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Abstract— Accurate object detection and location systems are essential for many robotic applications, including
autonomous grasping and manipulation systems. In some cases, the target object may be obscured from view, in clutter,
packaging, or debris. Millimetre wave radar is a potential alternative to visual sensing in such scenarios, owing to its ability
to penetrate typical low-density non-metallic materials. However, this approach requires accurate spatial calibration of the
radar signal, over the robot workspace. We propose to achieve this with reference to visual data, which provides ground
truth locations for initial training of the system. Specifically, we describe a commodity millimetre wave radar system
for detecting and localizing static metallic objects, over a 2D workspace. We compare similarity, affine, and thin-plate
spline models of the spatial transformation from radar estimates to actual locations. Experiments were performed with a
frequency modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) device, using a starting frequency
of 60 GHz and a bandwidth of 3.4 GHz. It is shown that the spline model performs best, achieving an average spatial error
of 7 mm, which is an order of magnitude lower than that of the uncalibrated system.

Index Terms— mmWave radar, RGB camera, mapping methods, spatial calibration

I. INTRODUCTION

THE use of robot arms is well established for industrial
tasks, such as assembly and welding, in controlled envi-

ronments. More recently, it has become desirable to use robotic
systems in less predictable environments, such as warehouses
and farms. In all cases, a robust and accurate object detection
and localization system is required. Visual sensors are often
used in such contexts, as reviewed by Du et al. [1]. These
systems may be based on fiducial markers [2], 3D scene
analysis [3], or machine learning approaches [4]. For example,
a calibrated RGB camera can be used to estimate the target
pose [5], after an automatic object detection process [6].
Additional information can be obtained from RGBD cameras,
for grasping and manipulation tasks [7].

Despite these advances in visual sensing, there remain many
challenges in autonomous detection and manipulation, includ-
ing specular or translucent object detection, tasks requiring
high precision, or the improvement of grasping in clutter,
as discussed in [8] and [9]. Furthermore, the detection and
manipulation of concealed objects is essentially impossible
using ordinary visual sensors. These difficulties motivate the
use of radar sensors in robotic applications. In particular, mil-
limetre wave (mmWave) radar, which operates in frequencies
of several GHz, is able to penetrate a range of low-density
materials, such as those used for packaging. Furthermore,
typical mmWave radar devices are small, lightweight, and
readily available.
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It is possible to calibrate a given mmWave radar, in a ref-
erence environment, so that the location of a target object can
be estimated from the returned signal. In practice, however,
this is not a complete solution. In particular, the reference
calibration cannot account for the varying effects of unknown
environmental clutter, device pose, and manufacturing toler-
ances. In this paper, rather than trying to analyze such effects,
we simply model the overall spatial transformation between
the radar signal maxima and the true physical locations. This
is done using a rapid calibration procedure, which is applied
to the target device, in the target environment. Our calibration
method minimizes the differences between measurements ob-
tained from the mmWave radar and a well-established camera-
based method, in an offline training procedure.

A. Related Work

The use of optical systems in scene analysis for robotics
is well established [1], [10], [11]. The corresponding vision
systems may be based on fiducial markers [2], geometric
principles [3], or machine learning approaches [4]. Radar-
based systems have appeared more recently in robotics [12],
and so a more detailed review will be given below, focusing
on the mmWave case.

Wang et al. [13] performed a theoretical analysis of
mmWave position estimation. They demonstrated that attain-
ing millimetre-level accuracy is achievable in principle, given
a suitable antenna array, substantial bandwidth, and high
signal-to-noise ratio. The achievable precision has also been
investigated experimentally, by Ahmad et al. [14]. They show
that a 79 GHz device can localize a corner reflector with sub-
millimetre precision, at ranges less than 5 m, in an anechoic
chamber. In the context of autonomous driving [15], target
identification (as well as localization) has been demonstrated
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with mmWave radar [16], including the ability to distinguish
between pedestrians, cyclists, and vehicles [17].

More generally, the combination of optical and radar data
is an attractive approach in the automotive field [18], where
sensor systems must be able to operate in adverse weather
conditions [19], [20]. The mmWave subsystem can be used
for object identification [21]–[23], as well as localization [24],
[25]. For example, Peršić et al. present a method for spatial
calibration of radar and LiDAR devices [26]. This work is
based on specially designed targets, which can be detected and
localized by all sensors. The calibration process involves two
steps. Firstly, the reprojection error is minimized in azimuth
and range, in the absence of radar elevation data. Secondly,
the radar cross section is analyzed, and correlated with the
LiDAR elevation estimates. This system was subsequently
extended [27], to avoid the assumption of a specific static
target, and to incorporate a Gaussian process model of the
multi-sensor trajectories [28]. Other work has focused on
spatial and temporal calibration between radar and LiDAR
sensors [29]. Spatial alignment is achieved by compensating
possible deviations in the elevation axis with 3D radar cross-
section distribution measurements, whereas the temporal align-
ment is achieved by estimating the time-delay between radar
and LiDAR measurements as the time difference obtained after
aligning the target azimuth angle for both sensors.

In contrast, Oh et al. [30] address the more restricted prob-
lem of mapping estimated locations in the radar ground-plane
into a camera image-plane. They show good performance,
over scene depths of up to 50 m, using retro-reflector radar
targets. While this approach enables fusion of the image and
radar data, it does not address the issue of radar calibration,
because there are no reference 3D estimates. Cheng et al. [31]
demonstrate the detection of plastic water bottles, floating on
water, using mmWave radar. Their fusion strategy addresses
the limitations of each sensor, such as highly variable reflec-
tivity for cameras and clutter for radar. The algorithm begins
by transforming the radar 3D point cloud into 2D, which is
then fused with the RGB camera data by projecting each radar
point onto the image plane. Another solution to this problem
can be found in [32], where the rotation between sensors is
calibrated using a convolutional neural network (CNN). Wise
et al. [33] also describe a continuous-time 3D radar-to-camera
extrinsic calibration algorithm, for robotics, which does not
require the use of retro-reflectors. This approach uses velocity
(rather than position) estimates from the radar signal, in order
to estimate the sensor pose, with respect to an attached camera
system. This work has been extended, to avoid the dependence
on special retroreflective radar targets [34], [35].

In recent years, there has been an increasing interest in
the use of mmWave radar in the context of robotics ap-
plications [36]. For example, Stetco et al. [37] introduce a
simulation approach for frequency modulated continuous wave
(FMCW) radar sensors operating in cluttered environments.
Although this simulator accounts for only a simplified approx-
imation of reflections, the predictions are in good agreement
with the experimental results. The authors continued their
work in [38], where they present an advanced simulation
environment that provides real-time raw data, incorporates

multi-antenna configurations and a wave penetration model for
non-conductive objects, accounts for various beam patterns,
and incorporates realistic radar configurations. This proposed
simulation framework was validated in real-world scenarios,
including those with a single object in different static positions,
radar occlusion caused by diverse materials, and dynamic
human activity.

B. Contributions and organization
Our principal contribution is a practical method for mapping

radar-based object location estimates into the true physical
workspace. As described in the introduction, this method
accounts for the combined effects of unknown environmental
clutter, device pose, and manufacturing tolerances. Note that
this is not the same as simply mapping the radar estimates
into the 2D image plane [30], because we use both sensors to
estimate the scene structure (if required, we can easily map
the radar estimates into the image, at the end our procedure).

We use a commodity mmWave radar system, which operates
in the unlicensed 60 GHz band, over a limited range (3.4 GHz).
Although compact and inexpensive, such devices have limited
spatial resolution. In principle, this can be improved by
standard methods, such as zero-padded fast Fourier trans-
form (FFT) interpolation. In practice, however, the additional
computational cost (in both CPU-cycles and memory) limits
on-chip implementation. Our method implicitly interpolates
the location estimates, in the spatial domain, thereby shifting
the computational burden to the initial (off-chip) calibration
procedure.

In order to estimate the spatial mapping, we use visual
measurements as training data for the system. We evaluate
three possible 2D geometric mappings, with increasing gener-
ality: similarity (rotation, scale, and translation), affine (linear
transformation and translation), and thin-plate spline. Through
a comparative analysis of these models, we determine that the
thin-plate spline yields the best results without over-fitting the
training data. Overall, this method not only achieves extrinsic
calibration by aligning the radar measurements with the vi-
sual measurements, but also accounts for intrinsic calibration,
effectively addressing any inherent biases introduced by the
radar device itself. To do that, a single-target system has been
developed, analogous to the setup of typical robotic grasping
benchmarks [39].

The paper is organized as follows. Section II gives a self-
contained summary of the necessary radar signal processing.
Sections III and IV describe the reduction of the 3D object
workspace to the 2D workbench surface, and the proposed
spatial transformations, respectively. Section V describes our
experimental evaluation, including the accuracy of the sys-
tem and the determination of the parameters. Finally, our
conclusions and suggestions for future research are stated in
section VI.

II. RADAR FUNDAMENTALS

This section reviews the recovery of geometric information
from the radar signal, based on reflections from the sur-
rounding objects. Specifically, a FMCW-based multiple-input
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multiple-output (MIMO) radar is used in this work, in which a
continuous chirp-like mmWave signal is employed to achieve
a wide bandwidth and thus calculate range and azimuth.

Briefly, two consecutive operations of spectral analysis are
required to obtain spatial information from radar data, as
described in [40]. If the received signals are laid out in an
complex array Q according to the MIMO antenna layout [41],
[42], then the range-azimuth intensity array F can be expressed
as:

F(r, θ) =
∣∣∣FFT[FFT (Q)

]∣∣∣. (1)

To accomplish this, we conducted a two-dimensional fast
Fourier transform (FFT) for the range (r) and azimuth (θ)
dimensions, with zero-padding used to extend the azimuthal
dimension from the 8 virtual antennas to 64 bins. From this
construction, the achievable range resolution ∆r in the far-
field region is limited by:

∆r ≥ c

2B
(2)

where c is the speed of light and B, the bandwidth. Numer-
ically, for B = 4 GHz, the resolution is around 4 cm. And
the the minimum angle separation ∆θ for two objects to be
detected in the angular FFT can be expressed as:

∆θ ≥ λ

Nv L cos θ
(3)

where Nv is the number of antennas and L the distance
between them.

Consider now the range and azimuth profiles as those
vectors passing through the intensity array peak, found in
[ri, θi] at each different measurement i:

fi(r) = F(ri, θ) (4)

fi(θ) = F(r, θi). (5)

The range and angular resolutions in these profiles may not be
sufficient for fine positioning tasks, e.g. robotic grasping. We
therefore apply bicubic spline interpolation to the F array, so
that the maxima can be estimated more accurately from the
interpolated version, F̂. Fig. 1 shows an example of a range-
azimuth intensity array acquired in the scene. The performance
of the interpolation method can now be examined. Both peaks
can be more accurately calculated by evaluating the curves
extracted from the interpolated array F̂, and its interpolated
profiles f̂i(r) and f̂i(θ), rather than from the raw array, as
compared in Fig. 2.

After the interpolation procedure, the target coordinates in
the frame i are defined as:

ri = argmax
r

f̂i(r) (6)

θi = argmax
θ

f̂i(θ). (7)

Having taken into account that the azimuth angle is referenced
to the y-axis, the locations of the maxima can be transformed
into Cartesian coordinates as

yi = ri

[
sin θi
cos θi

]
(8)

in order to facilitate comparison with the visual estimates, in
the next section.

III. GROUND PLANE VISUAL COORDINATES

Ground-truth target locations are obtained from an ordinary
camera, in conjunction with a set of AprilTag markers [2].
This system gives millimetre accuracy, subject to minimal
uncertainty from the feature detection process, owing to the
known structure of the marker patterns. The camera was
fully calibrated, using standard methods [43]. This device is
positioned above the workspace, both to avoid interference
with the radar signals and to provide a clear view of the targets.
In addition to the marker tops, five fixed markers were attached
to the workspace surface, in order to transfer the 3D visual
measurements to the 2D ground plane, as explained below.

The following procedure is used to project the 3D visual
marker positions, which are on the tops of the objects, into
the 2D workspace surface. Firstly, as in the radar case, it will
be assumed that the workspace marker points pi and target
points yi are appropriately centred, by subtraction of the mean
marker location p̄:

pi ← pi − p̄ (9)
xi ← xi − p̄. (10)

The objective now is to obtain an optimal estimate of the
workspace plane, and then to project all 3D target points xi

into this plane. Let M be the number of points taken all over
the surface. Then, the task can be approached by stacking the
M workspace points pi as the rows of an M × 3 matrix P,
and then performing the singular value decomposition (SVD):

P[M×3] = U[M×M ] S[M×3] V
⊤
[3×3] (11)

where V⊤ denotes the transpose, and the subscripts indicate
the dimensions of the corresponding matrices. The singular
values σi are in the upper part of the block matrix, as follows

S =

[
diag(σ1, σ2, σ3)

0

]
. (12)

The five ground-plane points in P will not be exactly co-
planar, in practice, owing to uncertainty in the visual estimates.
This can be addressed by setting σ3 = 0 in (12), thereby
defining a projection matrix SΠ. The orthogonal projection of
the noisy ground points onto the best-fitting plane Π is then
given by:

PΠ = USΠV
⊤ (13)

Fig. 1: Example of range-azimuth intensity array after spline
interpolation. The peak position indicates the location of a
metallic target.
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(b) Azimuth Profile

Fig. 2: Normalized (a) range r and (b) azimuth θ profiles,
extracted from the intensity array in Fig. 1. Raw profiles are
plotted in red, with circles representing the samples (which are
nonuniform in θ). Note the improved definition of the maxima,
after interpolation (blue).

where the exactly co-planar points are in the rows of the rank-
two matrix PΠ. If equation (13) is transposed, then V appears
as a rotation matrix, acting on column vectors:

P⊤
Π = VS⊤

Π U⊤ (14)

where S⊤
ΠU

⊤ has dimensions 3 × M . Note that if
det(V) = −1, then both U and V should be negated, to
ensure that V does not involve a reflection. Then, the stan-
dardized coordinates are defined as

P̂⊤
Π = S⊤

Π U⊤ (15)

where the third row (containing coordinates perpendicular to
the plane) is zero. Conversely, in order to standardize the
object points xj , in the rows of N × 3 matrix X, the inverse
of transformation V should be applied to the column-vector
points

X̂⊤ = V⊤X⊤ (16)

where V⊤ = V−1. Having performed these transformations,
the 2D projections of the N standardized object points, in the
columns of X̂⊤, onto the standardized optimal plane spanned
by P̂⊤

Π are simply[
x1, x2, . . . , xN

]
←

[
1 0 0
0 1 0

]
X̂⊤. (17)

The notation for these transformations is shown in Fig. 3, and
the procedure for the real dataset is illustrated in Fig. 4. As
can be observed, the final projections lie in the standardized
workspace plane z = 0, in which the targets are placed.

Fig. 3: Workspace and target configuration. The standardized
visual coordinates are [x̂1, x̂2, x̂3]

⊤ extracted from the camera,
with direction x̂3 perpendicular to the estimated plane. The
2D radar coordinates [y1, y2]

⊤ will be mapped to the visual
coordinates [x1, x2]

⊤, orthogonally projected into the plane
determined by p̂π .

Fig. 4: Complete set of target locations, acquired sequentially
from the visual marker system, as in Figure 3. The estimated
positions x̂ are shown, along with their orthogonal projec-
tions x onto the optimal estimate of the workspace plane.

IV. MAPPING METHODS

Once the radar and visual coordinates have been acquired
and pre-processed, as described in sections II and III, we wish
to perform a calibration of the radar device. This consists
of a 2D spatial mapping from the visual estimates xi to the
corresponding radar coordinates yi. This mapping is to be
estimated once, after which it can be used with or without
visual information (e.g. when the target is obscured). The
calibration task is treated as a fitting problem, in which a
function y = g(x) is to be estimated. In particular, note
that the accuracy of the AprilTag estimates is on the order of
millimetres [44], whereas the radar accuracy is on the order
of centimetres, as noted in Table I. Hence it is natural to treat
the visual data as the ground truth, which is used to predict
the uncertain radar data, during the calibration process. We
now develop three transformation models, and corresponding
estimates, in increasing order of generality. All methods can
be extended to 3D, although we are concerned with the 2D
case.

A. Linear models
In this section we develop two linear models of the spatial

mapping between visual and radar estimates. The simplest
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model is a 2D similarity transformation, comprising a rigid
motion consisting of a translation (t1, t2) and a rotation θ,
subject to an overall scale factor s (which also absorbs any
change of measurement units). The corresponding homoge-
neous matrix representation isx

′
1

x′
2

1

 =

s cos θ −s sin θ t1
s sin θ s cos θ t2

0 0 1

x1

x2

1

 . (18)

More generally, we consider the 2D affine model, comprising
a general linear transformation, and a translation. The corre-
sponding homogeneous matrix representation isx

′′
1

x′′
2

1

 =

a11 a12 t1
a21 a22 t2
0 0 1

x1

x2

1

 . (19)

Using matrix notation, the similarity (18) and affine (19)
models can be expressed more concisely by assigning them
GS and GA respectively as

x′ = GS x and x′′ = GA x (20)

with four and six parameters respectively. If there is no
shear or anisotropic scaling, then the similarity model may
be preferred; this is an empirical question, to be addressed in
section V.

The solutions for GA or GS will be over-determined as the
dataset will be composed of around 70 point correspondences
(see section V). An optimal estimate is obtained by minimizing
the sum of squared point differences given by:

E =

n∑
i=1

∥∥yi −Gxi

∥∥2. (21)

This corresponds to an isotropic Gaussian noise model for the
marker locations, with G being taken according to the desired
transformation model, e.g. GS or GA.

The constrained solution for GS is obtained by orthogonal
Procrustes analysis with isotropic scaling. Here, we explicitly
estimate the rotation matrix R, the translation vector t and the
scaling parameter s from (18). As stated in [45], the rotation
can be determined by applying SVD to the outer product of
the mean-centred points:

UDV⊤ =

n∑
i=1

xi y
⊤
i . (22)

where U is orthogonal, D is diagonal and V is also orthogo-
nal. The optimal rotation matrix is then constructed from the
product

R⋆ = V

[
1 0
0 d

]
U⊤ (23)

where d = ±1 is defined by det(VU⊤), in order to ensure
that the solution is not reflected. The optimal scaling parameter
is obtained from the scatter ratio of the mean-centred points

s⋆ =

(∑n
i=1 ∥yi∥2∑n
i=1 ∥xi∥2

)1/2

(24)

as shown in [46], and where the ∥ · ∥2 operator is the square
of the length of the vector. Finally, the optimal translation is
the mean offset, after rotation and scaling:

t⋆ =
1

n

n∑
i=1

(
yi − s⋆ R⋆ xi

)
. (25)

The estimates R⋆, s⋆ and t⋆ are finally substituted into (18),
to give the optimal similarity matrix GS .

The unconstrained solution for the affine model GA in (19)
is obtained by standard least squares methods, after vectorizing
the equation x′′ = GAx as follows:

x′′
11

x′′
12
...

x′′
n1

x′′
n2


=


x11 x12 1 0 0 0

0 0 0 x11 x12 1
...

...
...

...
...

...
xn1 xn2 1 0 0 0

0 0 0 xn1 xn2 1





a11
a12
t1
a21
a22
t2


. (26)

This becomes an approximation to the correspondingly vector-
ized radar measurements Y, in the presence of measurement
and other errors, which can be expressed in terms of the 2n×6
design matrix B and 6× 1 parameter vector a:

Y ≈ X′′ where X′′ = Ba (27)

is the vectorization of the transformed visual locations x′′
i , as

above. The least squares solution a⋆, which minimizes (21) is
obtained directly from the matrix pseudoinverse

a⋆ = B+ Y. (28)

This approach cannot, however, be used if there are additional
geometric constraints on the transformation.

B. Nonlinear model
It is also desirable to consider nonlinear models of the

spatial transformation, but these must be subject to practical
constraints. The thin-plate spline (TPS) model is arguably
the most natural nonlinear model for spatial data, without
making any assumptions about the sampling pattern. This can
be argued by physical analogy; if the basic affine mapping
is interpreted as a plane, relating input to output coordinates,
then the TPS allows a controlled deformation of the plane,
defined by minimal bending energy [47]. Indeed, the affine
mappings are a special case (zero deformation) of the TPS, as
represented in Fig. 5. Finally, the optimization problem for the
TPS has a closed-form solution, which avoids any ambiguities
in the procedure.

If the third possible mapping function is x′′′ = g(x), then
the following combination of data fidelity and regularization
energy is minimized, by standard methods [47]:

Ep = p

n∑
i=1

∥∥yi−g(x)
∥∥2+(

1−p
) ∫∫ ∥∥∇2g(x)

∥∥2 dx. (29)

Note the resemblance of the data term to (21), and also
note that the Laplacian term is zero for any linear model.
In fact, if p ≪ 1, then the previous estimate (28) for the
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Similarity Affinity TPS (p > 0)

Fig. 5: Spatial transformation models. The similarity trans-
formation GS can be considered a special case of the affine
transformation GA. The latter is, in turn, a special case of
the thin-plate spline g with regularization parameter p = 0
(maximal smoothness).

affine model GA is recovered. This is because the effective
regularization weight (1− p)/p becomes dominant as p→ 0,
thereby prohibiting any model for which the Laplacian term
is nonzero.

We now have three properly nested classes of transforma-
tion: similarity, affinity, and thin-plate spline, as depicted in
Fig. 5. This structure will simplify the experimental evaluation,
as described below.

V. EVALUATION

This section presents an evaluation of the proposed system,
starting with a description of the hardware and experimental
design, followed by a comparison of the proposed spatial
transformation models.

A. Experimental setup

The experimental setup has been arranged to resemble
the workspace of a typical robot arm. As explained in the
introduction, this work pursues the development of a precise
detection and positioning system for metallic targets, e.g. for
grasping and manipulation.

The tests were carried out on a horizontal surface of
dimensions 40 cm × 60 cm. The target is a hollow aluminium
cylinder of 5 cm diameter and 10 cm height (material thick-
ness 2 mm). This target object was chosen for the following
four reasons. Firstly, it has a well-defined geometric centroid,
which is constant in the vertical direction, making it suitable
for our 2D localization experiments. Secondly, the object has
a well-defined radar phase-centre which coincides with the
geometric centroid. Thirdly, the axial symmetry of the object
means that the location signal (which is of primary interest) is
not affected by the axial orientation of the object. Finally, the
metal cylinder resembles a typical component or container, to
be found in an industrial setting.

An AprilTag marker on top is used to determine the visual
position, as described in section III. Although visual marker
systems are well established in the robotics literature (see
e.g. [2]), we conducted an experimental assessment of the
accuracy of the visual system for our particular setup, as
the practical performance depends on the physical size of
the markers, the camera resolution, and the overall viewing
distance. Specifically, we prepared marker configurations with
known pairwise separations, which we compared to the corre-
sponding vision-based length estimates. The observed variance
is consistent with a mean location error of approximately
1 mm, for each marker, according to standard uncertainty
propagation methods [48].

Fig. 6: Experimental setup. This image shows all the compo-
nents of the proposed system, including the mmWave radar,
the RGB camera, the metallic target, and the workstation.

The calibration dataset comprises 106 measurements, with
the target placed in different positions across the entire
workspace. A rectangular grid was used, in order to ensure
an even distribution of data across the workspace (but note
that any perturbation will affect both the visual and radar
signals). In fact, the method can be applied for unevenly
distributed markers, but we prefer to avoid any arbitrary
asymmetries in our experimental setup. The surface and object
marker positions are estimated from RGB images, taken by an
overhead camera. Meanwhile, the mmWave radar is positioned
at the workspace level, looking across the scene, parallel to the
surface. This configuration tends to optimize the workspace
visibility, with respect to the two devices. Fig. 6 shows the
complete setup.

The radar was manufactured by NodeNs Medical Ltd [49]
and is based on the Texas Instruments IWR6843 chipset. It is
a versatile FMCW radar, as shown in other works like [50],
which operates at the (unlicensed) 60 GHz band. Its configura-
tion is shown in Table I. The selection and design of the 2×4
antenna configuration was based on the proposed system’s
requirement for in-plane detection, and because it makes a
suitable tradeoff between cost/complexity and performance.
The principles of MIMO radar and spatial beamforming are
used for object localization (the current work involves a single
target but this could be extended to multiple targets), while
the technique presented in this study further enhances spatial
resolution on the existing hardware [42].

It is important to note that the presence of low-density
materials as potential blockages in our application could give
rise to diffraction and delay effects. Nevertheless, these effects
can be safely neglected in our application due to the inherent
properties of the materials, which result in minimal shift of
radar array peaks, typically no more than a few millimetres.
However, if deemed necessary, a new calibration can be
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TABLE I: Configuration of mmWave radar sensor.

Number of TX antennas 2

Number of RX antennas 4

Initial Frequency 60 GHz

Bandwidth 3.4 GHz

Range Resolution 4.4 cm

Angular Field of View 120◦

performed for convenience, which would account for any new
adverse effects that may arise. The RF circuitry which is used
for chirp synthesis may exhibit non-linearities which could
affect the performance of the radar. Hence, actions have been
taking to mitigate against these, including a closed-loop phase-
locked loop (PLL) implemented on-chip, and appropriate
design of the chirp profiles. For the latter, an idle time period
is incorporated between successive chirps, to allow time for
circuit oscillations to dampen, and an ADC ramp-up time is
allowed, so that the chirp begins in the linear region of circuit
operation. Further details are provided in the TI IWR6843
datasheet [51].

B. Regularization parameter analysis
As explained in Section IV, the thin-plate spline (TPS)

optimization includes a regularization weight 1 − p, which
controls the smoothness of the estimate (29). An appropriate
value for this parameter can be obtained by cross-validation,
based on the median squared error, which is chosen for
robustness. We evaluate 30 random training/test splits, for
p ∈ [0, 1], with resolution ∆p = 0.001. A plot of the median
squared error suggests a quite abrupt transition into overfitting,
as the regularization weight 1 − p approaches zero. We
propose the following piecewise rational/linear model for the
residuals, with break-point at p = q, and slope δ for the linear
component:

F (p) =

{
α+ β/(γ + p) if p < q

F (q) + δ(p− q) otherwise.
(30)

A good fit to the observations is obtained by nonlinear
minimization over q and [α, β, γ, δ], as shown in Fig. 7 (red
curve). The optimal p value corresponds to the estimated
break-point q = 0.934, as indicated. Note that setting p = 0
corresponds to the affine model (19), while setting p = 1
corresponds to an interpolating spline, which overfits the data.

C. Results
We now compare the proposed mapping methods, based on

the Euclidean distance between estimates and reference values.
In order to avoid overfitting, we divide the whole dataset into
training and test groups with a 70%/30% split, employing a
random sampling process (without replacement).

The general pattern of results is indicated in the histograms
of Fig. 8, which show the residual errors for one random
training/test division, for each mapping type. As can be seen,

TABLE II: Root mean square spatial error (cm), computed over
1000 train/test splits.

Similarity Affinity TPS

Median Mean Median Mean Median Mean

Training 2.75 2.70 1.01 1.06 0.45 0.50

Test 2.83 2.78 1.06 1.11 0.62 0.70

the affinity outperforms the similarity, which suggests that
shear and anisotropic scaling is required. In addition, the TPS
model outperforms both of the other methods (given an appro-
priate estimate of the regularization parameter), meaning that
the spline has modelled systematic nonlinear errors, without
overfitting.

Table II shows the estimation errors, having performed 1000
random training/test splits. The average errors are approxi-
mately 1 cm for the affine transformation and around 7 mm
for the TPS process. Finally, the performance on a typical
train/test trial is visualized in Fig. 9, which shows the TPS
performance. Here, the connecting lines correspond to the
estimation errors, for comparison with Table II.

Finally, the efficiency of the proposed algorithms will be
considered. In the offline stage, the TPS model (discussed in
Section IV-B) has the highest computational complexity, being
O(n3), where n denotes the total number of points in the train-
ing stage. However, with n = 70 in the reported experiments,
the average computation time in this process is less than 2 ms.
If very large numbers of calibration points are required, then
fast TPS approximations are available [52]. In all cases, the
mapping need only be estimated once, and does not contribute
to the run-time cost. The most demanding run-time task is the
spline interpolation, which is applied to the radar intensity
array. This can be implemented by separable convolution with
a fixed kernel, resulting in complexity O(KrKθ) for a radar
array of size Kr×Kθ. The convolution could be implemented
on-chip, although we used a software implementation in the
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Fig. 7: Cross-validation of the thin-plate spline regularization
weight 1− p. The blue dots represent the medians of squared
spatial errors, over 30 random training/test data divisions,
for each trial p-value. The optimal p-value (dashed line) is
estimated as the break-point of the fitted piecewise model (red
line) given by (30).
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Fig. 8: Histograms depicting the distances between reference values and estimates in all 1000 random training/test splits, for
all proposed transformations: (a) Similarity transformation, (b) Affine Transformation, and (c) TPS.
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Fig. 9: Example system performance on one training/test data
split. The filled circles represent the radar data, while the
empty circles correspond to the estimates obtained from the
TPS model. Colours indicate the training (blue circles) and
test (orange circles) data, on this trial. The connecting lines
represent the estimation errors for each measurement.

present experiments.

VI. CONCLUSION
This work has presented an accurate detection and localiza-

tion system for metallic objects, based on a combination of
mmWave radar and visual sensors. First, the radar signal was
interpolated, to an appropriate resolution for typical robotic
manipulation tasks. Next, a system of visual markers was
used, in order to obtain ground truth position data, across the
entire workspace. Finally, the relationship between the radar
and ground truth visual estimates was modelled, using three
types of spatial transformation. It has been shown that the
TPS model is substantially more accurate than the default
linear models. The complete system achieves sub-centimetre
accuracy in the radar estimates. This is sufficient for basic
robotic grasping tasks [39], which can now be performed in
the absence of visual information, such as when the target is
obscured by packaging.

The introduction of a robot arm and gripper would raise new
questions, in a practical system. Firstly, it may be necessary
to account for radar interference, if object localization is to
be performed while (as opposed to before) the arm moves

in the scene. Indeed, this analysis could be combined with
the extension of the present methods to a 3D workspace, in
which the robot is used to position the calibration targets.
Furthermore, it may be useful to estimate the shape and pose
of the target objects, as well as their locations, from the radar
data. Finally, the proposed system could potentially be used to
detect multiple and/or moving objects. These extensions will
be explored in future work.
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Time Approach for 3D Radar-to-Camera Extrinsic Calibration,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 13 164–13 170.

[34] E. Wise, Q. Cheng, and J. Kelly, “Spatiotemporal Calibration of 3D
mm-Wavelength Radar-Camera Pairs,” IEEE Transactions on Robotics,
vol. 39, no. 6, pp. 4552–4566, 2023.

[35] Q. Cheng, E. Wise, and J. Kelly, “Extrinsic Calibration of 2D
Millimetre-Wavelength Radar Pairs Using Ego-Velocity Estimates,” in

2023 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), 2023, pp. 559–565.

[36] K. Harlow, H. Jang, T. D. Barfoot, A. Kim, and C. Heckman, “A New
Wave in Robotics: Survey on Recent mmWave Radar Applications in
Robotics,” 2023, arXiv:2305.01135.
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