shoots prox-
imal to the main stem, in a process caused by drought-triggered 
senescence preferentially retaining younger shoots. The structural 
response to ADB may be functionally different, as symptoms ini-
tially occur in the younger crown regions (Bengtsson et  al., 2014; 
Skovsgaard et al., 2010), which may lead to a characteristic spatial 
patterning in crown responses identifiable from aerial monitoring. 

here applied to ADB, this framework is applicable to a multitude of drivers of 
crown dieback, presenting a method for identifying spectral-structural relation-
ships which may be characteristic of disturbance type.
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Initial responses to H. fraxineus at the leaf-level include develop-
ment of necrotic lesions on petioles and young shoots, rachises 
and leaflet veins, followed by leaf wilting and shedding (Kräutler & 
Kirisits, 2012), leading to crown dieback, which is accompanied by 
epicormic growth.

Multiple studies have combined spectral and structural data in 
an attempt to improve disease classification accuracy by combining 
airborne multi- or hyper-spectral data with LiDAR data (e.g. Kantola 
et al., 2010; Shendryk et al., 2016). However, the high cost of col-
lecting airborne data combined with the computational difficulties 
of co-registering multi-sensor measurements limit their widespread 
utility (Dalponte et  al., 2012). Using RGB imagery with SfM from 
UAVs, spectral and structural data can be collected concurrently 
at ultra-high resolution and relatively low cost (Cessna et al., 2021; 
Stone & Mohammed,  2017), and the recent rapid increase in ac-
cessibility of UAV technology now make them a practical tool for 
widespread use. Although multispectral LiDAR has been available 
for some time (Hopkinson et al., 2016), it has not yet been widely 
adopted by the community, due to the complexity and cost. The ad-
ditional RGB data in SfM, unavailable from conventional LiDAR data 
alone, has been shown to improve species classification, phenolog-
ical stage detection, structure, and forest health monitoring in UAV 
data (Alonzo et al., 2020), although whether accuracy is compara-
ble to hyperspectral imagery and LiDAR fusion is unclear (Alonzo 
et al., 2020; Cessna et al., 2021). Nevertheless, SfM models gener-
ated from high forward overlap (>90%) imagery have been shown 
to produce photogrammetric models capable of penetrating to the 
forest floor (Dandois et  al., 2015; Frey et  al.,  2018), and have the 
potential to map fine-scale structural attributes of individual tree 
crowns (ITCs) at higher spatial resolution than airborne systems. For 
example, using high-resolution structural and spectral data from 
UAV-derived SfM, Cessna et  al.  (2021) were able to detect crown 
defoliation by assessing the vertical gradient of greenness through 
the canopy.

In this study, we use UAV-derived RGB SfM data to calculate 
multi-temporal whole-crown and 3D cluster-based greenness in 120 
canopy ash trees at Marden Park, Surrey: A Woodland Trust-owned 
mixed broadleaved woodland impacted by ADB. We compare expert 
visual ground assessments of crown health with our UAV-derived 
metrics and answer the following questions:

1.	 Can we accurately measure key 2D (tree height, crown area 
and maximum crown diameter) and 3D (convex crown volume) 
structural metrics using low-cost consumer uncrewed aerial 
vehicle imaging and structure from motion photogrammetry.

2.	 Can we accurately detect ash dieback in individual tree crowns 
using low-cost consumer uncrewed aerial vehicle imaging and 
SfM photogrammetry?

3.	 At what time in the growing season is ash dieback detection from 
uncrewed aerial vehicle data most effective?

4.	 Does ash dieback produce specific spatial patterns of greenness 
within individual tree crowns identifiable from uncrewed aerial 
vehicle, red-green-blue, structure from motion data?

2  |  MATERIAL S AND METHODS

2.1  |  Study site and expert assessment

Marden Park is a 67-ha ancient broadleaved woodland, located 
on the North Downs in East Surrey, UK. The site is an Area of 
Outstanding Natural Beauty (AONB) and a Site of Special Scientific 
Interest (SSSI), situated on a chalk plateau ~244 m.a.s.l. We estab-
lished a plot of size 0.6 ha containing 120 canopy ash (F. excelsior) 
trees, of which 47 were visually assessed for dieback severity 
using a scoring of 0%–100% remaining live crown on 18–19 August 
2021 (Metheringham et al., 2022). The plot has a crown area index 
(total crown area divided by ground area) of 0.3, as calculated from 
UAV SfM data collected in May 2021 (detailed description of can-
opy and understorey density provided in Supporting Information, 
Section  SI3). The area is secondary broadleaf woodland, ap-
proximately 60 years old and is approximately 80% ash (Fraxinus 
excelsior) dominant with beech (Fagus sylvatica) the secondary 
dominant species. Site access and permission to work was granted 
by the Woodland Trust.

2.2  |  UAV data collection and pre-processing

2.2.1  |  SfM collection and pre-processing

We collected images in September–October 2020 and each month 
May–August 2021 using a DJI Mavic Mini UAV. A complete growing 
season was captured over two successive calendar years (sampling 
was restricted by regulations related to control of Covid-19). The 
UAV has a take-off weight of 249 g, maximum flight time of 30 mins, 
maximum wind resistance of 8 ms−1 and it is equipped with a the 
standard DJI Mini 12 MP RGB sensor with 83° field of view and ap-
erture f/2.8. Flights were carried out at two altitudes (50 m (ground 
sample distance (GSD): 1.78 cm/2.17 cm nadir/oblique), and 70 m 
(GSD: 2.49 cm/ 3.04 cm nadir/oblique) above take-off location, which 
was consistent for all flights) and two camera angles (nadir flights at 
−90° referenced to the horizon, and oblique flights at −55° degrees 
referenced to the horizon). Combining flight altitudes provides the 
higher ground sampling resolution of low altitude with the wider 
field of view of high altitude (Roşca et al., 2018), while combining 
nadir with high oblique angle imagery (20–35° off nadir) increases 
point cloud resolution and accuracy (Nesbit & Hugenholtz, 2019). 
We captured images with a front overlap of 95% and side overlap 
of 80% over an area 3.2 ha centred on the 0.6 ha study plot in order 
to avoid edge effects distorting reconstruction (Mohan et al., 2021). 
Consumer sensors have multiple parameters for image acquisition 
including focal length, shutter speed, and white balance; the ef-
fects of these parameters on image acquisition are interdependent 
and dependent on individual scene lighting conditions and camera 
angle, and, in the case of focal length, altitude and distance from 
canopy (Frey et al., 2018). To minimise potential differences caused 
by maintaining parameters in images acquired across multiple flight 
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altitudes, camera viewing angles, sky conditions and seasonality, we 
set these camera parameters to ‘auto’ (Dandois et al., 2017). Flight 
paths were programmed using the automatic flight generation soft-
ware dronelink (version 3.3.1) and were consistent for all flights. We 
placed nine checkerboard ground control points (GCPs) in canopy 
gaps around the perimeter and in the centre of the plot, located 
to capture topographic variation in the X, Y, Z planes and designed 
to be clearly visible from the UAV imagery, for SfM point cloud re-
construction and co-registration of SfM and TLS point clouds. We 
recorded the precise location of their centres using a Leica Total 
Station in an arbitrary local cartesian coordinate system (m) and 
marked the location of each target with a wooden stake so the same 
location could be used in each data acquisition campaign. We re-
moved UAV-GPS location stamps from individual images, using the 
Total Station measurement GCP locations for increased accuracy. 
We constructed SfM point clouds using Agisoft Metashape (version 
1.7.4), manually removing images with visible blur before aligning 
with ‘high’ accuracy, disabling generic preselection and generat-
ing a dense cloud with ‘high’ quality (Roşca et  al., 2018; Tinkham 
& Swayze, 2021). We validated the accuracy of SfM point clouds 
using co-registered high-resolution terrestrial laser scanning (TLS) 
data (see Section 2.3.2).

Point cloud filtering is an essential step to remove erroneous 
points in SfM point clouds caused by image blur and poor cam-
era alignment, or vegetation movement caused by wind (Tinkham 
& Swayze, 2021). We used a statistical outlier removal (SOR) filter 
and Euclidean cluster filter to remove sparse outliers and isolated 
clusters from raw SfM point clouds. An SOR filter removes points 
with a distance greater than a user-defined number of standard de-
viations (SD = 1) from the neighbourhood average (k = 100), remov-
ing sparse outliers. To remove small, isolated clusters missed by the 
SOR algorithm, we applied a Euclidean clustering algorithm with a 
defined minimum distance between points of 0.5 m, and removed 
any that contained less than 1000 points, ensuring no removal from 
within individual tree crowns. Combining an SOR filter and Euclidean 
cluster filter in this way, both noisy isolated points along with larger 
groups of noise that can emerge from SfM processing are removed. 
We applied these filters using the Point Cloud Library (PCL; Rusu & 
Cousins, 2011). Finally, we downsampled point clouds to a point-to-
point minimum distance (resolution) of 0.05 m to aid computational 
time, while retaining fine-scale structural features of the point cloud 
(Owen et al., 2021).

2.2.2  |  TLS collection and pre-processing

To segment individual trees from our SfM data, we used a co-
registered TLS dataset of semi-automatically delineated trees to 
provide the most accurate results. Many current segmentation 
algorithms rely on cylinder fitting, requiring accurate reconstruction 
of the lower stem (e.g. Burt et al., 2019; Krisanski et al., 2021), and 
are therefore less effective with above-canopy captured UAV data 
due to occlusion from the upper canopy (see Section 2.2.3). We 

also used the same TLS dataset in an intermediate step to validate 
2D and 3D crown metrics extracted from individual tree point 
clouds. We scanned the 0.6 ha plot at Marden Park in May 2021 
using a Riegl VZ400i TLS in May 2021. Scan locations were placed 
on a grid, 10 m apart, (Owen et  al.,  2021; Wilkes et  al.,  2017); 
however, some scan locations were spaced further due to forest 
understorey vegetation density, with 58 scan locations in total. For 
each location, scans were collected in the upright and horizontal 
positions capturing the full field of view of the scanner, resulting 
in 116 scans. We filtered the co-registered scans using an SOR 
and Euclidean filter as described in Section 2.2.1, using PCL and 
downsampled to 0.05 m, matching the resolution of SfM point 
clouds. We semi-automatically segmented individual tree crowns, 
including stems within a 10 m buffer around the plot, using the 
Forest Structural Complexity Tool (FSCT; Krisanski et  al., 2021), 
and followed this by manual refinement of point clouds. Finally, we 
labelled trees for which we had visual assessments (n = 47; total 
delineated trees = 120) using a co-registered stem map generated 
using a Leica Total Station and co-registered the TLS and SfM 
point clouds using GCP locations captured by both sensors using a 
3D rotation matrix in CloudCompare (cloud​compa​re.​org).

2.2.3  |  Individual tree segmentation in SfM 
point clouds

We followed a point neighbourhood approach to segment individual 
tree point clouds from the SfM data using delineated TLS point 
clouds (see Section 2.2.2; Figure 1). This enables an effective buffer 
to be created around the TLS data to account for variation due to 
movement or growth. A K-dimensional tree was built around the SfM 
plot point cloud and queried for nearest neighbours based on the 
TLS point cloud (Figure 1a) within a user-defined maximum distance 
(0.25 m). Nearest neighbour points were then matched to the raw 
SfM cloud (Figure  1b,c) and individual SfM trees were segmented 
(Figure  1d). SfM segmentation was carried out using the Open3D 
Library in Python (Zhou et al., 2018).

2.3  |  Extracting metrics

2.3.1  |  Automated crown base detection

To determine crown greenness, we needed to separate crown and 
stem points to avoid erroneously including the trunk. For each indi-
vidual SfM tree point cloud, we segmented the tree crown by verti-
cally slicing the tree (slice height = 0.05 m) and measuring the width 
of each slice. Iterating downwards from the top of the tree, we de-
fined the base of the crown to be at the height at which the mov-
ing average of previous slices decreases by a factor of at least 0.5 
and segmented the crown above this line (Figure 2). We performed 
this automatic crown segmentation separately for each tree in each 
survey.

http://cloudcompare.org
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2.3.2  |  Validating SfM-derived ITC point clouds

To quantify crown greenness and spatial patterning of greenness in in-
dividual tree crowns measured by UAV-derived SfM, we first validated 
that our SfM-derived ITC point clouds were accurate by comparing 
widely used 2D (tree height, crown area and maximum crown diameter) 
and 3D (convex crown volume) structural metrics with those from the 
TLS-derived point clouds. We calculated tree height in TLS data as the 
maximum minus the minimum point Z values, and in SfM data as the 
maximum point Z value minus an Environment Agency 2018 LiDAR-
derived DTM, available at https://​envir​onment.​data.​gov.​uk/​ (last ac-
cessed on 15 August 2023). We used a 0.05 m resolution digital terrain 
model (DTM) to provide accurate ground height measurements increase 
accuracy of estimated tree height in the latter instance, as ground points 
are limited in UAV-derived data due to occlusion from the top of canopy. 
In both instances, we calculated crown area and maximum crown diam-
eter using the R package concaveman (Gombin et al., 2020) and convex 
crown volume using the R package geometry (Habel et al., 2023).

2.3.3  |  Crown greenness and spatial patterning

We used green chromatic coordinate (gcc)—the normalised green channel 
values of individual tree crown points—gmean ∕

(

rmean + gmean + bmean

)

. 
gcc is a commonly used metric for UAV timeseries and phenology analy-
sis (Berra et al., 2016; Larrinaga & Brotons, 2019; Park et al., 2019), and 

has been shown to be more robust than other RGB VIs, such as excess 
greenness (ExG), where measurements have been taken under a range 
of lighting environments (Sonnentag et al., 2012), as is the case in this 
study.

To quantify spatial patterns of dieback in individual tree crowns 
in order to determine if they are indicative of ADB, we calculated 
the path length of each point in our SfM ITCs using the open-source 
Python module TLSeparation (Vicari et al., 2019). The path length is 
the distance of a point from the ground along the structure of the 
tree and is a measure of position within the trees' transport system. 
In trees under stress, we would expect points at the extremities, for 
example with longer path lengths, to experience dieback from em-
bolism first. To calculate path length, the individual tree point cloud 
(crown and stem) is first represented as a network graph where 
points are nodes with connecting edges. Using the network graph, a 
shortest path analysis computes the distance from each node, along 
each edge, to the lowest point in the point cloud (Vicari et al., 2019), 
assigning a shortest path length to each point in the point cloud. 
Finally, to reduce noise we clustered groups of points using a 
density-based spatial clustering of applications with noise (DBSCAN) 
algorithm, which is effective at grouping 3D data (Giri et al., 2021). 
For each cluster (mean size = 8 points), we then calculated cluster gcc 
as mean point gcc, and path length to centre of the cluster as the 
median within cluster point-level path length. Point density varied 
spatially, but with an approximate average of 1000 pts/m2 making a 
cluster approximately 4 × 4 cm.

F I G U R E  1 Example schematic showing the individual SfM tree segmentation process. (a) A semi-automatically segmented TLS tree 
(~14,000 pts/m2) segmented using the Forest Structural Complexity Tool (FSCT; Krisanski et al., 2021) and manual cleaning; (b) a section of 
raw SfM point cloud (grey points); (c) a section of raw SfM point cloud (grey points) with the segmented TLS tree (coloured points) overlaid. 
and (d) a segmented SfM tree point cloud (~1000 pts/m2) extracted within a maximum point distance (0.25 m) from a KD-tree built from the 
segmented TLS tree point cloud using the Open3D library in Python (Zhou et al., 2018). TLS tree was scanned on 2020-03-15 and SfM tree 
was scanned on 2021-07-21, demonstrating the ability of this method to capture the same tree throughout the growing season.

https://environment.data.gov.uk/
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2.4  |  Statistical analyses of whole-tree and within 
crown gcc

We tested the relationship between individual tree crown gcc values 
collected in each month of the survey (September–October 2020 
and May–August 2021) with visual assessments of crown health, 
surveyed during 18–19 August 2021, using linear models in the 
open-source statistical software R (R Core Team, 2023):

here gcctree is individual tree crown gcc, PLC is per cent live crown es-
timated from visual assessments and a and b are parameters to be fit. 
Visual assessments of crown health comprised expert estimation of 
per cent live crown within the projected crown area (Metheringham 
et al., 2022).

To understand the spatial patterns of dieback in infected tree 
crowns, we categorised trees into two groups based on a thresh-
old generated from the subset of trees that were visually assessed. 
From this group, we took the minimum gcc value of trees with >70% 

live crown and categorised all trees with gcctree values above this as 
“healthy” (n = 35), with the remaining trees classified as “infected” 
(n = 85). We based this threshold on a visual inspection of the distri-
bution of greenness values across per cent live crown (Figure SI1). 
Fitting models separately to these ‘infected’ and ‘healthy’ groups, 
we tested the relationship between cluster gcc and path length by 
including an intercept only random individual tree effect to account 
for variation in gcc between individuals:

here gcci is the mean cluster gcc of cluster i in individual j of infection 
category h, P is the median path length of cluster i, treeID is a random 
effect to account for gcc variation between individuals, and a and b are 
the parameters to be fit.

For Equation  1, we calculated the coefficient of determina-
tion (R2) to determine the best relationship between UAV-derived 
gcc and visual assessments of crown health. For Equation  2, we 
compared slopes of the relationships between cluster gcc and path 
length.

(1)gcctree = a × PLC + b (2)gcci,h,j = ah + bh Pi + treeIDj

F I G U R E  2 Multiple viewpoints of a representative healthy and infected segmented SfM tree point cloud showing mean cluster gcc. 
Viewpoints: (a) anterior view showing x and z axes; (b) top-down transverse view showing x and y axes. Colour gradient shows mean green 
chromatic coordinate (gcc) of clustered crown points where blue is low and red is high gcc. Stem points not used in analysis are denoted in 
grey. Dashed line shows automatically detected crown base. The base of the crowns was detected by slicing the point cloud into vertical 
slices of height 0.05 m and calculating the moving average of slice width. The base of the crown is detected when the moving average 
decreases by a factor of at least 0.5. Crown points were clustered using a density-based clustering algorithm implemented using the Python 
module DBSAN (Pedregosa et al., 2011).
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3  |  RESULTS

3.1  |  SfM is able to capture tree shape validated by 
TLS

Of the four structural metrics compared, we found very high corre-
lation between TLS and SfM for both the 2D (tree height: R2 = 0.98, 
p < 0.001; crown area: R2 = 0.99, p < 0.001; max crown diameter: 
R2 = 0.98, p < 0.001, Figure  3) and 3D (crown volume: R2 = 0.96, 
p < 0.001, Figure 3) metrics, indicating that SfM-derived point clouds 
are suitable to measure the structural properties of ITCs. SfM un-
derestimated crown volume (Figure 3d) compared to TLS, which is 

likely due to insufficient penetration through the crown from the 
airborne sensor.

3.2  |  gcc performs well as a method to identify 
severity of ADB impact

We found a statistically significant correlation between measured ITC gcc 
and visual assessment of crown health for four of the six surveys (2021-
06-11: R2 = 0.29, p < 0.001; 2021-07-21: R2 = 0.49, p < 0.001; 2021-08-
17; R2 = 0.49, p < 0.001; 2020-09-10 R2 = 0.45, p < 0.001; Figure 4). We 
found no correlation between ITC gcc values and visual assessments at 

F I G U R E  3 Comparison of (a) TLS and SfM Height measurements (b) TLS and SfM crown projected area measurements (c) TLS and SfM 
measured maximum crown diameter and (d) TLS and SfM measured crown volume. TLS and SfM measurements taken in May 2021. 1:1 line 
is the dashed line. TLS tree height was calculated as Zmax – Zmin and SfM height was calculated as Zmax – EA LiDAR DTM. Area/ diameter and 
volume measurements were calculated using the R packages concaveman and geometry, respectively.
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the beginning (2021-05-12: p > 0.05) and end (2020-10-13: p > 0.05) of 
the growing season, which may be due to lower overall foliage levels. 
The positive correlation between gcc and visual assessments throughout 
the leaf on season demonstrates that gcc is a consistent indicator of tree 
health. gcc peaked in June (2021-06-21; Figure SI2), however stronger 
correlations occurred in measurements taken after peak greenness, 
suggesting gcc measured later in the growing season may be a better 
indicator of crown health for trees infected with ADB.

To account for high correlations that may occur from gcc esti-
mates and visual assessments of per cent live crown remaining 
being acquired at similar dates, we tested the relationship between 
the same gcc values and visual assessments carried out in 2019 and 
2020. We present these results in Figure SI3 and found similar pat-
terns to comparisons with 2021 per cent live crown.

3.3  |  gcc declines towards the edges of crowns of 
trees affected by ADB, but increases in healthy trees

As the strongest correlations between gcc and visual assessments 
of crown health were found in ITCs measured in 2021-07-21, we 

used these data to quantify spatial patterns of dieback and found 
opposite trends in healthy and infected trees. We found a statisti-
cally significant positive relationship between path length and gcc 
in the 35 trees classified as healthy (a = 0.0002; 95% CI = 0.00016, 
0.00024; p < 0.001; Figure 5) meaning that in healthy trees the outer 
regions of the crown are greener than in the centre. In infected trees 
we found the opposite pattern; we found a statistically significant 
and strong negative relationship between gcc and path length in 
the 85 trees classified as infected (a = −0.001; 95% CI = −0.00096, 
−0.00104; p < 0.001), suggesting that ADB initially infects the ex-
tremities of the crown.

4  |  DISCUSSION

4.1  |  A low-cost method for ADB detection and 
monitoring with RGB information

Our results, testing the relationship between ITC gcc and visual as-
sessments of crown health, show that UAV-collected RGB data can 
both detect ADB and assess its severity, providing a significantly 

F I G U R E  4 The relationship between visual assessment of crown health, defined as per cent live crown and green chromatic coordinate 
(gcc) throughout the growing season. Visual assessments of crown health were carried out 18–19 August 2021. Solid black lines show 
statistically significant correlations and grey envelopes show 95% confidence intervals. A representative growing season was captured 
across both 2020 and 2021 seasons due to covid restrictions.
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lower-cost method for disease detection and monitoring than air-
borne hyperspectral sensing (e.g. Chan et  al., 2021), and support-
ing previous findings that information on plant physiological stress, 
chlorophyll content and leaf area index (LAI) alters the magnitude of 
gcc (Reid et al., 2016; Sankaran et al., 2010; Yang et al., 2014). Such 
broad spectral band metrics have been shown to be powerful eco-
logical tools, and are better suited for near-sensing applications, as 
short wavelengths are impacted by atmospheric scattering (Nijland 
et al., 2014). While hyperspectral data certainly contain more infor-
mation, our data show that there are large gains to be made at low-
cost with broad spectral bands. Indeed, previous work has found only 
small improvements of narrow band over broad-band VIs (Elvidge & 
Chen,  1995; Gitelson et  al.,  1996; Richardson et  al.,  2018; Vincini 
& Frazzi, 2011), further strengthening the case for the use of off-
the-shelf and accessible consumer RGB-equipped UAVs for disease 
detection and monitoring. Low-cost RGB information has been im-
pactful in other ecological applications; for instance, the Phenocam 
network uploads publicly available half-hourly images of sites cov-
ering a wide range of plant functional types, environments, and 
climates (Seyednasrollah et al., 2019), and has revolutionised under-
standing of global deciduous phenology with accessible and cheap 
sensors, considerations that are particularly important in regions 

with limited access to highly expensive technical instrumentation 
and computing resources (Manfreda et al., 2018; Richardson, 2019; 
Sethi et al., 2023).

Although we found good correlation between gcc and visual 
assessments of crown health, there was unexplained variation re-
maining in the model. gcc has previously been shown to have high 
correlation to visual assessments, as spectral bands measured in 
the visible wavelengths capture information that is interpretable by 
the human eye (Soudani et al., 2021). However, the different view 
point of above vs below canopy sampling may introduce additional 
error, as perspective may alter the damage visible to the sensor (Ho 
et al., 2022).

Although we relied on high-resolution TLS data to segment trees in 
UAV-derived SfM data, recent progress in individual tree segmentation is 
likely to see the development of a full end-to-end pipeline with exclusive 
use of low-cost UAV data. For example, the Forest Structural Complexity 
Tool, used here to segment TLS trees, could work more efficiently with 
UAV data with additional training data (Krisanski et al., 2021). The re-
cently released Segment Anything model (SAM; Kirillov et al., 2023) and 
Detectree2 (Ball et al., 2023), as well as multiple neural network applica-
tions based on the PointNet architecture (e.g. Wielgosz et al., 2023; Yu 
et al., 2022) show promise to accurately segment trees in 2D and 3D 

F I G U R E  5 Linear mixed models showing the relationship between cluster path length and cluster gcc in 35 healthy (solid line) and 85 
infected (dashed line) trees. Trees were classified as healthy or infected using a gcc threshold derived from visual assessments of crown 
health. ITC points were clustered using the Python module DBSCAN (Giri et al., 2021). Ribbons represent 95% confidence intervals.
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UAV-derived data. These advances in segmentation algorithms, com-
bined with increased affordability of lightweight consumer UAVs hold the 
potential to revolutionise ecological applications of low-cost 3D spectral 
data. Similarly, we used a total station to survey the precise location 
of GCPs. With the price-point of real-time kinetic positioning-enabled 
consumer UAVs rapidly decreasing, along with global navigation satel-
lite systems such as the emlid reach series (e.g. Krofcheck et al., 2019) 
and mavic 3 enterprise series (e.g. Barazzetti et  al.,  2023) becoming 
more accessible, the need for GCPs may become redundant (Tomaštík 
et al., 2019), opening the opportunity for more rapid data collection with 
fewer specialised equipment costs. However, in dense forest canopies, 
UAV-derived SfM data will suffer from lower penetration through the 
canopy due to a larger effective pixel size, meaning LiDAR data is likely 
to produce more accurate segmentation.

4.2  |  ADB detection from UAV data is most 
effective after peak greenness

A key determinant in the efficiency and accuracy of forest health 
monitoring is timing; a successful survey should be carried out 
when the symptoms of the pathogen are most prevalent (Wardlaw 
et al., 2008). We found the strongest correlation between gcc and 
visual assessments of crown health in data collected immediately 
after peak greenness, in July, with the next strongest correlations for 
the August and September surveys. Here, we demonstrate that ideal 
survey timing broadly follows the patterns we would expect from 
prior knowledge of ADB dynamics, where ascomata of H. fraxineus 
typically form in July–August (Timmermann et  al.,  2011) and 
lesions appear on leaves approximately 2 weeks after inoculation 
(Gross et  al.,  2012). Although it has previously been found that 
ADB surveys are best carried out in the summer leaf-on months 
(Stocks et al., 2017), we present analysis defining the best month for 
detection. While precise timings are likely to be impacted year-to-
year by environmental and climatic factors such as temperature, soil 
moisture and rainfall, we show a clear pattern of higher correlations 
after peak greenness, corroborated by the previous 2 years' data.

A key benefit of UAV-derived monitoring is ease of data acquisi-
tion; collecting data cheaply and quickly means repeat surveys can 
be carried out with high temporal resolution (van Iersel et al., 2018) 
requiring minimal operator training. This means that repeat mea-
surements of gcc, shown here to correlate to visual assessments of 
crown health, could be taken routinely, allowing the rate of ADB 
severity progression and shifts in phenological patterns to be moni-
tored, providing key metrics for managing impacts of disease (Stone 
& Mohammed, 2017).

4.3  |  Spatial patterns of dieback can help to 
identify causes of disturbance

In this study, we provide evidence that characterising spatial patterns 
of greenness within ITCs may help identify dieback drivers. Our results 

show an opposite relationship between gcc and path length in infected 
versus healthy trees. This finding supports evidence that UAV-derived 
SfM data can refine detection and map fine-scale location-specific 
foliage changes (Cessna et  al.,  2021) previously only possible with 
multi- and hyper-spectral—LiDAR fusion (Cho et al., 2012; Dalponte 
et al., 2012; Kantola et al., 2010; Shendryk et al., 2016). Studies using 
high-resolution 3D data to quantify internal patterns of dieback have 
so far been limited, however there is a growing body of evidence for 
driver-characteristic spatial patterning. For example, trees influenced 
by drought events have been shown to display early senescence, 
which can retain young, distal buds and shoots (Jump et  al.,  2017; 
Munné-Bosch & Alegre, 2004), and simple visual assessments of tree 
crown imagery have shown dieback proximal to the lower stem in 
trees impacted by drought (Stephenson et al., 2018). Similarly, defolia-
tion caused by spruce bark beetle appears to occur in the older foli-
age, situated in the upper, inner canopy, and has been shown to be 
measurable by UAV-derived SfM data (Cessna et al., 2021). Here, we 
quantify the spatial patterns of defoliation associated with ADB, while 
improving classification by filtering signal from below canopy vegeta-
tion, which is known to influence quantification of ADB severity (Chan 
et al., 2021). However, more work using 3D measurements of internal 
ITC dieback is needed to understand fine-scale spatial variation in re-
sponse to multiple specific drivers of disturbance. Although here ap-
plied to ADB, this framework is applicable to a multitude of drivers of 
dieback, presenting an ideal method for identifying spectral-structural 
relationships which may be characteristic of disturbance type.

We found a stronger relationship between cluster path length 
and gcc (defined by 95% CIs) in infected trees than healthy ones; 
however, this may be caused by the smaller sample size (n = 35 for 
healthy trees). Once ADB is present in a geographical region, it 
spreads quickly and therefore many of the healthy trees are sit-
uated close to infected ones and may be inoculated at an early 
stage of infection (Stocks et al., 2017). On the other hand, trees 
classified as healthy in close proximity to trees classified as in-
fected, and not showing the spatial patterns of dieback, could 
indicate genetic resistance. More work is required to draw links 
between genetic breeding values and measurements of dieback 
severity to understand if genetic resistance can be predicted via 
remotely sensed data.

5  |  CONCLUSIONS

We show ITC gcc is a good indicator of crown health in trees infected 
with ADB by comparing with visual assessments of per cent live crown. 
We also used repeat measurements to identify that the best time of 
year for ADB surveillance is during the growing season, after peak 
greenness. Finally, we map the fine-scale spatial patterns of internal 
crown greenness to help identify ADB in remotely sensed data. Our re-
sults demonstrate a new low-cost method to detecting ADB and map-
ping severity, previously only possible with expensive hyperspectral 
imagery, demonstrating the importance of fine-scale structural data 
for quantifying forest dynamics and ecological monitoring. This builds 
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on previous work, for example classifying tree species from structural 
information alone (Allen et al., 2022; Terryn et al., 2020), highlighting a 
movement towards the co-measurement of structural and functional 
traits with high-resolution remote sensing (Lines et al., 2022).

We demonstrate the power of structural measurements to 
detect fine-scale ecological signal by showing that the spatial ar-
rangement of greenness in ITCs can be indicative of causal agents 
of dieback. We therefore propose that this work demonstrates the 
opportunity to map dieback in ITCs from various causes, providing 
a new framework for classifying drivers of disturbance through an 
intercomparison of remotely sensed data.
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