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Abstract

Objectives: People with Alzheimer's Disease (AD) experience changes in their level

and content of consciousness, but there is little research on biomarkers of con-

sciousness in pre‐clinical AD and Mild Cognitive Impairment (MCI). This study

investigated whether levels of consciousness are decreased in people with MCI.

Methods: A multi‐site site magnetoencephalography (MEG) dataset, BIOFIND,

comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal

(and drowsiness) was assessed by computing the theta‐alpha ratio (TAR). The

Lempel‐Ziv algorithm (LZ) was used to quantify the information content of brain

activity, with higher LZ values indicating greater complexity and potentially a higher

level of consciousness.

Results: LZ was lower in the MCI group versus controls, indicating a reduced level

of consciousness in MCI. TAR was higher in the MCI group versus controls, indi-

cating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also

found to be correlated with mini‐mental state examination (MMSE) scores, sug-

gesting an association between cognitive impairment and level of consciousness in

people with MCI.

Conclusions: A decline in consciousness and arousal can be seen in MCI. As

cognitive impairment worsens, measured by MMSE scores, levels of consciousness

and arousal decrease. These findings highlight how monitoring consciousness using

biomarkers could help understand and manage impairments found at the preclinical

stages of AD. Further research is needed to explore markers of consciousness be-

tween people who progress from MCI to dementia and those who do not, and in

people with moderate and severe AD, to promote person‐centred care.
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Key points

� Consciousness and Arousal in MCI: This study found that patients with Mild Cognitive

Impairment (MCI) show reduced neural complexity and arousal levels, as measured by
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LZsum and theta‐alpha ratio (TAR), respectively. These reductions correlate with the

severity of cognitive impairment.

� Correlation with Cognitive Tests: There is a significant correlation between the LZsum and

TAR biomarkers and the Mini‐Mental State Examination (MMSE) scores, both overall and

within the MCI group, indicating that these neural markers can reflect the extent of

cognitive decline.

� Potential Early Indicators: The biomarkers used in the study not only showed a significant

difference between MCI patients from controls, but are also sensitive to the degree of

cognitive impairment, supporting their use in monitoring the early stages of dementia and

suggesting that disruptions in consciousness may begin in preclinical stages.

� Implications for Management and Support: The findings underscore the importance of

understanding subtle changes in arousal and awareness in MCI for patient‐cantered care.

Such insights could help develop interventions to improve the daily functioning and quality

of life of patients with MCI and Alzheimer's disease (AD), particularly as these changes in

consciousness can affect decision‐making capacity, caregiver stress, and overall relationship
quality.

1 | INTRODUCTION

Alzheimer’s Disease (AD) is the most prevalent form of dementia

worldwide and affects over 55 million individuals.1,2 It is widely

acknowledged that neuropathological changes in the brain due to AD

begin approximately 20 years before any clinical symptoms mani-

fest.3 Therefore, gaining an understanding of the cognitive,

phenomenological, and underlying neuropathological changes

occurring in the prodromal stages of AD is of great importance for

predicting progression to dementia and enabling early management.

Mild Cognitive Impairment (MCI) presents an opportunity for

studying these pre‐Alzheimer's changes.
MCI is a syndrome characterised by objective cognitive decline

beyond what is expected for an individual's age and educational level,

without significant impairment of instrumental activities of daily

living (ADLs).4 MCI is common, with estimates suggesting a preva-

lence of 6.7% in 65–69 year olds which increases to 25% for people

aged 80–84.5 It is important to note that MCI is a heterogenous

clinical syndrome with multiple potential underlying causes, rather

than always associated with neurodegenerative disease. Often the

aetiology is multifactorial, with comorbid physical and psychiatric

illness causing or contributing to cognitive impairment6 Core clinical

criteria for MCI suggested by the National Institute on Ageing and

the Alzheimer's Association workgroup, and used in the current study

are: (1) concern regarding change in cognition; (2) objective impair-

ment in one or more cognitive domains; (3) preservation of inde-

pendence in functional abilities; (4) criteria for dementia not met (i.e.

changes sufficiently mild that there is no evidence of significant

impairment in functioning).7 As stated in these guidelines, meeting

the core criteria for MCI involves ruling out other systemic or brain

disease that could account for cognitive decline, with the aim to in-

crease the likelihood that the underlying disease is a neurodegen-

erative disorder with characteristics consistent with AD.7 Subtypes

of MCI have been described according to whether multiple or single

domains of cognition are impaired, and whether episodic memory

loss is a predominant symptom. Amnestic MCI is characterised by

impaired episodic memory and is more likely to progress to AD de-

mentia than other subtypes of MCI8 and has therefore been

considered a precursor of AD dementia.9 The use of biomarkers can

provide further evidence for the underlying aetiology of MCI and

assist in determining the likelihood of progression to dementia. Many

biomarkers directly reflect AD pathology (e.g. phosphorylated tau or

Aβ1‐42 in CSF or amyloid PET), whilst others provide evidence of

neuronal injury which may be indirect evidence of AD or other

neurodegenerative conditions. However, these biomarkers may not

be available in routine clinical practice and the accuracy of clinically

identifying underlying aetiology of MCI remains low.6 Due to the

heterogeneity of underlying aetiology, the trajectory of MCI is vari-

able. Annual rates of progression to dementia are estimated as 8%–

15%, with factors including amnestic subtype, focal hippocampal at-

rophy and abnormal brain Aβ1‐42 on PET or CSF analysis predicting

more rapid progression to AD.6 However in longitudinal studies over

1–5 years, many people with MCI (around 50%) remain stable or may

even experience an improvement in cognitive functions.6,10 This

highlights the importance of longitudinal monitoring and repeated

measurement that takes into account the potential fluctuation in

cognition that may occur in people with and without MCI. As well as

helping to predict those who will progress to developing AD or other

neurodegenerative conditions, biomarkers of brain function may also

help explain the subjective and objective neuropsychological symp-

toms seen in MCI.6

Large datasets of neuroimaging and neurophysiological bio-

markers in people with MCI and prodromal dementia are therefore

extremely valuable in identifying brain changes that occur in these

populations. One such dataset is BioFIND, a multi‐site magnetoen-

cephalography (MEG) resting state dataset including people with

MCI and healthy older controls.11 This MEG dataset provides an

opportunity to examine neurophysiological differences in people with
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MCI, and specifically to examine markers of arousal and

consciousness.

Electroencephalography (EEG) has long served as a neurophysi-

ological marker in the study of AD, for diagnosis and progression

tracking,12–14 and to characterise changes in neurophysiological

function.15–17 MEG provides some advantages over EEG due to the

higher number of channels and better spatial resolution.18 Due to

their excellent temporal resolution, both MEG and EEG are well

suited to studying dynamic brain changes. M/EEG signatures in AD

patients include a shift in their power spectrum, transitioning from

higher‐frequency oscillations (such as alpha, beta, and gamma) to

lower‐frequency oscillations (delta and theta).13,14,19 The use of ra-

tios of different frequencies in M/EEG analysis is particularly ad-

vantageous.12 For example, lower alpha‐theta ratio, indicating

decreased alpha activity and increased theta activity, has been re-

ported in early to moderate stages of AD12,20–22 and has been shown

to correctly discriminate AD patients from normal controls.23 These

M/EEG features have also been seen in MCI patients and their po-

tential to predict AD has been explored.24–26 A relatively open

question is the physiological mechanism of this spectral shift, and its

cognitive implications. To obtain a more comprehensive under-

standing of the M/EEG signal, advanced analytical techniques have

been developed, including those based on information theory, which

capture the diversity of the signal.27 Among these techniques is the

Lempel Ziv (LZ) algorithm, a non‐linear measure that quantifies the

complexity in time series data, such as M/EEG28 and has been used in

many clinical conditions such as depression,29 epilepsy,30,31 and to

study various aspects of anaesthesia.32,33 In this context, complexity,

particularly when quantified using LZ, is understood as a measure of

the entropy rate within neural signals, characterising their degree of

randomness, unpredictability and the informational richness of their

patterned structure. Previous studies consistently demonstrate that

individuals with AD exhibit significantly lower LZ complexity values

compared to healthy controls, indicating less complex electrophysi-

ological behaviour. This reduction in complexity has also been re-

ported in people with MCI,34,35 and has been attributed to

neurodegeneration and the subsequent loss of connectivity in local

neural networks.36–41

Whilst this evidence for reduced dynamical complexity inMCI and

AD has also been demonstrated using other analytic approaches such

as sample entropy and chaos analysis,35,37,39,40,42,43 inferring a

decreased capability to process information, what has not yet

adequately been explored in the literature is how reduced dynamical

complexity relates to the clinical features or phenomenology of MCI

and AD.More specifically, markers of dynamical complexity have been

used as objectivemeasures of consciousness,44–46 and thesemeasures

provide an opportunity to examine changes in consciousness inADand

MCI, andhow thesemay relate to cognitive functioning. Consciousness

research has shown that LZ reflects changes in levels of consciousness

in patients with disorders of consciousness versus healthy controls,47

normal wakefulness versus different sleep stages,48 and in altered

states of consciousness,49 among other conditions.27The correlation

between dynamical complexity and consciousness is based on theories

of consciousness, including integrated information theory (IIT),50

which provide a mathematical model for consciousness. Whilst there

remains significant debate and ongoing research into the neural cor-

relates of consciousness and the validity of theories of consciousness

including IIT,51 measures of complexity, including LZ, have been

demonstrated to have clinical validity in differentiating between states

of consciousness47 and could be used to investigate changes in con-

sciousness in MCI and dementia.52

Central features of AD include changes in the level and content

of consciousness, and these are apparent from the earliest stages of

the disease.53 These changes can be conceptualised as a deteriora-

tion in different levels and facets of awareness and arousal with the

progression of AD. Behavioural evidence suggests components of

higher awareness, including anosognosia, metacognition and self‐
awareness become impaired in mild AD, and changes in arousal

and sleep disturbance are also common and distressing symptoms.

Awareness of the self and the environment become increasingly

impaired with disease progression, with evidence of impaired ‘mid‐
level awareness’ for example, local metacognition and noetic

awareness also becoming impaired in moderate‐severe AD. However,
the pattern of impairment is heterogeneous and some aspects of

awareness, including lower‐level sensory awareness and higher levels
of awareness may persist in some individuals into the advanced

stages of AD.53,54 There is evidence that anosognosia, or a lack of

awareness of one's cognitive deficits, is a seen in up to 80% of people

with AD55 and has been described in MCI. The manifestation of

anosognosia in MCI may be partial or fluctuating, complicating the

diagnosis and management of the condition and increasing caregiver

burden.56 Recent studies have identified functional correlates of

anosognosia, suggesting that alterations in brain regions involved in

self‐reflection and awareness might underlie this lack of insight in

MCI and AD.57 These changes in level and content of consciousness

associated with neurodegenerative changes and disruption of func-

tional connectivity become increasingly apparent with progression of

AD, and may differ according to patterns of neurodegeneration seen

in different subtypes of dementia.53,58

Biomarkers of arousal and awareness are essential to monitor

how consciousness may change with progression of cognitive

impairment, particularly as dementia progresses and patients become

unable to report their experiences. However, it remains unclear how

early changes in neurophysiological signatures of consciousness

occur and whether they are already apparent and correlate with

cognitive impairment in people with MCI. This study therefore aims

to assess LZ complexity and arousal in MCI and how these markers

relate to cognitive impairment. We hypothesise that lower LZ

complexity will be associated with MCI compared to healthy in-

dividuals and will decrease with increasing cognitive impairment.

Additionally, we expect a concurrent decline in arousal levels with

MCI, measured by the theta‐alpha ratio (TAR), and that both TAR and

LZ will relate to cognitive deterioration associated with MCI. By

investigating the interplay between neural complexity, arousal, and
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cognition in MCI, this study aims to contribute to a better under-

standing of the neurophysiological underpinnings of consciousness in

cognitive decline and prodromal dementia.

2 | METHODS

2.1 | Participants

Participants were recruited to a study of biomarkers in dementia, the

BioFIND study.11 Prior to their inclusion, all participants provided

consent for their data to be collected and shared in an anonymized

format for research purposes. The MEG and MRI data are formatted

according to international BIDS standards, and freely available from

https://biofind‐archive.mrc‐cbu.cam.ac.uk/
The cohort consisted of a total of 166 participants, comprising of

83 individuals diagnosed with MCI and 83 control participants. The

data collection took place at two distinct sites: (1) the MRC Cogni-

tion & Brain Sciences Unit (CBU) located at the University of Cam-

bridge, and (2) the Laboratory of Cognitive and Computational

Neuroscience (UCM‐UPM) situated at the Centre for Biomedical

Technology (CTB) in Madrid. The 41 MCI patients scanned at Cam-

bridge were diagnosed and recruited from specialised memory clinics

affiliated with the Cambridge University Hospitals NHS Trust.

Additionally, 42 control participants were selected from the

population‐based CamCAN cohort of healthy individuals residing

within the same geographical region. The selection of controls was

based on similar age and sex distribution. The study was approved by

local Ethics Committees and further information about the CamCAN

cohort can be found at www.cam‐can.org.
The Madrid cohort comprised of 42 MCI patients and 41 con-

trols, who were recruited from the Neurology and Geriatric De-

partments of the University Hospital San Carlos. Diagnoses of MCI

were made by clinical services according to diagnostic criteria

including (1) objective performance of cognitive impairment (2) lack

of functional impairment (3) exclusion of other pathologies that may

explain cognitive impairment (4) neuroimaging or biomarker evi-

dence in keeping with MCI/AD pathology (e.g., MTL atrophy). Of

note, the clinical diagnoses of MCI were made according to the Na-

tional Institute on Ageing–Alzheimer Association criteria,7 with no

details regarding subtypes of MCI. Further details of the BioFIND

cohort can be found in the initial publications.11

2.2 | MEG data acquisition

The MEG recordings were obtained using an Elekta Neuromag Vec-

torview 306 MEG system (Helsinki, FI) within magnetically shielded

rooms. The recordings were conducted at a sample rate of 1 kHz. The

MEG system consisted of two orthogonal planar gradiometers and one

magnetometer positioned at each of the 102 locations encircling the

head.

For most participants, bipolar electrodes were utilised to capture

the electrooculograms (EOG), which record vertical and/or horizontal

eyemovements (although suchmovements are less frequentwhen the

eyes are closed). These corresponded to the EEG channels EEG061

(HEOG), EEG062 (VEOG), and EEG063 (ECG).

To monitor the position of the head throughout the scan, head

position indicator (HPI) coils were affixed to the scalp and detected

by the MEG machine. The HPI coils were energised at frequencies

above 150 Hz in CTB and above 300 Hz in CBU. Prior to the scan, a

Fastrak digitiser from Polhemus Inc. (Colchester, VA, USA) was used

to record the positions of the HPI coils, as well as three anatomical

fiducials for the Nasion, Left Pre‐Auricular point (LPA), and Right

Pre‐Auricular point (RPA).
During the MEG data collection, participants were instructed to

close their eyes and were given the directive to refrain from focusing

on any specific thoughts while ensuring they did not fall asleep. The

duration of these recordings varied between 2 and 13.35 min.

Resting state data was extracted from longer raw files that were

originally recorded while participants were engaged in different

tasks.

2.3 | MEG Pre‐processing

MEG data were initially de‐noised using manufacturer‐produced
software, MaxFilter 2.2.12 (Elekta Neuromag). This involved the

following steps: (i) fitting a sphere to the digitised head points,

excluding those on the nose, and using the centre of this sphere along

with the sensor positions to establish a spherical harmonic basis set for

Signal Space Separation (SSS). This was done to eliminate environ-

mental noise using the default number of basis functions. (ii) Head

position was calculated every 1 s, although no motion correction was

applied. (iii) Bad channels were interpolated. For a more comprehen-

sive explanation of the pre‐processing pipeline refer to Vaghari et al.,
2022.11

Following conversion to BIDS format, Matlab, SPM and

EEGLAB59 were used to further pre‐process the data, which were

downsampled to 250 Hz, high pass filtered to remove data below

0.5 Hz, and notch filtered to reduce line noise at 50 Hz. Then the data

were split into 4 s epochs in preparation for the LZ and TAR measure

calculations. Finally, an in‐house automated algorithm was used to

remove any epochs that showed significant muscle artefacts.

2.4 | Measures and statistical analyses

2.4.1 | LEMPEL ZIV

The primary analytical tool used in this study is the Lempel‐Ziv
complexity algorithm (LZ), which is employed to estimate the di-

versity of patterns exhibited by a given signal. The LZ method was

initially introducedby Lempel andZiv to analyse the statistics of binary

sequences and later served as the foundation for the well‐known ‘zip’
compression algorithm.60 LZ can be understood to associate signal

complexity with the richness of content, A signal is deemed complex if

it cannot be succinctly represented or compressed.61 In this study we
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adhere to the original procedure commonly known as LZ76, following

the simplified algorithm described by Kaspar and Schuster.62 LZ was

evaluated using a temporal compression within a channel, averaged

across channels (LZsum).48 The LZ calculationswere performed across

25 randomly selected gradiometer channels (out of all 204 gradiom-

eter channels) for each epoch.

2.4.2 | Theta‐alpha ratio

Spectral potentials of the alpha and theta bands were computed

separately for all gradiometer channels. Subsequently, the TAR for

these spectral potentials was calculated. We took theta power in the

3–5 Hz range, alpha power in the 8–12 Hz range, and calculated the

ratio between these two frequency bands as the mean of all MEG

gradiometer sensors per epoch. Epochs where alpha power was

reduced, and theta power was increased correspond to drowsier

segments. The TAR data, but not the LZsum data, exhibited non‐
normal distribution, therefore a Wilcoxon Rank Sum test was also

performed for the group comparisons of the TAR data. Linear re-

gressions were performed to identify how the TAR and LZSum data

changed with cognitive impairment (MMSE score), firstly across all

data and then only in the MCI group.

3 | RESULTS

3.1 | Demographics

A total of 166 participants were enroled in this study, with 83 in-

dividuals diagnosed with MCI and 83 age‐matched healthy controls.

Among the participants, 93 were male (56%) and 73 were fe-

male (44%).

The mean age of both the MCI participants and healthy controls

was 70.83 years, with an age range of 54–83 years. The MCI par-

ticipants had a mean MMSE score of 26.07, ranging from 17 to 30.

The healthy participants had a higher mean MMSE score of 28.88,

ranging from 25 to 30 (see Table 1).

3.2 | Differences in complexity and level of arousal
between controls and MCI patients

The control group exhibited a significantly higher mean LZsum value

compared to the MCI group (0.590 vs. 0.581, t = 2.257, df = 161.71,

p‐value = 0.025). Similarly, the mean TAR was significantly lower in

the control group compared to the MCI group (1.041 vs. 1.372,

W = 2728, p = 0.021).

The main regression results analysing all data are summarised in

Table 2. Both LZsum and TAR exhibited significant differences be-

tween the groups, which remained significant after controlling for age,

sex and site variables. Importantly,when theTARscorewas includedas

a co‐variate in the LZsum regression, the group difference in LZsum

remained unchanged and significant (β = −0.009, p = 0.02). Therefore,

the significant relationship between LZsum and group was not

explained by changes in arousal alone. This is further demonstrated by

a non‐significant regression model for TAR and LZsum including all

participants (F(1,164)=0.072, r=0.021, p=0.789) and in only theMCI

patients (F(1,81) = 1.107, r = 0.116, p = 0.296).

3.3 | Complexity and arousal measurements
correlate with cognitive impairment across all
participants

Across all participants, linear regressions were used to test if MMSE

significantly predicted LZsum and TAR. For LZsum, the overall

regression was statistically significant (R2 = 0.057, F(1,162) = 9.864,

p = 0.002), with MMSE significantly predicting LZsum (β = 0.002,

p = 0.002). For TAR, the overall regression was statistically significant

(R2 = 0.089, F (1,162) = 15.85, p = <0.001) with MMSE significantly

predicting TAR (β= −0.104, p=0.0001) (see Figure 1 andTable 2). This

indicates that as MMSE score decreased (indicating cognitive impair-

ment), LZsum also decreased (indicating reduced conscious level), and

TAR increased (indicating decreasing level of arousal).

3.4 | Association with dementia severity in MCI
participants

Figure 2 shows that in the regression analyses focusing only on MCI

participants, overall regression was statistically significant for LZsum

(R2 = 0.104, F(1,79) = 9.2, p = 0.003), with MMSE significantly pre-

dicting LZsum (β = 0.002, p = 0.003). For TAR, the overall regression

was also statistically significant (R2 = 0.079, F (1,79) = 6.735,

p = 0.0113) with MMSE significantly predicting TAR (β = −0.102,

TAB L E 1 Study demographics.

Control Patient

Age 70.83 (54–83) 70.83 (54–83)

Gender 47 M, 36 F 46 M, 37 F

MMSE 28.88 (25–30) 26.07 (17–30)

SITE CTB N = 41 N = 42

SITE CBU N = 42 N = 41

TAB L E 2 Regression analyses of LZsum and TAR across all
participants.

Group (þage)

coefficient

Group (þsite)

coefficient

MMSE

coefficient

LZsum −0.008* −0.009* 0.002**

TAR 0.331* 0.331* −0.104***

p values: <0.001 ‘***’; <0.01 ‘**’ <0.05 ‘*’.
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p = 0.0113).Overall, as general cognitive function decreased in peo-

ple with MCI (as measured by MMSE), markers of complexity

decreased suggesting reduced capacity for consciousness, and simi-

larly markers of arousal decreased, demonstrating reduced arousal

with severity of cognitive impairment.

4 | DISCUSSION

In the present MEG study, LZ complexity, a biomarker of con-

sciousness, and TAR, a measure of arousal, were investigated in

people with MCI compared with matched controls and examined

F I GUR E 1 Regression of mini‐mental state examination score (lower scores = more cognitive impairment, max score 30) with theta‐alpha
ratio and LZsum measures.

F I GUR E 2 Demonstrates the linear correlations among the theta‐alpha ratio, lempel ziv sum, and severity of mild cognitive impairment as
measured by the MMSE. (A) The TAR exhibits a significant negative correlation with MMSE scores. (B) LZsum displays a positive correlation

with cognitive function, demonstrating lower levels of complexity with lower MMSE scores. MMSE, mini‐mental state examination.

6 of 10 - ESTARELLAS ET AL.
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against severity of cognitive impairment. We found that conscious-

ness, as measured by the neural complexity measure LZsum, was

reduced in MCI patients, and in line with this, arousal as measured by

the TAR, was also reduced in MCI patients versus controls. Addi-

tionally, cognitive impairment, as measured by the MMSE, was found

to correlate with both LZsum and TAR, both overall, and within MCI

patients alone.

These findings are in line with, and significantly extend, the hy-

pothesis that even in the early stages of cognitive decline, such as

MCI, there can be disruptions to consciousness. There is increasing

evidence that changes in arousal and awareness can occur early in

the course of dementia and may be evident in MCI.52,53,63,64 For

instance, several studies have demonstrated that people with MCI

have reduced awareness of their memory deficits and may under-

estimate or overestimate their cognitive difficulties.65 Similarly, there

is evidence for changes in arousal and wakefulness in MCI, with

around 60% of MCI patients subjectively reporting sleep disturbance,

which is related to the extent of cognitive impairment.66 Behavioural

measures of insight and awareness have also generally been found to

correlate with MMSE in MCI 64(p2). Here we extend this overall pic-

ture of a relationship between severity of cognitive impairment and

subjective and behavioural changes in arousal and awareness in MCI,

by adding the neural domain. Specifically, we show that LZsum and

TAR markers of consciousness and arousal significantly correlate

with MMSE. The demonstration that Lzsum and TAR markers can not

only differentiate people with MCI from age‐matched controls but

are sensitive to the extent of cognitive decline supports the use of

these metrics to investigate and monitor consciousness in MCI and

AD, and provides further evidence that disruptions to consciousness

can start in the preclinical stages of dementia. In early AD, impaired

awareness of deficits is associated with a range of negative outcomes

including impaired decision‐making capacity, psychiatric distress,

heightened caregiver stress, and diminished perceived relationship

quality,67,68 and this may also extend to people with MCI. Therefore,

an understanding of subtle changes in arousal and awareness in MCI

is important for ensuring person‐centred management and support.

Although the present study does not have data on individual pat-

terns of neurodegeneration or amyloid pathology in the MCI patients,

previous studies have demonstrated that individuals with amnestic

MCI and evidence of amyloid pathology demonstrate greater impair-

ments of awareness of memory deficits, suggesting deficits in aware-

nessmay bemore common inMCI due to underlying AD.69 In early AD,

impaired awareness of deficits is associated with neurodegeneration

anddisruptionof neural networks and functional connectivity between

regions, including the inferior frontal gyrus, anterior cingulate cortex,

and medial temporal lobe.70 This may also be the case in MCI,64

reflecting neurodegenerative changes in prodromal or preclinical AD.

The finding of reduced LZsumvalues inMCI patients in our study aligns

with previous research indicating a disruption of global brain network

connectivity and reduced complexity in the brain activity of individuals

with AD and MCI.35,71,72

It is important to acknowledge some limitations of this study.

One limitation is the potential effect of site differences, as

participants were recruited from distinct locations. Site differences

could introduce variability in data collection and analysis. Variations

in imaging techniques, equipment, and procedural protocols across

different recruitment sites may influence the LZ and MMSE mea-

sures. Additionally, age is an important consideration in dementia

research. Advanced age is a known risk factor for MCI and AD, and

age‐related changes in brain structure and function may confound

the results. Future studies should carefully control for age and

explore potential interactions between age, LZ complexity, and

consciousness in MCI and AD populations. However, of note, ana-

lyses here revealed the main results remained significant when site

and age were included as covariates.

There are also limitations of the BioFIND dataset in investigating

consciousness, as there are no specific behavioural or subjective

measures of awareness or arousal to directly correlate with the MEG

biomarkers. Whilst LZsum and TAR are recognised as reliable

markers of consciousness and arousal in the literature, establishing a

clear connection between changes in these metrics and the subjec-

tive experience of people with MCI remains crucial. The literature on

changes in the level and content of conscious experience in MCI

remains limited, and future research could combine self‐reports and
behavioural measures of self‐awareness, metacognition, anosognosia
and arousal with these biomarkers of awareness to map changes

more accurately in awareness to neurophysiological states. Other

limitations in the dataset include a lack of information on comor-

bidities and the range of cognitive and functional impairments in

individuals with MCI in the sample. This would provide important

additional information on the subtypes of MCI included in the study

and is relevant for predicting progression and management. The use

of the MMSE as a measure of general cognitive function may also not

be sensitive to cognitive impairment in people with MCI and does not

predict progression to dementia,73 and further information regarding

impairment within specific cognitive domains would have been use-

ful. However the MMSE remains a valuable tool for screening and

monitoring cognitive changes over time due to its widespread

accessibility, ease of administration, and ability to provide an over-

view of an individual's cognitive function despite its acknowledged

limitations. Additionally, the study does not account for the natural

fluctuations in cognitive performance, and repeated measurements

using measures that are sensitive to this variance should be the focus

of future longitudinal studies. Addressing these areas is vital for

refining MCI diagnostic criteria, enhancing monitoring techniques,

and improving clarity of prognoses and patient outcomes.

In summary, the findings of this study shed light on the alterations

in consciousness and arousal in MCI. The LZsum measure provides

valuable insights into the complexity of brain activity, which is closely

related to consciousness. By identifying changes in LZ complexity and

its correlation with cognitive impairment in MCI, we gain a better

understanding of the subtle impairments in consciousness that can

occur even in the early stages of cognitive decline. These results also

highlight the involvement of the alpha and theta frequency bands in

modulating arousal states and provide further evidence for the

disruption of arousal regulation in cognitive decline. However, more
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research is needed to explore the potential clinical and phenomeno-

logical implications of altered alpha‐theta ratios and changes in

dynamical complexity in MCI and AD. These biomarkers of awareness

and arousal can also be used to assess consciousness inmore advanced

dementia, where subjective reports become unreliable due to impair-

ment in communication. Understanding the relationship between

arousal, awareness, disease progression, and cognitive decline could

contribute to the development of targeted interventions and treat-

ment strategies to mitigate the impact of impaired consciousness on

AD patients' daily functioning and quality of life.
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