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Higher-order interactions play a key role for the operation and function of a complex system.
However, how to identify them is still an open problem. Here, we propose a method to fully
reconstruct the structural connectivity of a system of coupled dynamical units, identifying both
pairwise and higher-order interactions from the system time evolution. Our method works for
any dynamics, and allows the reconstruction of both hypergraphs and simplicial complexes, either
undirected or directed, unweighted or weighted. With two concrete applications, we show how the
method can help understanding the complexity of bacterial systems, or the microscopic mechanisms
of interaction underlying coupled chaotic oscillators.

Introduction

Higher-order interactions are present in ecosystems, in
which the way two species interact can be influenced by
a third species [1], in social systems, where interactions
in groups of three or more individuals naturally occur
[2], in the brain cortex [3], and in many other complex
systems [4]. Recent studies based on mathematical tools
such as simplicial complexes [5, 6] and hypergraphs [7]
have already demonstrated that the dynamics in presence
of higher-order interactions can be significantly different
from that of systems where interactions are exclusively
pairwise [2, 8–11]. How to infer and model higher-order
interactions is then crucial for understanding the dynam-
ics and functioning of complex systems [12, 13]. While
in complex networks, the reconstruction problem, also
known as the inverse problem, i.e. determining the net-
work from the dynamics of a system, has been dealt with
different techniques [14], the question on how to infer
connectivity in presence of higher-order interactions is
still open.

Concerning reconstruction in complex networks, two
different types of approaches, which target either the
functional or the structural connectivity of the sys-
tem, have been developed [14]. Functional connectiv-
ity accounts for the statistical dependencies that develop
among the network units as the result of their dynami-

cal interactions. As such, it may depend on the function
and state of the system, and the same physical system
may display different functional connectivities depend-
ing on the dynamical state where it is operating. On
the contrary, the structural connectivity represents how
the units of a system physically interact with each other.
Functional networks are typically constructed from the
network temporal evolution by evaluating statistical sim-
ilarity measures [15], Granger causality [16, 17], or trans-
fer entropy among the signals of the different network
units [18, 19], or using Bayesian inference methods [20].
The underlying structural connectivity of a network can
be, instead, obtained from the network response to ex-
ternal perturbations [21], from its synchronization with
a copy containing adaptive links [22, 23], or from the so-
lution of optimization problems based on measurements
of node time series, when the functional form of the node
dynamics is known [24–26].

The reconstruction problem in presence of higher-
order interactions is more convoluted. Recently, the fun-
damental distinction between higher-order mechanisms,
i.e. the presence of higher-order terms in the microscopic
structure of the interactions, and higher-order behaviors,
i.e. the emergence of higher-order correlations in the dy-
namical behaviour of a system, has been pointed out
[27]. The relationship between these two is not trivial as
higher-order behaviors do not necessarily rely on higher-
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order mechanisms. As an example, three-node correla-
tions can appear even in systems with pairwise interac-
tions only, due to the particular structure of the network,
rather than to the presence of genuine three-body inter-
actions. However, for the identification of higher-order
interactions, techniques that go beyond pairwise statis-
tics are required. For instance, information-theoretic ap-
proaches to study multivariate time series (of node activi-
ties) based on hypergraphs [28], higher-order predictabil-
ity measures (such as generalizations of Granger causality
and partial information decomposition) [29], or simplicial
filtration procedures [30] have been proposed to extract
important information on higher-order behaviors that
otherwise would not be visible to standard, i.e., network-
based, analysis tools. Higher-order behaviors, which are
likely due to the presence of higher-order mechanisms,
can be identified by recently introduced techniques to
assess the statistical significance of certain hyperlinks
[31, 32]. Other statistical approaches to the problem are
based on Bayesian methods, and have been used to con-
struct hypergraphs directly from pairwise measurements
(link activities), even in cases where the higher-order in-
teractions are not explicitly encoded [33, 34]. Statisti-
cal inference and expectation maximization are also at
the basis of a method recently developed to reconstruct
higher-order mechanisms of interaction in simplicial SIS
spreading and Ising Hamiltonians with two- and three-
spin interactions [35]. However, this method can only be
applied to binary time series data produced by discrete
two-state dynamical models.

In this paper, we propose an optimization-based ap-
proach to infer the high-order structural connectivity of
a complex system from its time evolution, which works in
the case of the most general continuous-state dynamics,
i.e. when node variables are not restricted to take binary
values. Namely, we consider a system of ordinary dif-
ferential equations (ODE) describing a set of dynamical
units (nodes) coupled through pairwise and higher-order
interactions. We assume that the local dynamics and the
functional form of the interactions are known [36] or iden-
tifiable [37, 38], and we propose a method to extract the
topology of such interactions by solving an optimization
problem based on the measurement of the time evolu-
tion of the node variables. The method relies on the
derivation of a set of algebraic equations for the parame-
ters that appear in the ODE model under consideration.
Similar approaches have already been adopted to solve
identification problems in other contexts [25, 26, 39–41].
The unknown terms in the algebraic equations are deter-
mined through least-square minimization, possibly ap-
plying regularization methods. Such unknown terms can
either describe the ways in which the variables are com-
bined together (namely the coefficients of the different
linear and nonlinear terms effectively appearing in the
equations of a single dynamical unit [39]), or the way in
which variables from different units are effectively cou-
pled (namely the weights of the pairwise interactions in
a network of coupled dynamical units [25, 26, 40, 41]).

In the first case, the approach aims at deriving the gov-
erning equations of an unknown dynamical system from
measurements of its state [39], whereas in the second case
the functional form of the local dynamics is supposed to
be known and the approach aims at reconstructing the
interactions among the units [25, 26, 40]. In both cases,
the problem is sparse, as various dynamical systems can
be modeled by using a small number of nonlinear terms
from the large dictionary of possible nonlinear functions,
and the interactions among the units of a complex system
are often mapped into a sparse network. This enables
the use of optimization problems based on compressive
sensing, such as the lasso method, to solve this type of
problems. While previous works [25, 26, 40] have ad-
dressed the reconstruction problem of pairwise networks,
the method we propose here deals with the more general
case of structures with interactions of any order. With
two concrete applications, we will show that our method
can effectively reconstruct which nodes are interacting in
pairs and which in groups of three or more nodes.

Results

Reconstructing pairwise and higher-order inter-
actions. As a general model of a dynamical system of
N nodes coupled through pairwise and higher-order in-
teractions, we consider the following set of equations:

ẋi = fi(xi) +

D∑
d=1

N∑
j1,...,jd=1

a
(d)
ij1...jd

g(d)(xi,xj1 , . . . ,xjd),

(1)
with i = 1, . . . , N . Here xi(t) ∈ Rn is the state vector of
unit i, fi : Rn → Rn is the nonlinear function describing
the local dynamics at node i, while g(d) : Rn×(d+1) → Rn

are the nonlinear functions of order d, modeling interac-
tions in groups of d + 1 nodes, with d = 1, . . . , D. The
topology of the (d + 1)-body interactions is encoded in
the tensor A(d), whose components are real numbers de-
noting the strengths of the interactions. The components
with two or more equal indices vanish because the inter-
action is in this case described by a lower rank tensor (or
there is no interaction if all indices are equal). Therefore,
for a given i, the number of non zero entries is at most

N − 1 for {a(1)ij }, (N − 1)(N − 2) for {a(2)ijk}, and so on.
Here we want to infer the complete structural connec-

tivity of a dynamical system, which means we want to
reconstruct, not only the entries of the adjacency ma-

trix A(1) = {a(1)ij } from the knowledge of the evolu-

tion of the state variables x1(t), . . . ,xN (t), but also the
higher-order interactions encoded by the tensors A(2) =

{a(2)ijk}, . . . ,A(D) = {a(d)ij1...jd
}. In doing this, we do not

assume any specific structure for the tensors, except that
their maximum rank is D + 1. Conversely, we assume
that the functions fi and g(1),g(2) . . . ,g(D), are known.
This is reasonable as the local dynamics of many real-
world complex systems, as well as the functional forms of
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their interactions, have been well identified. For instance,
well-established mathematical models that describe the
dynamics of neurons and synapses, or the growth of a
biological species when in isolation, or when in interac-
tions with other species, are available. In absence of such
models, we assume instead that, prior to the structural
connectivity reconstruction, the model of the isolated dy-
namics of a single unit, a pair, a group of three units, etc.
can be derived using proper identification techniques [37].

Our reconstruction technique works as follows. Sup-
pose we have access to a sample of M + 1 measure-
ments of the variables x1(t), . . . ,xN (t) at times tm equal
to m∆t, with ∆t a (constant) sampling interval and
m = 0, ...,M . The idea here is to find the entries of
the tensors A(d), d = 1, . . . , D, which minimize the dis-
crepancy between the sampled values and the trajecto-
ries generated by the model. We will discuss our method,
first under the assumption that it is possible to directly
measure the derivatives ẋi(t) at times tm, and, later on,
under the less restrictive assumption that we have ac-
cess only to the variables x1(t), . . . ,xN (t). In the latter
case, we have to approximate the derivatives ẋi in Eq. (1)
making use of the sampled values. In both cases, from
system (1) at time tm the following equations hold

zmi = fi(x
m
i )

+

D∑
d=1

N∑
j1,...,jd=1

a
(d)
ij1...jd

g(d)(xm
i ,xm

j1 , . . . ,x
m
jd
), (2)

where i = 1, . . . , N , m = mmin, . . . ,mmax, x
m
i is a short

notation for xi(tm), and zmi is the measured value of
the derivative ẋi at time tm, in the first case, or its ap-
proximation by a suitable finite difference method, in the
second case. Here, mmin ≥ 0 and mmax ≤ M are integers
that depend on the approximation adopted (see Meth-
ods).

Now, let

ym
i := zmi − fi(xi

m)

and Yi = [yi(mmin)
⊤, . . . ,yi(mmax)

⊤]⊤. Let us, then,
define the vector Ai containing the non trivial elements
of the tensors A(d), d = 1, . . . , D, namely the quantities
we want to reconstruct for each node i

Ai ≡ [(A(1)
i )⊤, (A(2)

i )⊤, . . . (A(D)
i )⊤]⊤ =

= [a
(1)
i1 , . . . , a

(1)
iN ,

a
(2)
i12, . . . , a

(2)
i,N−1,N , . . . , a

(D)
i,1,...,D, . . . , a

(D)
i,N−D+1,...,N ]⊤.

Then, from Eqs. (2), we get:

Yi = ΦiAi (3)

for i = 1, . . . , N , with

Φi =


g
(1)
i,1 (mmin) . . . g

(1)
i,i−1(mmin) g

(1)
i,i+1(mmin) . . . g

(1)
i,N (mmin) g

(2)
i,1,2(mmin) . . . g

(D)
i,N−D+1,...,N (mmin)

...
...

g
(1)
i,1 (mmax) . . . g

(1)
i,i−1(mmax) g

(1)
i,i+1(mmax) . . . g

(1)
i,N (mmax) g

(2)
i,1,2(mmax) . . . g

(D)
i,N−D+1,...,N (mmax)

 (4)

where we introduced the following short notation:

g
(d)
i,j1,...,jd

(m) := g(d)(xm
i ,xm

j1
, . . . ,xm

jd
).

For each node i we need to identify H = N − 1+ (N −
1)(N−2)+ . . .+(N−1) · · · (N−D) terms, corresponding

to the entries of Ai. Let
∼
M= (mmax−mmin+1)ng, where

ng represents the number of non trivial components of the

coupling functions, then Φi ∈ R
∼
M×H .

When
∼
M< H, the system of equations (3) is under-

determined and multiple solutions may exist [14]. Con-

versely, when
∼
M≥ H and the matrices Φi are full rank,

i.e. their columns are linearly independent, the system in
Eq. (3) is not underdetermined and can be solved in the
least square sense [14]. In this case, the tensors Ai are
uniquely determined.

Solving system (3) for the unknowns Ai therefore al-
lows one to reconstruct all interactions of node i, such
that the whole structural connectivity can be inferred by

repeating the calculations for all nodes, i = 1, . . . , N .
Notice that Eq. (3) maps the problem of the reconstruc-
tion of the higher-order interactions into that of solving
a system of algebraic equations in the unknown variables
given by the H entries of Ai.

In general, the identifiability [38, 42, 43] of the prob-
lem mainly depends on the collected data, and is difficult,
if not impossible, to establish a priori conditions for it.
We, therefore, formulate the identification task in terms
of different optimization problems, depending on the type
of structure (weighted/unweighted, directed/undirected)
and also on the features of the available data. Namely, we
propose to use, together with the Ordinary Least Squares
(OLS), two other different optimization methods, the Sig-
nal Lasso (SL) [26] and the Non-Negative Least Squares
(NNLS) [44]. The latter two methods are based on a reg-
ularization of the problem, and provide an optimal solu-

tion even when
∼
M< H. In general, all the methods will
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show an improvement in their results as the number M of
observations increases, provided that the added measure-
ments are able to sample different states of the system
dynamics, thus bringing new information.

We will now show that our approach is able to success-
fully reconstruct the full set of interactions at any order
for completely different dynamics. For these reasons we
will focus on the dynamics of microbial ecosystems and
on that of coupled chaotic oscillators. The two considered
case studies will also demonstrate that our method works
for the reconstruction of both hypergraphs and simplicial
complexes, no matter whether the underlying structure
is undirected or directed, unweighted or weighted.

Lotka-Volterra dynamics on weighted directed
hypergraphs. In our first application we focus on
the dynamics of microbial ecosystems. These consist
of species that may engage in diverse relationships, ei-
ther cooperative, such as the transfer of complementary
metabolites, or antagonistic, such as competition for a
resource [45]. The validation of community-wide inter-
actions in microbial communities is a far from trivial
problem, faced both with experimental approaches [46]
and through the use of mathematical modeling [47]. The
problem is further complicated by potential higher-order
interactions, which play a role in stabilizing diverse eco-
logical communities and maintaining species coexistence
[1, 48, 49]. Here, we model a microbial ecosystem of N
species as a hypergraph ofN coupled Lotka-Volterra type
equations [50] including both pairwise and three-body in-
teractions:

ẋi = fi(xi) +

N∑
j=1

a
(1)
ij xixj +

N∑
j=1

N∑
k=j+1

a
(2)
ijkxixjxk (5)

with i = 1, . . . , N .
The variable xi represents the abundance of species

i. The local dynamics of xi is governed by the logistic

function fi(xi) = rixi

(
1− 1

ki
xi

)
where ri and ki are the

growth rate and the carrying capacity. The pairwise in-
teractions between species are encoded in the real coeffi-

cients of theN×N weighted matrix A(1) = {a(1)ij } with at

most N(N − 1) non zero elements, while the three-body
interactions in the real coefficients of the N × N × N
weighted tensor A(2) = {a(2)ijk} with at most N

(
N
2

)
non

zero elements. This is because, when the interaction
does not depend on the permutation of the indices, as
is the case of Lotka-Volterra type models, the number

of non zero entries of tensor A
(d)
i is

(
N
d

)
. Eqs. (5) are

in the form of Eqs. (1) with g(1)(xi, xj) = xixj and

g(2)(xi, xj , xk) = xixjxk. As an example, we consider the

system of N = 7 species with four cooperative (a
(1)
ij > 0)

and four antagonistic (a
(1)
ij < 0) pairwise interactions,

studied in Ref. [47] and shown in Fig. 1(a) with blue and
red arrows respectively. In addition to these pairwise
interactions, we have included two cooperative three-

species interactions, shown as double arrows in the hy-
pergraph in Fig. 1(a). These respectively correspond to

a contribution to the dynamics of x2 given by a
(2)
237x2x3x7

and one to x4 given by a
(2)
416x4x1x6, with a

(2)
237 = 0.0062

and a
(2)
416 = 0.0016 [1]. The other system parameters, i.e.

the values of ri, ki, i = 1, . . . , 7, and the initial conditions
have been chosen as in [47]. Namely, growth rates ri for
all species have been randomly selected from a uniform
distribution in the interval (0, 1), similarly the carrying
capacities ki are sampled from a uniform distribution in
the interval (1, 100), and the initial conditions xi(0) are
integers sampled in the interval (10, 100).
Under these conditions, as shown by the time evolu-

tion of the variables xi(t), with i = 1, . . . , 7, reported in
Fig. 1(b), the microbial ecosystem typically converges to
a stable equilibrium point corresponding to the coexis-
tence of six species over seven. To feed our reconstruc-
tion algorithm, we focused on the time window [0, tmax]
with tmax = 20, and we sampled the seven trajectories
at M regular intervals of size ∆t = tmax/M . We then
used the samples to calculate Yi and Φi from Eq. (4).
At this point, we adopted ordinary least square method
(OLS) based on the complete orthogonal decomposition
(see Methods and [51]), which provides the optimal so-
lution of minimal discrepancy E between the measure-
ments Yi, and the corresponding values produced by the
system ΦiAi, where

E =

N∑
i=1

Ei, with Ei ≡ ∥Yi − ΦiAi∥22. (6)

The total number of parameters is NH, while the total
number of sampled values is nNM (in this case n = 1).
The minimum of the sum is obtained by minimizing each
term Ei separately. The complete orthogonal decomposi-
tion provides the solution of minimal l2 norm when there
is more than one minimizer.

To quantify the accuracy of the reconstruction of the
interactions at any order, we compare the estimation Âi

with the true values of the couplings, Ai, for each i, eval-
uating the reconstruction error E as:

E2 =

N∑
i=1

∥Ai − Âi∥22
N∑
i=1

∥Ai∥22
(7)

Fig. 1(c) shows E as a function of M/H, under the
assumption that the derivatives are available. Different
values of M/H have been obtained by changing the num-
ber of measurements M , while the number of unknown
coefficients we want to determine is H = N − 1 + (N −
1)(N − 2)/2 = 21, where the factor 2 in the denomina-
tor is due to the symmetry of the interaction terms in
Eq. (5), and contributes to reducing the number of un-
knowns and consequently the computational cost. The
results indicate that our approach correctly reconstructs
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FIG. 1: Reconstructing higher-order interactions in a microbial ecosystem. (a) The underlying weighted hypergraph of a
Lotka-Volterra system with N = 7 species and 2- and 3-body interactions, which we want to reconstruct from (b) the time
evolution of the seven species abundance xi(t). (c) Quality of the reconstruction is measured by reporting the error E as a
function of the ratio between the length M of the trajectories and the number H of interactions to reconstruct. (d) Error E
for the various approximations of the derivatives.

both pairwise and three-body interactions of the hyper-
graph, as the error drops down when M/H ≈ 1.8.

If only the values of the trajectories are available at
sampling times, then the derivatives have to be estimated
numerically, for example by finite difference approxima-
tion. We used three different formulas for the computa-
tion of the approximate derivatives, respectively of order
of accuracy 1, 2, and 4 (see Methods). As a consequence
of this approximation, the identification improves when
increasing the sampling size, mainly because of the im-
provement in the accuracy of the numerical derivatives
as the sampling time interval decreases. The results are
reported in panel (d) of Fig. 1. As expected, the fourth
order method provides a smaller error E for a given sam-
pling data size M . The level of approximation is limited
by the accuracy in the measurement of the trajectories.
In particular, because of numerical cancellation, the rel-
ative error in the evaluation of the derivatives is always
larger than the relative uncertainty in the trajectories.

Coupled Rössler oscillators on undirected simpli-
cial complexes. As a second case study we analyze
the following system of Rössler oscillators coupled with
pairwise and three-body interactions:

ẋi = −yi − zi + σ1

N∑
j=1

a
(1)
ij g(1)(xi, xj)

+σ2

N∑
j=1

N∑
k=j+1

a
(2)
ijkg

(2)(xi, xj , xk),

ẏi = xi + ayi,
żi = b+ zi(xi − c),

(8)

where g(1)(xi, xj) = xj −xi and g(2)(xi, xj , xk) = x2
jxk+

xjx
2
k − 2x3

i . As for the underlying topology of the inter-

actions, namely the components of tensors A(1) and A(2),
we consider simplicial complexes constructed as follows.
We start from the so-called Zachary karate club, which
is a system originally described in terms of an undirected
graph with N = 34 nodes and 78 links [52]. Since the
links form 45 triangles, we can represent the system as
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FIG. 2: Testing the reconstruction method on a system of N = 34 coupled Rössler oscillators. (a) The underlying simplicial
complex consists of 78 links and 45 2-simplices. (b) Reconstruction error E defined in Eq. (7) as a function of M/H when

derivatives are known. (c) The computed values of the components of the arrays Âi, i = 1, . . . , N for M/H = 34 for the OLS
method (blue dots) and for the NNLS method (red dots). (d) Reconstruction error E as a function of M/H when derivatives
are not known and a fourth order approximation of the derivatives is used.

a simplicial complex by turning a randomly chosen frac-
tion δ of the triangles into two-dimensional simplices [4].
By considering different values of δ, we can then tune the
percentage of the nodes forming a triangle which are ef-
fectively involved in a three-body interaction rather than
in three, separate, pairwise interactions only. In Fig. 2
we report the results obtained for δ = 1. Similar results
are obtained for other values of δ. The simplicial com-
plex considered is shown in Fig. 2(a). Notice that, in this
case, the components of tensors A(1) and A(2) can either
be 0 or 1, as they describe an unweighted structure. The
strength of the interactions in Eq. (8) is parameterised
by the constants σ1 > 0, σ2 > 0, which are supposed to
be known. Here, we choose σ1 = 10−4, and σ2 = 10−5.

In spite of the fact that the original structure is undi-
rected, in our reconstruction we treat the problem as if
the structure was directed. This means that for a given
pair of connected nodes i and j we consider both terms

a
(1)
ij and a

(1)
ji in the adjacency matrix as independent un-

knowns to be determined. Analogously, taking into ac-
count that in Eq. (8) the only non-zero coefficients of
A(2) are those with the third index larger than the sec-
ond one, for a 3-node simplex (i, j, k) with i < j < k we

have three independent unknowns a
(2)
ijk, a

(2)
jik, and a

(2)
kij .

In this way the discrepancies Ei appearing in Eq. (6)
can be minimized independently, therefore simplifying
the reconstruction problem. When M is large enough,

so that the error is almost zero, the reconstructed ten-

sors are indeed almost symmetric, i.e. a
(1)
ij ≈ a

(1)
ji for the

first order and a
(2)
ijk ≈ a

(2)
jik ≈ a

(2)
kij for the second order.

Considering that the interactions to be reconstructed
are, in this case, unweighted, the number of the different
higher-order networks we can obtain is finite and equal
to 2NH , where NH is the number of all possible inter-
actions among the N nodes. An exhaustive search over
all possible structures is prohibitive for even moderate
values of N . For such a reason we shall resort to meth-
ods for continuous weights, possibly making use of the a
priori information of the binary nature of the tensors in
order to obtain a more effective reconstruction.

We have adopted three different methods to solve
Eq. (3) when the derivative is exactly known. In the
first method, namely OLS, we minimize the least square
norm of the difference between Yi and ΦiAi, similarly
to what we did in the microbial ecosystem example. The
results, indicated by the blue line in Fig. 2(b), show that
the method correctly reconstructs the simplicial com-
plex when M/H approaches one. In the second method,
namely NNLS, we perform the minimization of the least
square error under the additional constraint that the ele-
ments of Ai are non-negative: minAi≥0 ∥Yi − ΦiAi∥2.
The red curve in Fig. 2(b) indicates that, including
such a priori information on the nature of the inter-
actions in the optimization problem, reduces the val-
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ues of M/H necessary for the reconstruction. Lastly,
we extend SL [26] to deal with higher-order interac-
tions. Namely, we consider the following optimization:
min(∥Yi − ΦiAi∥22/2 + α∥Ai∥1 + β∥Ai − 1H∥1), where
the penalty function includes, together with the square of
the 2-norm of the difference between Yi and ΦiAi, a reg-
ularization term that induces sparsity of the solution by
penalizing the non zero elements of Ai, and another term
to shrink the estimates to one, by penalizing the elements
different from one (case of unweighted graph). The effect
of the two penalty terms can be easily understood graph-
ically by plotting argmin{(x̂−x)2/2+α|x|+β|x−1|} as
function of x̂ (see Fig. 1 in [26]). As indicated by the or-
ange curve in Fig. 2(b), this method provides successful
reconstruction with a performance similar to the NNLS
(red line). In conclusion, the last two methods are able to
fully reconstruct the structure of the simplicial complex,
with a smaller sample size than that of OLS.

When the derivatives are not available, we need to ap-
proximate them. Here, we use a fourth order approxi-
mation and consider as a first example M/H = 34. In
Fig. 2(c) we show the values of the components of the ar-

rays Âi, i = 1, . . . , N obtained with the OLS (blue dots)
and the NNLS (red dots) methods. For the OLS method
the value of M/H is still too low and values of the com-

ponents of Âi spanning from -3 to 3 are obtained; on
the contrary, for the NNLS method the components of
Âi are concentrated around the two possible values (0
and 1), correctly estimating the true values of the co-
efficients appearing in the tensors A(1) and A(2). Now
we systematically analyze the dependence of the error on
the ratio M/H. In Fig. 2(d) we report the results for
the two more computationally efficient methods, namely
OLS (blue curve) and NNLS (red curve). Although larger
values of M/H are required when the derivatives are not
available, we find that, due to the approximation used,
the error E decreases as a power-law of M/H with an ex-
ponent -4 in both cases, with NNLS consistently giving
better results than OLS.

Discussion

The collective behavior of a complex system is the re-
sult of the interactions taking place among its units. Re-
cent evidence suggests that these interactions occur not
only between pairs of agents but also within groups in-
volving multiple units. Consequently, fully reconstruct-
ing the high-order structural connectivity of a complex
system becomes crucial. In this paper, we have presented
an optimization-based framework aimed at tackle this
problem. Our approach takes as input the measurements
of the states of the nodes at different times, yielding a lin-
ear system for the unknowns of the problem, namely the
entries of the adjacency tensors encoding the pairwise
and higher-order interactions. Despite the complexity
increases with respect to both system size and order of
interactions, the linear nature of our approach allows for

the application of various numerical methods specifically
designed for such problems [53].

A crucial aspect of our approach relies on understand-
ing the dynamics of individual units and the coupling
functions at different orders. Prior to reconstructing the
interactions, it is necessary to derive the functional form
of the unit dynamics and coupling functions. This can
be achieved through either first principles or targeted ex-
periments. Importantly, these experiments can be con-
ducted on small-scale systems using an iterative proce-
dure. The process begins with identifying the dynamical
equations of an isolated unit and gradually incorporat-
ing higher orders of interaction. At each iteration, when
aiming to determine the functional form of the d-th or-
der interaction, namely g(d), an ensemble of d + 1 in-
teracting units is considered. The temporal evolution of
the variables in this system is measured, and identifica-
tion techniques [37] are employed to obtain the governing
equations. In the previous steps, f , g(1), ..., g(d−1) have
been determined, leaving g(d) as the remaining unknown.
The process of accomplishing these steps for a real system
remains open, likely requiring tailored solutions specific
to the nature of the system under investigation.

In this paper, we have demonstrated the effectiveness
of our reconstruction method through a series of practi-
cal applications. We have shown that with our approach
we can detect which nodes are interacting in pairs and
which in groups of three or more nodes, enabling the
reconstruction of hypergraphs and simplicial complexes.
Importantly, the technique can be applied to both undi-
rected and directed structures, as well as unweighted and
weighted networks. Directed topologies have the advan-
tage that the discrepancy function E defined in Eq. (6)
can be minimized node by node, i.e. by considering each
term Ei separately. Undirected topologies with the same
number of nodes contain fewer unknowns, but the dis-
crepancy function E cannot be minimized node by node
because of the symmetry constraints. For instance, the

value of a
(1)
ij appearing in Ei needs to be equal to a

(1)
ji in

Ej . When M is large enough, and the signal is not af-
fected by noise, application of the directed framework is
able to recover the correct network, and thus the symme-
try of the coefficients, as illustrated by the case study of
coupled Rössler oscillators. In other situations, for exam-
ple in presence of noise or with a more sparse data sam-
pling, strict symmetry might be violated by a straight-
forward application of the directed framework. In such
cases, the symmetry of the coefficients can be imposed by
using other techniques, e.g. by introducing a penalization
term on the lack of symmetry.

In our work we have considered relatively small sys-
tems, in which there is no a priori knowledge of their
structure. For large systems it is not feasible to con-
sider all possible interactions, since the number of un-
knowns grows as ND, where D is the maximum order of
interaction we consider, making the problem practically
intractable. In the case some basic information is avail-
able, for example if one knows the graph describing the
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pairwise backbone of the system, then one could limit,
for instance, the search of higher-order interactions of
dimension 2 among the triangles of the graph.

Finally, we note that, since the reconstruction method
proposed in this paper is based on the numerical approxi-
mation of the derivatives from the data, in the presence of
noisy signals the method cannot be directly applied as is.
In such a case one can resort to the more traditional ap-
proach based on the minimization of the discrepancy be-
tween the noisy measured trajectories and the computed
ones that depend on the hypergraph parameters. How-
ever this technique leads to a strongly non-linear least
square problem, which may be computationally very ex-
pensive. An alternative approach consists in application
of our method after a suitable pre-processing of the mea-
sured data. The latter approach is currently under in-
vestigation.

In conclusion, we have shown that our technique can
be useful to understand and predict the behavior of mi-
crobial ecosystems and coupled nonlinear oscillators. We
hope that it can shed new light on a variety of physical
phenomena where higher-order interactions have a fun-
damental role.

Methods

A. Representing higher-order interactions

Higher-order interactions are mathematically repre-
sented either by hypergraphs or by simplicial complexes
[4]. Given a set N of N nodes, an undirected (di-
rected) hypergraph H is an aggregate of Nh hyperedges,
H = {e1, e2, . . . , eNh

}, where each hyperedge ei, with
i = 1, · · · , Nh, is an unordered (ordered) subset of two or
more nodes, respectively describing pairwise and group
interactions. A simplicial complex S is also an aggregate
of objects, called simplices, that generalize edges and can
be of different dimension. A d-simplex σ, or simplex of
dimension d is, in its simplest definition, a collection of
d+1 nodes. In this way, a 0-simplex is a node, a 1-simplex
is an edge, a 2-simplex (i, j, k) is a two-dimensional ob-
ject made by three nodes, usually called a (full) triangle,
a 3-simplex is a tetrahedron, i.e. a three-dimensional ob-
ject and so on. A simplicial complex S on the set of nodes
N , is a collection of Ns simplices, S = {σ1, σ2, . . . , σNs

},
with the extra requirement that, for any simplex σ ∈ S,
all the simplices σ′ with σ′ ⊂ σ, i.e. all the simplices
built from subsets of σ, are also contained in S. Due
to this constraint, simplicial complexes are a very par-
ticular type of hypergraphs [7]. The connectivity of a
hypergraph or of a simplicial complex of N nodes is fully
described by the set of tensors A(1),A(2), · · · ,A(D) whose
components are real numbers denoting the strengths of
the interactions at different orders. In this article we
focus on higher-order structures with D = 2, i.e. on sys-
tems with pairwise and three-body interactions described

by the matrix A(1) = {a(1)ij } and the tensor A(2) = {a(2)ijk}.

B. Integration of equations and approximation of
derivatives

In order to create the two case studies, we choose a
set of two-body and three-body interactions (i.e. the ten-
sors A(1) and A(2)) that we aim to identify, and compute
the trajectories by accurate numerical integration of sys-
tem (1). The integration of the system of ODE’s has
been performed by the MATLAB routine ode45 with
absolute and relative tolerance equal to 10−12. In the
simulation of the microbial ecosystem, we adopted the
values of the parameters reported in Table I, while in the
simulation of coupled Rössler oscillators we set a = 0.2,
b = 0.2, c = 9 and we used initial conditions randomly
sampled from uniform distributions with the following
ranges: xi(0) ∈ [−3, 3], yi(0) ∈ [−3, 3], zi(0) ∈ [−1, 7].
The derivative of each component has been computed

by standard finite difference discretization. In particular,
the approximation of the derivative of the generic func-
tion x(t), computed at time tm = m∆t, is given by the
following expressions

ẋ =
xm − xm−1

∆t
+O(∆t)

ẋ =
xm+1 − xm−1

2∆t
+O(∆t2)

ẋ =
−xm+2 + 8xm+1 − 8xm−1 + xm−2

12∆t
+O(∆t4)

In the previous expressions, we have m = 0, . . . ,M − 1,
i.e., mmin = 0 and mmax = M − 1 for the approximation
of order one; m = 1, . . . ,M − 1, i.e., mmin = 1 and
mmax = M − 1 for the order two; and m = 2, . . . ,M − 2,
i.e., mmin = 2 and mmax = M − 2 for the order four.
When the derivatives are supposed to be known, then
m = 0, . . . ,M , i.e., mmin = 0 and mmax = M .

C. Optimization methods

OLS method has been implemented using the MAT-
LAB function lsqminnorm, which is based on the com-
plete orthogonal decomposition. lsqminnorm(A,b),
where A ∈ Rn×m, solves the minimization problem

min
x

∥Ax− b∥2.

If the vector of minimal norm is unique, i.e. when the
rank of A is greater or equal m, then the method is es-
sentially equivalent to standard linear least square. If
there are more solutions for vector x ∈ Rm, the function
returns the one with the minimal l2 norm.

For NNLS we used the MATLAB function lsqnonneg,
which solves l2 minimization problem with the con-
straint that the solution should be non negative.
lsqnonneg(A,b) solves the problem

min
x

∥Ax− b∥2
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Node 1 2 3 4 5 6 7
Ri 0.6099 0.6177 0.8594 0.8055 0.5767 0.1829 0.2399
Ki 88.7647 3.8387 49.5002 17.6248 97.8894 71.5568 50.5467

xi(0) 30 45 32 50 55 30 40

TABLE I: Parameters and initial conditions used to generate the data of the example of the microbial ecosystem.

with the constraints x ≥ 0.
For SL we wrote a custom MATLAB function based

on the algorithm described in [26].

Data availability

All data used in this study have been ob-
tained through numerical simulations that can
be reproduced using the methods described in
the paper and the codes publicly available at
https://github.com/LValentinaGambuzza/Code-for-
Reconstructing-higher-order-interactions-in-coupled-
dynamical-systems

Code availability

All codes used in our work are based on the MAT-
LAB commands described in the Methods. They
are publicly available in the following repository:
https://github.com/LValentinaGambuzza/Code-for-
Reconstructing-higher-order-interactions-in-coupled-
dynamical-systems
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