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Abstract: 55 
The dramatic growth in livestock populations since the 1950s has altered the epidemiological and 56 
evolutionary trajectory of their associated pathogens. For example, Marek’s disease virus (MDV), which 57 
causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the last century. 58 
Today, MDV infections kill >90% of unvaccinated birds and controlling it costs >US$1bn annually. By 59 
sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been 60 
circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes 61 
positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving 62 
tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular 63 
basis of virulence in economically relevant pathogens. 64 
 65 
One sentence summary: 66 
Functional paleogenomics reveals the molecular basis for increased virulence in Marek’s Disease Virus.  67 
 68 
Main Text: 69 
Marek’s Disease Virus (MDV) is a highly contagious alphaherpesvirus that causes a tumor-associated 70 
disease in poultry. At the time of its initial description in 1907, Marek’s Disease (MD) was a relatively 71 
mild disease with low mortality, characterized by nerve pathology mainly affecting older individuals(1). 72 
However, over the course of the 20th century, MDV-related mortality has risen to >90% in unvaccinated 73 
chickens. To prevent this high mortality rate, the poultry industry spends more than US$1 billion per year 74 
on health intervention measures, including vaccination(2). 75 
 76 
The increase in virulence and clinical pathology of MDV infection has likely been driven by a 77 
combination of factors. Firstly, the growth in the global chicken population since the 1950s led to more 78 
viral replication, which increased the supply of novel mutations in the population. In addition, the use of 79 
imperfect (also known as ‘leaky’) vaccines that prevent symptomatic disease but do not prevent 80 
transmission of the virus likely shifted selective pressures and led to an accelerated rate of MDV 81 
virulence evolution(3). Combined, these factors have altered the evolutionary trajectory, resulting in 82 
modern hyper-pathogenic strains. To date, the earliest sequenced MDV genomes were sampled in the 83 
1960s(4), several decades after the first reports of MDV causing tumors(5). As a result, the genetic 84 
changes that contributed to the increase in virulence of MDV infection prior to the 1960s remain 85 
unknown. 86 
 87 
Marek’s disease virus has been circulating in Europe for at least 1000 years 88 
To empirically track the evolutionary change in MDV virulence through time, we generated MDV 89 
genome sequences (serotype 1) isolated from the skeletal remains of archeological chickens. We first 90 
shotgun sequenced 995 archeological chicken samples excavated from >140 Western Eurasian 91 
archeological sites and screened for MDV reads using HAYSTAC(6) with a herpesvirus-specific 92 
database. Samples with any evidence of MDV reads were then enriched for viral DNA using a 93 
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hybridization-based capture approach based on RNA baits designed to tile the entire MDV genome 94 
(excluding one copy of each of the terminal repeats and regions of low complexity). To validate the 95 
approach, we also captured and sequenced DNA from the feather of a modern Silkie chicken that 96 
presented MDV symptoms. As a negative control, we also included an ancient sample that displayed no 97 
evidence of MDV reads following screening (OL1214; Serbia, C14th-15th).  98 
 99 
Using the capture protocol we identified 15 ancient chickens with MDV-specific reads of ≥25bp in 100 
length. This approach also yielded a ~4× genome from a modern positive control. We found that the 101 
majority of uniquely mapped reads (i.e. 88-99%) generated from ancient samples classified as MDV-102 
positive were ≥25bp, while the majority (i.e. 53-100%) of uniquely mapped reads generated from samples 103 
considered MDV-negative were shorter than 25bp. In addition, samples considered MDV-positive yielded 104 
between 308 and 133,885 uniquely mapped reads (≥25bp) while samples considered MDV-negative 105 
(including a negative control; Table S2) yielded between 0 and 211 uniquely mapped reads of ≥25bp. 106 
MDV-positive ancient samples ranged in depth of coverage from 0.13× to 41.92× (OL1385; Fig. 1a, 107 
Table S2), with seven genomes at ≥2× coverage.  108 
 109 
In all positive samples, the proportion of duplicated reads approached 100%, indicating that virtually all 110 
of the unique molecules in each library were sequenced at least once (Fig. S1). Reads obtained from 111 
MDV-positive ancient samples were characterized by chemical signatures of DNA damage typically 112 
associated with ancient DNA (Fig. S2). In contrast, reads obtained from our modern positive control did 113 
not show any evidence of DNA damage (Fig. S2). The earliest unequivocally MDV-positive sample (with 114 
4,760 post-capture reads ≥25bp) was derived from a 10th-12th century chicken from Eastern France 115 
(Andlau in Fig. 1a; Table S2). Together, these results demonstrate that MDV strains have been circulating 116 
in Western Eurasian poultry for at least 1,000 years.  117 
 118 
Ancient MDV strains are basal to modern lineages 119 
To investigate the relationship between ancient and modern MDV strains, we built phylogenetic trees 120 
based on both neighbor-joining (NJ) and maximum likelihood (ML) methods. We first built trees using 121 
10 ancient genomes with at least 1% coverage at a depth of ≥5x, a modern positive control derived from 122 
the present study (OL1099), and 42 modern genomes from public sources (Table S3). Both NJ (Fig. 1b, 123 
Fig. S3) and ML trees (Fig. S4) match the previously described general topology(7), in which Eurasian 124 
and North American lineages were evident, along with a well-supported (bootstrap: 94) ancient clade (Fig 125 
1b). The same topology was also obtained when restricting our ML analysis to include only transversion 126 
sites (Fig. S5). Lastly, we built a tree using an outgroup (Meleagrid herpesvirus 1, accession: 127 
NC_002641.1) to root our topology (Fig. S6). We obtained a well-supported topology showing that the 128 
ancient MDV sequences form a highly supported clade lying basal to all modern MDV strains (including 129 
the modern positive control OL1099). 130 
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 131 
Next, we built a time-calibrated phylogeny using BEAST (v. 1.10;(8)) that included 31 modern genomes 132 
collected since 1968 (Table S3), and four ancient samples with an average depth of coverage  >5× 133 
(OL1986, Castillo de Montsoriu, Spain, 1593 cal. CE; OL1385, Buda Castle, Hungary, 1802 cal. CE; 134 
OL1389, an additional Buda Castle sample from the same archeological context as OL1385; OL2272, 135 
Naderi Tepe, Iran, 1820 cal. CE; Table S1-S2, Fig. 1a). All of the ancient samples were phylogenetically 136 
basal to all modern MDV strains. The time of the most recent common ancestor (TMRCA) of the 137 
phylogeny was 1602 CE (95% HPD interval 1486 - 1767; Fig. 1c, Table S4).  138 
 139 
As previously reported(7) we found that, aside from a few exceptions, most Eurasian and North American 140 
MDV strains formed distinct clades (Fig. 1b), suggesting that there has been little recent transatlantic 141 
exchange of the virus. The inclusion of time-stamped ancient MDV sequences improved the accuracy of 142 
the molecular clock analysis, and pushed back the TMRCA of all modern MDV sequences, from 1922-143 
1952(7) to 1881 (95% HPD interval 1822 - 1929; Table S4). Our mean TMRCA of modern MDV is 144 
concordant with a recent estimate that incorporated 26 modern MDV genomes from East Asian chickens 145 
(1880, 95% HPD 1772-1968;(9)). This phylogenetic analysis implies that the two major modern clades of 146 
MDV were likely established before the earliest documented increases in MDV virulence in the 1920s. 147 
Furthermore, since birds infected with highly virulent MDV would not have survived a transatlantic 148 
crossing, a TMRCA of 1938 (95% HPD 1914 - 1958) for the clade containing the earliest North 149 
American sample (CU2, 1968; accession: EU499381.1) could be consistent with the virus having been 150 
transmitted prior to the most significant virulence increases leading up to the 1960s. These results are also 151 
consistent with the hypothesis that Eurasian and North American MDV lineages independently evolved 152 
towards increased virulence(7).   153 
 154 
Virulence factors are among positively selected genes in the modern MDV lineage 155 
The rapid increase in MDV virulence could potentially have been driven by gene loss or gain which 156 
would have substantially altered the biology of the virus(10, 11). Analysis of a Hungarian, high coverage, 157 
MDV genome (OL1385; >41x) from the 18th - 19th century indicated that it possessed the full complement 158 
of genes present in modern sequences. This indicates that there was no gene gain or loss in either ancient 159 
or modern lineage (Fig. 2). We also found that all MDV miRNAs, some of which are implicated in 160 
pathogenesis and oncogenesis in modern strains(12), were intact and highly conserved in ancient strains 161 
(Table S5). Together, these results indicate that the acquisition of virulence most likely resulted not from 162 
changes in MDV genome content or organization, but from point mutations.  163 
 164 
In fact, considering sites at which we had coverage for at least two ancient genomes, we identified 158 165 
fixed single nucleotide polymorphism (SNPs) between the ancient and modern samples, of which 31 were 166 
found in intergenic regions and may be candidates for future study of MDV regulatory regions (Table 167 
S6). To assess the impact of positive selection on point mutations we performed a branch-site analysis in 168 
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PAML(13) (ancient sequences as background lineage, modern sequences as foreground lineage) on open 169 
reading frames (ORFs) using four ancient MDV genomes (OL1385, OL1389, OL1986 and OL2272). 170 
After controlling the false discovery rate using the Benjamini-Hochberg procedure(14), this analysis 171 
identified 49 ORFs with significant evidence for positive selection (Fig. 2; Table S7). 172 
 173 
Several positively selected loci identified in this analysis have previously been associated with MDV 174 
virulence in modern strains. Some of these are known immune modulators or potential targets of a 175 
protective response. This includes ICP4, a large transcriptional regulatory protein involved in innate 176 
immune interference. Interestingly, ICP4 appears to be an important target of T cell-mediated immunity 177 
against MDV in chickens possessing the B21 Major Histocompatibility Complex (MHC) haplotype(15), 178 
and it is plausible that sequence variation in important ICP4 epitopes could confer differential 179 
susceptibility to infection.  180 
 181 
We also identified signatures of positive selection in several genes encoding viral glycoproteins (gC, gE, 182 
gI, gK and gL). Glycoproteins are important targets for the immune response to MDV(16). In fact, the 183 
majority of MDV peptides presented on chicken MHC class II are derived from just four proteins(17), of 184 
which two were glycoproteins found to be under selection in our analysis (gE and gI). This result 185 
indicates that glycoproteins are likely under selection in MDV because they are immune targets. The 186 
limited scope of immunologically important MDV peptides presented by MHC class II may have 187 
important implications for vaccine development.  188 
  189 
Positive selection was also detected in the viral chemokine termed viral interleukin-8 (considered a 190 
functional ortholog of chicken CXC ligand 13;(18)). Viral IL-8 is an important virulence factor that 191 
recruits B cells for lytic replication and CD4+ CD25+ T cells that are transformed to generate lymphoid 192 
tumors. Viruses that lack vIL-8 are severely impaired in the establishment of infection and generation of 193 
tumors through bird-to-bird transmission(19), so sequence variation in this gene could plausibly impact 194 
transmission.  195 
 196 
The key oncogene of MDV has experienced positive selection and an ordered loss of tetraproline 197 
motifs 198 
Our selection scan also identified Meq, a transcription factor considered to be the master regulator of 199 
tumor formation in MDV(20). In fact, the Meq coding sequence had the greatest average pairwise 200 
divergence between ancient and modern strains across the entirety of the MDV genome (Fig. 2), implying 201 
there were numerous sequence changes along the branch leading to modern samples. Animal experiments 202 
have demonstrated that Meq is essential for tumor formation(20) and polymorphisms in this gene, even in 203 
the absence of variants elsewhere in the genome, are known to confer significant differences in strain 204 
virulence or vaccine breakthrough ability(21).  205 
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 206 
Meq exerts transcriptional control on downstream gene targets (both in the host and viral genome) via its 207 
C-terminal transactivation domain. This domain is characterized by PPPP (tetraproline) repeats spaced 208 
throughout the second half of the protein, and the number of tetraproline repeats is inversely proportional 209 
to the virulence of the MDV strain(22). The difference in the number of tetraproline repeats in most 210 
strains is the result of point mutations rather than deletion or duplication; these strains are considered 211 
‘standard length’-Meq (339 amino acids). In some strains, however, tetraproline repeats have been 212 
duplicated (‘long’-Meq strains, 399 amino acids) or deleted (‘short’-Meq strains, 298 amino acids, or 213 
‘very short’-Meq, 247 amino acids). These mutations have led to varying numbers of tetraproline repeats 214 
between strains.   215 
 216 
We did not find any evidence of duplication or deletion in ancient Meq sequences, indicating that there 217 
are ‘standard length’-Meq. We then identified point mutations in a database containing four ancient Meq 218 
sequences (OL1385, OL1389, OL1986 and OL2272) along with 408 modern ‘standard length’-Meq 219 
sequences (Table S8). This analysis demonstrated that ancient Meq possessed six intact tetraproline 220 
motifs while all modern ‘standard length’-Meq sequences had between two and five. All ancient Meq 221 
sequences had a unique additional intact tetraproline motif at amino acids 290-293.  This tetraproline 222 
motif was disrupted by a point mutation – causing a Proline to Histidine change – in the recent 223 
evolutionary history of ‘standard length’-Meq MDV strains.  224 
 225 
To further explore the virulence-related disruption of tetraprolines in modern Meq sequences, we 226 
constructed a phylogeny of Meq sequences (Fig. 3a). Mapping the tetraproline content of each sequence 227 
on the phylogeny indicated that tetraprolines have been lost in a specific order. Following the universal 228 
disruption of the 6th tetraproline through a point mutation (at amino acids 290-293) at the base of the 229 
modern MDV lineage, the 4th tetraproline was disrupted at the base of two major lineages (amino acids 230 
216-219). Disruption of the 4th tetraproline was followed in seven independent lineages by the disruption 231 
of the 2nd tetraproline (amino acids 175-178), and then by the loss of either the 1st (amino acids 152-155) 232 
or the 5th tetraproline (amino acids 232-235) in six lineages (Fig. 3a-b). 233 
 234 
Interestingly, our analysis indicated that the 2nd and 4th tetraprolines (codons 176 and 217) were under 235 
positive selection (Table S7). Although there were some observations of virus lineages exhibiting an 236 
alternative loss order (e.g. the occasional loss of the 3rd tetraproline (amino acids 191-194) following the 237 
loss of the 4th), such lineages are not widespread, suggesting that they may become stuck in local fitness 238 
peaks and are outcompeted by lineages following the order described above. The independent 239 
recapitulation of this pattern in different lineages suggests loss of tetraproline motifs acts as a ratchet, 240 
whereby each subsequent loss results in an increase in virulence, and once lost, motifs are unlikely to be 241 
regained.  242 
 243 
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Ancient Meq is a weak transactivator that likely did not drive tumor formation 244 
The initial description of MD in 1907 did not mention tumors(1). Given the degree of sequence 245 
differentiation observed between ancient and modern Meq genes, it is possible that ancient MDV 246 
genotypes were incapable of driving lymphoid cell transformation. To test this hypothesis experimentally, 247 
we assessed whether ancient Meq possessed lower transactivation capabilities, compared to modern 248 
strains, in a cultured cell-based assay.  249 
 250 
To do so, we synthesized an ancient Meq gene based on our highest coverage ancient sample (OL1385; 251 
Buda Castle, Hungary; 1802 cal. CE) and experimentally tested its transactivation function. We also 252 
cloned ‘very virulent’ modern pathotype strains (RB1B and Md5), which each differ from ancient Meq at 253 
13-14 amino acid positions (Fig. 3c; Table S9). All the Meq proteins were expressed in cells alongside a 254 
chicken protein (c-Jun), with which Meq forms a heterodimer, and a luciferase reporter containing the 255 
Meq binding (AP-1) sequence.  256 
 257 
Relative to the baseline signal, the transactivation of the ‘very virulent’ Meq strains RB1B and Md5 were 258 
7.5 and 10 times greater, respectively (Fig. 3d). Consistent with previous reports(23), removal of the 259 
partner protein, c-Jun, from RB1B resulted in severe abrogation of the transactivation capability (Fig. 3d). 260 
Ancient Meq exhibited a ~2.5-fold increase in transactivation relative to the baseline, but was 261 
substantially lower (3-4-fold) than Meq from the two ‘very virulent’ pathotypes (Fig. 3d). The ancient 262 
Meq was thus a demonstrably weaker transactivator than Meq from modern strains of MDV.  263 
 264 
Given that the transcriptional regulation of target genes (both host and virus) by Meq is directly related to 265 
oncogenicity(20, 23), it is likely that the weaker transactivation we demonstrate is associated with 266 
reduced or absent tumor formation. These data indicate that ancient MDV strains were unlikely to cause 267 
tumors, and were less pathogenic than modern strains. Ancient MDV likely established a chronic 268 
infection characterized by slower viral replication, low levels of viral shedding and low clinical 269 
pathology, which acted to facilitate maximal lifetime viral transmission in pre-industrialized, low-density 270 
settings.   271 
 272 
Conclusion 273 
Overall, our results demonstrate that Marek’s Disease Virus has been circulating in Western Eurasia for at 274 
least the last millennium. By reconstructing and functionally assessing ancient and modern genomes, we 275 
showed that ancient MDV strains were likely substantially less virulent than modern strains, and that the 276 
increase in virulence took place over the last century. Along with changes in several known virulence 277 
factors, we identified sequence changes in the Meq gene – the master regulator of oncogenesis – that 278 
drove its enhanced ability to transactivate its target genes and drive tumor formation. The historical 279 
perspective that our results provide can form the basis on which to rationally improve modern vaccines, 280 
and track or even predict future virulence changes. Lastly, our results highlight the utility of functional 281 
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paleogenomics to generate insights into the evolution and fundamental biological workings of pathogen 282 
virulence.  283 



 284 

 285 
Fig. 1. Locations of MDV-positive samples and time-scaled phylogeny. (A) Map showing the 286 
locations of screened archeological chicken samples that were positive for MDV sequence. Colored 287 
circles indicate sample dates (either from calibrated radiocarbon dating or estimated from archeological 288 
context; Table S1). Average sequencing depth following capture is given in parentheses under sample 289 
names. If more than one sample was derived from the same site, this is indicated by a list of sample 290 
identifiers (beginning ‘OL’) and sequencing depths in parentheses. (B) Unrooted neighbor-joining tree of 291 
42 modern and 10 ancient genomes. Only the four high-coverage ancient samples used in our BEAST 292 
analysis were labeled in this tree (Table S2). Nodes with bootstrap support of >90 are indicated by red 293 
dots. (C) Time-scaled maximum clade credibility tree of ancient and modern MDV sequences using the 294 
uncorrelated lognormal relaxed clock model (UCLD) and the general time-reversible (GTR) substitution 295 
model. Gray bars indicate the 95% highest posterior density (HPD) for the age of each node. The ‘cal’ 296 
suffix for ancient samples indicates that samples were radiocarbon dated and these date distributions were 297 
used as priors for the molecular clock analyses(24). 298 
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Fig. 2. Branch-site selection analysis of MDV genomes. The MDV genome is represented as a circular 300 
structure with gross genomic architecture displayed on the innermost track (track V) and genomic 301 
coordinates shown on the outermost track (units: ×103 kb; track I). Since the long terminal repeat (TRL) 302 
and short terminal repeat (TRS) are copies of the long internal repeat (IRL) and the short internal repeat 303 
(IRS), respectively, selection analysis excluded the TRL and the TRS regions, leaving only the unique 304 
long (UL) and unique short (US) regions along with the two internal repeats. Results of the positive 305 
selection analysis are displayed on track II, where open reading frames (ORFs) are shaded according to 306 
the strength of statistical support (corrected P-values) for positive selection. Sliding window average 307 
pairwise divergence between ancient and modern samples is shown on track III, and ORF orientation is 308 
shown on track IV. 309 
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310 
Fig. 3. Meq has undergone ordered loss of tetraproline repeats and increased transactivation 311 
ability. (A) Phylogenetic analysis of 412 Meq sequences of standard length (1017 bp). The outermost 312 
track shows the integrity of each tetraproline motif (purple squares = intact; yellow squares = disrupted). 313 
The mutations that disrupt the tetraproline motif are linked by dotted blue lines (e.g. ‘4 PAPP’ indicates 314 
that the 4th tetraproline motif is disrupted by a proline-to-alanine substitution in the second proline 315 
position. ‘3 PP..P’ denotes a deletion of the 3rd proline in the 3rd tetraproline motif). For a complete 316 
version of this figure, see Fig. S7. (B) Proposed model for the most common ordered loss of tetraproline 317 
motifs in Meq. Purple and green boxes indicate presence and absence of an intact tetraproline, 318 
respectively. The gray box on the third row indicates that the 3rd tetraproline is occasionally lost after the 319 
6th, but typically only in terminal branches. The two gray boxes in the bottom row indicate that it is either 320 
the 1st or 5th tetraproline that is lost at this point. (C) Positions of amino acid differences between the 321 
ancient Hungarian MDV strain (OL1385) and the two modern strains (RB1B and Md5). Positions that 322 
were also found to be under positive selection are highlighted in red. (D) The transactivation ability of 323 
Meq reconstructed from an ancient Hungarian MDV strain (OL1385) was compared to the transactivation 324 
abilities of modern strains: RB1B and Md5 (‘very virulent’ pathotype). To show the effect of the partner 325 
protein c-Jun on transactivation ability, the strongest transactivator RB1B was tested with (+) and without 326 
(–) c-Jun. Transactivation ability is expressed as fold activation relative to baseline signal from an empty 327 
vector (EV). Error bars are standard deviation, and statistical significance was determined using 328 



Dunnett’s test for comparing several treatment groups with a control. *, P < 0.05; **, P < 0.01; ***, P < 329 
0.001.  330 
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