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Higher-order correlations reveal complex
memory in temporal hypergraphs

Luca Gallo 1 , Lucas Lacasa 2, Vito Latora 3,4,5,6 & Federico Battiston 1

Many real-world complex systems are characterized by interactions in groups
that change in time. Current temporal network approaches, however, are
unable to describe group dynamics, as they are based on pairwise interactions
only. Here, we use time-varying hypergraphs to describe such systems, and we
introduce a framework based on higher-order correlations to characterize
their temporal organization. The analysis of human interactiondata reveals the
existence of coherent and interdependent mesoscopic structures, thus cap-
turing aggregation, fragmentation and nucleation processes in social systems.
We introduce a model of temporal hypergraphs with non-Markovian group
interactions, which reveals complex memory as a fundamental mechanism
underlying the emerging pattern in the data.

Temporal networks, where links connecting pairs of nodes are not
continuously active, provide a framework to model how the interac-
tions of a complex system evolve in time1–3. They have revealed key in
understanding how the time-varying interaction network of real-world
social and biological systems affects the properties of dynamical
processes, such as epidemic spreading4–7, diffusion8–12,
synchronization13,14, and others15–18. Recent results have highlighted the
complexway inwhich the activity of each link depends on the activities
of all other links, showing that memory19–22 in temporal networks is
inherently amultidimensional conceptwith awell definedmicroscopic
shape23. Different approaches have aimed to describe the time evolu-
tion of a network as a trajectory in graph space, by naturally extending
to the case of graphs notions such as correlations24 or even dynamical
stability25 traditionally used for scalar or vectorial time-series.Q1Q1!Q2!Q2!Q3!Q3!Q4!Q4!Q5!Q5

Temporal network approaches, however, have a strong limitation.
They are based on a graph description and, as such, they can only
describe how dyadic interactions (i.e., links) vary in time, neglecting
many-body interactions. Indeed, many real-world social26–30,
biological31,32, neural33,34 or ecological35,36 systems also exhibit higher-
order interactions, i.e., interactions involving groups of three or more
units at the same time. Such many-body interactions are better mod-
eled by higher-order networks, such as hypergraphs and simplicial
complexes, where hyperedges and simplices encode interactions
among an arbitrary number of units37,38. Interestingly, taking into

account the higher-order architecture of real-world systems is known
to produce novel collective phenomena in a variety of dynamical
processes, including diffusion39,40, synchronization41–45, contagion46,47

and evolutionary games48,49.
Some early works have already started to explore the temporal

dimension of higher-order interactions. For instance, group interac-
tions in real-world social systems have been found to occur in persis-
tent bursts of activity28, with events of different sizes close in time also
spatially correlated in the network50. Such persistent temporal higher-
order interactions have been shown to anticipate the onset of endemic
states in epidemic processes51, and to affect the convergence time of
nonlinear consensus dynamics52. Theoretical frameworks formodeling
temporal group activation data53,54, and for constructing simplicial
complexes based on topological data analysis of multivariate time-
series from brain functional activity, financial markets and disease
spreading55 have also been recently developed. However, how to
analyze and characterize the temporal organization of real-world
complex systems with higher-order interactions is to this day still an
open problem.

In this article, we bridge this gap by introducing a general fra-
mework to study higher-order temporal dependencies in complex
systems. We represent a complex system with interactions in groups
whose size and composition can change in time as a temporal hyper-
graph, i.e., a hypergraph with time-varying hyperedges of different
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orders. We then define a set of measures to extract higher-order
temporal correlations, namely to characterize how the dynamics of
hyperedges of different orders are correlated. We test our framework
on a variety of empirical social systems, where patterns are amenable
to intuitive interpretations and validation. Results show the existence
of long-range correlations at different group sizes and their hier-
archical organization. Furthermore, we uncover the presence of tem-
poral correlations between groups of different sizes, i.e., between
hyperedges of different orders, unveiling the existence of persistent
dynamical relationships between coherent mesoscopic structures
previously unaccounted for. Finally, to gain intuition about the
underlying microscopic mechanisms, we introduce novel theoretical
models of temporal hypergraphs with higher-order memory, able to
explain the observed empirical patterns. Beyond networked systems,
our measures and model open the door to investigate interactions
among emergent coherent structures and other multi-scale phenom-
ena in complex systems.

Results
Temporal correlations in hypergraphs
To represent the temporal evolution of systems with higher-order
interactions we rely on temporal hypergraphs28,56. A temporal hyper-
graph is a tuple ðV,fHðtÞgTt = 1Þ, where V is a set ofN nodes, and fHðtÞgTt = 1
is a sequence of T sets. Each HðtÞ is a set of M(t) hyperedges, repre-
senting the interactions among the system units at time t. Each
hyperedge represents an interaction among multiple units. A hyper-
edge of order 2, or 2-hyperedge, is a set of two nodes representing a
two-body interaction, a 3-hyperedge is a set of three nodes repre-
senting a group interaction among three units, and so on, up to order
D. To study the temporal organization of systems with higher-order
interactions, we represent the temporal hypergraphs as a set of
D − 1 sequences fAðdÞðtÞg

T
t = 1 = fA

ðdÞð1Þ,AðdÞð2Þ, . . . ,AðdÞðTÞg where the
element aðdÞ

ij ðtÞ of matrix A(d)(t) counts the number of d-hyperedges
nodes i and j belong to at time t, while aðdÞ

ii ðtÞ=08i. See Methods for
more details on how to represent temporal hypergraphs.

The presence of higher-order interactions makes the analysis of
temporal correlations a multi-faceted problem. First, to quantify
temporal correlations in interactions of a given order d, we introduce
the intra-order correlation matrix

CðdÞðτÞ= 1
T ! τ

XT!τ

t = 1

1
ðd ! 1Þ!2

AðdÞðtÞ ! μðdÞ
h i

$ AðdÞðt + τÞ ! μðdÞ
h i>

, ð1Þ

with d∈ {2,…,D}. Here, τ is the temporal lag,A⊤ denotes the transpose
of A, and we have defined the annealed adjacency matrix of order d as
μðdÞ = 1

T

PT
t = 1A

ðdÞðtÞ. Note that, for d = 2, Eq. (1) recovers the correlation
matrix for temporal networks24. The diagonal terms of CðdÞðτÞ capture
howhyperedges of orderd are temporally autocorrelated, whereas the
off-diagonal terms quantify cross-correlations. When the latter are
negligible, one can focus on the diagonal terms and define an intra-
order correlation function

cðdÞðτÞ= trðCðdÞðτÞÞ, ð2Þ

that provides a scalar measure of how hyperedges of order d are
autocorrelated at lag τ.

Second, we can inquire whether interactions of two different
orders d1 and d2 display temporal interdependence, i.e., whether
mesoscopic structures are dynamically interrelated or, conversely,
evolve independently. To this aim, we introduce the cross-order

correlation matrix

Cðd1 ,d2ÞðτÞ=
XT!τ

t = 1

Aðd1ÞðtÞ ! μðd1Þ
h i

$ Aðd2Þðt + τÞ ! μðd2Þ
h i>

ðT ! τÞðd1 ! 1Þ!ðd2 ! 1Þ!
, ð3Þ

where d1, d2∈ {2,…,D}. Note that, when d1 = d2 = d, we recover the
intra-order correlationmatrixCðdÞ. We then define a scalar cross-order
correlation function as

cðd1 ,d2ÞðτÞ= trðCðd1 ,d2ÞðτÞÞ: ð4Þ

All the information about intra-order and cross-order correlations can
be encoded in a (D − 1) × (D − 1) normalized interaction matrix
Kd1d2

ðτÞ= cðd1 ,d2ÞðτÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðd1Þσðd2Þ

p
, where σ(d) = c(d)(0), whose entry

Kd1d2
ðτÞ describes how interactions of order d1 at a given time are

correlated with those of order d2 occurring τ time steps later. Notice
that matrix Kd1d2

ðτÞ is not symmetric, as the quantity cðd2,d1ÞðτÞ
measures how order d1 is correlated with order d2 at τ time steps
before, and is in general different from cðd1 ,d2ÞðτÞ. The presence of a
significant discrepancy between these two quantities captures
asymmetries in the temporal dependencies between different orders
of interaction. We quantify such an asymmetry in terms of a cross-
order gap function

δðd1 ,d2ÞðτÞ=
cðd1 ,d2ÞðτÞ ! cðd2,d1ÞðτÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðd1Þσðd2Þ

p : ð5Þ

A positive value of δðd1 ,d2ÞðτÞ indicates that the presence of groups of
size d1 correlates with the presence of groups of size d2 after a time lag
τ, more than the other way around.

Analysis of human interaction data
To explore intra- and cross-order correlations in complex systems, we
consider different social systems, for which we have high-resolution
empirical data about their temporal evolution. We first focus on a
dataset describing face-to-face interactions over a period of 32h
among the N = 403 participants of a scientific conference57,58 (three
further cases, namely the social interactions occurring in an office59, in
a hospital ward60 and in a university campus61 are described in
the Supplementary information).We encode thefine-grained temporal
information of the dataset in a temporal hypergraph ðV,HðtÞÞ, with
jVj=403 and t∈ {1,…, T}. The setHðtÞ is constructed by assuming that
d individuals in contact at a given time t interact together in a group of
size d, thus corresponding to a hyperedge of order d at time t. See
Methods for details on how to reconstruct higher-order interactions
from empirical data.

We begin by studying how and if groups of a given size are tem-
porally correlated, i.e., if mesoscopic persistent structures emerge.
Figure 1 reports the intra-order correlation functions c(d)(τ) for orders
d∈ {2,…, 4} (circles). Significant long-range temporal autocorrelations
are found for different orders of interaction, as indicated by the slow
decays of c(d)(τ) with τ in a double logarithmic scale, up to a threshold,
which typically decreases with d. This indicates that groups, i.e.,
coherent structures, of larger sizes generally remain autocorrelated for
shorter times. Interestingly, we also observe a saturation effect for
interactions in groups of size three, with a series of peaks revealing a
weak periodicity at large timescales (see Supplementary information
for further details). Empirical results are also compared with a null
model (squares) obtained by reshuffling the sequence defining the
temporal hypergraph.

We then investigate whether interactions in groups of a given size
d1 can also be correlated to interactions in groups of size d2 ≠ d1, i.e.,
whether mesoscopic structures are related to each other. The cross-
order correlation functions c(4, 5)(τ) (cyan circles) and c(5, 4)(τ) (olive
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circles) for groups of sizes four and five, are reported in Fig. 2a
(see Supplementary information for an analysis of other group sizes).
For clarity of presentation, we display a binned average of the cross-
correlations functions, as well as the corresponding standard devia-
tion. Remarkably, both cross-order correlation functions show precise
patterns that can not be reproduced by the corresponding null model
(squares), indicating non-trivial relationships between mesoscopic
coherent structures. Namely, groups of sizes four and five in this social
system show a non-trivial and persistent dependence.

Figure 2b shows the normalized interactionmatrixKðτÞ at time lag
τ = 600s (see Supplementary information for an analysis of different τ).
We observe a banded structure around the main diagonal, meaning
that cross-order correlations are higher between groups of similar
sizes. This indicates that, in the interactions at a scientific conference
analyzed here, groups change gradually, with the loss or the addition
of one or few members (see Supplementary information for the
interaction matrix of different social systems, including the social
contacts in a university campus where large groups reveal a more
complex correlationpattern). Finally, Fig. 2c shows the cross-order gap
function δ(4, 5)(τ) (purple circles). Values of δ(4, 5)(τ) > 0 in almost all the

range of the time lag τ considered indicate that groups of size four at a
given time are correlated to those of size five occurring τ time steps
later, more than the other way around. This result, which again cannot
be reproduced by the null model (green squares), suggests that the
formation of a group of five individuals from a group of four is more
probable than the loss of one member in groups of five individuals,
indicating a preferred temporal direction in the dynamics of group
nucleation/fragmentation of this social system (see Supplementary
information for an analysis of δðd1 ,d2ÞðτÞ for other group sizes).

The temporal patterns revealed in real-world systems by our fra-
mework can be related to other properties of such systems. For
instance, the existence of cross-order temporal correlations might
explain the presence of overlapping structures, namely the tendency
of different hyperedges to share nodes or to be included one within
another, observed in temporally-aggregated hypergraphs26,29,62,63.

Models of hypergraphs with higher-order memory
To investigate the mechanisms shaping intra-order and cross-order
correlation profiles, we have introduced two models to generate syn-
thetic temporal hypergraphs with higher-order memory, inspired by
DAR processes21,23,64. The first model, named Discrete Auto Regressive
Hypergraph (DARH)model, treats the binary states of each hyperedge
hα∈ {0, 1} (absent/present) as independent stochastic processes. Each
hyperedge updates its state either drawing a state from its past, or
randomly sampling a new state. With probability q(d), where
d∈ {2,…,D}, a hyperedge of order d samples its state uniformly at
random from its mðdÞ

s previous states, while, while with probability
1 − q(d), the hyperedge state is drawn randomly following a Bernoulli
process with probability y(d). In this way, the tuning parameter q(d)

controls the memory strength21 of the hyperedges of order d. See
Methods for a detailed description of theDARHmodel.Our firstmodel
displays intra-order correlations (i.e., the existence of mesoscopic
persistent structures), but no cross-order correlations (i.e., these
coherent structures do not interact), see Supplementary information
for a characterization of the DARH model).

We then introduce a second model, the cross-memory DARH
(cDARH) model, a variation of the DARH model where a hyperedge of
order d can update its state by drawing not only from itsmðdÞ

s previous
states but also from the mðd0 ,dÞ

c previous states of a hyperedge of a
different order d0. This updating mechanism, to which we will refer to
as cross-ordermemory, is what ultimately allows themodel to account
for interactions among coherent structures. The parameter mðdÞ

s

represents the intra-order memory length of the hyperedges of order
d, while mðd0 ,dÞ

c is the cross-order memory length. When copying from
memory, each hyperedge draws from the past of other hyperedges

Fig. 1 | Intra-order correlations in human face-to-face interactions.Circles show
the value of the intra-order correlation functions c(d)(τ) for interactions in groups of
size d = 2,…, 5. Squares refer to a randomized null model where temporal corre-
lations have been removed by reshuffling time steps.

Fig. 2 | Cross-order correlations in human face-to-face interactions. a Cross-
order correlation functions, c(4, 5)(τ) (cyan) and c(5, 4)(τ) (olive), describing the tem-
poral dependencies between interactions of order four and interactions of order
five. We compare the empirical system (circles) with a randomized null model with
reshuffled time-steps (squares).bNormalized interactionmatrixKd1d2

ðτÞ, encoding
the temporal dependencies between any pairs of order d1, d2∈ {2,…, 4} at time lag

τ = 600s. cCross-order gap function δ(4, 5)(τ) (purple circles), comparedwith the null
model (green squares). The values of the cross-order correlation and the cross-
order gap functions are binned averaged, with the error bars representing the
standard deviation.
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with probability p(d), and from its own past with probability 1 − p(d). We
assume hyperedges can copy from the memory of overlapping
hyperedges only. This choice is motivated by previous studies on
higher-order interactions in social networks pointing out a tendencyof
groups to progressively add or remove members, one step at a time28.
For illustration, let us consider the caseof groups of size twoand three:
a 2-hyperedge {i, j} selects one of the (N − 2) possible 3-hyperedges
containing nodes i and j and draws from its previous mð3,2Þ

c states.
Similarly, a 3-hyperedge {i, j, k} selects one of the three 2-hyperedges
that can be formed from it, i.e., {i, j}, {j, k}, and {i, k}, and copies a state
from its previousmð2,3Þ

c steps (see Fig. 3a–b for a schematic illustration
of themodel). Such amechanismcanbe straightforwardly extended to
hyperedges of other orders. See Methods for more details about the
cDARH model.

We generate with the cDARH model temporal hypergraphs with
N = 10 nodes, maximum hyperedge order D = 3 and a temporal range
of T = 3 ⋅ 104 time steps. Note that real-world systems are usually
characterized by a larger number of units. However, generating a
temporal hypergraph with a realistic size using the cDARH model can
be computationally costly. Yet, our model is able to describe the pat-
terns observed in the data even considering a few nodes. See Supple-
mentary information for an analysis of larger hypergraphs. We set
p(2) = 0 and p(3) = 0.6, meaning that hyperedges of order three can copy
from the past of hyperedges of order two, while hyperedges of order
two evolve independently. We also set mð2,3Þ

c =60, for the cross-order
memory length of 3-hyperedges. Considering a single couple of intra-
order memory lengths mð2Þ

s ,mð3Þ
s for all hyperedges of order two and

three, respectively, the cDARH model displays both intra-order and
cross-order correlations. Yet the profiles of c(d)(τ) do notmatch exactly
those of empirical data. In particular, the functions c(2) and c(3) remain
constant for τ ≤mðdÞ

s and decay exponentially after that value, with the
same rate of decay (see Supplementary information for a deeper
analysis), while in empirical systems the correlation functions follow a
power-law decay. This is not surprising, as real-world social interac-
tions can be shaped by different scales ofmemory23. Hence, we sample
the intra-order memory length of a hyperedge of order d from a uni-
form distribution, with maximum values for the interactions of orders
two and three set tomð2Þ

s,max = 40, andmð3Þ
s,max = 10, respectively. In Fig. 3c

we see that the profile of the intra-order correlation functions c(d) show
a slow decay followed by a loss of correlation, which is in good
agreement with what we see in the empirical networks. Moreover, the

presence of a significant gap between the cross-order correlations,
even under the assumption of a uniform distribution of memories,
corroborates the result that cross-order memory is a driving factor of
the phenomenon observed in the data. Such a minimal model reveals
thatmemory canbe the drivingmechanism for the emergence of intra-
order temporal correlations, with different orders possessing different
degrees of memory, also explaining the hierarchical structure of cor-
relation observed in the data. Figure 3d shows that δ(2, 3)(τ) > 0 for dif-
ferent values of τ (purple circles), meaning that hyperedges of order
two are correlated to hyperedges of order three occurring later in time
more than the other way around. We observe a striking similarity
between this trend and that observed in Fig. 2c for the empirical data.
This result indicates that cross-order memory is a fundamental factor
for the emergence of cross-order correlations among different orders
of interaction as well as cross-order gaps in real-world social systems.
The two peaks for δ(4, 5)(τ) observed in the empirical system suggest
again a more complex dependence on memory, possibly due to mul-
tiple temporal scales.

Discussion
In this article, we have introduced a framework to characterize dif-
ferent dimensions of memory in networked systemswith higher-order
interactions. We have shown that real-world social systems display
long-range temporal correlations at different group sizes –i.e., that
coherent mesoscopic structures emerge–, organized in a hierarchy
acrossmultiple scales.Moreover, we found that group interactions are
characterized by non-trivial cross-order correlations, with cross-
memory being a fundamental mechanism underlying such a complex
behavior. In the context of social systems, such cross-order interac-
tions can be interpreted in terms of the schisming phenomenon65–68,
where group sizes in human interactions, e.g. conversations, fluctuate,
nucleate, and display complex dynamics.

In conclusion, our work sheds light on the multifaceted nature of
memory that emerges at different scales in real-world interacting
systems. The analyses presented here can be naturally extended to
other higher-order complex systems traditionally modeled in terms of
networks of interactions, such as the human brain and biological
ecosystems. Beyond the scope of network science, we hope that our
framework can open new avenues to reveal the higher-order dynamics
of coherent structures in a variety of physical systems, from

Fig. 3 | Temporal correlations in the cross-memory Discrete Auto Regressive
Hypergraph (cDARH)model. aAn illustration of the cDARHmodel. At each time t,
the state of a hyperedge of order d is updated either randomly, with a probability
1 − q(d), or through a memory-based process, with a probability q(d) (d = 2 in the
illustration). In the latter case, the state is updated by copying either a previous
state from the past of the hyperedge (intra-ordermemory) or a previous state of an
overlapping hyperedge of a different order (cross-order memory), according to a
probability p(d). b A schematic illustration of the memory-based state update of a
2-hyperedge in the cDARH model. With probability 1 − p(2), the state is drawn from

one of the mð2Þ
s previous states of the hyperedge, while with probability p(2) it is

sampled from one of themð3,2Þ
c previous states of a overlapping hyperedge of order

3. c Intra-order correlations c(d), with d∈ {2, 3}, for hyperedges of order two (green
circles and squares) and three (orange circles and squares). d Cross-order gap
function δ(2, 3) between hyperedges of order two and three.We compare intra-order
and cross-order correlations for the hypergraph generated using the cDARHmodel
with a randomized null model. The values of the cross-order gap functions are
binned averaged, with the error bars representing the standard deviation.
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multifragmentation in nuclear physics to vortex-vortex interaction in
the atmosphere or other fluid dynamical systems.

Methods
Representation of time-varying systems with higher-order
interactions
Systems with higher-order interactions can be represented as
hypergraphs56. A hypergraph is a tuple ðV,HÞ, where V is a set of N
nodes, and H is a set ofM hyperedges. Each hyperedge represents an
interaction among two or more units. A hyperedge of order 2, or 2-
hyperedge, is a set of two nodes representing a two-body interaction, a
3-hyperedge is a set of three nodes representing an interaction among
three units, and so on, up to a order D. While hypergraphs are usually
represented by adjacency tensors of different ranks, to capture
dynamical dependencies within and among orders we will rely instead
on a set of adjacencymatrices of the same rank. First, we consider a set
of incidencematrices [E(2), E(3),…, E(D)] where the element eðdÞiα ofmatrix
E(d) is one if node i belongs to the d-hyperedge α, while it is zero
otherwise. For each order of interaction d, we can then construct an
adjacency matrix A(d) as

AðdÞ =EðdÞEðdÞ> ! diagðEðdÞEðdÞ>Þ: ð6Þ

The off-diagonal elements aðdÞ
ij =

P
αeiαejα represents the number of d-

hyperedges nodes i and j belong to, while aðdÞ
ii =08i.

To represent the a systemwith higher-order interactions evolving
in timewe rely on temporal hypergraphs28. A temporal hypergraph is a
tuple ðV,fHðtÞgTt = 1Þ, where V is again a set of N nodes, and fHðtÞgTt = 1 is a
sequence of T sets. EachHðtÞ is a set ofM(t) hyperedges, representing
the interactions occurring at time t. For each order of interaction d, we
can define a sequence fAðdÞðtÞg

T
t = 1 = fA

ðdÞð1Þ,AðdÞð2Þ, . . . ,AðdÞðTÞg, where
A(d)(t) is an adjacency matrix encoding the interactions of order d
occurring at time t. Hence, we can fully represent the temporal evo-
lution of the system using a set of D − 1 sequen-
ces ½fAð2ÞðtÞg

T
t = 1,fA

ð3ÞðtÞg
T
t = 1, . . . ,fA

ðDÞðtÞg
T
t = 1&.

Reconstruction of higher-order social interactions from
empirical data
To investigate the temporal organization of social interactions, we rely
on four datasets, three coming from the SocioPatterns project57–60 and
one from the Copenhagen Network Study61. These datasets store the
interactions among the individuals as a temporal network, namely they
contain dyadic interactions only. However, as people often engage in
groups where more than two individuals interact at the same time, a
network description of the system might result in an inadequate
representation of the system. Still, the fine-grained temporal infor-
mation of the datasets allows us to extract group interactions from the
data. In particular, we assume that d individuals that are in contact
through dyadic interactions at a given time t interact together in a
group of size d. For instance, if at time t individual i is in contact with
individuals j and k, while individual j is also interacting with individual
k, we assume individuals i, j and k to be engaged in a group interaction.
Mathematically, if at time t a set of d nodes form a clique in the tem-
poral network, we promote the clique to a d-hyperedge in a temporal
hypergraph.

The DARH and the cDARH models
To investigate the mechanisms shaping the onset of intra-order and
cross-order correlations in temporal hypergraphs, we introduce two
theoretical models that generate temporal hypergraphs with higher-
order memory. The first model, called the Discrete Auto Regressive
Hypergraph (DARH)model, treats the binary states of each hyperedge
hα∈ {0, 1} (absent/present) as independent stochastic processes. The
state of each hyperedge is updated either randomly or by drawing one
of theprevious states of the hyperedge. Inparticular,with aprobability

1 − q(d), the hyperedge state is drawn randomly according to a Bernoulli
process, i.e., the hyperedge is present with a probability y(d), or it is
absent with a probability 1 − y(d) Note that d∈ {2,…,D} represents the
order of the hyperedge, meaning that for each order of interaction
separately we can tune the sampling probabilities q(d) and y(d). With
probability q(d), instead, the next state is sampled uniformly at random
from themðdÞ

s previous states of the hyperedge. Formally, the dynamics
of a hyperedge of order d, hα, is given by

hα
t =Qth

α
t!μt

+ ð1! QtÞY t ð7Þ

whereQt ~ Bernoulli(q(d)) is a randomvariable selectinghow the state of
the hyperedge is updated, Yt ~ Bernoulli(y(d)) defines whether the
hyperedge is present/absent if its state is selected randomly, while
μt ∼Uniformð1,mðdÞ

s Þ determines which state is drawn when the state
update is done by sampling from the hyperedge past.

The second model, named the cross-memory DARH (cDARH)
model, is a variation of the DARHmodel where a hyperedge of order d
canupdate its statebydrawingnot only from its pastbut also fromthat
of a hyperedge of a different order. Similar to the DARHmodel, with a
probability 1 − q(d), the hyperedge state is drawn randomly according to
a Bernoulli process with probability y(d), while the state is copied from
past states with a probability q(d). When copying from memory, with
probability 1 − p(d) the state of the hyperedge is sampled uniformly at
random from itsmðdÞ

s previous states.With probability p(d), instead, the
state of the hyperedge is drawn from the mðd0 ,dÞ

c previous states of an
overlapping hyperedge of order d0 that overlaps. The order d0 of the
hyperedge can be drawn according to a given probability distribution
ρðdÞðd0Þ. Formally, we can write the dynamics of a hyperedge of order
d, hα, as

hα
t =Qth

εt ðαÞ
t!μt

+ ð1!QtÞY t : ð8Þ

As for the DARH model, Qt ~ Bernoulli(q(d)) is a random variable
selecting how to update the state of the hyperedge, while
Yt ~ Bernoulli(y(d)) determines if the hyperedge is present/absent when
sampling randomly. εt(α) is a randomvariable that defines if the update
of the hyperedge is done by sampling from its own past or from that of
another hyperedge. Mathematically, it follows the equation

εtðαÞ= Ptβ+ ð1! PtÞα, ð9Þ

where Pt ~ Bernoulli(p(d)) selects whether to copy from the past of
hyperedge hα or from that of a hyperedge indexed as β. hβ is sampled
from the set of hyperedges of order d0 overlapping with hα, with d0

drawn from ρðdÞðd0Þ. Finally, the variable μ, determining which state
from the past is sampled when copying from memory, is sampled
according to the value of εt(α). In particular, when εt(α) = α, i.e., for the
intra-order memory process, we have μt ∼Uniformð1,mðdÞ

s Þ, while we
have μt ∼Uniformð1,mðd0 ,dÞ

c Þ when εt(α) ≠ α, i.e., for the cross-order
memory process.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheSocioPatterns data on the contacts in the scientific conference, the
officeand thehospitalward are available athttps://www.sociopatterns.
org/datasets. The Copenhagen Network Study data on the contacts in
the university campus are available at https://doi.org/10.6084/m9.
figshare.11283407.
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Code availability
The measures described here are implemented as part of the HGX
library69 and are available at https://github.com/HGX-Team/
hypergraphx.
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