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Abstract—The next-generation 4D imaging automotive radar is
characterized by high angular resolution, unambiguous detection,
low latency, low cost, and small size. This study provides an
enhanced analysis of the angular ambiguity function (AAF)
for planar MIMO arrays, and pioneers a method for a more
accurate evaluation of angular resolution using the main lobe
width (MLW). Then the 2D expanded beam pattern (EBP) is
introduced to assess the field-of-view (FOV), region of interest
(ROI), sidelobe level (SLL), and normalized resolution intuitively
and precisely. After constructing the sophisticated 2D element
spacing and aperture constraints for planar MIMO arrays, the
optimization of array geometry is creatively formulated as a novel
Domino sparse optimization problem aiming to minimize the
MLW while sufficiently suppressing the SLL, which is inspired
by the sequential fall of dominoes. This non-convex and non-
smooth constrained problem is efficiently solved by a hybrid
optimization framework, which integrates the alternating direc-
tion multiplier method (ADMM), aggregate function, modified
real genetic algorithm (MGA), and non-uniform fast Fourier
transform (NUFFT). Numerical simulations demonstrate that
angular resolution varies with array geometry, even under the
same aperture size. The proposed arrays outperform others
with equal aperture size, exhibiting narrower MLW and lower
Cramér-Rao bound (CRB), thereby enhancing angular resolution
with fewer antennas and without preprocessing in standard
single-snapshot 2D DOA estimation methods.

Index Terms—Colocated MIMO radar, Sparse planar array,
Angular ambiguity function, Angular resolution, Non-convex
optimization.

I. INTRODUCTION

OVER the past decades, automotive safety has led to the
adoption of radar sensors for detecting various entities

[1], and multiple-input multiple-output (MIMO) radar has
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been a focus due to its high angular resolution with lim-
ited antennas [2], used in current-generation advanced driver-
assistance systems (ADAS) and explored for next-generation
high-resolution imaging in autonomous driving. The next-
generation MIMO radar aims for finer imaging capability for
better target recognition, and therefore demands high angular
resolution, no ambiguity, low latency, low hardware cost, and
small size, as defined by the most competitive sensor products
[3].

The angular resolution capacity of an antenna array is
essential for automotive radar [4]. Various super-resolution
direction of arrival (DOA) estimation methods have been
developed, such as multiple signal classification (MUSIC)
[5], compressed sensing (CS) [6] and the iterative adaptive
approach (IAA) [7], but the resolution is still limited by the
number of antennas in uniform arrays. Non-uniform arrays,
which offer cost reduction and larger aperture, have thus
gained significant attention [8]. These arrays are divided into
two categories: regular sparse arrays (RSAs), with elements
on a regular grid, and irregular sparse arrays (ISAs), where
elements are arbitrarily distributed.

RSAs, also known as thinned arrays, select elements from a
uniform array [9]. The difference coarray concept is essential
for RSA as it appears naturally in the cross correlation between
two elements in the covariance matrix [4]. This allows the
thinned array to be re-formed as a virtual coarray with larger
aperture size [10], thus achieving better DOA estimation per-
formance. However, most of RSAs cannot deal with coherent
sources [11], and multiple snapshots are required for accurate
covariance matrix estimation [3]. This is challenging for 4D
imaging radar in dynamic automotive scenarios, where only a
few or even a single snapshot might be available after range-
Doppler two-dimensional fast Fourier transform (2D-FFT) [3].
A recent method used structured matrix completion to fill the
missing elements of covariance matrix with RSA using only
a single snapshot [12], but this is computationally intensive.

Unlike RSAs, ISAs have arbitrarily distributed elements on
the antenna aperture, increasing the degrees of freedom (DoFs)
for the antenna geometry. A key problem with sparse arrays
is angular ambiguity, which arises when the radar system
cannot distinguish between true targets and ghost targets
generated by similar steering vectors. Various approaches have
been proposed to design an ambiguity-free sparse array. [13]
provides a simple ambiguity measure using MUSIC, while
[14] finds the optimal circular array by measuring the average
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SLL and RMSE of the signal-subspace MUSIC spectrum.
Another method imposes restrictions, such as the maximal
inter-sensor spacing (typically half the wavelength), on the
array geometry to ensure first-order ambiguity-free arrays
[15], [16]. [17] reduces the Euclidean distance between the
steering vectors. Selecting the objective function for geometry
optimization is an important issue in ISA design. Advanced
designs of ISA typically focus on two main objectives for
2D DOA estimation: enhancing angular accuracy using the
Cramér-Rao bound (CRB) [13] as a criterion, and avoiding
ambiguities by employing the ambiguity function [18] as a
guiding principle. This paper refers to the latter as the angular
ambiguity function (AAF) to distinguish it from the radar
range-Doppler ambiguity function.

Cramér-Rao bounds (CRBs) for sparse arrays have been
extensively studied [19]. An isotropic array is proposed in [20],
where the CRB on the DOA of a single source is uniform for
all angles. The CRB, used to evaluate DOA estimation accu-
racy, is only a tight bound for maximum likelihood estimates
of DOA at high signal-to-noise ratios (SNRs), but not at low
SNRs [21]. A two-target CRB is used in [22] to reduce the
sidelobe level (SLL) at the cost of a wider beamwidth. Other
bounds for random parameter estimation, such as the Bayesian
CRB (BCRB) [21], the Weiss–Weinstein bound (WWB) [23],
the Ziv–Zakai bound (ZZB) [24], [25], and the Bobrovsky-
Zakai Bound (BZB) [26], are used to evaluate ambiguity-free
sparse arrays. These bounds are tighter and more realistic than
CRB, especially at low SNRs, but have complex mathematical
expressions. The angular ambiguity function (AAF), which
measures the similarity of any two steering vectors of an array,
is a more suitable metric for ambiguity assessment due to
its interpretability and computational simplicity. Consequently,
both the SLL of AAF and the CRB are considered in optimiz-
ing ISA geometry for high-accuracy and ambiguity-free DOA
estimation [27]–[30].

Angular resolution is typically evaluated using the Rayleigh
criterion, which determines resolution based on aperture size
[31]. Although the Rayleigh criterion offers a convenient ap-
proach, it becomes less accurate for non-uniform arrays where
the beamwidth varies with array geometry [32]. The mainlobe
width (MLW) of AAF provides a more precise method for
evaluating resolution among arrays with equal aperture sizes
[33], [34]. The relationship between angular accuracy and
resolution has been explored, with some derivations from CRB
to beamwidth in [20], [27]. The half-power beamwidth can be
approximated by the CRB performance using a second-order
Taylor series approximation, but this leads to estimation errors
[32]. [35] suggests that the angular resolution limit (ARL)
is inversely proportional to the variance of array element
positions, which is also drawn from the two-source CRB
approximation. High-resolution ISA geometry is designed
based on array manifold properties in [36], but this causes
a high SLL. Using the manifold, CRB, and other Bayesian
bounds as performance metrics can be problematic in practice,
as array calibration errors tend to dominate DOA estimation
errors [37], [38]. The real performance of arrays, considering
undesirable factors, can be more effectively analyzed through
AAF measurements of a prototype [39], and further improved

by a calibration [40].
Conventional pattern synthesis methods usually minimize

the SLL and control the MLW indirectly by selecting a
sidelobe region, and heuristic algorithms are often utilized to
optimize the ISA geometry for a low SLL given their global
convergence, like genetic algorithm (GA) [27], [41], simulated
annealing (SA) [42] and particle swarm optimization (PSO)
[43]. GA is exploited to maximize the area of the ambiguity-
free region in [39], which defines the 2-D-angular field-of-
view (FOV) of a MIMO radar, but the authors simply assume
that the angular resolution is determined by the aperture size
without considering the MLW. While low SLL arrays have
been extensively studied, a narrow MLW is also crucial as it
provides high angular resolution and accuracy for many DOA
estimation methods [37]. To achieve a higher resolution, MLW
is also incorporated into the objective function in recent studies
[25], [44], and new search techniques have been explored to
solve the multi-objective optimization problem with element
position constraints [25].

However, multi-objective optimization struggle with MLW
minimization as reaching the MLW-SLL pareto front boundary
with few iterations is challenging [25], [33]. No solution has
been reported to directly reduce the MLW of the angular
ambiguity function (AAF) by planar array geometry opti-
mization. Recently, sparse optimization algorithms achieving
minimum beamwidth have been proposed for focused beam
pattern synthesis [45], [46], which could allow a narrow-
MLW planar array design. Nevertheless, the ISA geometry
optimization problem differs from beam pattern synthesis, as
optimizing the element positions is a strongly nonlinear and
non-convex problem with variables in exponential terms.

This paper focuses on the optimization of planar MIMO
ISA geometry, aiming to improve angular resolution within
constraints of no angular ambiguity, maximum aperture size,
and antenna spacing limits. The key contributions are:

1) Based on a detailed analysis of the AAF for planar
arrays in various coordinate systems, we pioneer a method
for estimating the angular resolution of arbitrary planar arrays
using MLW evaluation, more accurate than the well-known
Rayleigh criterion. This method builds on the established
understanding that MLW is influenced by the array geometry,
even when the aperture size remains constant [32], [33], [47].
Due to the high dimensionality of AAF, the 2D expanded beam
pattern (EBP) is introduced to assess the FOV, ROI, SLL, and
2D normalized resolution more intuitively and precisely.

2) To tackle the practical challenges of limited aperture
size, antenna overlap, and mutual coupling in planar MIMO
arrays, advanced 2D MIMO element position constraints are
constructed, which are notably more sophisticated than the
linear array case reported in our previous work [33]. Aggregate
functions are skillfully employed to deal with multiple non-
smooth functions in the constraints.

3) It is a difficult task to directly minimize the MLW of EBP.
In this study, the planar MIMO array geometry optimization
problem is modeled as an innovative 2D Domino sparse
optimization problem for the first time, aiming to minimize
the MLW while sufficiently suppressing the SLL. This model,
inspired by the sequential fall of dominoes, prioritizes the
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sparsification of outer variables to ensure a sequential collapse
towards the main lobe peak. This non-convex problem with
many nonlinear constraints is iteratively solved by the ADMM,
and a hybrid algorithm with an acceleration using NUFFT and
an initialization using MGA is proposed to improve efficiency.

The rest of this paper is organized as follows. In Section II,
the problem is formulated after analysis of the angular ambigu-
ity function and antenna position constraints. The MIMO array
geometry optimization problem and associated algorithms are
developed in Section III. In Section IV, numerical examples are
provided to evaluate the performance of the optimized arrays.
Finally, conclusions are drawn in Section V.

Notation: Vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. ‖ · ‖ denotes the
Frobenius norm, while (·)T, (·)H and (·)−1 are the transpose,
Hermitian transpose and matrix inverse operations, respec-
tively. 0m×n and In represent the m × n zero matrix and
n×n identity matrix, respectively. <{} and ={} represent the
real and imaginary parts with j =

√
−1. | · | and ∠{·} are the

magnitude and phase of a complex-valued scalar, respectively.
⊗ is the Kronecker product, and � a type of generalized
inequalities, with x � 0 indicating that all its elements are
greater than 0.

II. SYSTEM MODEL, ANALYSIS, AND PROBLEM
FORMULATION

In this section, the concepts of angular ambiguity function,
forward-looking angular resolution, expanded beam pattern,
element position constraints and aggregate function are intro-
duced, followed by the problem formulation.

A. Angular Ambiguity Function

Consider a planar array for a collocated MIMO radar system
with M transmitting antennas and N receiving antennas. In
the 3D coordinate system, the planar array is assumed to be
placed on the xoz plane if it is used for forward-looking radar.
Under the narrow-band far-field condition, the incident signal
can be considered as a plane wave. As shown in Fig. 1, ϕ and
ϑ represent the forward-looking azimuth (FLA) and forward-
looking elevation (FLE), respectively [39]. ϕ ∈ [−π/2, π/2]
and ϑ ∈ [−π/2, π/2] are the corresponding angular ranges in
the half space in front of the array. Specifically, ϕ > 0 means
that the target is on the right front of the array (positive x-
axis direction), and ϑ > 0 indicates that it is above the array
(positive z-axis direction).

Let

xt =

 xt,1...
xt,M

 , zt =

 zt,1...
zt,M

 ,xr =

xr,1...
xr,N

 , zr =

 zr,1...
zr,N


(1)

describe the x- and z-coordinates of the M transmitters and N
receivers respectively in MIMO radar. Then, the transmitting
and receiving steering vectors associated with FLA ϕ and FLE
ϑ can be written as

at(ϕ, ϑ) = ḡ(ϕ, ϑ) exp(−j
2π

λ
(xt cosϑ sinϕ+ zt sinϑ)),

x

y

z

Target










Fig. 1. The system model of a forward-looking MIMO radar and the
representation of a target’s 2D DOA in different coordinate systems. The
forward-looking azimuth and elevation angles are denoted by ϕ and ϑ,
respectively; α and β are called electric angles [4]; Φ and Θ are azimuth
and elevation in a spherical coordinate system.

ar(ϕ, ϑ) = ḡ(ϕ, ϑ) exp(−j
2π

λ
(xr cosϑ sinϕ+ zr sinϑ)).

(2)

where ḡ(ϕ, ϑ) is an average element radiation pattern, which
includes the information on the mutual coupling environment,
and it can be exploited to approximate each element pattern
in the array with high accuracy [33], [48]. With multiple
virtual channels created in MIMO radar by transmitting or-
thogonal waveforms [2], the virtual array steering vector can
be expressed as the Kronecker product of the transmitting and
receiving steering vectors, i.e.,

a(ϕ, ϑ) = at(ϕ, ϑ)⊗ ar(ϕ, ϑ). (3)

Here, the angular ambiguity function (AAF) [18] is used to
describe the array’s ability to discriminate between the signals
of targets. Specifically, it measures the cosine similarity of the
steering vectors corresponding to the two directions a(ϕi, ϑi)
and a(ϕj , ϑj):

AF (ϕi, ϑi, ϕj , ϑj) =
a (ϕj , ϑj)

H
a (ϕi, ϑi)

‖a (ϕi, ϑi)‖ ‖a (ϕj , ϑj)‖

=
1

MN

M∑
m=1

N∑
n=1

exp{−j
2π

λ
[(xt,m + xr,n)(cosϑi sinϕi

− cosϑj sinϕj) + (zt,m + zr,n)(sinϑi − sinϑj)]} (4)

The derived AAF eliminates the effect of element radiation
patterns. To simplify expressions, define the following spatial
frequency variables

ui = cosαi = cosϑi sinϕi = sin Θi cos Φi,

uj = cosαj = cosϑj sinϕj = sin Θj cos Φj ,

vi = cosβi = sinϑi = sin Θi sin Φi,

vj = cosβj = sinϑj = sin Θj sin Φj , (5)

where α ∈ [0, π] and β ∈ [0, π] are called electric angles,
Φ ∈ [0, 2π] and Θ ∈ [0, π/2] are azimuth and elevation in
a spherical coordinate system [4]. Thus, we obtain two other
representations for the AAF:

AF (αi, βi, αj , βj)
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=
1

MN

M∑
m=1

N∑
n=1

exp{−j
2π

λ
[(xt,m + xr,n)(cosαi − cosαj)

+ (zt,m + zr,n)(cosβi − cosβj)]}, (6)
AF (ui, vi, uj , vj)

=
1

MN

M∑
m=1

N∑
n=1

exp{−j
2π

λ
[(xt,m + xr,n)(ui − uj)

+ (zt,m + zr,n)(vi − vj)]}. (7)

The AAFs defined in (4), (6), and (7) depend on four
variables. If the subscript j is used to indicate the real
DOAs and the subscript i the estimated ones [39], then the
AAF patterns with two variables for estimated DOAs can be
obtained by fixing the real DOAs, namely AFϕj ,ϑj

(ϕi, ϑi),
AFαj ,βj (αi, βi), and AFuj ,vj (ui, vi).

It is worth noting that the maximum absolute value of
(4), (6) and (7) when i 6= j can be regarded as the mutual
coherence of sensing matrix in compressed sensing [6], [49],
defined by

coh , max
i6=j

∣∣a(ϕj , ϑj)
Ha(ϕi, ϑi)

∣∣
‖a(ϕi, ϑi)‖ ‖a(ϕj , ϑj)‖

(8)

coh takes values from 0 to 1, and a low coherence value
is desired to ensure optimal sparse recovery properties for
accurate DOA estimation.
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Fig. 2. The color maps of AAF amplitude for 1T8R UCA: from top to
bottom are |AFuj ,vj (ui, vi)| ,|AFαj ,βj (αi, βi)|, and |AFϕj ,ϑj

(ϕi, ϑi)|,
where color distribution represents values ranging from −10 dB to 0 dB.

To investigate the properties of AAF (as well as coh)
expressed in different coordinate systems, the color maps
of AAF amplitude for 1 transmitter and 8 receivers (1T8R)
uniform circular array (UCA) with half wavelength spacing
are given in Fig. 2. Four real DOAs are assumed, and each
column of the figures corresponds to one of them, which has
different representations in different coordinate systems. The
main lobe region is defined as the region bounded by the first
null contour around the real DOA, which is indicated by the
yellow areas on the images, while the remaining areas are side
lobe region. The opaque areas in Fig. 2 represent the physically
feasible DOA domain, which can be derived from (5). Some

properties can be observed as described in the following.
1) The image of |AFuj ,vj (ui, vi)| is symmetrical about the

point (uj , vj), that is,

|AFuj ,vj (ui, vi)| = |AFuj ,vj (2uj − ui, 2vj − vi)|. (9)

As the real DOA changes, the pattern simply translates with it,
and new side lobe region appears, while the main lobe width
does not change.

2) The images of |AFαj ,βj (αi, βi)| and |AFϕj ,ϑj (ϕi, ϑi)|
are no longer symmetrical when the real DOA deviates from
the boresight direction. As the deviation angle increases, the
MLWs in αi- and βi- direction increase, which implies reduc-
tion in angular resolution. For the forward-looking coordinate
system (ϕi, ϑi), the FLA resolution is degraded more than the
FLE resolution.

B. Forward-looking Angular Resolution Estimation

The well-known Rayleigh angular resolution for bore-sight
direction used in [39] is given by

∆ϕrayl = 1.22
λ

dx
,

∆ϑrayl = 1.22
λ

dz
, (10)

where dx and dz represent the x-aperture size and z-aperture
size (of virtual array for MIMO radar). (10) is derived from
half of the first null beamwidth (HFNBW) of Fraunhofer
diffraction pattern [50], which is calculated by continuous
Fourier transform (FT) of the aperture function. However,
radar antenna arrays typically involve discrete spatial sam-
pling, and the AAF formulas presented in (4), (6), and (7)
are essentially discrete analogs of the Fraunhofer diffraction
integral, necessitating the use of the discrete Fourier transform
(DFT) or, for non-uniform arrays, the non-uniform discrete
Fourier transform (NUDFT). For uniform arrays, DFT can
approximate FT well, thus making (10) a reasonable estimator
of resolution. However, for non-uniform arrays, the significant
differences between NUDFT and FT results lead to inaccu-
racies when (10) is applied. This discrepancy is critical as
it highlights the limitations of traditional optical resolution
criteria when applied to radar systems, especially in the case
of non-uniform arrays.

Considering the inaccuracies involved in directly applying
(10) to non-uniform arrays, the HFNBW of AAF is used to
evaluate the resolution of arbitrary sparse planar arrays in this
study, which determines the minimum interval between two
targets required for estimating their powers without distortion.
Therefore, the 2D MLWs of |AFuj ,vj (ui, vi)|, denoted by ∆u
and ∆v, are indicated as the HFNBWs of |AFuj ,vj (ui, vi)|
along ui-direction and vi-direction, and they describe the
distance from the peak of main lobe to the corresponding first
null point. As shown in Fig. 2, since ∆u and ∆v are only
related to the array geometry and do not vary with the real
DOA, they can be used as normalized resolution (NR).

When the real DOA is bore-sight direction ϕj = ϑj = 0,
the forward-looking angular resolution in ϕi-direction and ϑi-
direction is denoted by ∆ϕ and ∆ϑ, respectively, which are
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indicated as the HFNBWs of |AF0,0(ϕi, ϑi)|. Then, once ∆u
and ∆v are obtained by numerical calculations, the bore-sight
angular resolution is estimated by

∆ϕprop = arcsin (∆u) ,

∆ϑprop = arcsin (∆v) , (11)

which is derived in Appendix A.
Unlike the Rayleigh resolution only applicable to uniform

arrays, (11) gives a more general angular resolution estimation
approach, which is especially useful for non-uniform arrays. In
the simulation section, we will compare the angular resolution
estimated by the Rayleigh formula and the proposed one for
non-uniform arrays, and show that the angular resolution vary
with the array geometry even under the same aperture size.

C. 2D Expanded Beam Pattern
The AAF is a function of four variables uj , vj , ui, vi, and

thus it is hard to evaluate AAF patterns of all possible steering
directions. Our previous work [33] introduced the concept of
EBP for linear arrays so that the dimensionality of AAF can
be reduced. Here, a 2D EBP is introduced for planar arrays in
this subsection, which includes AAF patterns associated with
all uj , vj , ui, vi in a region of interest (ROI) [25], [28]. Define

u = ui − uj = sin Θi cos Φi − sin Θj cos Φj

v = vi − vj = sin Θi sin Φi − sin Θj sin Φj (12)

as the differences between estimated DOAs and real DOAs,
and then the four-variable function AF (ui, vi, uj , vj) in (7)
can be simplified to the EBP function

AF (d, u, v) =
1

MN

M∑
m=1

N∑
n=1

exp{−j
2π

λ
[(xt,m + xr,n)u

+ (zt,m + zr,n)v]}
(13)

In this paper, we focus on array geometry optimization, and
hence the position of array elements d = [xT

t , z
T
t ,x

T
r , z

T
r ]T

becomes a variable in (13).
To determine the ROI of EBP, assume that Θi ∈ [0, Θ̂max]

specifies a user-defined field-of-view (FOV) for DOA es-
timation. As the radiation characteristics of the orthogonal
waveform MIMO radar is equivalent to that of a single array
element, the range of real DOAs depends on the element
radiation pattern. Then, Θj ∈ [0,Θmax] can be determined
by the beamwidth of radiation pattern, such as −10 dB
beamwidth [47]. According to (5), the range of ui, vi, uj , vj
is given by

u2
i + v2

i = sin2 Θi ≤ sin2 Θ̂max,

u2
j + v2

j = sin2 Θj ≤ sin2 Θmax. (14)

Using the Cauchy-Schwarz inequality (uiuj +vivj)
2 ≤ (u2

i +
v2
i )(u2

j + v2
j ), the range of u, v is derived by

u2 + v2 = (ui − uj)2 + (vi − vj)2

= (u2
i + v2

i ) + (u2
j + v2

j )− 2(uiuj + vivj)

≤ sin2 Θ̂max + sin2 Θmax + 2 sin Θ̂max sin Θmax,
(15)

and thus the ROI of EBP is

ΩROI = {(u, v)|u2 + v2 ≤ radius2}, (16)

where radius = sin Θ̂max + sin Θmax.
For example, Fig. 4 in the following section illustrates

the EBP with an ROI of radius = 1.73, i.e., Θ̂max =
60◦,Θmax = 60◦, and thus all possible sidelobes of the whole
set of AAF patterns can be evaluated. The SLL within the
ROI reflects the gross error probability [27], and determines
whether angular ambiguity will appear in DOA estimation. To
design an ambiguity-free array, the SLL should be maintained
below a certain threshold.

In terms of the relationship between the AAF (7) and
coherence (8), a lower SLL of EBP is equivalent to a smaller
coherence when indexes i and j are quite different, while a
narrower MLW corresponds to a smaller coherence when i and
j are similar. If DOA estimation is performed by compressed
sensing, the SLL threshold should be chosen according to
the relationship between the coherence and restricted isometry
constant [49]: δ2S ≤ (2S − 1)coh, where S is the sparsity of
spatial signals.

D. Element Position Constraints and Aggregate Function

In order to control the size of antennas, avoid overlaps
and mitigate mutual coupling effects, the 2D element spacing
and aperture size constraints are constructed for a planar
MIMO array in this subsection. Different from the 1D position
constraints studied in our previous work [33], the 2D position
constraints become non-convex and more steps are needed to
deal with the challenging non-smooth constraints.

Consider a multistatic MIMO radar with separation between
the transmitter area and receiver area like [39], the 2D position
constraints include x-aperture size for transmitters, x-aperture
size for receivers, z-aperture size for transmitters, z-aperture
size for receivers, i.e.,

max
m=1,...,M

{xt,m} − min
m=1,...,M

{xt,m} ≤ Xt,

max
n=1,...,N

{xr,n} − min
n=1,...,N

{xr,n} ≤ Xr,

max
m=1,...,M

{zt,m} − min
m=1,...,M

{zt,m} ≤ Zt,

max
n=1,...,N

{zr,n} − min
n=1,...,N

{zr,n} ≤ Zr, (17)

x-or-z-spacing for transmitters and x-or-z-spacing for re-
ceivers, i.e.,

|xt,m1 − xt,m2 | ≥ ∆xt or |zt,m1 − zt,m2 | ≥ ∆zt,

(m1 < m2, m1 = 1, . . . ,M − 1, m2 = 2, . . . ,M),

|xr,n1 − xr,n2 | ≥ ∆xr or |zr,n1 − zr,n2 | ≥ ∆zr,

(n1 < n2, n1 = 1, . . . , N − 1, n2 = 2, . . . , N), (18)

An example of the 2D MIMO element spacing and aperture
size constraints is given in Fig. 3, where Xt and Zt denote
the maximum available aperture for transmitters, while Xr and
Zr are for receivers. Considering antenna size and reduction
of mutual coupling effects, ∆xt and ∆zt give the minimum
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Fig. 3. An example of the 2D element spacing and aperture size constraints.

x-spacing and z-spacing between transmitters, while ∆xr and
∆zr are for the receivers. (18) can be rewritten as

max {|xt,m1 − xt,m2 | −∆xt, |zt,m1 − zt,m2 | −∆zt} ≥ 0,

(m1 < m2, m1 = 1, . . . ,M − 1, m2 = 2, . . . ,M),

max {|xr,n1 − xr,n2 | −∆xr, |zr,n1 − zr,n2 | −∆zr} ≥ 0,

(n1 < n2, n1 = 1, . . . , N − 1, n2 = 2, . . . , N). (19)

Because the max-value and min-value functions in (17) and
(19) are non-smooth, traditional gradient-based techniques for
constrained optimization may encounter difficulties in solving
them. To smooth multiple max-value functions and min-value
functions in the constraints, the aggregate function [51] is
introduced as follows

fp(x) =
1

p
ln

(
I∑
i=1

exp {pgi(x)}

)
,

f−p(x) =
1

−p
ln

(
I∑
i=1

exp {−pgi(x)}

)
, (20)

where p > 0 is called the smoothing parameter. According
to [51], the aggregate function is often used to approximate
max-value or min-value functions, and the following inequality
holds:

max
i
{gi(x)} ≤ fp(x) ≤ max

i
{gi(x)}+

1

p
ln I,

min
i
{gi(x)} − 1

p
ln I ≤ f−p(x) ≤ min

i
{gi(x)} . (21)

The maximum approximation error is 1
p ln I if and only if

g1(x) = g2(x) = · · · = gI(x). Otherwise, the approximation
error is much smaller than this. Under the condition of
not causing computation overflow, the smoothing parameter
should be as large as possible for a smaller approximation
error. For example, consider M = 16 and xt,m ∈ [0, 20λ] in
(17), a p = 35 is feasible and the maximum approximation
error of the max-value or min-value function is 0.079λ, while
the average approximation error is only about 5 × 10−4λ,
which is acceptable. For the functions in (19), the error is
smaller because there are only two elements (I = 2) in the
max-value functions.

Although the aggregate function (20) can be used to smooth
these functions, it will increase the computational complexity

especially when the number of array elements is large. A better
approach is to sort the elements by x-coordinate, and then
linear inequality constraints could be imposed to replace some
of the non-smooth constraints in (17). Since the EBP depends
only on relative position of the array elements rather than the
absolute position [28], the first transmitter and the first receiver
can be fixed at the origin as the reference position of the
first MIMO virtual element. Therefore, (17) and (19) can be
rewritten as

xt,1 = zt,1 = xr,1 = zr,1 = 0,

xt,m − xt,m−1 ≥ 0, m = 2, . . . ,M

xr,n − xr,n−1 ≥ 0, n = 2, . . . , N

xt,M ≤ Xt,

xr,N ≤ Xr,

max
m=1,...,M

{zt,m} − min
m=1,...,M

{zt,m} ≤ Zt,

max
n=1,...,N

{zr,n} − min
n=1,...,N

{zr,n} ≤ Zr,

max {xt,m2 − xt,m1 −∆xt, |zt,m2 − zt,m1 | −∆zt} ≥ 0,

(m1 < m2, m1 = 1, . . . ,M − 1, m2 = 2, . . . ,M),

max {xr,n2 − xr,n1 −∆xr, |zr,n2 − zr,n1 | −∆zr} ≥ 0,

(n1 < n2, n1 = 1, . . . , N − 1, n2 = 2, . . . , N). (22)

In a matrix-vector form and with aggregate function, we
rewrite (22) as

Cd � c,

TA(d) ≤ 0,

RA(d) ≤ 0,

TSm1m2(d) ≤ 0, (m1 < m2, m1 = 1, . . . ,M − 1, m2 = 2, . . . ,M),

RSn1n2(d) ≤ 0, (n1 < n2, n1 = 1, . . . , N − 1, n2 = 2, . . . , N),
(23)

where all the coordinate variables are concatenated into a
vector d = [xT

t , z
T
t ,x

T
r , z

T
r ]T. C, c and the aggregate functions

TA,RA, TSm1m2
, RSn1n2

are given in Appendix B.

E. Problem Formulation

The normalized resolution is expected to be as high as
possible without ambiguity in the ROI. Thus, our goal is
to optimize the antenna positions under element position
constraints so that the MLW of |AF (d, u, v)| can be as narrow
as possible subject to an SLL constraint. The problem can be
formulated as

min
d

wu ·∆u+ wv ·∆v

s.t. (23),
SLL ≤ ε, (24)

where wu and wv are weight coefficients corresponding to ∆u
and ∆v. Since there are no exact analytical expressions for
∆u and ∆v, the task of this study is to develop an equivalent
mathematical model for (24).

III. GEOMETRY OPTIMIZATION

In this section, the optimization problem of planar MIMO
array geometry for the minimum 2D MLW is modeled as a
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sparse optimization problem with 2D Domino l0-norm, which
can be seen as a very significant improvement of the 1D
MLW optimization in our previous work [33] (Algorithm
2). Then, the ADMM with relaxation of the l0-norm and
multiple complicated constraints is presented. The synthesis
procedure of the proposed MGA-ADMM hybrid algorithm is
summarized at the end.

A. Slack Mainlobe Constraints and Strict Sidelobe Constraints

According to [45], [46], to automatically determine the
MLW in EBP synthesis, we set a slack mainlobe region as

ΩROIslack = {(u, v)|u
2

a2
+
v2

b2
≤ 1}, (25)

where a ∈ (0, radius) and b ∈ (0, radius) specify the major
and minor axes of the elliptical slack main lobe region, and
they can be larger than the initialized HFNBW. a/b will affect
the shape of main lobe after optimization; in other words, it
will affect the ratio of the normalized resolution in the u-
direction to that in the v-direction: ∆u/∆v. Accordingly, the
remaining region is defined as a strict sidelobe region

ΩROIstrict = ΩROI − ΩROIslack. (26)
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Fig. 4. The color map of EBP for
1T8R UCA, where the ROI is de-
fined in (16), and the slack mainlobe
region and strict sidelobe region are
defined in (27).
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Fig. 5. Sampling values of s(u, v)
in a circular slack mainlobe region.

As shown in Fig. 4, symmetry of the EBP allows us to only
consider half of the ROI for reduced computational effort, such
as

Ω = ΩROI ∩ {(u, v)|u ≥ 0},
Ωslack = ΩROIslack ∩ {(u, v)|u ≥ 0}
Ωstrict = ΩROIstrict ∩ {(u, v)|u ≥ 0}. (27)

To synthesize an EBP with a small MLW and SLL, different
constraint strategies are adopted for the slack mainlobe region
and strict sidelobe region. In Ωstrict, strict constraints are
imposed to limit the power of EBP to be lower than the
given SLL ε. In Ωslack, a two-variable function s(u, v) ≥ 0
is introduced to allow the power to be higher than the SLL.
The constraints for relaxed EBP synthesis can be described as

s.t. |AF (d, u, v)|2 ≤ ε+ s(u, v), (u, v) ∈ Ωslack,

|AF (d, u, v)|2 ≤ ε, (u, v) ∈ Ωstrict, (28)

where the power |AF (d, u, v)|2 smooths the absolute value
function since gradient-based techniques for constrained op-
timization may encounter difficulties in tackling the non-
smooth absolute value functions. To facilitate the processing
of ADMM, Ωslack and Ωstrict are discretized to K × L and E
sampling points, namely (ukl, vkl) and (ue, ve), respectively,
where kl is the index of sampling points in slack region, e the
index for strict region. More specifically, uk1, . . . , ukL lie on
the same elliptical contour described by u2/a2 + v2/b2 = σ2

k,
where σk = 1 − k−1

K for k = 1, . . . ,K denotes a scaling
factor of the k-th contour. For example, we assume a circular
slack mainlobe region (when a = b) as shown in Fig. 5.
The sampling values of s(u, v) at these K × L points can
be expressed as a matrix

S = sT1
...

sTK

 =

 s11 . . . s1L
...

. . .
...

sK1 . . . sKL

 =

 s(u11, v11) . . . s(u1L, v1L)
...

. . .
...

s(uK1, vK1) . . . s(uKL, vKL)


(29)

Then, we can write (28) in a discrete form and simplify the
expression

s.t. |AFkl(d)|2 ≤ ε+ skl, k = 1, . . . ,K, l = 1, . . . , L,

|AFe(d)|2 ≤ ε, e = 1, . . . , E, (30)

where AFkl(d) and AFe(d) are abbreviations of
AF (d, ukl, vkl) and AF (d, ue, ve), respectively. To have an
effective relaxation, every element of S must be non-negative
so that the constraints (30) are feasible, i.e.,

s.t. skl ≥ 0, k = 1, . . . ,K, l = 1, . . . , L (31)

It should be noted that the discretization may lead to some
errors in SLL computation, depending on the selection of K,
L, and E, and there is a trade-off between speed and accuracy
of SLL computation. As the number of sampling points
increases, the SLL error decreases, but the computational cost
increases dramatically. In the test, we first use the exhaustive
method to obtain accurate SLLs for many different array
geometries, and then compare the root mean square errors
(RMSE) of the SLLs computed with different numbers of K,
L, and E. To balance the computational cost and accuracy, we
believe that an SLL RMSE of 0.2 dB is acceptable, thus the
parameters are set to K = L = 20 and E = 159600 for 4T8R
and 16T16R configurations.

B. Domino Sparse Optimization Problem

According to (30), if a side lobe higher than ε occurs
at (ukl, vkl) in the chosen Ωslack region, skl will be greater
than zero, while the constraints with skl = 0 hold when the
corresponding side lobes are lower than ε. Since fewer non-
zero entries in S imply a narrower mainlobe [45], [46], one can
minimize the MLW by sparsifying S. However, to conform to
the monotonicity of the main lobe, the approach given in [45]
requires many constraints on S. In this subsection, a Domino
sparse method is proposed to avoid imposing monotonicity
constraints on S.
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In this method, the sparsification of S is liken to the falling
of a set of dominoes arranged on concentric ellipses. If we
were to simultaneously knock down all the dominoes on the
outermost ellipse, the inner ellipses would follow suit, falling
one after the other from the outside in. Firstly, to ensure that
the dominoes on the k-th ellipse fall simultaneously, it is
equivalent to knocking down the current tallest domino on that
ellipse. Therefore, the maximum value of sk1, sk2, . . . , skL
is calculated, which can be approximated by the aggregate
function

fp(sk) =
1

p
ln

(
L∑
l=1

exp {pskl}

)
≈ max
l=1,...,L

{skl}. (32)

Subsequently, to facilitate the sequential collapse of the domi-
noes from the outer to the inner ellipses, a 2D Domino l0-norm
is defined as

g(S) =

∥∥∥∥∥∥∥∥∥


fp(s1)

1
2 [fp(s1) + fp(s2)]

...
1
K [fp(s1) + fp(s2) + · · ·+ fp(sK)]


∥∥∥∥∥∥∥∥∥

0

, (33)

which indicates the sequence in which each ellipse of domi-
noes falls. (33) is inspired by a design of sparse FIR fil-
ters with joint optimization of sparsity and filter order [52].
Different from the random sparse method, the Domino l0-
norm gives the variables corresponding to the outer ring of
the slack mainlobe region a higher optimization priority, and
thus achieving monotonicity. Combining this new objective
function and aforementioned constraints, the original problem
(24) can be established as a Domino l0-norm optimization
problem, given by

min
d,S

g(S)

s.t. (23),

|AFkl(d)|2 ≤ ε+ skl, k = 1, . . . ,K, l = 1, . . . , L,
(34a)

|AFe(d)|2 ≤ ε, e = 1, . . . , E, (34b)
skl ≥ 0, k = 1, . . . ,K, l = 1, . . . , L,

(34)

(34) is a non-convex sparse optimization problem with a large
number of highly nonlinear constraints. To relax the l0-norm,
the log-sum-exp penalty function is employed [45], which is
a special case of the aggregate function with p = 1 mentioned
in (20), and then the objective function becomes convex:

ĝ(S) = ln
(

exp{fp(s1)}+ exp{1

2
[fp(s1) + fp(s2)]}+ · · ·

+ exp{ 1

K
[fp(s1) + fp(s2) + · · ·+ fp(sK)]}

)
(35)

Define new functions hkl(d, skl), he(d) and (34a)-(34b) can
be rewritten as

s.t. hkl(d, skl) , |AFkl(d)|2 − ε− skl ≤ 0,

he(d) , |AFe(d)|2 − ε ≤ 0. (36)

For brevity, k = 1, . . . ,K, l = 1, . . . , L, and e = 1, . . . , E are

omitted below. To relax the complicated inequality constraints,
auxiliary variables wkl, we are introduced, and (34a)-(34b) are
converted to equality constraints:

min
d,S,{wkl},{we}

ĝ(S)

s.t. hkl(d, skl) + w2
kl = 0, (37a)

he(d) + w2
e = 0, (37b)

(23), skl ≥ 0. (37)

where w2
kl ≥ 0, w2

e ≥ 0. The condition for the equalities to
hold is the same as that of (36).

C. ADMM

ADMM [53] has been widely used for solving various
optimization problems due to its distinct decomposition-
coordination procedure and superior convergence property.
Therefore, ADMM framework is applied to solve (37). First,
the augmented Lagrangian function is constructed by

L(d,S, {wkl}, {we}, {λkl}, {µe})
=ĝ(S)

+

K∑
k=1

L∑
l=1

{
−λkl[hkl(d, skl) + w2

kl] +
ρ1

2
[hkl(d, skl) + w2

kl]
2
}

+

E∑
e=1

{
−µe[he(d) + w2

e ] +
ρ2

2
[he(d) + w2

e ]
2
}

(38)

where λkl and µe are dual variables, and ρ1 and ρ2 are user-
defined step sizes for the equality constraints (37a) and (37b).
In order to eliminate wkl and we, by ∂L

∂wkl
= 0 and ∂L

∂we
= 0,

one can deduce that

w2
kl =

{
1
ρ1

[λkl − ρ1hkl(d, skl)], if λkl − ρ1hkl(d, skl) > 0

0, otherwise

w2
e =

{
1
ρ2

[µe − ρ2he(d)], if µe − ρ2he(d) > 0

0, otherwise
(39)

Substituting them into (38), we have

L(d,S, {λkl}, {µe})

=ĝ(S) +
1

2ρ1

K∑
k=1

L∑
l=1

[
(min{0, λkl − ρ1hkl(d, skl)})2 − λ2

kl

]
+

1

2ρ2

E∑
e=1

[
(min{0, µe − ρ2he(d)})2 − µ2

e

]
(40)

Based on ADMM, S, d, {λkl} and {µe} are determined by
the following iterative steps, where t represents the number of
iterations.

Step 1: S(t+1) is determined with given d(t), {λ(t)
kl } and

{µ(t)
e }.

min
S
L(d(t),S, {λ(t)

kl }, {µ
(t)
e })

s.t. skl ≥ 0. (41)

Ignoring the constant terms in the Lagrangian function, this
subproblem becomes a convex one with piecewise convex
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objective function and linear constraints shown as

min
{skl}

ĝ(S) +
1

2ρ1

K∑
k=1

L∑
l=1

(min{0, λ(t)
kl − ρ1hkl(d

(t), skl)})2

s.t. skl ≥ 0, (42)

which can be effectively solved by the primal-dual interior-
point method [54] and CVX toolbox [55], [56]. The gradient
and Hessian matrix of the aggregate function are given in
Appendix C.

Step 2: d(t+1) is determined with given S(t+1), {λ(t)
kl } and

{µ(t)
e }.

min
d
L(d,S(t+1), {λ(t)

kl }, {µ
(t)
e })

s.t. (23) (43)

Ignore the constant terms and (43) can be rewritten as

min
d

K∑
k=1

L∑
l=1

1

2ρ1
(min{0, λkl − ρ1hkl(d, s

(t+1)
kl )})2

+

E∑
e=1

1

2ρ2
(min{0, µe − ρ2he(d)})2

s.t. (23) (44)

Sequential quadratic programming (SQP) [57] can be used
to solve (44). The gradients of the objective function and
constraints are derived in Appendix C.

Note that the objective function and its gradient are com-
putationally intensive, because 2D EBP synthesis requires a
sufficiently dense discrete sampling grid in the strict sidelobe
region, which results in a very large E. Since the EBP (see
(13)) and its gradient (see (61)) are expressions of NUDFT,
they can be efficiently computed based on non-uniform fast
Fourier transform (NUFFT) [58]. Therefore, NUFFT is ex-
ploited to speed up the computation, and its complexity is
given in Appendix D.

Step 3: The Lagrangian multipliers {λ(t+1)
kl } and {µ(t+1)

e }
are updated with given d(t+1) and S(t+1). By substituting (39)
into the multiplier update rule

λ
(t+1)
kl = λ

(t)
kl − ρ1(hkl(d

(t+1), s
(t+1)
kl ) + w2

kl),

µ(t+1)
e = µ(t)

e − ρ2(he(d
(t+1)) + w2

e), (45)

we obtain

λ
(t+1)
kl = min{0, λ(t)

kl − ρ1hkl(d
(t+1), s

(t+1)
kl )},

µ(t+1)
e = min{0, µ(t)

e − ρ2he(d
(t+1))}. (46)

Step 4: According to an easily implementable stopping
criterion given by [59], if t > T (T is the maximum number
of iterations) or

max {α, β} ≤ δ, (47)

where δ is the stop tolerance and

α =
∣∣∣ĝ(S(t+1))− ĝ(S(t))

∣∣∣ ,
β =

√√√√ K∑
k=1

L∑
l=1

(h
(t+1)
kl + w2

kl)
2 +

E∑
e=1

(h
(t+1)
e + w2

e)2

=

√√√√ K∑
k=1

L∑
l=1

(max{h(t+1)
kl ,

λ
(t+1)
kl

ρ1
})2 +

E∑
e=1

(max{h(t+1)
e ,

µ
(t+1)
e

ρ2
})2,

the algorithm will stop; otherwise, set t := t + 1, and go to
Step 1.

D. MGA Initialization
The proposed ADMM algorithm aims to auto-determine and

reduce the MLW under the strict sidelobe and element position
constraints. But the strict sidelobe constraints in (34b) do not
appear to be easily satisfied by a commonly used random
initialization, which makes the ADMM maybe run outside
the feasible region from the start, because the constraints
are highly non-convex. Also, the local optimal solution of
a non-convex problem depends heavily on the initial value.
Therefore, we employ an efficient modified genetic algorithm
(MGA) [41] specifically to provide initial coarse solutions
for ADMM that meet the strict SLL constraints. The main
advantage of the MGA is that it explores a reduced solution
space through an indirect representation of individuals, and
it can prevent infeasible solutions during the optimization
process using two innovative genetic operators. To enhance
efficiency and pursue a globally optimal solution, we introduce
a hybrid algorithm, MGA-ADMM, that integrates the global
optimization capabilities of heuristic algorithms with the pre-
cision of numerical algorithms. Based on the aforementioned
process, the overall algorithm is described in Algorithm 1.

Algorithm 1 MGA-ADMM Hybrid Algorithm
Input: Number of transmitting antennas M and receiving

antennas N , geometry constraints Xt, Xr, Zt, Zr, ∆xt,
∆xr, ∆zt and ∆zr, ROI radius, slack mainlobe region
size a and b, desired SLL ε, ADMM step size ρ1 and ρ2,
initialized Lagrangian multipliers {λ(0)

kl } and {µ(0)
e }, max-

imum number of iterations T , stop tolerance δ, population
size, crossover rate, mutation rate, maximum number of
generations for MGA.

1: Step 0: According to the MGA, the initialized antenna
positions d(0) are synthesized to achieve a minimum SLL,
which satisfies the strict sidelobe constraints in (34b).

2: while max {α, β} > δ and t ≤ T do
3: Step 1: S(t+1) is determined by the primal-dual

interior-point method and CVX toolbox.
4: Step 2: d(t+1) is determined by SQP, in which NUFFT

is used to accelerate the computation of EBP and its
gradient.

5: Step 3: Update the Lagrangian multipliers {λ(t+1)
kl },

{µ(t+1)
e }.

6: t = t+ 1.
7: end while
Output: optimal antenna positions d and optimized objective

function ĝ(S).

IV. PERFORMANCE EVALUATION

A. Parameter Settings
In the context of the ADMM, the initial values of the

Lagrange multipliers {λ(0)
kl } and {µ(0)

e } have a minimal impact
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on the convergence of the algorithm. Hence, setting their initial
values to zero is a safe and commonly used strategy [53]. On
the other hand, the step sizes ρ1 and ρ2 significantly influence
the algorithm. Our experience suggests that a step size of
around 103 offers a good balance between convergence speed
and algorithm stability.

As an outstanding work, [39] proposed a method for array
performance assessment based on AAF and presented a ge-
ometry of 2D MIMO antenna arrays optimized via genetic
algorithm (GA). Under the constraints of a certain SLL,
aperture size and element spacing, it tries to maximize the
ambiguity-free region and simply assumes that the angular
resolution is proportional to the aperture size. To have a fair
comparison considering the difference in objective functions,
the parameters used here are consistent with the 4T8R result
given in [39]: the maximum aperture sizes are Xt = 2.55λ,
Zt = 5.10λ, Xr = 6.12λ and Zr = 6.63λ, and single-
element dimension amounts to ∆xt = ∆xr = 2.88 mm and
∆zt = ∆zr = 3 mm for 76.5 GHz. Since [39] does not use
EBP to define the unambiguous region, the optimized SLL and
unambiguous ROI are calculated using numerical methods;
specifically, the SLL is −6.3 dB and radius = 1.87.

Moreover, in addition to the 4T8R configuration, we also
provide a 16T16R result with ∆xt = ∆xr = ∆zt = ∆zr =
0.5λ and an SLL of −13.3 dB, and the other parameters
remain the same. For comparison, a uniform 18T24R array
with equal aperture size of the virtual array is also involved
in the simulation as a benchmark.

B. Optimization Results

The aforementioned MGA-ADMM algorithm for the 4T8R
configuration is run 500 times and the result that minimizes
the objective function in (37) is then selected. The convergence
curve of ADMM objective function (35) is shown in Fig. 6. We
also give 500 results of MGA-ADMM, purely GA and random
search to demonstrate the advantages of the proposed algo-
rithms. The SLLs versus average MLWs (AMLW, ∆u+∆v

2 ) of
the results are plotted in Fig. 7, which indicate that the results
with lower SLL and smaller AMLW can be obtained by our
MGA-ADMM. The selected 4T8R result and the one given in
[39] are marked by black symbols.

The element positions of the optimized 4T8R array and
16T16R array1 are presented in Fig. 8 and Fig. 11, respec-
tively. For comparison, the 4T8R result in [39] and the uniform
18T24R are given in Figs. 9 and 10, respectively. Their EBPs
are shown in Fig. 12. Specifically, Table I lists the SLL, MLW
and CRB for 2D DOA estimation [60] of the four arrays, as
well as AMLW and average CRB (ACRB). The CRB is given
by [28]:

CRBu =
α

var{x} − cov{x,z}2
var{z}

, CRBv =
α

var{z} − cov{x,z}2
var{x}

,

α =
λ2

8π2SMN

1

SNR
, ACRB =

1

2
(CRBu + CRBv),

(48)

1Element position data files for the arrays are available on the “Media”
page of this paper at IEEE Xplore.

where S, var{} and cov{} denote the number of snapshots,
the variance and covariance of the virtual element positions.

It can be seen that the proposed 4T8R array achieves a
smaller ∆u and CRB than the GA result in [39], and the
SLL remains the same. Although the uniform array is used
as a benchmark in this experiment, it is surprising that the
optimized ∆u and CRBu of the proposed 4T8R are even
lower than those of the uniform 18T24R with the same
aperture size due to the larger var{x} of the virtual element
positions shown in Fig. 8. However, the AMLW and ACRB
of the proposed array are still larger than those of the uniform
array because the number of 4T8R elements is very small,
resulting in a limited degree of freedom for optimization. It
can be found that the MLW of non-uniform arrays can vary
with array geometry, while the MLW of uniform arrays only
depends on the aperture size along the corresponding space
dimension. This gives us the opportunity to adjust the azimuth
and elevation resolution to some extent by array geometry
optimization, even at the same aperture size. The ratio ∆u/∆v
can be controlled by adjusting a and b mentioned in (25).

Note that the SLL of 4T8R configurations is about 7 dB
higher than the uniform 18T24R which is a significant gap.
As the element sparsity rate of the virtual array of 4T8R
configuration is only 7%, the SLL inevitably rises compared
to the dense uniform array. When we increase the element
sparsity rate to 59%, i.e., the proposed 16T16R, the SLL can
be a little lower to the uniform 18T24R, and both ∆u and ∆v
are smaller than that of the uniform array.
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Fig. 6. The convergence curve of ADMM objective function (35) for 4T8R
configuration.
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Fig. 8. The proposed 4T8R and virtual element positions optimized via MGA-
ADMM.
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Fig. 9. The 4T8R and virtual element positions optimized via GA [39].
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Fig. 10. The uniform 18T24R and virtual element positions.
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Fig. 11. The proposed 16T16R and virtual element positions optimized via
MGA-ADMM.

C. Angular Resolution Estimation

To compare the accuracy of the angular resolution estimated
by the proposal (11) and the Rayleigh criterion (10), spatial
spectral power estimation at two known targets is implemented
on the four arrays using NUFFT under an ideal scenario
without noise, where the powers of the two targets are P1

and P2, respectively.
In optical theory [50], the angular resolution between two

point sources is equal to the angle at which the main max-
imum of the power distribution from the first point source
coincides with the first minimum of the power distribution
from the second point source. Since this minimum is zero, the
angular resolution can be quantified by the RMSE between the
estimated power and the actual power at the locations of the
two targets. This power RMSE also eliminates the grid error

effect inherent in DOA estimation algorithms.
To evaluate the bore-sight ∆ϕ, let ϑ1 = ϑ2 = 0, and the

FLAs are set to ϕ1 = −∆ϕ/2 and ϕ2 = ∆ϕ/2, where ∆ϕ is
a variable. As a benchmark for comparison, the true angular
resolution ∆ϕtrue is evaluated by the first null point of the
RMSE of estimated powers corresponding to the two targets,
given by

∆ϕtrue = arg min
∆ϕ

√
|P̂1(∆ϕ)− P1|2 + |P̂2(∆ϕ)− P2|2

2
,

s.t. 0 < ∆ϕ ≤ ∆ϕmax (49)

where P̂1(∆ϕ) and P̂2(∆ϕ) are the estimated powers of the
spatial spectrum at the two targets, and they are related to the
separation angle ∆ϕ between the targets. ∆ϕmax confines the
first null point. Similarly, in order to evaluate the ∆ϑtrue, let
ϕ1 = ϕ2 = 0, and the FLEs are set to ϑ1 = −∆ϑ/2 and
ϑ2 = ∆ϑ/2. Then ∆ϑtrue is evaluated by

∆ϑtrue = arg min
∆ϑ

√
|P̂1(∆ϑ)− P1|2 + |P̂2(∆ϑ)− P2|2

2
,

s.t. 0 < ∆ϑ ≤ ∆ϑmax (50)

The true angular resolutions and the ones estimated by the
proposed formulas (11) and the Rayleigh criterion (10) are
presented in Tab. I, which indicates that the proposed angular
resolution is much closer to the true value than the Rayleigh
resolution. Due to a smaller ∆u, the ∆ϕtrue of the proposed
arrays is also smaller than those of [39] and the uniform
18T24R array.

D. DOA Estimation Validation

In this subsection, a numerical study on the angular RMSE
of two-target DOA estimation is conducted for four arrays
under various conditions. Two commonly used DOA estima-
tion methods are employed in the simulations: CS l1-norm
minimization [6] with a single snapshot and MUSIC with 10
snapshots. The power levels of the two uncorrelated signal
sources used in the DOA estimation are identical, and 500
Monte Carlo trials are performed.

The angular RMSE is evaluated as a function of the
SNR, and the noise generated in the simulation is white
Gaussian. Considering the two targets with ϕ separation,
they are positioned at (ϕ1 = −∆ϕrayl/2, ϑ1 = 0) and
(ϕ2 = ∆ϕrayl/2, ϑ2 = 0), respectively corresponding to the
Rayleigh angular resolution of the four arrays in Table I.
For the two targets with ϑ separation, they are positioned at
(ϕ1 = 0, ϑ1 = −∆ϑrayl/2) and (ϕ2 = 0, ϑ2 = ∆ϑrayl/2).
Fig. 13 illustrates the RMSE versus SNR of the four arrays
using CS l1-norm minimization for DOA estimation, and Fig.
14 presents the results using MUSIC.

Additionally, the RMSE as a function of angle separation
is assessed in Fig. 15 using CS l1-norm minimization. For the
two targets with ϕ separation, ϕ2 − ϕ1 varies from 2◦ to 8◦.
Similarly, for the two targets with ϑ separation, ϑ2 − ϑ1 also
spans from 2◦ to 8◦. The SNR is fixed at 10 dB.

When CS with a single snapshot is employed, except for
ultra low SNR conditions (−10 dB) in Fig. 13 and very small
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TABLE I
PERFORMANCE COMPARISON

Array SLL ∆u ∆v AMLW CRBu CRBv ACRB ∆ϕtrue ∆ϕprop ∆ϕrayl ∆ϑtrue ∆ϑprop ∆ϑrayl

Proposed 4T8R −6.3 dB 0.0957 0.1154 0.1056 0.1383α 0.1164α 0.1274α 5.5235◦ 5.4944◦ 8.0624◦ 7.0388◦ 6.6243◦ 5.9702◦

[39] 4T8R −6.3 dB 0.1453 0.1152 0.1302 0.2254α 0.1175α 0.1715α 8.7499◦ 8.3532◦ 8.0624◦ 7.4708◦ 6.6152◦ 5.9592◦

Uniform 18T24R −13.2 dB 0.1089 0.0817 0.0953 0.1425α 0.0801α 0.1113α 6.2445◦ 6.2541◦ 8.0624◦ 4.6823◦ 4.6857◦ 5.9592◦

Proposed 16T16R −13.3 dB 0.1052 0.0796 0.0924 0.1322α 0.0752α 0.1037α 6.1034◦ 6.0409◦ 8.0624◦ 4.6723◦ 4.5681◦ 5.9566◦
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Fig. 12. The expanded beam pattern |AF (d, u, v)| color map.
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Fig. 13. RMSE of DOA estimation versus SNR using CS l1-norm minimiza-
tion. The angle separation of the two targets is the corresponding Rayleigh
angular resolution in Tab. I, and the number of snapshots is 1.
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Fig. 14. RMSE of DOA estimation versus SNR using MUSIC. The angle
separation of the two targets is the corresponding Rayleigh angular resolution
in Tab. I, and the number of snapshots is 10.

ϑ separation (2◦) in Fig. 15(b), the RMSE of the proposed
16T16R is very close to, and occasionally lower than, that
of the uniform 18T24R. This suggests that the proposed
design might be suitable for 4D imaging automotive radar
applications with fewer antennas and without any preprocess-
ing before single-snapshot DOA estimation. The consistent
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Fig. 15. RMSE of DOA estimation versus angle separation using CS l1-norm
minimization. The SNR is 10 dB and the number of snapshots is 1.

performance of the uniform array at low SNR can be attributed
to the fact that its first sidelobe level is −13.2 dB, with all
other sidelobes being significantly lower than this level.

Concerning the RMSE for ϕ separation as shown in Figs.
13(a), 14(a) and 15(a), the proposed 4T8R generally performs
better than the 4T8R in [39] due to a considerably smaller
∆u. They exhibit comparable performance for ϑ separation
as demonstrated in Figs. 13(b), 14(b) and 15(b). Evidence
suggests that the mutual coherence given in (8) plays a
significant role in achieving uniform recovery guarantees for
CS algorithms [6]. Indeed, the MLW minimization with SLL
suppression developed in this work is equivalent to reducing
coherence length with uniform recovery guarantees, which
facilitates high-resolution recovery via l1-norm minimization.

When MUSIC is applied, as shown in Fig. 14, although
the proposed 16T16R exhibits marginally lower MLW, CRB
and SLL, it does not surpass the performance of the uniform
18T24R at an SNR of 10 dB. This outcome is possibly due to
the reduced number of elements in the sparse array, which
diminishes the accuracy of estimating the noise subspace.
Additionally, at lower SNRs, the RMSE of the proposed 4T8R
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is slightly higher than that of the 4T8R in [39], despite the
former’s smaller ∆u. The optimization in this study, based
on the analysis of the type I ambiguity function [18], offers
foundational performance guarantees for single-snapshot DOA
estimation methods such as NUFFT and CS. However, for
subspace-based super-resolution methods like MUSIC, the
resolution analysis method introduced herein may not provide
sufficient accuracy. In this context, type II ambiguity function
[61] emerges as a promising avenue for future investigation.

V. CONCLUSIONS

In this study, a thorough investigation into various aspects of
sparse planar MIMO arrays has been carried out, encompass-
ing angular ambiguity functions, angular resolution estimation,
expanded beam pattern, and antenna position constraints.
The novelty in this paper lies in a more accurate analysis
of the angular resolution which is determined by the main
lobe width, not just the aperture size. Thus an innovative
model was established aimed at reducing the MLW with SLL
suppression, in order to improve the resolution under limited
aperture size without ambiguities. Inspired by the sequential
fall of dominoes, the so-called Domino sparse optimization
model auto-determines the 2D MLW, which is a complicated
non-convex problem with many highly nonlinear constraints,
and it was efficiently solved by the proposed MGA-ADMM
algorithm.

In the simulations, two results for 4T8R and 16T16R
configurations were provided, and compared with the existing
4T8R result in [39] and the uniform 18T24R as a benchmark.
The comparisons were made across the board, including SLL,
MLW, CRB and angular resolution, and the RMSE of 2D DOA
estimation were evaluated using CS l1-norm minimization and
MUSIC under different SNRs and angle separations. In most
cases, the performance of the proposed 16T16R array was
close to that of the uniform 18T24R array with the same
aperture size. In terms of ϕ resolution, the proposed 4T8R
generally performs better than the result given in [39].

The proposed method for sparse planar array design aims
to not only improve performance for single-snapshot 2D DOA
estimation, but also reduce antenna costs, control the size of
devices and avoid extra preprocessing, paving the way toward
the realization of a low-cost 4D imaging automotive radar.

APPENDIX A
ESTIMATION OF ∆ϕ AND ∆ϑ

Proof: Assume the real DOA is the bore-sight direction, i.e.,
uj = vj = ϕj = ϑj = 0, and define the auxiliary variables
u1 < 0 < u2. If

|AF0,0(u1, 0)| = |AF0,0(u2, 0)| = 0,{
d

dui
|AF0,0(ui, 0)| ≥ 0, for ui ∈ [u1, 0],

d
dui
|AF0,0(ui, 0)| ≤ 0, for ui ∈ [0, u2],

(51)

then the HFNBW ∆u can be expressed by

∆u = (u2 − u1)/2

= (cos(0) sin(ϕ2)− cos(0) sin(ϕ1))/2

= cos(
ϕ1 + ϕ2

2
) sin(

ϕ2 − ϕ1

2
)

= cos(0) sin(∆ϕ) (52)

where ϕ1 + ϕ2 = 0 corresponds to u1 + u2 = 0, and ∆ϕ =
(ϕ2 − ϕ1)/2. Similarly, for ϑ separation, we also have

∆v = (v2 − v1)/2

= (sinϑ2 − sinϑ1)/2

= cos(
ϑ1 + ϑ2

2
) sin(

ϑ2 − ϑ1

2
)

= cos(0) sin(∆ϑ), (53)

where ϑ1 + ϑ2 = 0 corresponds to v1 + v2 = 0, and ∆ϑ =
(ϑ2 − ϑ1)/2. Thus Eq. (11) holds.

APPENDIX B
NOTATIONS IN (23)

Ct =


1 −1

. . .
. . .
. . . −1

1


M×M

Cr =


1 −1

. . .
. . .
. . . −1

1


N×N

C =

[
Ct 0M×M 0M×N 0M×N

0N×M 0N×M Cr 0N×N

]
, c =

0(M−1)×1

Xt
0(N−1)×1

Xr


TA(d) =

1

p
ln

(
M∑
m=1

exp{pzt,m}

)
+

1

p
ln

(
M∑
m=1

exp{−pzt,m}

)
− Zt

RA(d) =
1

p
ln

(
N∑
n=1

exp{pzr,n}

)
+

1

p
ln

(
N∑
n=1

exp{−pzr,n}

)
− Zr

TSm1m2(d) =
1

p
ln
(

exp{p(xt,m2 − xt,m1 −∆xt)}+ exp{p(zt,m2

− zt,m1 −∆zt)}+ exp{p(zt,m1 − zt,m2 −∆zt)}
)

RSn1n2(d) =
1

p
ln
(

exp{p(xr,n2 − xr,n1 −∆xr)}+ exp{p(zr,n2

− zr,n1 −∆zr)}+ exp{p(zr,n1 − zr,n2 −∆zr)}
)

(54)

APPENDIX C
ON COMPUTATION OF THE GRADIENTS IN (44)

Let F (d) denote the objective function in (44)

F (d) =

K∑
k=1

L∑
l=1

1

2ρ1
(min{0, λkl − ρ1hkl(d, s

(t+1)
kl )})2

+

E∑
e=1

1

2ρ2
(min{0, µe − ρ2he(d)})2. (55)

The gradient is derived by

∇dF =
∑
k̃

∑
l̃

(ρ1hk̃l̃(d, s
(t+1)

k̃l̃
)− λk̃l̃)∇dhk̃l̃

+
∑
ẽ

(ρ2hẽ(d)− µẽ)∇dhẽ (56)
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where

(k̃, l̃) ∈
{

(k, l)
∣∣∣λkl − ρ1hkl(d, s

(t+1)
kl ) < 0

}
,

ẽ ∈
{
e
∣∣∣µe − ρ2he(d) < 0

}
. (57)

The gradient of hk̃l̃ and hẽ is given by

∇dhk̃l̃ = ∇d|AFk̃l̃|
2, ∇dhẽ = ∇d|AFẽ|2, (58)

where

∇d|AFk̃l̃|
2 = ∇dAFk̃l̃ ×AF

∗
k̃l̃

(d) +AFk̃l̃(d)× (∇dAFk̃l̃)
∗,

(59)

∇dAFk̃l̃ =
[
0,
∂AFk̃l̃
∂xt,2

, . . . ,
∂AFk̃l̃
∂xt,M

, 0,
∂AFk̃l̃
∂zt,2

, . . . ,
∂AFk̃l̃
∂zt,M

,

0,
∂AFk̃l̃
∂xr,2

, . . . ,
∂AFk̃l̃
∂xr,N

, 0,
∂AFk̃l̃
∂zr,2

, . . . ,
∂AFk̃l̃
∂zr,N

]T
(60)

∂AFk̃l̃
∂xt,m

=
1

MN

N∑
n=1

−j
2π

λ
uk̃ exp{−j

2π

λ
[(xt,m + xr,n)uk̃

+ (zt,m + zr,n)vl̃]}

∂AFk̃l̃
∂xr,n

=
1

MN

M∑
m=1

−j
2π

λ
uk̃ exp{−j

2π

λ
[(xt,m + xr,n)uk̃

+ (zt,m + zr,n)vl̃]}

∂AFk̃l̃
∂zt,m

=
1

MN

N∑
n=1

−j
2π

λ
vl̃ exp{−j

2π

λ
[(xt,m + xr,n)uk̃

+ (zt,m + zr,n)vl̃]}

∂AFk̃l̃
∂zr,n

=
1

MN

M∑
m=1

−j
2π

λ
vl̃ exp{−j

2π

λ
[(xt,m + xr,n)uk̃

+ (zt,m + zr,n)vl̃]}
(61)

Similarly, we can obtain ∇dAFẽ.
According to [51], the gradient and Hessian matrix of the

aggregate function are derived by

∇xfp(x) =

I∑
i=1

µi(x, p)∇xgi(x),

∇2
xfp(x) =

I∑
i=1

µi(x, p)∇2
xgi(x)

+ p

I∑
i=1

µi(x, p)∇xgi(x)∇xgi(x)T

− p
I∑
i=1

µi(x, p)∇xgi(x)

I∑
i=1

µi(x, p)∇xgi(x)T,

(62)

where

µi(x, p) =
exp {pgi(x)}∑I
i=1 exp {pgi(x)}

∈ (0, 1],

I∑
i=1

µi(x, p) = 1.

(63)

Then the gradients and Hessians of the objective function in
(42) and constraints in (54) can be derived in a straightforward
way.

APPENDIX D
CONVERGENCE AND COMPLEXITY ANALYSIS

The model (37) is a non-convex problem with convex objec-
tive function and many nonlinear equality constraints. Unfor-
tunately, the convergence guarantee of the proposed ADMM
with nonlinear equality constraints (neADMM) has not been
explored because convergence conditions in existing literature
cannot be applied to neADMM [62]; however, our results show
that it outperforms existing state-of-the-art methods. It has
been shown in literature that neADMM converges under some
mild conditions such as the dual variable convergence [63]:

lim
t→∞

λ
(t+1)
kl − λ(t)

kl = 0, lim
t→∞

µ(t+1)
e − µ(t)

e = 0, (64)

and then there exists a limit point
{d?,S?, {w?kl}, {w?e}, {λ?kl}, {µ?e}}, which is an optimal
solution to (37). It provides some assurance on the reliability
of the proposed algorithm.

We first consider the complexity of the subproblem in (42).
The main complexity of the log-sum-exp function ĝ(S) comes
from two parts: computing each fp(sk), which is done K
times, each requiring O(L), and computing the summations,
which is O(K2). Thus, the overall complexity of the objective
function in (42) is O(2KL + K2). Since the subproblem
(42) is convex, and K and L are usually small, The primal-
dual interior-point method typically converges in less than
0.1 seconds on a modern mid-range PC processor. Most
of the computing time is spent in the calculation of the
objective function and its gradient in the SQP algorithm for
the non-convex subproblem (44). For simplicity, we analyze
the time complexity of the innermost function in detail. For
each frequency point (u, v), the function AF (u, v) in (13)
requires about MN complex additions, which are equivalent
to 2MN additions of real numbers. Its gradient ∇dAF (u, v)
(see (60)-(61)) requires about 2MN complex multiplications
and 2MN complex additions, which are equivalent to 4MN
multiplications, 4MN multiplication-addition operations, and
4MN additions. Therefore, O(14MN(KL + E)TsqpT ) op-
erations are required for the direct computation of EBP,
where KL + E is the total number of sampling points in
Ωslack and Ωstrict, Tsqp is the number of iterations of SQP,
and T is the number of iterations of ADMM. Aided by
NUFFT [58], the time complexity of the algorithm is reduced
to about O(14(KL + E) log2(KL + E)TsqpT ). Generally
speaking, the more antennas there are, the larger the number of
frequency sampling points is. For example, KL+E = 16000
is enough for the 16T16R configuration. The DFT requires
MN(KL + E) ≈ 4 × 106 operations in a run, while the
NUFFT requires only (KL + E) log2(KL + E) ≈ 2 × 105

operations. The SQP algorithm usually requires 5-50 iterations
to converge, and ADMM requires at least 50 iterations.

It is worth mentioning that sparse array geometry optimiza-
tion is not a task that requires to be performed in real-time:
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a reasonable computation time is acceptable if the achieved
results are excellent.
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