q

Check for
updates

Towards Model Checking Real-World
Software-Defined Networks

Vasileios Klimis®)®, George Parisis@®, and Bernhard Reus

University of Sussex, Brighton, UK
{v.klimis,g.parisis,bernhard}@sussex.ac.uk

Abstract. In software-defined networks (SDN), a controller program is
in charge of deploying diverse network functionality across a large num-
ber of switches, but this comes at a great risk: deploying buggy controller
code could result in network and service disruption and security loop-
holes. The automatic detection of bugs or, even better, verification of
their absence is thus most desirable, yet the size of the network and the
complexity of the controller makes this a challenging undertaking. In this
paper, we propose MOCS, a highly expressive, optimised SDN model that
allows capturing subtle real-world bugs, in a reasonable amount of time.
This is achieved by (1) analysing the model for possible partial order
reductions, (2) statically pre-computing packet equivalence classes and
(3) indexing packets and rules that exist in the model. We demonstrate
its superiority compared to the state of the art in terms of expressivity,
by providing examples of realistic bugs that a prototype implementation
of MOCS in UpPPAAL caught, and performance/scalability, by running
examples on various sizes of network topologies, highlighting the impor-
tance of our abstractions and optimisations.

1 Introduction

Software-Defined Networking (SDN) [16] has brought about a paradigm shift in
designing and operating computer networks. A logically centralised controller
implements the control logic and ‘programs’ the data plane, which is defined by
flow tables installed in network switches. SDN enables the rapid development
of advanced and diverse network functionality; e.g. in designing next-generation
inter-data centre traffic engineering [10], load balancing [19], firewalls [24], and
Internet exchange points (IXPs) [15]. SDN has gained noticeable ground in the
industry, with major vendors integrating OpenFlow [37], the de-facto SDN stan-
dard maintained by the Open Networking Forum, in their products. Operators
deploy it at scale [27,38]. SDN presents a unique opportunity for innovation and
rapid development of complex network services by enabling all players, not just
vendors, to develop and deploy control and data plane functionality in networks.
This comes at a great risk; deploying buggy code at the controller could result
in problematic flow entries at the data plane and, potentially, service disrup-
tion [13,18,47,49] and security loopholes [7,26]. Understanding and fixing such

© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 126-148, 2020.
https://doi.org/10.1007/978-3-030-53291-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_8&domain=pdf
http://orcid.org/0000-0002-3173-8636
http://orcid.org/0000-0002-1298-7143
http://orcid.org/0000-0002-5807-856X
https://doi.org/10.1007/978-3-030-53291-8_8

Towards Model Checking Real-World Software-Defined Networks 127

bugs is far from trivial, given the distributed and concurrent nature of computer
networks and the complexity of the control plane [44].

With the advent of SDN, a large body of research on verifying network prop-
erties has emerged [33]. Static network analysis approaches [2,11,30,34,45,51]
can only verify network properties on a given fixed network configuration but this
may be changing very quickly (e.g. as in [1]). Another key limitation is the fact
that they cannot reason about the controller program, which, itself, is respon-
sible for the changes in the network configuration. Dynamic approaches, such
as [23,29,31,40,48,50], are able to reason about network properties as changes
happen (i.e. as flow entries in switches’ flow tables are being added and deleted),
but they cannot reason about the controller program either. As a result, when
a property violation is detected, there is no straightforward way to fix the bug
in the controller code, as these systems are oblivious of the running code. Iden-
tifying bugs in large and complex deployments can be extremely challenging.

Formal verification methods that include the controller code in the model
of the network can solve this important problem. Symbolic execution meth-
ods, such as [5,8,11,12,14,28,46], evaluate programs using symbolic variables
accumulating path-conditions along the way that then can be solved logically.
However, they suffer from the path explosion problem caused by loops and func-
tion calls which means verification does not scale to larger controller programs
(bug finding still works but is limited). Model checking SDNs is a promising area
even though only few studies have been undertaken [3,8,28,35,36,43]. Networks
and controller can be naturally modelled as transition systems. State explosion
is always a problem but can be mitigated by using abstraction and optimisa-
tion techniques (i.e. partial order reductions). At the same time, modern model
checkers [6,9,20,21,25] are very efficient.

NetSMC [28] uses a bespoke symbolic model checking algorithm for checking
properties given a subset of computation tree logic that allows quantification
only over all paths. As a result, this approach scales relatively well, but the
requirement that only one packet can travel through the network at any time
is very restrictive and ignores race conditions. NICE [8] employs model checking
but only looks at a limited amount of input packets that are extracted through
symbolically executing the controller code. As a result, it is a bug-finding tool
only. The authors in [43] propose a model checking approach that can deal
with dynamic controller updates and an arbitrary number of packets but require
manually inserted non-interference lemmas that constrain the set of packets that
can appear in the network. This significantly limits its applicability in realistic
network deployments. Kuai [35] overcomes this limitation by introducing model-
specific partial order reductions (PORs) that result in pruning the state space
by avoiding redundant explorations. However, it has limitations explained at the
end of this section.

In this paper, we take a step further towards the full realisation of model
checking real-world SDNs by introducing MOCS (MOdel Checking for Soft-
ware defined networks)!, a highly expressive, optimised SDN model which we

1 A release of MOCS is publicly available at https://tinyurl.com/y95qtv5k.

https://tinyurl.com/y95qtv5k

128 V. Klimis et al.

implemented in UPPAAL? [6]. MOCS, compared to the state of the art in model
checking SDNs, can model network behaviour more realistically and verify larger
deployments using fewer resources. The main contributions of this paper are:

Model Generality. The proposed network model is closer to the Open-
Flow standard than previous models (e.g. [35]) to reflect commonly exhibited
behaviour between the controller and network switches. More specifically, it
allows for race conditions between control messages and includes a significant
number of OpenFlow interactions, including barrier response messages. In our
experimentation section, we present families of elusive bugs that can be efficiently
captured by MOCS.

Model Checking Optimisations. To tackle the state explosion problem we
propose context-dependent partial order reductions by considering the concrete
control program and specification in question. We establish the soundness of
the proposed optimisations. Moreover, we propose state representation optimi-
sations, namely packet and rule indexing, identification of packet equivalence
classes and bit packing, to improve performance. We evaluate the benefits from
all proposed optimisations in Sect. 4.

Our model has been inspired by Kuai [35]. According to the contributions
above, however, we consider MOCS to be a considerable improvement. We model
more OpenFlow messages and interactions, enabling us to check for bugs that [35]
cannot even express (see discussion in Sect.4.2). Our context-dependent PORs
systematically explore possibilities for optimisation. Our optimisation techniques
still allow MOCS to run at least as efficiently as Kuai, often with even better
performance.

2 Software-Defined Network Model

A key objective of our work is to enable the verification of network-wide proper-
ties in real-world SDNs. In order to fulfill this ambition, we present an extended
network model to capture complex interactions between the SDN controller
and the network. Below we describe the adopted network model, its state and
transitions.

2.1 Formal Model Definition

The formal definition of the proposed SDN model is by means of an action-
deterministic transition system. We parameterise the model by the underlying
network topology A and the controller program CP in use, as explained further
below (Sect.2.2).

Definition 1. An SDN model is a 6-tuple My cp) = (S, s0, A, —, AP, L), where
S is the set of all states the SDN may enter, sqg the initial state, A the set of

2 UpPAAL has been chosen as future plans include extending the model to timed actions
like e.g. timeouts. Note that the model can be implemented in any model checker.

Towards Model Checking Real-World Software-Defined Networks 129

actions which encode the events the network may engage in, —-< S x A x S
the transition relation describing which execution steps the system undergoes as
it perform actions, AP a set of atomic propositions describing relevant state
properties, and L : S — 24T is a labelling function, which relates to any state
s € S a set L(s) € 247 of those atomic propositions that are true for s. Such
an SDN model is composed of several smaller systems, which model network
components (hosts, switches and the controller) that communicate via queues
and, combined, give rise to the definition of <. The states of an SDN transition
system are 3-tuples (m,d,7y), where w represents the state of each host, § the
state of each switch, and ~y the controller state. The components are explained
in Sect. 2.2 and the transitions — in Sect. 2.3.

Figure1 illustrates a high-level view of OpenFlow interactions (left side),
modelled actions and queues (right side).

A SDN
Controller)
‘j——®®__D_ brq l.»
e AER (2] e
OpenFlow interactions
mmmmm Packet forwarding &29‘]},q] -o&
\
Q’b‘ Q@" % 1) .
F& N5 %
9 9]
‘<\ e’}o& c

NE
Q’bc" .&\

“ >
'o" %66
fq 2 ',oe\l
ft
T— e |-recv1
M At Chimny < — revg

M At Chom FW ey
I A d—> Ny
| ———— 6@“’

Fig. 1. A high-level view of OpenFlow interactions using OpenFlow specification ter-
minology (left half) and the modelled actions (right half). A red solid-line arrow depicts
an action which, when fired, (1) dequeues an item from the queue the arrow begins
at, and (2) adds an item in the queue the arrowhead points to (or multiple items if
the arrow is double-headed). Deleting an item from the target queue is denoted by
a reverse arrowhead. A forked arrow denotes multiple targeted queues. (Color figure
online)

2.2 SDN Model Components

Throughout we will use the common “dot-notation” (-._) to refer to components
of composite gadgets (tuples), e.g. queues of switches, or parts of the state. We
use obvious names for the projections functions like s.d.sw.pq for the packet

130 V. Klimis et al.

queue of the switch sw in state s. At times we will also use t; and ¢5 for the first
and second projection of tuple .

Network Topology. A location (n,pt) is a pair of a node (host or switch)
n and a port pt. We describe the network topology as a bijective function
A i (Switches U Hosts) x Ports — (Switches U Hosts) x Ports consisting of a set
of directed edges ((n,pt), (n’,pt')), where pt’ is the input port of the switch or
host n’ that is connected to port pt at host or switch n. Hosts, Switches and
Ports are the (finite) sets of all hosts, switches and ports in the network, respec-
tively. The topology function is used when a packet needs to be forwarded in
the network. The location of the next hop node is decided when a send, match
or fwd action (all defined further below) is fired. Every SDN model is w.r.t. a
fixed topology A that does not change.

Packets. Packets are modelled as finite bit vectors and transferred in the net-
work by being stored to the queues of the various network components. A
packet € Packets (the set of all packets that can appear in the network) contains
bits describing the proof-relevant header information and its location loc.

Hosts. Each host € Hosts, has a packet queue (rcvq) and a finite set of ports
which are connected to ports of other switches. A host can send a packet to one
or more switches it is connected to (send action in Fig.1) or receive a packet
from its own rcvg (recv action in Fig. 1). Sending occurs repeatedly in a non-
deterministic fashion which we model implicitly via the (0,00) abstraction at
switches’ packet queues, as discussed further below.

Switches. Each switch € Switches, has a flow table (ft), a packet queue (pq),
a control queue (cq), a forwarding queue (fg) and one or more ports, through
which it is connected to other switches and/or hosts. A flow table ft Rules is a
set of forwarding rules (with Rules being the set of all rules). Each one consists
of a tuple (priority, pattern, ports), where priority € N determines the priority
of the rule over others, pattern is a proposition over the proof-relevant header
of a packet, and ports is a subset of the switch’s ports. Switches match packets
in their packet queues against rules (i.e. their respective pattern) in their flow
table (match action in Fig. 1) and forward packets to a connected device (or final
destination), accordingly. Packets that cannot be matched to any rule are sent to
the controller’s request queue (rg) (nomatch action in Fig. 1); in OpenFlow, this
is done by sending a PacketIn message. The forwarding queue fq stores packets
forwarded by the controller in PacketOut messages. The control queue stores
messages sent by the controller in FlowMod and BarrierReq messages. FlowMod
messages contain instructions to add or delete rules from the flow table (that
trigger add and del actions in Fig. 1). BarrierReq messages contain barriers to
synchronise the addition and removal of rules. MOCS conforms to the OpenFlow
specifications and always execute instructions in an interleaved fashion obeying
the ordering constraints imposed by barriers.

OpenFlow Controller. The controller is modelled as a finite state automaton
embedded into the overall transition system. A controller program CP, as used
to parametrise an SDN model, consists of (C'S, pktIn, barrierIn). It uses its own
local state cs € C'S, where C'S is the finite set of control program states. Incoming

Towards Model Checking Real-World Software-Defined Networks 131

PacketIn and BarrierRes messages from the SDN model are stored in separate
queues (rg and brq, respectively) and trigger ctrl or bsync actions (see Fig. 1)
which are then processed by the controller program in its current state. The
controller’s corresponding handler, pktIn for PacketIn messages and barrierin
for BarrierRes messages, responds by potentially changing its local state and
sending messages to a subset of Switches, as follows. A number of PacketOut
messages (pairs of pkt, ports) can be sent to a subset of Switches. Such a message
is stored in a switch’s forward queue and instructs it to forward packet pkt
along the ports ports. The controller may also send any number of FlowMod
and BarrierReq messages to the control queue of any subset of Switches. A
FlowMod message may contain an add or delete rule modification instruction.
These are executed in an arbitrary order by switches, and barriers are used to
synchronise their execution. Barriers are sent by the controller in BarrierReq
messages. OpenFlow requires that a response message (BarrierRes) is sent to
the controller by a switch when a barrier is consumed from its control queue
so that the controller can synchronise subsequent actions. Our model includes a
brepl action that models the sending of a BarrierRes message from a switch to
the controller’s barrier reply queue (brq), and a bsync action that enables the
controller program to react to barrier responses.

Queues. All queues in the network are modelled as finite state. Packet queues pg
for switches are modelled as multisets, and we adopt (0, 0) abstraction [41]; i.e.
a packet is assumed to appear either zero or an arbitrary (unbounded) amount
of times in the respective multiset. This means that once a packet has arrived
at a switch or host, (infinitely) many other packets of the same kind repeatedly
arrive at this switch or host. Switches’ forwarding queues fq are, by contrast,
modelled as sets, therefore if multiple identical packets are sent by the controller
to a switch, only one will be stored in the queue and eventually forwarded by
the switch. The controller’s request rq and barrier reply queues brq are modelled
as sets as well. Hosts’ receive queues rcvg are also modelled as sets. Controller
queues cq at switches are modelled as a finite sequence of sets of control messages
(representing add and remove rule instructions), interleaved by any number of
barriers. As the number of barriers that can appear at any execution is finite,
this sequence is finite.

2.3 Guarded Transitions

Here we provide a detailed breakdown of the transition relation s & s’ for
each action a(@) € A(s), where A(s) the set of all enabled actions in s in the
proposed model (see Fig.1). Transitions are labelled by action names a with
arguments @. The transitions are only enabled in state s if s satisfies certain
conditions called guards that can refer to the arguments d. In guards, we make
use of predicate bestmatch(sw, r, pkt) that expresses that r is the highest priority
rule in sw.ft that matches pkt’s header. Below we list all possible actions with
their respective guards.

send(h, pt, pkt). Guard: true. This transition models packets arriving in the
network in a non-deterministic fashion. When it is executed, pkt is added to

132 V. Klimis et al.

the packet queue of the network switch connected to the port pt of host h (or,
formally, to A(h, pt);.pg, where X is the topology function described above). As
described in Sect. 3.2, only relevant representatives of packets are actually sent
by end-hosts. This transition is unguarded, therefore it is always enabled.

recv(h, pkt). Guard: pkt € h.rcvg. This transition models hosts receiving (and
removing) packets from the network and is enabled if pkt is in h’s receive queue.

match(sw, pkt, r). Guard: pkt € sw.pg AT € sw.ft A bestmatch(sw,r, pkt). This
transition models matching and forwarding packet pkt to zero or more next hop
nodes (hosts and switches), as a result of highest priority matching of rule r with
pkt. The packet is then copied to the packet queues of the connected hosts and /or
switches, by applying the topology function to the port numbers in the matched
rule; i.e. A(sw, pt)1.pg, Vpt € r.ports. Dropping packets is modelled by having a
special ‘drop’ port that can be included in rules. The location of the forwarded
packet(s) is updated with the respective destination (switch/host, port) pair; i.e.
A(sw, pt). Due to the (0,00) abstraction, the packet is not removed from sw.pq.

nomatch(sw, pkt). Guard: pkt € sw.pq A Pr € sw.ft . bestmatch(sw,r, pkt).
This transition models forwarding a packet to the OpenFlow controller when a
switch does not have a rule in its forwarding table that can be matched against
the packet header. In this case, pkt is added to rq for processing. pkt is not
removed from sw.pg due to the supported (0,c0) abstraction.

ctrl(sw, pkt, cs). Guard: pkt € controller.rq. This transition models the exe-
cution of the packet handler by the controller when packet pkt that was pre-
viously sent by sw is available in rq. The controller’s packet handler function
pktIn(sw, pkt, cs) is executed which, in turn (i) reads the current controller state
c¢s and changes it according to the controller program, (ii) adds a number of rules,
interleaved with any number of barriers, into the cq of zero or more switches,
and (iii) adds zero or more forwarding messages, each one including a packet
along with a set of ports, to the fq of zero or more switches.

fwd(sw, pkt, ports). Guard: (pkt, ports) € sw.fg. This transition models for-
warding packet pkt that was previously sent by the controller to sw’s forwarding
queue sw.fq. In this case, pkt is removed from sw.fg (which is modelled as a
set), and added to the pg of a number of network nodes (switches and/or hosts),
as defined by the topology function A(sw,pt);.pg, Vpt € ports. The location of
the forwarded packet(s) is updated with the respective destination (switch/host,
port) pair; i.e. A(n, pt).

FM(sw,r), where FM € {add, del}. Guard: (FM,r) € head(sw.cq). These
transitions model the addition and deletion, respectively, of a rule in the flow
table of switch sw. They are enabled when one or more add and del control
messages are in the set at the head of the switch’s control queue. In this case,
r is added to — or deleted from, respectively — sw.ft and the control message
is deleted from the set at the head of cq. If the set at the head of cq becomes
empty it is removed. If then the next item in cq is a barrier, a brepl transition
becomes enabled (see below).

Towards Model Checking Real-World Software-Defined Networks 133

brepl(sw, xid). Guard: b(xid) = head(sw.cq). This transition models a switch
sending a barrier response message, upon consuming a barrier from the head of
its control queue; i.e. if b(xid) is the head of sw.cq, where xid € N is an identifier
for the barrier set by the controller, b(zid) is removed and the barrier reply
message br(sw, zid) is added to the controller’s brg.

bsync(sw, xid, cs). Guard: br(sw, xid) € controller.brq. This transition models
the execution of the barrier response handler by the controller when a barrier
response sent by switch sw is available in brq. In this case, br(sw, zid) is removed
from the brg, and the controller’s barrier handler barrierin(sw,zid, cs) is exe-
cuted which, in turn (i) reads the current controller state c¢s and changes it
according to the controller program, (ii) adds a number of rules, interleaved
with any number of barriers, into the cq of zero or more switches, and (iii) adds
zero or more forwarding messages, each one including a packet along with a set
of ports, to the fq of zero or more switches.

An Example Run. In Fig.2, we illustrate a sequence of MOCS transitions
through a simple packet forwarding example. The run starts with a send tran-
sition; packet p is copied to the packet queue of the switch in black. Initially,
switches’ flow tables are empty, therefore p is copied to the controller’s request
queue (nomatch transition); note that p remains in the packet queue of the
switch in black due to the (0,0) abstraction. The controller’s packet handler is
then called (ctrl transition) and, as a result, (1) p is copied to the forwarding
queue of the switch in black, (2) rule r; is copied to the control queue of the
switch in black, and (3) rule 7o is copied to the control queue of the switch in
white. Then, the switch in black forwards p to the packet queue of the switch
in white (fwd transition). The switch in white installs r9 in its flow table (add
transition) and then matches p with the newly installed rule and forwards it to
the receive queue of the host in white (match transition), which removes it from
the network (recv transition).

2.4 Specification Language

In order to specify properties of packet flow in the network, we use LTL formulas
without “next-step” operator ()3, where atomic formulae denoting properties of
states of the transition system, i.e. SDN network. In the case of safety properties,
i.e. an invariant w.r.t. states, the LTL\ -} formula is of the form DOy, i.e. has
only an outermost O temporal connective.

Let P denote unary predicates on packets which encode a property of a
packet based on its fields. An atomic state condition (proposition) in AP is
either of the following: (i) existence of a packet pkt located in a packet queue
(pq) of a switch or in a receive queue (rcvg) of a host that satisfies P (we
denote this by Ipkten.pq. P(pkt) with n € Switches, and Ipkteh.rcvq. P(pkt)

3 This is the largest set of formulae supporting the partial order reductions used in
Sect. 3, as stutter equivalence does not preserve the truth value of formulae with

the O.

134 V. Klimis et al.

= e — |refa
- = Q T € cq
8 |pepg = < r€cq
e ‘e @
% < Q

[]

N —— A\ — - - -

l\fwd(@, p, 2)

4 N

2 € ft pé€fq

pEPq

p & rcvg

\—_D-/;D—/%/%/

r &cq

chcv(g . D)
t;natch(@, p, 1)
t/ﬂdd(@a ;)

p € revg

Fig. 2. Forwarding p from 8 to 8. Non greyed-out icons are the ones whose state
changes in the current transition.

with h € Hosts)*; (ii) the controller is in a specific controller state ¢ € CS,
denoted by a unary predicate symbol Q(g) which holds in system state s € S
if ¢ = s.y.cs. The specification logic comprises first-order formula with equality
on the finite domains of switches, hosts, rule priorities, and ports which are
state-independent (and decidable).

For example, Ipktesw.pq . P(pkt) represents the fact that the packet predi-
cate P(.) is true for at least one packet pkt in the pg of switch sw. For every
atomic packet proposition P(pkt), also its negation —P(pkt) is an atomic propo-
sition for the reason of simplifying syntactic checks of formulae in Tablel in
the next section. Note that universal quantification over packets in a queue
is a derived notion. For instance, Vpkten.pq.P(pkt) can be expressed as
Bpken.pq . ~P(pkt). Universal and existential quantification over switches or
hosts can be expressed by finite iterations of A and v, respectively.

In order to be able to express that a condition holds when a certain event
happened, we add to our propositions instances of propositional dynamic logic
[17,42]. Given an action a(-) € A and a proposition P that may refer to any
variables in &, [«(Z)]P is also a proposition and [a(Z)]P is true if, and only if,
after firing transition (@) (to get to the current state), P holds with the variables
in £ bound to the corresponding values in the actual arguments @. With the help
of those basic modalities one can then also specify that more complex events
occurred. For instance, dropping of a packet due to a match or fwd action can
be expressed by [match(sw, pkt, r)|(r.fwd_port = drop) A [fwd(sw, pkt, pt)](pt =
drop). Such predicates derived from modalities are used in [32] (extended version
of this paper, with proofs and controller programs), Appendix B-CP5.

4 Note that these are atomic propositions despite the use of the existential quantifier

notation.

Towards Model Checking Real-World Software-Defined Networks 135

The meaning of temporal LTL operators is standard depending on the trace
of a transition sequence sy —— s; <~ The trace L(so)L(s1)...L(s;)... is
defined as usual. For instance, trace L(sg)L(s1)L(s2) ... satisfies invariant O if
each L(s;) implies .

3 Model Checking

In order to verify desired properties of an SDN, we use its model as described in
Definition 1 and apply model checking. In the following we propose optimisations
that significantly improve the performance of model checking.

3.1 Contextual Partial-Order Reduction

Partial order reduction (POR) [39] reduces the number of interleavings (traces)
one has to check. Here is a reminder of the main result (see [4]) where we use a
stronger condition than the regular (C/) to deal with cycles:

Theorem 1 (Correctness of POR). Given a finite transition system M =
(S, A, <, s, AP, L) that is action-deterministic and without terminal states, let
A(s) denote the set of actions in A enabled in state s € S. Let ample(s) S A(s)
be a set of actions for a state s € S that satisfies the following conditions:

C1 (Non)emptiness condition: & # ample(s) < A(s).

C2 Dependency condition: Let s AL s 2 s, St be a run in M. If g e
A\ ample(s) depends on ample(s), then a; € ample(s) for some 0 < i < n,
which means that in every path fragment of M, B cannot appear before some
transition from ample(s) is executed.

C3 Invisibility condition: If ample(s) # A(s) (i.e., state s is not fully expanded),
then every a € ample(s) is invisible.

CJ Every cycle in M contains a state s such that ample(s) = A(s).

where M = (S, A < sy, AP, L,) is the new, optimised, model defined as
follows: let S, < S be the set of states reachable from the initial state sy under
—», let L,(s) = L(s) for all s€ S, and define —» < S, x A x S, inductively by
the rule

s < g

—_— if € ample(s)

s —» g
If ample(s) satisfies conditions (C1)-(C4) as outlined above, then for each path
in M there exists a stutter-trace equivalent path in M*™P and vice-versa,

denoted M = Mample,

The intuitive reason for this theorem to hold is the following: Assume an action
sequence «;...a;; 43 that reaches the state s, and 3 is independent of {«;, ...ct; 1}
Then, one can permute § with «;., through «; successively n times. One can

136 V. Klimis et al.

therefore construct the sequence fa;...a;., that also reaches the state s. If this
shift of § does not affect the labelling of the states with atomic propositions
(8 is called inwvisible in this case), then it is not detectable by the property to
be shown and the permuted and the original sequence are equivalent w.r.t. the
property and thus don’t have to be checked both. One must, however, ensure,
that in case of loops (infinite execution traces) the ample sets do not preclude
some actions to be fired altogether, which is why one needs (C4).

The more actions that are both stutter and provably independent (also
referred to as safe actions [22]) there are, the smaller the transition system,
and the more efficient the model checking. One of our contributions is that we
attempt to identify as many safe actions as possible to make PORs more widely
applicable to our model.

The PORs in [35] consider only dependency and invisibility of recv and bar-
rier actions, whereas we explore systematically all possibilities for applications
of Theorem 1 to reduce the search space. When identifying safe actions, we con-
sider (1) the actual controller program CP, (2) the topology A and (3) the state
formula ¢ to be shown invariant, which we call the context C¢TX of actions. It
turns out that two actions may be dependent in a given context of abstrac-
tion while independent in another context, and similarly for invisibility, and we
exploit this fact. The argument of the action thus becomes relevant as well.

Definition 2 (Safe Actions). Given a context CTX = (CP, A,), and SDN
model M(xcpy = (S, A, —,50, AP, L), an action a(-) € A(s) is called ‘safe’ if
it is independent of any other action in A and invisible for . We write safe
actions &(-).

Definition 3 (Order-sensitive Controller Program). A controller pro-
gram CP is order-sensitive if there exists a state s € S and two actions a, (3

in {ctrl(-), bsync(-)} such that o, 3 € A(s) and s — s &, s2 and s &, 53 > 84
with so # 84.

Definition 4. Let ¢ be a state formula. An action o € A is called ‘p-invariant’

if s E v iff a(s) E ¢ for all s€ S with a € A(s).

Lemma 1. For transition system M cp) = (S, A, =, 50, AP, L) and a formula
o € LTL\(0y, o € A is safe iff /\3’=1 Safe;(«), where Safe;, given in Table 1,
are per-row.

Proof. See [32] Appendix A.

Theorem 2 (POR instance for SDN). Let (CP,)\,) be a context such that
Mxcr) = (5, A, =, 50, AP, L) iis an SDN network model from Definition 1; and
let safe actions be as in Definition 2. Further, let ample(s) be defined by:

_ J{a€A(s) | a safe }if {a € A(s) | a safe } # @
ample(s) = {A(s) otherwise

Towards Model Checking Real-World Software-Defined Networks 137

Table 1. Safeness predicates

Action Independence Invisibility
Safe, (@) Safey(0) Safes (@)
a = ctrl(sw, pk, cs) CP is not order-sensitive | if Q(g) occurs in ¢, where ¢ € CS,

then « is y-invariant

a = bsync(sw, xid, cs) | CP is not order-sensitive | if Q(q) occurs in ¢, where g € CS,
then « is y-invariant

a = fwd(sw, pk, ports) | T if Ipkeb.q. P(pk) occurs in ¢, for any
be {sw}u {A(sw,p)1 | p € ports} and
q € {pq, recvq}, then « is ¢-invariant
a = brepl(sw, zid) T T

a = recv(h, pk) T if Ipkeh.rcvg . P(pk) occurs in ¢,
then « is p-invariant

Then, ample satisfies the criteria of Theorem 1 and thus M cp) = ./\/l(a;ngﬁ)e 5

Proof.

C1 The (non)emptiness condition is trivial since by definition of ample(s) it
follows that ample(s) = @ iff A(s) = @.

C2 By assumption 3 € A\ample(s) depends on ample(s). But with our defini-
tion of ample(s) this is impossible as all actions in ample(s) are safe and by
definition independent of all other actions.

C8 The validity of the invisibility condition is by definition of ample and safe
actions.

C4 We now show that every cycle in ./\/l?;“ gf)e contains a fully expanded state s, i.e.
a state s such that ample(s) = A(s). By definition of ample(s) in Theorem 2
it is equivalent to show that there is no cycle in M?;” Cp]f)e consisting of safe
actions only. We show this by contradiction, assuming such a cycle of only
safe actions exists. There are five safe action types to consider: ctrl, fwd, brepl,
bsync and recv. Distinguish two cases.

Case 1. A sequence of safe actions of same type. Let us consider the different
safe actions:

e Let p an execution of ME’;" Cplf;’ which consists of only one type of ctri-actions:
ctrl(pkty,cs1) ctrl(pkta,cs2) ctrl(pkti_1,csi-1)
P =81 ° S2 © ce8i1 S S;

Suppose p is a cycle. According to the citrl semantics, for each transition

tri(pkt,cs)
M» s, where s = (m,4,7), s = (7/,0',7'), it holds that v'.rq¢ =

~v.rq\{pkt} as we use sets to represent rq buffers. Hence, for the execution
p it holds ~;.rq = v1.7r¢\{pkt1, pkts, ...pkt;—1} which implies that s; # s;.
Contradiction.

5 Stutter equivalence here implicitly is defined w.r.t. the atomic propositions appearing
in ¢, but this suffices as we are just interested in the validity of .

138 V. Klimis et al.

e Let p an execution which consists of only one type of fwd-actions: similar
argument as above since fg-s are represented by sets and thus forward mes-
sages are removed from fq.

e Let p an execution which consists of only one type of brepl-actions: similar
argument as above since control messages are removed from cq.

e Let p an execution which consists of only one type of bsync-actions: similar
argument as above, as barrier reply messages are removed from brg-s that are
represented by sets.

e Let p an execution which consists of only one type of recv-actions: similar
argument as above, as packets are removed from rcvq buffers that are repre-
sented by sets.

Case 2. A sequence of different safe actions. Suppose there exists a cycle with
mixed safe actions starting in s; and ending in s;. Distinguish the following
cases.

i) There exists at least a ctrl and/or a bsync action in the cycle. According
to the effects of safe transitions, the ctrl action will change to a state with
smaller r¢ and the bsync will always switch to a state with smaller brq. It
is important here that ctrl does not interfere with bsync regarding rq, brq,
and no safe action of other type than ctrl and bsync accesses rq or brq. This
implies that s; # s;. Contradiction.

ii) Neither ctrl, nor bsync actions in the cycle.

a) There is a fwd and/or brepl in the cycle: fwd will always switch to a state
with smaller fg and brepl will always switch to a state with smaller cq
(brepl and recv do not interfere with fwd). This implies that s1 # s;.
Contradiction.

b) There is neither fwd nor brepl in the cycle. This means that only recv is
in the cycle which is already covered by the first case.

O

Due to the definition of the transition system via ample sets, each
safe action is immediately executed after its enabling one. Therefore,
one can merge every transition of a safe action with its precursory
enabling one. Intuitively, the semantics of the merged action is defined
as the successive execution of its constituent actions. This process can be

repeated if there is a chain of safe actions; for instance, in the case of
nomatch(sw,pkt) , ctri(sw,pkt,cs) P Sfwd(sw,pkt,ports)
s s <

5 s"" where each transition
enables the next and the last two are assumed to be safe. These transitions can
be merged into one, yielding a stutter equivalent trace as the intermediate states
are invisible (w.r.t. the context and thus the property to be shown) by definition
of safe actions.

3.2 State Representation

Efficient state representation is crucial for minimising MOCS’s memory footprint
and enabling it to scale up to relatively large network setups.

Towards Model Checking Real-World Software-Defined Networks 139

Packet and Rule Indexing. In MOCS, only a single instance of each packet
and rule that can appear in the modelled network is kept in memory. An index
is then used to associate queues and flow tables with packets and rules, with a
single bit indicating their presence (or absence). This data structure is illustrated
in Fig. 3. For a data packet, a value of 1 in the pq section of the entry indicates
that infinite copies of it are stored in the packet queue of the respective switch.
A value of 1 in the fg section indicates that a single copy of the packet is stored
in the forward queue of the respective switch. A value of 1 in the r¢ section
indicates that a copy of the packet sent by the respective switch (when a nomatch
transition is fired) is stored in the controller’s request queue. For a rule, a value
of 1 in the ft section indicates that the rule is installed in the respective switch’s
flow table. A value of 1 in the cq section indicates that the rule is part of a
FlowMod message in the respective switch’s control queue.

state

match fields state action match fields
fq rq pq (location) dstlP scrIP ft cq prio out_pt in_pt dstIP scrlP
0 0 0J0 1 1|1 0f2 0 1]0 1 1|0 1|1 1 1 0/0 0|1 1|1 1|0 1|1 00 1

1 out_pt | SW| Out_pt | SWi| SWy; SWi| in_pt | sWp| in_pt swi 1 1 1 SWa | SWi | SW | SWy I 1 1 1 1
15 12 10 7 4 2 0 12 10 8 6 4 2 0

Fig. 3. Packet (left) and rule (right) indices

The proposed optimisation enables scaling up the network topology by min-
imising the required memory footprint. For every switch, MOCS only requires a
few bits in each packet and rule entry in the index.

Discovering Equivalence Classes of Packets. Model checking with all pos-
sible packets, including all specified fields in the OpenFlow standard, would
entail a huge state space that would render any approach unusable. Here, we
propose the discovery of equivalence classes of packets that are then used for
model checking. We first remove all fields that are not referenced in a statement
or rule creation or deletion in the controller program. Then, we identify packet
classes that would result in the same controller behaviour. Currently, as with the
rest of literature, we focus on simple controller programs where such equivalence
classes can be easily identified by analysing static constraints and rule manip-
ulation in the controller program. We then generate one representative packet
from each class and assign it to all network switches that are directly connected
to end-hosts; i.e. modelling clients that can send an arbitrarily large number of
packets in a non-deterministic fashion. We use the minimum possible number of
bits to represent the identified equivalence classes. For example, if the controller
program exerts different behaviour if the destination TCP port of a packet is 23
(i.e. destined to an SSH server) or not, we only use a 1-bit field to model this
behaviour.

140 V. Klimis et al.

Bit Packing. We reduce the size of each recorded state by employing bit packing
using the int type supported by UPPAAL, and bit-level operations for the entries
in the packet and rule indices as well as for the packets and rules themselves.

4 Experimental Evaluation

In this section, we experimentally evaluate MOCS by comparing it with the
state of the art, in terms of performance (verification throughput and mem-
ory footprint) and model expressivity. We have implemented MOCS in UPPAAL
[6] as a network of parallel automata for the controller and network switches,
which communicate asynchronously by writing/reading packets to/from queues
that are part of the model discussed in Sect.2. As discussed in Sect. 3, this is
implemented by directly manipulating the packet and rule indices.

Throughout this section we will be using three examples of network con-
trollers: (1) A stateless firewall ([32] Appendix B-CP1) requires the controller to
install rules to network switches that enable them to decide whether to forward
a packet towards its destination or not; this is done in a stateless fashion, i.e.
without having to consider any previously seen packets. For example, a controller
could configure switches to block all packets whose destination TCP port is 22
(i.e. destined to an SsH server). (2) A stateful firewall ([32] Appendix B-CP2)
is similar to the stateless one but decisions can take into account previously
seen packets. A classic example of this is to allow bi-directional communication
between two end-hosts, when one host opens a TCP connection to the other.
Then, traffic flowing from the other host back to the connection initiator should
be allowed to go through the switches on the reverse path. (3) A MAC learning
application ([32] Appendix B-CP3) enables the controller and switches to learn
how to forward packets to their destinations (identified with respective MAC
addresses). A switch sends a PacketIn message to the controller when it receives
a packet that it does not know how to forward. By looking at this packet, the
controller learns a mapping of a source switch (or host) to a port of the request-
ing switch. It then installs a rule (by sending a FlowMod message) that will allow
that switch to forward packets back to the source switch (or host), and asks the
requesting switch (by sending a PacketOut message) to flood the packet to all
its ports except the one it received the packet from. This way, the controller
eventually learns all mappings, and network switches receive rules that enable
them to forward traffic to their neighbours for all destinations in the network.

4.1 Performance Comparison

We measure MOCS’s performance, and also compare it against Kuai [35] using
the examples described above, and we investigate the behaviour of MOCS as
we scale up the network (switches and clients/servers). We report three metrics:

6 Note that parts of Kuai’s source code are not publicly available, therefore we imple-
mented it’s model in UPPAAL.

Towards Model Checking Real-World Software-Defined Networks 141

6000[| T T

T T T T T T T T T
=\MOCS =MOCS w/o POR =MOCS w/o any optimisations Kuai

states/sec

SxH’ 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2 10x2
(a) MAC Learning Switch

6000 6000
(&)
&
& 4000 4000
o
©
‘% 2000) 2000
SxH’ 4x2 5x2 6x2 7x2 8x2 9x2 1x2 2x2 3x2 4x2

(b) Stateless Firewall (c) Stateful Firewall

Fig. 4. Performance comparison — verification throughput

(1) werification throughput in visited states per second, (2) number of visited
states, and (3) required memory. We have run all verification experiments on an
18-Core iMac pro, 2.3 GHz Intel Xeon W with 128 GB DDR4 memory.

Verification Throughput. We measure the verification throughput when run-
ning a single experiment at a time on one CPU core and report the average and
standard deviation for the first 30 min of each run. In order to assess how MOCS’s
different optimisations affect its performance, we report results for the following
system variants: (1) MOCS, (2) MOCS without POR, (3) MOCS without any
optimisations (neither POR, state representation), and (4) Kuai. Figure 4 shows
the measured throughput (with error bars denoting standard deviation).

For the MAC learning and stateless firewall applications, we observe that
MOCS performs significantly better than Kuai for all different network setups
and sizes”, achieving at least double the throughput Kuai does. The throughput
performance is much better for the stateful firewall, too. This is despite the fact
that, for this application, Kuai employs the unrealistic optimisation where the
barrier transition forces the immediate update of the forwarding state. In other
words, MOCS is able to explore significantly more states and identify bugs that
Kuai cannot (see Sect. 4.2).

The computational overhead induced by our proposed PORs is minimal. This
overhead occurs when PORs require dynamic checks through the safety pred-
icates described in Table 1. This is shown in Fig.4a, where, in order to decide
about the (in)visibility of fwd(sw,pk,pt) actions, a lookup is performed in the
history-array of packet pk, checking whether the bit which corresponds to switch
sw’, which is connected with port pt of sw, is set. On the other hand, if a POR
does not require any dynamic checks, no penalty is induced, as shown in Figs. 4b

7S x H in Figs. 4 to 6 indicates the number of switches S and hosts H.

142 V. Klimis et al.

=MOCS =MOCS w/o POR =MOCS w/o any optimisations = Kuai

10°

States

SxH'3x2 4x2 3x3 5x2 4x3 6x2 3x4 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2
(a) MAC Learning Switch

3
510°
»
SxH 2x2 3x2 9x2 10x2 1x2 2x2 3x2
(b) Stateless Firewall (c) Stateful Firewall

Fig. 5. Performance comparison — visited states (logarithmic scale)

=m\OCS =MOCS w/o POR =MOCS w/o any optimisations Kuai

KiB

10°
SxH'3x2 4x2 3x3 5x2 4x3 6x2 3x4 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2
(a) MAC Learning Switch

o UL LSl Ll

SxH 2x2 3x2 9x2 10x2 X2 2x2 3x2
(b) Stateless Firewall (c) Stateful Firewall

Fig. 6. Performance comparison — memory footprint (logarithmic scale)

and 4c, where the throughput when the PORs are disabled is almost identical to
the case where PORs are enabled. This is because it has been statically estab-
lished at a pre-analysis stage that all actions of a particular type are always safe
for any argument/state. It is important to note that even when computational
overhead is induced, PORs enable MOCS to scale up to larger networks because
the number of visited states can be significantly reduced, as discussed below.

In order to assess the contribution of the state representation optimisation in
MOCS’s performance, we measure the throughput when both PORs and state
representation optimisations are disabled. It is clear that they contribute signif-
icantly to the overall throughput; without these the measured throughput was
at least less than half the throughput when they were enabled.

Number of Visited States and Required Memory. Minimising the num-
ber of visited states and required memory is crucial for scaling up verification to
larger networks. The proposed partial order reductions (Sect.3.1) and identifi-
cation of packet equivalent classes aim at the former, while packet/rule indexing

Towards Model Checking Real-World Software-Defined Networks 143

and bit packing aim at the latter (§3.2). In Fig. 5, we present the results for the
various setups and network deployments discussed above. We stopped scaling up
the network deployment for each setup when the verification process required
more than 24 h or started swapping memory to disk. For these cases we killed
the process and report a topped-up bar in Figs. 5 and 6.

For the MAC learning application, MOCS can scale up to larger network
deployments compared to Kuai, which could not verify networks consisting of
more than 2 hosts and 6 switches. For that network deployment, Kuai visited
~7 m states, whereas MOCS visited only ~193 k states. At the same time, Kuai
required around 48 GBs of memory (7061 bytes/state) whereas MOCS needed
~43 MBs (228 bytes/state). Without the partial order reductions, MOCS can
only verify tiny networks. The contribution of the proposed state representation
optimisations is also crucial; in our experiments (results not shown due to lack of
space), for the 6 x 2 network setups (the largest we could do without these opti-
misations), we observed a reduction in state space (due to the identification of
packet equivalence classes) and memory footprint (due to packet/rule indexing
and bit packing) from ~7 m to ~200k states and from ~6 KB per state to ~230 B
per state. For the stateless and stateful firewall applications, resp., MOCS per-
forms equally well to Kuai with respect to scaling up.

4.2 Model Expressivity

The proposed model is significantly more expressive compared to Kuai as it
allows for more asynchronous concurrency. To begin with, in MOCS, controller
messages sent before a barrier request message can be interleaved with all other
enabled actions, other than the control messages sent after the barrier. By con-
trast, Kuai always flushes all control messages until the last barrier in one go,
masking a large number of interleavings and, potentially, buggy behaviour. Next,
in MOCS nomatch, ctrl and fwd can be interleaved with other actions. In Kuai,
it is enforced a mutual exclusion concurrency control policy through the wait-
semaphore: whenever a nomatch occurs the mutex is locked and it is unlocked by
the fwd action of the thread nomatch-ctril-fwd which refers to the same packet;
all other threads are forced to wait. Moreover, MOCS does not impose any limit
on the size of the rq¢ queue, in contrast to Kuai where only one packet can exist
in it. In addition, Kuai does not support notifications from the data plane to
the controller for completed operations as it does not support reply messages
and as a result any bug related to the fact that the controller is not synced to
data-plane state changes is hidden.® Also, our specification language for states is
more expressive than Kuai’s, as we can use any property in LTL without “next”,
whereas Kuai only uses invariants with a single outermost O.

The MOCS extensions, however, are conservative with respect to Kuai, that
is we have the following theorem (without proof, which is straightforward):

8 There are further small extensions; for instance, in MOCS the controller can send
multiple PacketOut messages (as OpenFlow prescribes).

144 V. Klimis et al.

Theorem 3 (MOCS Conservativity). Let M) = (S, A4,—,50, AP, L)
and M&cp) = (Sk,Ax,—K,S0,AP,L) the original SDN models of MOCS
and Kuai, respectively, using the same topology and controller. Furthermore,
let Traces(Mxcp)) and Traces(M(, .)) denote the set of all initial traces in

these models, respectively. Then, Tmces(M‘(’()\ycp)) C Traces(Mx,op))-

For each of the extensions mentioned above, we briefly describe an example
(controller program and safety property) that expresses a bug that is impossible
to occur in Kuai.

Control Message Reordering Bug. Let us consider a stateless firewall in
Fig. 7a (controller is not shown), which is supposed to block incoming SSH pack-
ets from reaching the server (see [32] Appendix B-CP1). Formally, the safety
property to be checked here is O(Vpkt € S.rcvq . —pkt.ssH). Initially, flow tables
are empty. Switch A sends a PacketIn message to the controller when it receives
the first packet from the client (as a result of a nomatch transition). The con-
troller, in response to this request (and as a result of a ctrl transition), sends the
following FlowMod messages to switch A; rule r1 has the highest priority and
drops all ssH packets, rule r2 sends all packets from port 1 to port 2, and rule r3
sends all packets from port 2 to port 1. If the packet that triggered the transition
above is an SSH one, the controller drops it, otherwise, it instructs (through a
PacketOut message) A to forward the packet to S. A bug-free controller should
ensure that r1 is installed before any other rule, therefore it must send a barrier
request after the FlowMod message that contains ri. If, by mistake, the Flow-
Mod message for r2 is sent before the barrier request, A may install r2 before r1,
which will result in violating the given property. MOCS is able to capture this
buggy behaviour as its semantics allows control messages prior to the barrier to
be processed in a interleaved manner.

0-®-@8 &
(a) (b)

Fig. 7. Two networks with (a) two switches, and (b) n stateful firewall replicas

Wrong Nesting Level Bug. Consider a correct controller program that
enforces that server S (Fig. 7a) is not accessible through ssH. Formally, the safety
property to be checked here is O(Vpkt € S.rcvg. —pkt.ssH). For each incoming
PacketIn message from switch A, it checks if the enclosed packet is an SSH one
and destined to S. If not, it sends a PacketOut message instructing A to forward
the packet to S. It also sends a FlowMod message to A with a rule that allows
packets of the same protocol (not SsH) to reach S. In the opposite case (SSH), it
checks (a Boolean flag) whether it had previously sent drop rules for ssH packets
to the switches. If not, it sets flag to true, sends a FlowMod message with a rule

Towards Model Checking Real-World Software-Defined Networks 145

that drops ssH packets to A and drops the packet. Note that this inner block
does not have an else statement.

A fairly common error is to write a statement at the wrong nesting level ([32]
Appendix B-CP4). Such a mistake can be built into the above program by nesting
the outer else branch in the inner if block, such that it is executed any time
an SsH-packet is encountered but the SSH drop-rule has already been installed
(i.e. flag f is true). Now, the ssH drop rule, once installed in switch A, disables
immediately a potential nomatch(A, p) with p.SsH = true that would have sent
packet p to the controller, but if it has not yet been installed, a second incoming
SSH packet would lead to the execution of the else statement of the inner branch.
This would violate the property defined above, as p will be forwarded to S°.

MOCS can uncover this bug because of the correct modelling of the controller
request queue and the asynchrony between the concurrent executions of control
messages sent before a barrier. Otherwise, the second packet that triggers the
execution of the wrong branch would not have appeared in the buffer before
the first one had been dealt with by the controller. Furthermore, if all rules in
messages up to a barrier were installed synchronously, the second packet would
be dealt with correctly, so no bug could occur.

Inconsistent Update Bug. OpenFlow’s barrier and barrier reply mechanisms
allow for updating multiple network switches in a way that enables consistent
packet processing, i.e., a packet cannot see a partially updated network where
only a subset of switches have changed their forwarding policy in response to
this packet (or any other event), while others have not done so. MOCS is expres-
sive enough to capture this behaviour and related bugs. In the topology shown
in Fig.7a, let us assume that, by default, switch B drops all packets destined
to S. Any attempt to reach S through A are examined separately by the con-
troller and, when granted access, a relevant rule is installed at both switches
(e.g. allowing all packets from C' destined to S for given source and destination
ports). Updates must be consistent, therefore the packet cannot be forwarded
by A and dropped by B. Both switches must have the new rules in place, before
the packet is forwarded. To do so, the controller, ([32] Appendix B-CP5), upon
receiving a PacketIn message from the client’s switch, sends the relevant rule to
switch B (FlowMod) along with respective barrier (BarrierReq) and temporar-
ily stores the packet that triggered this update. Only after receiving BarrierRes
message from B, the controller will forward the previously stored packet back
to A along with the relevant rule. This update is consistent and the packet is
guaranteed to reach S. A (rather common) bug would be one where the con-
troller installs the rules to both switches and at the same time forwards the
packet to A. In this case, the packet may end up being dropped by B, if it
arrives and gets processed before the relevant rule is installed, and therefore the
invariant O([drop(pkt, sw)] . ~(pkt.dest = S)), where [drop(pkt, sw)] is a quanti-
fier that binds dropped packets (see definition in [32] Appendix B-CP5), would

9 Here, we assume that the controller looks up a static forwarding table before sending
PacketOut messages to switches.

146 V. Klimis et al.

be violated. For this example, it is crucial that MOCS supports barrier response
messages.

5 Conclusion

We have shown that an OpenFlow compliant SDN model, with the right opti-
misations, can be model checked to discover subtle real-world bugs. We proved
that MOCS can capture real-world bugs in a more complicated semantics with-
out sacrificing performance.

But this is not the end of the line. One could automatically compute equiv-
alence classes of packets that cover all behaviours (where we still computed
manually). To what extent the size of the topology can be restricted to find
bugs in a given controller is another interesting research question, as is the anal-
ysis of the number and length of interleavings necessary to detect certain bugs.
In our examples, all bugs were found in less than a second.

References

1. Al-Fares, M., Radhakrishnan, S., Raghavan, B.: Hedera: dynamic flow scheduling
for data center networks. In: NSDI (2010)

2. Al-Shaer, E., Al-Haj, S.: FlowChecker: configuration analysis and verification of
federated OpenFlow infrastructures. In: SafeConfig (2010)

3. Albert, E., Gémez-Zamalloa, M., Rubio, A., Sammartino, M., Silva, A.: SDN-
Actors: modeling and verification of SDN programs. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 550-567. Springer,
Cham (2018)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Ball, T., Bjgrner, N., Gember, A., et al.: VeriCon: towards verifying controller
programs in software-defined networks. In: PLDI (2014)

6. Behrmann, G., David, A., Larsen, K.G., et al.: Developing UPPAAL over 15 years.
In: Practice and Experience, Software (2011)

7. Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In: LCN (2010)

8. Canini, M., Venzano, D., Peresini, P., et al.: A NICE way to test OpenFlow appli-
cations. In: NSDI (2012)

9. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359-364.
Springer, Heidelberg (2002)

10. Curtis, A.R., Mogul, J.C., Tourrilhes, J., et al.: DevoFlow: scaling flow management
for high-performance networks. In: SIGCOMM (2011)

11. Dobrescu, M., Argyraki, K.: Software dataplane verification. In: Communications
of the ACM (2015)

12. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Network-wide configuration
synthesis. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
261-281. Springer, Cham (2017)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Towards Model Checking Real-World Software-Defined Networks 147

Fayaz, S.K., Sharma, T., Fogel, A., et al.: Efficient network reachability analysis
using a succinct control plane representation. In: OSDI (2016)

Fayaz, S.K., Yu, T., Tobioka, Y., et al.: BUZZ: testing context-dependent policies
in stateful networks. In: NSDI (2016)

Feamster, N., Rexford, J., Shenker, S., et al.: SDX: A Software-defined Internet
Exchange. Open Networking Summit (2013)

Feamster, N., Rexford, J., Zegura, E.: The road to SDN. SIGCOMM Comput.
Commun. Rev. (2014)

Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18, 194-211 (1979)

Fogel, A., Fung, S., Angeles, L., et al.: A general approach to network configuration
analysis. In: NSDI (2015)

Handigol, N., Seetharaman, S., Flajslik, M., et al.: Plug-n-Serve: load-balancing
web traffic using OpenFlow. In: SIGCOMM (2009)

Havelund, K., Pressburger, T.. Model checking JAVA programs using JAVA
PathFinder. STTT 2, 366-381 (2000)

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23, 279-295
(1997)

Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe D.,
Leue S. (eds) Formal Description Techniques VII. IAICT, pp. 197-211. Springer,
Boston, MA (1995)

Horn, A., Kheradmand, A., Prasad, M.R.: Delta-net: real-time network verification
using atoms. In: NSDI (2017)

Hu, H., Ahn, G.J., Han, W, et al.: Towards a reliable SDN firewall. In: ONS (2014)
Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256-290 (2002)

Jafarian, J.H., Al-Shaer, E., Duan, Q.: OpenFlow random host mutation: transpar-
ent moving target defense using software defined networking. In: HotSDN (2012)
Jain, S., Zhu, M., Zolla, J., et al.: B4: experience with a globally-deployed software
defined WAN. In: SIGCOMM (2013)

Jia, Y.: NetSMC: a symbolic model checker for stateful network verification. In:
NSDI (2020)

Kazemian, P., Chang, M., Zeng, H., et al.: Real time network policy checking using
header space analysis. In: NSDI (2013)

Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: NSDI (2012)

Khurshid, A., Zou, X., Zhou, W., et al.: VeriFlow: verifying network-wide invariants
in real time. In: NSDI (2013)

Klimis, V., Parisis, G., Reus, B.: Towards model checking real-world software-
defined networks (version with appendix). preprint arXiv:2004.11988 (2020)

Li, Y., Yin, X., Wang, Z., et al.: A survey on network verification and testing with
formal methods: approaches and challenges. IEEE Surv. Tutorials 21, 940-969
(2019)

Mai, H., Khurshid, A., Agarwal, R., et al.: Debugging the data plane with anteater.
In: SIGCOMM (2011)

Majumdar, R., Deep Tetali, S., Wang, Z.: Kuai: a model checker for software-
defined networks. In: FMCAD (2014)

McClurg, J., Hojjat, H., Cerny, P., et al.: Efficient synthesis of network updates.
In: PLDI (2015)

McKeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: enabling innova-
tion in campus networks. SIGCOMM Comput. Commun. Rev. 38, 69-74 (2008)

http://arxiv.org/abs/2004.11988

148 V. Klimis et al.

38. Patel, P., Bansal, D., Yuan, L., et al.: Ananta: cloud scale load balancing. SIG-
COMM 43, 207-218 (2013)

39. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer, Heidel-
berg (1993)

40. Plotkin, G.D., Bjgrner, N., Lopes, N.P., et al.: Scaling network verification using
symmetry and surgery. In: POPL (2016)

41. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1, o)- counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107-122.
Springer, Heidelberg (2002)

42. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS (1976)

43. Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers.
In: FMCAD (2013)

44. Shenker, S., Casado, M., Koponen, T., et al.: The future of networking, and the
past of protocols. In: ONS (2011). https://tinyurl.com/yxnuxobt

45. Son, S., Shin, S., Yegneswaran, V., et al.: Model checking invariant security prop-
erties in OpenFlow. In: IEEE (2013)

46. Stoenescu, R., Popovici, M., Negreanu, L., et al.: SymNet: scalable symbolic exe-
cution for modern networks. In: SIGCOMM (2016)

47. Varghese, G.: Vision for network design automation and network verification. In:
NetPL (Talk) (2018). https://tinyurl.com/y2cnhvhf

48. Yang, H., Lam, S.S.: Real-time verification of network properties using atomic
predicates. IEEE/ACM Trans. Network. 24, 837-900 (2016)

49. Zeng, H., Kazemian, P., Varghese, G., et al.: A survey on network troubleshooting.
Technical report TR12-HPNG-061012, Stanford University (2012)

50. Zeng, H., Zhang, S., Ye, F., et al.: Libra: divide and conquer to verify forwarding
tables in huge networks. In: NSDI (2014)

51. Zhang, S., Malik, S.: SAT based verification of network data planes. In: Van Hung,
D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 496-505. Springer, Cham
(2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://tinyurl.com/yxnuxobt
https://tinyurl.com/y2cnhvhf
http://creativecommons.org/licenses/by/4.0/

	Towards Model Checking Real-World Software-Defined Networks
	1 Introduction
	2 Software-Defined Network Model
	2.1 Formal Model Definition
	2.2 SDN Model Components
	2.3 Guarded Transitions
	2.4 Specification Language

	3 Model Checking
	3.1 Contextual Partial-Order Reduction
	3.2 State Representation

	4 Experimental Evaluation
	4.1 Performance Comparison
	4.2 Model Expressivity

	5 Conclusion
	References

