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Higher-order correlations reveal complex memory in temporal hypergraphs
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INTRA-ORDER CORRELATIONS IN SOCIAL SYSTEMS WITH HIGHER-ORDER INTERACTIONS

In the main text, we focused on a dataset describing face-to-face interactions in a scientific conference. In this
section, we present the analysis of the intra-order temporal correlations for three other social systems. Two of the
datasets come from the Sociopatterns project, and they describe face-to-face interactions (i) in an office, amongN = 92
workers, over 11 days [1]; and (ii) in a hospital ward, among N = 75 patients, doctors, nurses, and administrative
staff, over 72h [2]. The third dataset contains instead proximity data of N = 692 students at the campus of the
Technical University of Denmark (DTU) in Copenhagen, for a period of one month [3].

FIG. S1. Intra-order correlation functions in human face-to-face interactions in the office (a), in the hospital ward (b), and in
the university campus (c), for different group sizes.

In this section, we analyze temporal correlations within groups of the same size. Fig. S1 depicts the values of the
intra-order correlation functions for several group sizes d, for the three empirical systems examined, namely face-to-
face interactions in the workplace (a), the hospital ward (b), and in the university campus (c). For each system,
we consider only those group sizes for which we have a sufficient statistics. In general, for each social system, a
hierarchy of long-range, slowly-decaying temporal autocorrelations emerges across different group sizes. Also, we note
that intra-order correlations are lost abruptly after a typical time threshold that decreases with the group size d, i.e.,
larger groups remain temporally correlated for shorter time.

We observe periodicity patterns in the interactions occurring in the workplace and in the university campus. For
this latter in particular, we note a series of peaks at large timescales that show the same hierarchical structure observed
at small timescales. See Fig. S13 for a minimal model of a temporal hypergraph with periodicity.
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CROSS-ORDER CORRELATIONS SHOW NONTRIVIAL TEMPORAL ORGANIZATION OF
HIGHER-ORDER INTERACTIONS

In this section, we deepen our analysis on temporal correlations between groups of different sizes. In the main text,
we showed that statistically significant cross-order correlations emerge. In particular, we focused on the cross-order
correlations between groups of sizes four and five in the face-to-face interactions in the scientific conference. We here
show that other pairs of group sizes in the same system are temporally correlated.

FIG. S2. Cross-order correlation functions for groups of sizes two and three, i.e., c(2,3)(τ) (cyan) and c(3,2)(τ) (olive), in the
face-to-face interactions in the scientific conference. The empirical system (dark circles) is compared with a randomized null
model with reshuffled time-steps (light squares). The values of the cross-order correlation functions are binned averaged, with
the error bars representing the standard deviation.

Fig. S2 displays the cross-order correlation functions c(2,3)(τ) (cyan) and c(3,2)(τ) (olive), describing cross-order cor-
relations between groups of sizes two and three. We also report the cross-order correlation functions for a randomized
null model where correlations have been removed by time-reshuffling (lighter squares) Both functions exhibit an expo-
nential decay that does not match the trends of the cross-order correlation functions c(4,5)(τ) and c(5,4)(τ) shown in
Fig. 2(a) of the main text, suggesting that different pairs of group sizes can show different kinds of interdependencies.

FIG. S3. Normalized cross-order interaction matrix K(τ) at time lags τ = 60s (a), τ = 300s (b), and τ = 1500s (c), in the
face-to-face interactions in the scientific conference.

Fig. S3 displays the normalized interaction matrix K(τ) at different time lags, namely τ = 60s (a), τ = 300s (b),
and τ = 1500s (c). We observe that cross-order temporal correlations can emerge between different group sizes.
In particular, as discussed in the main text, the matrix K(τ) shows a banded structure around the main diagonal,
meaning that correlations between groups of similar sizes is higher. The banded structure is lost at large time lags,
as correlations vanish at larger timescales.

The banded structure of the matrix K(τ) suggests that, in the scientific conference dataset, groups tend to change
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FIG. S4. Normalized interaction matrix K(τ) at time lag τ = 300s, in the DTU campus in Copenhagen.

gradually, with the loss or the addition of one member. We now want to investigate whether groups of larger size
display the same property. To answer this question, we focus on the interactions among students occurring in the DTU
campus in Copenhagen, in which larger groups have a sufficient statistics. Fig. S4 displays the normalized interaction
matrix K(τ) at time lag τ = 300s. Once again, the matrix K(τ) reveals a characteristic banded structure. However,
compared to the scientific conference case, we note that groups of larger size show a different pattern. Indeed, we can
observe significant cross-order correlations between groups of dissimilar sizes, e.g., groups of size nine are temporally
correlated with groups of size five. This result suggests that larger groups evolve differently compared to smaller ones.
In particular, while small-size groups change gradually, losing or gaining one member at a time, large-size groups show
more complex dynamics, as they can also split in smaller groups or emerge from them.

FIG. S5. Normalized interaction matrix K(τ) at time lag τ = 300s for the face-to-face interactions occurring in the office (a)
and in the hospital ward (b).

For completeness, in Fig. S5 we report the normalized interaction matrices evaluated at time lag τ = 300s relative
to the interactions in groups of size two and three occurring in the office (a) and in the hospital ward (b).

In the main text, we showed that the cross-order correlation functions relative to groups of sizes d1 and d2 can differ
significantly, as groups of a given size can anticipate those of another one, while the vice versa might not be true, or
the magnitude of the two effects might be distinct. This discrepancy between the two functions is quantified in terms
of the cross-order gap function δ(d1,d2)(τ). To complement the analysis provided in the main text, here we consider
the interactions in the scientific conference, studying the possible gaps in the cross-order correlation functions for
other pairs of group sizes.

Fig. S6 shows the cross-order gap function δ(d1,d2)(τ) calculated for each couples of orders of interaction (d1, d2).
Note that the figure axis scales are the same as those of Fig. 2(c) of the main text (reported as panel (f) in the Figure),
for a proper comparison (note that panel(d) has the same scale but focuses on the negative values of δ(d1,d2)). The
results obtained for the empirical system (purple circles) are compared with those of a null model where the time-steps
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FIG. S6. Cross-order gap functions δ(d1,d2) for the scientific conference data set (purple circles) and a null model (green
squares). Panels (a) to (f) show the cross-order gaps for different pairs of orders up to d = 5. The values of the cross-order gap
functions are binned averaged, with the error bars representing the standard deviation.

are reshuffled (green squares). We observe a variety of patterns in the cross-gap functions across different couples of
orders. For instance, δ(2,3), δ(2,4) and δ(2,5) do not significantly differ from the null model where temporal snapshots
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are reshuffled. This suggests that the groups of size neither anticipate groups of sizes three, four and five, nor come
after them, indicating a symmetry between the aggregation and the disaggregation processes. Instead, we observe
significant differences in the cross-order correlations between groups of sizes three and four, i.e., δ(3,4), and between
groups of sizes three and five, i.e., δ(3,5). Regarding, the first, we observe that δ(3,4) is significantly negative in almost
the entire range of the time lag τ , meaning that the formation of a group of four individuals from a group of three
is less probable than the loss of one member in groups of four individuals. In other words, we observe a preferred
temporal direction in the dynamics of group formation/fragmentation. However, compared to the case discussed in
the main text, i.e., the cross-order gap between groups of sizes four and five, in which aggregation was more probable
than the disaggregation, in this case we observe the opposite behavior. A mixed scenario, where group formation is
more probable for certain values of τ , while group fragmentation is more probable for other lags, is shown in panel
(e), representing the cross-order gap function δ(3,5). In particular, disaggregation from a groups of size five to groups
of size three seems to be more probable for smaller values of τ , i.e., after short time, while aggregation becomes more
probable for larger values of τ , namely after long time.

FIG. S7. Value of |δ(d1,d2)| for different group sizes d1 and d2, at different times lags, namely τ = 60s (a), τ = 600s (b), and
τ = 1500s (c), in the face-to-face interactions in the scientific conference.

Fig. S7 shows the value of |δ(d1,d2)| for different values of d1 and d2, at different times lags, namely τ = 60s (a),
τ = 600s (b), and τ = 1500s (c). We observe that different other pairs d1, d2 display a non-zero value of |δ(d1,d2)|,
again suggesting a non-trivial temporal organization between different orders of interactions.
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ANALYSIS OF THE DARH MODEL

In this section we analyze the Discrete Auto-Regressive Hypergraph (DARH) model, namely a minimal model of
temporal higher-order network with memory. As described in the main text, in the DARH model, each hyperedge hα

evolves independently and at each time step t it updates its state either by drawing from its memory or randomly.
The draw from the past occurs with probability q(d), with d ∈ {2, . . . , D} for hyperedges of sizes two up to D, while
with probability 1− q(d), the next state is chosen at random, according to a Bernoulli process with probability y(d).
When the state of the hyperedge is drawn from the past, we assume hyperedges of size d to copy one of the previous

m
(d)
s states. Formally, the dynamics of a hyperedge of order d, hα, is given by

hα
t+1 = Qth

α
t−µ + (1−Qt)Yt, (S1)

where Qt ∼ Bernoulli(q(d)), Yt ∼ Bernoulli(y(d)), and µ ∼ Uniform(1,m
(d)
s ).

We generate a temporal hypergraph using the DARH model. We build a higher-order network of N = 5 nodes,
composed by T = 105 snapshots. We consider hyperedges up to order four. The memory lengths for the interactions

of orders two, three and four are set to m
(2)
s = 5, m

(3)
s = 4, and m

(4)
s = 3, respectively. The probabilities of drawing

from the past for the different orders of interaction are set to q(2) = 0.60, q(3) = 0.55, and q(4) = 0.50. Finally, the
probabilities to activate each hyperedge in the memory-less process are set to y(2) = 0.4, y(3) = 0.05, and y(4) = 0.02.
Fig. S8 shows the intra-order correlation functions for each order of interaction (a) and the cross-order correlation
functions c(2,3)(τ) and c(3,2)(τ) (b) for the temporal hypergraph generated with the DARH model. For simplicity, for
the cross-order correlation functions we limited the analysis to hyperedges of orders two and three.

FIG. S8. Intra-order correlation functions and cross-order gap functions in the DARH model. (a) Intra-order correlations. Each

color represents a different order of interaction. Vertical dashed lines represent the values τ = m
(d)
s , with d ∈ 1, 2, 3. Other

colored dashed lines display the theoretical prediction of the Yule-Walker equations. (b) Cross-order correlation functions

between hyperedges of orders two and three, namely c(2,3)(τ) (cyan) and c(3,2)(τ) (olive). Dark dots represent the values
obtained for the DARH model, while light squares show the correlation functions for a time-reshuffled hypergraph.

In Fig. S8(a), we observe that for all hyperedge orders the intra-order correlation remain constant for 1 ≤ τ ≤ m
(d)
s

(vertical dashed lines), while it decays exponentially after that value. At τ = 0 the value of the autocorrelation
functions is trivially higher, and depends on the average number of hyperedges of a given order over the whole
temporal range.

For each order d, the intra-order correlation function can be reproduced by the Yule-Walker equations (dashed
lines):

c(d)(τ) =
q(d)

m
(d)
s

m(d)
s∑

k=1

c(d)(τ − k), (S2)
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which determine the autocorrelation function of a DAR(m
(d)
s ) process. In particular, one can prove [4] that c(d)(τ) is

constant for τ ≤ m
(d)
s , with its value given by

c(d)(τ ≤ m(d)
s ) = c(d)(0)

[
m(d)

s

(
1

q(d)
− 1

)
+ 1

]−1

, (S3)

which allows us to solve Eqs. (S2) up to any finite lag τ . The DARH model highlights that memory can be a driving
factor for the emergence of intra-order temporal correlations. The model reveals that the hierarchical structure of the
correlation ranges observed in the data (see both main text and previous sections of the Supplementary information)
is due to the different degrees of memory possessed by the hyperedges.

Fig. S8(b) shows instead that hyperedges of sizes two and three do not display cross-order correlation. Indeed,
both c(2,3)(τ) (cyan) and c(3,2)(τ) (olive) are close to zero (dark dots), and do not differ significantly from the values
obtained for a null model where the time-steps of the temporal hypergraph have been reshuffled (light squares).
Indeed, in the DARH model each hyperedge evolves independently from other hyperedges, either those having the
same size and those of different sizes. As a consquence, we observe no cross-order correlations among hyperedges of
different sizes.

So far we have assumed that a hyperedge of order d can update its state by copying one of its previous m
(d)
s states.

Therefore, the value of m
(d)
s only depends on the order d of the interaction, meaning that each hyperedge of the same

order has the same memory length. Such an assumption can be too restrictive, as each hyperedge can have in principle
a different degree of memory. We relax this assumption by sampling the intra-order memory length of a hyperedge

hα of order d from a uniform distribution, i.e., m
(d)
s (hα) ∼ Uniform(0,m

(d)
s,max). Compared to the simplest version of

the model, where we can set the value of the intra-order memory length m
(d)
s for each order of interaction d, here we

assume to control the maximum value m
(d)
s,max for each order d, which still allows us to tune the differences in memory

across different orders We consider a higher-order network of N = 5 nodes, composed by T = 3 · 105 snapshots,
constructed using the DARH model. We consider hyperedges up to order four. The maximum memory lengths for

the interactions of orders two, three and four are set to m
(2)
s,max = 50, m

(3)
s,max = 40, and m

(4)
s,max = 15, respectively. The

probabilities of drawing from the past are set to q(2) = 0.60, q(3) = 0.45, and q(4) = 0.40. Fig. S9 shows the resulting

FIG. S9. Intra-order correlation functions in the DARH model with uniform distribution of memory. Each color represents a
different order of interaction.

intra-order correlation functions for each order of interaction. Comparing the figure with Fig. S8(a), we can clearly
appreciate the impact of heterogeneity in the hyperdge memory. When all hyperedge of order d are characterized by

the same memory length m
(d)
s , we find that the intra-order correlation function remains constant for 1 ≤ τ ≤ m

(d)
s ,

while it decays exponentially after that value. Instead, when the hyperedge have different memories, the profiles of
the temporal correlation functions c(d) resemble those observed in the data, with a slow decay followed by a loss of
correlation.
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IMPACT OF THE HYPERGRAPH SIZE IN THE DARH MODEL

In this section, we analyze the impact of the number of nodes on the temporal correlations existing in a temporal
hypergraph generated with the DARH model. We build higher-order networks of N = 10, 20, 30 and 40 nodes, each
one composed by T = 105 snapshots, considering interactions up to order four. In all cases, we set the memory

lengths for the interactions of orders two, three and four to m
(2)
s = 5, m

(3)
s = 4, and m

(4)
s = 3, respectively, with the

probabilities of drawing from the past set to q(2) = 0.60, q(3) = 0.55, and q(4) = 0.50. The probabilities to activate
each hyperedge in the memory-less process are set as a function of the number of nodes, particularly y(2) = 5/N ,
y(3) = 1/N2, and y(4) = 1/N3, this way accounting for the fact that interactions of higher orders are less abundant
in empirical systems [5].

FIG. S10. Intra-order correlation functions in the DARH model as a function of the number of nodes. Panels (a) to (d)
represent the cases of temporal hypergraphs with N = 10, 20, 30 and 40 nodes, respectively. Each color represents a different

order of interaction. Vertical dashed lines represent the values τ = m
(d)
s , with d ∈ 1, 2, 3.

Fig. S10 show the intra-order correlation functions evaluated for the four temporal hypergraphs. We observe that
the qualitative behavior of the correlation functions does not change with the number of nodes. For each hypergraph

size, the intra-order correlation remain constant until τ ≤ m
(d)
s (vertical dashed lines), decaying exponentially after

that value. The number of nodes, however, has an effect on the scale of c(d). Particularly, the larger the temporal
hypergraph, the higher the value of the intra-order correlation function. This does not come as a surprise, as the
correlation functions c(d) are defined as the trace of the correlation matrices C(d) (see Eq. (2) in the main text), which
is a square matrix of order N . These results probe the robustness of our analysis with regards to the number of nodes,
showing that the emergence of temporal correlations in higher-order networks is not due to size effects.
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ANALYSIS OF THE CDARH MODEL

In this section we further analyze the cross-memory Discrete Auto-Regressive Hypergraph (cDARH) model. As
described in the main text, in the cDARH model, a hyperedge of order d can update its state by drawing from
its previous states or from the previous states of a hyperedge of a different order d′. Using the cDARH model, we
generate a temporal hypergraph with N = 10 nodes, maximum hyperedge order D = 3 and a temporal range of
T = 3 · 104 time steps. We set p(2) = 0 and p(3) = 0.6, meaning that hyperedges of order three can copy from the
past of hyperedges of order two, while hyperedges of order two evolve independently. For the cross-order memory of

3-hyperedges, we set m
(2,3)
c = 60, while we set m

(2)
s = 40 and m

(3)
s = 10 for the intra-order memories of hyperedges

of order two and three, respectively. Fig. S11(a) reveals the presence in hyperedges of order two (green circles) and

FIG. S11. Temporal correlations in the cDARH model. (a) Intra-order correlations c(d), with d ∈ {2, 3}, for hyperedges of
order two (green circles) and three (orange circles). The dashed vertical lines correspond to the value of the intra-order memory

of hyperedges of order two (green) and three (orange), respectively. (b) Cross-order gap function δ(2,3) between hyperedges of
order two and three (purple circles). We compare intra-order and cross-order correlations for the hypergraph generated using
the cDARH model with a randomized null model (colored squares).

The values of the cross-order gap functions are binned averaged, with the error bars representing the standard deviation.

three (orange circles) of significant intra-order temporal correlations. In particular, we notice that the functions c(2)

and c(3) remain constant for τ ≤ m
(d)
s , while rapidly decaying after that value. Though the profiles of c(d)(τ) do not

match exactly those of empirical data (see the main text), such a minimal model reveals that memory can be the
driving mechanism for the emergence of intra-order temporal correlations, with different orders possessing different
degrees of memory, explaining the hierarchical structure of correlation observed in the data.

Fig. S11(b) shows that δ(2,3)(τ) > 0 for different values of τ (purple circles), meaning that hyperedges of order two
are correlated to hyperedges of order three occurring later in time more than the other way around. Such a result
suggests that cross-order memory is a fundamental factor for the emergence of cross-order correlations among different
orders of interaction, as well as cross-order gaps in real-world social systems.

We now focus on the trend of the intra-order correlation functions. In this setting, we find that the intra-order
correlation function c(2)(τ) can be reproduced by the Yule-Walker equations (S2), while c(3)(τ) can not. This is not
surprising, as hyperedges of order two evolve independently, so their state follows a independent DAR process (see
previous section for more detail), while the evolution of hyperedges of order three also depends on the dynamics of
three overlapping hyperedges of order two.

To gain insights about the behavior of the cDARH model, we fit the exponential decay of both c(2)(τ) and c(3)(τ).
We find that both exponential decays have the same rate, i.e., c(d) ∼ eβτ , with β = 0.02, as reported in Fig. S12.
This result is essentially due to the fact that hyperedges of order three have memory of the overlapping hyperedges of
order two. This mechanism might also explain why interactions in real-world systems are characterized by long-range
intra-order correlation functions that decays with similar rates (see Fig. S1 and Fig. 1 in the main text). Note that,
to better appreciate the rate comparison, here we consider a lin-log scale, whereas in Fig. 3(c) of the main text we
used a log-log scale.
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FIG. S12. Intra-order correlations in the cDARH model. Green and orange circles represent the value of c(d) for hyperedges of
orders two and three, respectively. The dashed vertical lines correspond to the value of the intra-order memory of hyperedges
of order two (green) and three (orange). The solid black line displays the best fit of the exponential decay for both c(2) and

c(3).
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CORRELATION ANALYSIS OF A PERIODIC TEMPORAL HYPERGRAPH

Social systems show a variety of temporal patterns, from periodicity to decaying autocorrelations. In the main text,
we concentrated on this latter feature, discussing a minimal model of temporal higher-order networks with memory.
In this section, we focus instead on temporal periodic patterns in systems characterized by higher-order interactions.
To do so, we build a temporal hypergraph of N nodes where each order of interaction has different periodicity. For
simplicity and with no loss of generality, we limit our analysis to groups of size two and three. First, we construct
a sequence of length T2 of random 2-uniform hypergraphs, namely hypergraphs where all hyperedges have order
two. Each hyperedge has a probability p2 to be created. Each hypergraph of the sequence is nothing more than a
Erdös-Rényi random network, i.e., ER(N, p2). We then construct another sequence, having length T3, and composed
by random 3-uniform hypergraphs, i.e., all hyperedges connect exactly three nodes. A hyperedge has a probability p3
to be created. For each order of interaction, we concatenate several of the corresponding sequences one after another,
thus building two temporal uniform hypergraphs. We repeat the sequences so that both temporal hypergraphs have
T time-steps each. Finally, for each time-step we join the two corresponding static uniform hypergraphs. By doing
this, we now have a single temporal hypergraph of length T where the 2-hyperedges are repeated every T2 time-steps,
while the 3-hyperedges have instead a period T3.

FIG. S13. Intra-order correlation functions and cross-order gap functions in a minimal model of periodic temporal hypergraphs.
(a) Intra-order correlations in hyperedges of order two (green) and three (orange), respectively. (b) Cross-order correlation

functions between hyperedges of orders two and three, i.e., c(2,3)(τ) (cyan) and c(3,2)(τ) (olive).

Fig. S13 shows the intra-order correlation functions (a) and the cross-order correlation functions (b) for a periodic
temporal hypergraph of N = 10 nodes. The hypergraph is composed by T = 1.95 · 105 snapshots. Each 2-hyperedge
has a probability p2 = 0.1 of existing and it repeats with period T2 = 15. The 3-hyperedges have instead a probability
p3 = 0.03 of being active and they have period T3 = 8.

Both orders of interactions clearly show a periodic behavior. Indeed, we observe that the intra-order correlation
functions peak at τ = kT2 and τ = kT3, with k ∈ N, for two-body and three-body interactions, respectively, while
c(2)(τ) and c(3)(τ) remain close to zero for other values of τ . The periodicity of the temporal hypergraph is also
reflected in the cross-order correlation functions c(2,3)(τ) (cyan) and c(3,2)(τ) (olive). In particular, we observe that
they peak at different harmonics and that in general c(2,3)(τ) ̸= c(3,2)(τ), as the periodic oscillations of the two orders
of interaction are not in phase.
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