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1 Introduction

The electric-magnetic duality of electromagnetism has long been a source of inspiration
for theoretical developments. Here, we are interested in investigating the extension of the
U(1) duality to other theories.1 The duality is known to extend to a class of theories of
non-linear electromagnetism identified in [3]. In general relativity, a version of the duality
where the Riemann tensor plays the role analogous to the field strength is known to hold at
linearised level; see e.g. [4–15]. However, ref. [8] reported that the first non-linear correction,
i.e. the cubic vertex, does not admit a duality-invariant formulation, similarly to the case
of Yang-Mills theory [16]. The procedure employed was not covariant, and we will see that,
at least in our approach, the cubic vertex is subtle regarding the duality. It has since been
suggested in various instances, in writing or not, that perhaps a non-linear realisation of the
gravitational duality is possible. In fact, there is a recent claim that this is the case [17, 18],
partly motivated by — but not implied by — developments in scattering amplitudes [19–27].
See also [28] for another non-linear construction that appears to represent the duality.

In this paper, we show that the duality does not hold in the full theory of general
relativity, but explain also why it holds within a certain sector of solutions to the vacuum
Einstein equations, which includes type D vacuum solutions. Indeed, it is well known that
the Kerr-Taub-NUT family of solutions admits the U(1) duality, rotating between mass
and NUT charge. This is an analogue of the rotation between electric charge and magnetic
monopole charge in electromagnetism.

The understanding of the duality that we employ builds on work that goes a long way
back, to the realisation that the duality’s Noether symmetry is helicity conservation [29].
This can be seen as the invariance of an action for the positive and negative helicity degrees
of freedom of the gauge boson under chiral U(1) transformations. Helicity conservation is

1We will not discuss the related weak coupling / strong coupling duality, which is famous in the context of
supersymmetric non-Abelian theories [1, 2].
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expressed in a gauge-invariant manner as a selection rule on the scattering amplitudes: the
only admissible non-trivial amplitudes have an equal number of positive and negative helicity
external particles (in a convention where all particles are incoming, say). The scattering
amplitudes of gravitons in Einstein’s theory, or of gluons in Yang-Mills theory, famously
violate this rule. Indeed, the simplest and best known tree-level amplitudes in these theories
are classified as MHV — maximally-helicity-violating amplitudes. On the other hand, it
was shown in [30] that all duality-invariant theories of non-linear electrodynamics satisfy
the selection rule, generalising an earlier observation in Born-Infeld theory [31]. Analogous
results have been obtained in extended supergravities, for the duality acting on a class of
spin-1 particles in the theory (and a quantum anomaly occurs which impacts the ultraviolet
behaviour), as well as in related contexts [32–38]. Our discussion includes a straightforward
explanation of this correspondence between the U(1) duality and the amplitudes selection rule.

The paper is organised as follows. In section 2, we review the original duality in Maxwell
theory, and the associated conservation of helicity. In section 3, we discuss the extension
of the duality to non-linear electromagnetism, and its manifestation in terms of a selection
rule on the scattering amplitudes. In section 4, we present the general argument for the
selection rule as the condition for the duality to hold. In sections 5 and 6, we describe
the failure of the duality in Yang-Mills theory and in general relativity, respectively. In
section 7, we discuss a class of algebraically special gravity solutions where the duality holds,
manifesting itself as a symmetry that rotates between mass and NUT charge. We conclude
with brief remarks in section 8.

2 Maxwell theory

The U(1) electric-magnetic duality of Maxwell theory is the statement that the transformation(
Fµν

∗Fµν

)
7→
(
F ′

µν

∗F ′
µν

)
=
(

cos θ sin θ
− sin θ cos θ

)(
Fµν

∗Fµν

)
(2.1)

preserves the Maxwell equations,

d∗F = 0 , dF = 0 . (2.2)

Here, ∗ denotes the Hodge dual, such that ∗Fµν = 1
2εµναβF

αβ. In Lorentzian signature,
∗2 = −1. The chiral nature of the transformation is clear when we express it in terms of
the (anti-)self-dual parts of the field strength,2

F± = 1
2(F ∓ i ∗ F ) ⇔ ∗F± = ±iF± , (2.3)

for which the transformation is

F± 7→ e±iθF±. (2.4)

In our convention, a self-dual field has positive helicity, and an anti-self-dual field has
negative helicity.

2This convention will mean that, in later sections, we will see F+ ∼ e− ig for the dyon field strength, and
ψ ∼ m− in for the Taub-NUT Weyl spinor.
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This U(1) transformation is a symmetry of the equations of motion, though not of
the usual action:

S[Aµ] = −1
4

∫
d4xFµνFµν 7→ cos(2θ)S[Aµ] , (2.5)

where we dropped a boundary term. We can easily write an action that makes the duality
manifest in terms of the chiral transformation (2.4), by using light-cone gauge. Let us
consider double-null coordinates, such that

ds2 = 2(−dudv + dwdw̄) , □ = 2(−∂u∂v + ∂w∂w̄) . (2.6)

Choosing the light-cone gauge condition Au = 0, we obtain the action

S[Av, Aw, Aw̄] =
∫
d4x

( 1
2 (∂uAv − ∂w̄Aw − ∂wAw̄)2 +Aw□Aw̄

)
. (2.7)

The component Av can be integrated out exactly, leading to an action for the two physical
degrees of freedom. These are identified with the positive and negative helicity fields, which
in our convention are

A+ = Aw̄ , A− = Aw . (2.8)

Hence, we obtain the action

S[A±] =
∫
d4xA−□A+ , (2.9)

which is clearly invariant under the chiral transformation

A± 7→ e±iθA± . (2.10)

The associated Noether current is

jµ = i(A+∂
µA− −A−∂

µA+) , (2.11)

and the conserved charge is

H = i

∫
d3x (A+∂tA− −A−∂tA+) . (2.12)

To interpret this chiral symmetry, we can use the second quantisation formalism, where we
take A± to be operators built with creation and annihilation operators in Fourier space.
This leads after normal ordering to

H =
∫

d3k

(2π)3 2|⃗k|
(a†+,k a+,k − a†−,k a−,k) = N+ −N− . (2.13)

Here, a±,k annihilate a photon of helicity ± and momentum kµ, while N± are the particle
number operators for the given helicity. So the U(1) symmetry implies the conservation of the
total helicity. To our knowledge, this observation was first made in a clear manner in ref. [29].
The story is analogous to that of the chiral symmetry of massless fermions. In fact, the analogy
extends to quantum effects: ref. [39] has shown that the symmetry is anomalous on a curved
background, such that ⟨∇µj

µ⟩ ∼ Rµναβ ∗Rµναβ, similarly to the fermionic chiral anomaly.
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3 Non-linear electrodynamics

Let us consider now non-linear extensions of electromagnetism, where the Lagrangian density
is a function of the field strength,

L(F ) = −1
4 F

µνFµν + O(F 4) . (3.1)

If the interactions in O(F 4) are to preserve the symmetry under A± 7→ e±iθA±, they must
take the following schematic form in the action for the two degrees of freedom:

S[A±] =
∫
d4x

(
A−□A+ +

∑
n≥2

1
M4(n−1) ∂

2nAn
−A

n
+

)
, (3.2)

where M has units of mass.3 In the Feynman diagrams obtained from such an action, helicity
is manifestly conserved at each vertex. Putting the action into this form, however, may
require non-trivial field redefinitions on top of the gauge choice. The invariant statement
is that the scattering amplitudes (with all external particles taken to be, say, incoming)
must obey the selection rule

A(n+, n−) = 0 for n+ ̸= n− , (3.3)

where n± are the number of ± helicity external particles. That is, the amplitudes with
unequal number of positive and negative helicity external particles must vanish. Conversely,
if the amplitudes satisfy this selection rule, then using the explicit form of the non-vanishing
amplitudes we can in principle construct an action of the form (3.2).

Theories of non-linear electromagnetism that admit the electric-magnetic duality are
identified by the Noether-Gaillard-Zumino condition [3]:

Gµν ∗Gµν = Fµν ∗Fµν , with Gµν = −2 ∂L
∂Fµν

. (3.4)

The duality acts as (
Gµν

∗Fµν

)
7→
(
G′

µν

∗F ′
µν

)
=
(

cos θ sin θ
− sin θ cos θ

)(
Gµν

∗Fµν

)
, (3.5)

preserving the equation of motion, d∗G = 0 , and the Bianchi identity, dF = 0 . Ref. [30]
has shown that the theories of non-linear electromagnetism admitting the electric-magnetic
duality satisfy helicity conservation at tree level, that is, obey the selection rule (3.3).4

3When we schematically write ∂2n in (3.2), this includes the possibility of inverse derivatives, with 2n
being the net derivative order. As we will see later in the well-known cases of Yang-Mills and gravity, the
integral operation 1/∂u is typical of interactions in light-cone gauge actions, leading to the appearance of
∂2n+m/∂m

u . We recall that u is the light-cone coordinate associated to the gauge choice. This feature presents
no difficulties when considering perturbation theory in Fourier space. Regarding Lorentz symmetry, there is a
well-established machinery to test this property for an action of the type (3.2), going back to ref. [40].

4The Born-Infeld theory is an example of a non-linear electromagnetism model satisfying the duality
condition and, indeed, its tree-level amplitudes satisfy the selection rule, which was first determined in [31].
Using unitarity methods, ref. [41] reported the existence of helicity-violating amplitudes at one loop; see
also [42, 43]. From the point of view of the action (3.2), this loop-level U(1) violation presumably arises
from the fact that the field redefinitions required to put the action into this form affect the measure of the
path integral.
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4 The general argument

The empirical fact that scattering amplitudes in duality-satisfying theories of non-linear
electrodynamics obey the selection rule (3.3) admits a simple explanation. In fact, the
selection rule is the condition for ‘electric-magnetic’ duality in a broader range of theories
with massless particles.

An obvious difficulty in theories like Yang-Mills or gravity is that, beyond the linearised
level (where the duality is straightforward, as we will review shortly), it is unclear how to
implement the U(1) transformation. This is why the perspective of scattering amplitudes
is helpful: if it is clear how to implement the transformation at linearised level, then it is
clear how it acts on the asymptotic scattering states, i.e. the initial and final particles in the
amplitude. The U(1) transformation with parameter θ is implemented via a unitary operator,
eiθH; we saw that, for photons, this operator is eiθ(N+−N−). Now, the S-matrix contains all
the information about the time evolution. While we do not know the S-matrix of quantum
gravity, we know in principle all the information required for classical gravity. The duality
is equivalent to the invariance of S-matrix elements under the duality:

⟨outθ|S|inθ⟩ = ⟨out|e−iθHSeiθH|in⟩ = ⟨out|S|in⟩ . (4.1)

That is, the operator H commutes with the scattering operator S.
For now, let us consider only one massless particle species, say the scattering of photons

in non-linear electromagnetism, of gluons in Yang-Mills theory, or of gravitons in general
relativity. For these, the U(1) operator is based on the helicity charge, eiθH = eiθ(N+−N−).5

Clearly, it is easier to look at amplitudes for initial and final particles that have definite
positive or negative helicity. Now, in the scattering amplitudes literature, making use of
crossing symmetry, external particles are often taken as being all incoming (or outgoing).6

The amplitude is then defined as

A = ⟨0|T |in⟩ , with S = 1 + iT . (4.2)

Under the U(1) transformation, we have

Aθ = ⟨0|T |inθ⟩ = ⟨0|Teiθ(N+−N−)|in⟩ = eiθ(n+−n−)⟨0|T |in⟩ = eiθ(n+−n−)A , (4.3)

where n± are the number of ± helicity particles in the asymptotic state |in⟩. The duality is
the statement that the amplitudes are invariant under U(1). This is, therefore, equivalent
to the selection rule (3.3) seen previously.

The argument applies more generally. For instance, in Einstein-Maxwell theory, the
electric-magnetic duality holds (classically) as a U(1) symmetry acting on the gauge field.
The selection rule (3.3) then applies to tree amplitudes for photons in this theory, which
comes out naturally from the formulas in [44]; see also [45, 46] for related work. This

5Since H represents the helicity charge, one may instead wish to normalise it such that eiθH = eiθs(N+−N−),
where s is the spin of the particle, e.g. s = 2 for gravitons. We will not do this, as it won’t affect the subsequent
discussion. One may absorb s into the duality parameter θ.

6A massless particle that has helicity ± seen as incoming, has helicity ∓ seen as outgoing.
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should extend to duality-preserving higher-derivative extensions of Einstein-Maxwell theory,
as those studied in [47].

Another natural setting is to consider the coupling to massive particles, and the duality
is still the statement that the amplitudes are U(1) invariant. In the Maxwell case, we can
introduce dyonic particles, with electric charge e and magnetic monopole charge g. The
gauge field generated by a static dyon is

F = dA = e

r2 dt ∧ dr −
g

r2 ∗ (dt ∧ dr) . (4.4)

By considering the action of U(1) on F , we can determine the U(1) transformation of
the charges:

F+ 7→ eiθF+ ⇒ e− ig 7→ eiθ(e− ig) = e′ − ig′ . (4.5)

Now, the 3-point amplitude for a dyon to absorb a ± helicity photon is [20]

A = (e± ig) ε± · p , (4.6)

where p is the momentum of the dyon (say before the interaction), and ε± is the polarisation
vector of the ± helicity incoming photon.7 Notice the dyon couples differently to the two
helicities of the photon. This amplitude is invariant under U(1), because the phases cancel
between the coupling and the photon. In gravity, there is an analogue of the electromagnetic
dyon, as we will review later, where the mass and the NUT charge play roles analogous
to the electric and magnetic monopole charges. This will not imply, however, that the full
interacting theory is duality invariant. In fact, neither the 3-point amplitude (4.6) nor its
gravitational analogue probe interactions between the massless gauge bosons, which are
absent in the case of electromagnetism.

To conclude this section, notice that if we demand only the Z2 electric-magnetic duality,
F 7→ ∗F , which corresponds to θ = π/2 , then the selection rule (3.3) is too strong. From (4.3),
we see that the requirement n+ = n− is substituted by (n+ − n−)/4 ∈ Z. This weaker
requirement will not alter the failure of the duality in Yang-Mills theory and in gravity,
which we will discuss in the following sections.

5 Yang-Mills theory

At linearised level, it is clear that Yang-Mills theory obeys the duality, because Maxwell
theory does. At non-linear level, our argument implies that the duality fails, because the
scattering amplitudes do not obey the selection rule of helicity conservation. In fact, there is
a famous class of tree-level amplitudes presenting maximal helicity violation (MHV), where

7While 3-point on-shell kinematics requires complexified momenta in Lorentzian signature, 3-point am-
plitudes have proven extremely useful, e.g. for constructing higher-point or even higher-loop amplitudes
via recursion [48, 49] and unitarity methods [50]. In the case of dyons, higher-point amplitudes are poorly
understood due to the well-known difficulties with magnetic monopoles; see [51] for some recent progress.
Regarding (4.6) and (4.4), it was shown in [25–27], based on the KMOC formalism [52], how they are related
via an on-shell Fourier transform.
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all external gluons have positive helicity except for two. It admits a very simple formula
at n points [53]: in spinor-helicity language,

A(i−, j−, rest+) = gn−2 ⟨ij⟩4
(Tr(T a1T a2T a3 · · ·T an)

⟨12⟩⟨23⟩ · · · ⟨n1⟩ + perm
)
, (5.1)

where ‘perm’ denotes a sum over non-cyclic permutations of the n external legs. Obviously,
there is a conjugate MHV class of amplitudes, as the theory is parity invariant. Tree
amplitudes with all or (except for 3 points) all-but-one particles of the same helicity vanish,
hence the name MHV for the all-but-two class above.

If we write down the light-cone gauge action [54]

S[A±] =
∫
d4xTr

(
A−□A+ + 2g

(
∂w

∂u
A+

)
i[∂uA−, A+] + 2g

(
∂w̄

∂u
A−

)
i[∂uA+, A−]

− 2g2[∂uA−, A+] 1
∂2

u

[∂uA+, A−]
)
, (5.2)

we see that it is not invariant under A± 7→ e±iθA±.8 Field redefinitions cannot help, due
to the invariant statement that amplitudes such as (5.1) violate the duality selection rule.
In fact, the existence of non-vanishing amplitudes for an odd number of particles already
invalidates the duality.

6 Gravity

The ‘electric-magnetic’ duality in linearised gravity works similarly to the case of Maxwell
theory; see e.g. [7]. The Riemann tensor plays the role analogous to the field strength. The
linearised Riemann tensor is

Rµνλρ = 1
2 (∂µ∂ρhλν − ∂ν∂ρhλµ − ∂µ∂λhρν + ∂ν∂λhρµ) , (6.1)

and its Hodge dual is

∗Rµνλρ = 1
2 εµναβ R

αβ
λρ . (6.2)

The equation of motion is the vacuum Einstein equation,

Rλ
µλν = 0 , (6.3)

while the first (algebraic) and second (differential) Bianchi identities are, respectively,

Rµ[νλρ] = 0 , ∂[µRνλ]ρα = 0 . (6.4)

The duality is the invariance of the equation of motion and the Bianchi identities under(
Rµνλρ

∗Rµνλρ

)
7→
(
R′

µνλρ

∗R′
µνλρ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
Rµνλρ

∗Rµνλρ

)
. (6.5)

8As already mentioned, the apparent non-locality here is a feature of light-cone gauge. This, on top of the
lack of manifest Lorentz invariance, is the price to pay for reducing to two physical off-shell degrees of freedom.
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In terms of the (anti-)self-dual parts of the curvature,

R±
µνλρ = 1

2(Rµνλρ ∓ i ∗Rµνλρ) ⇔ ∗R±
µνλρ = ±iR±

µνλρ , (6.6)

we have the expected chiral transformation,

R±
µνλρ 7→ e±iθR±

µνλρ . (6.7)

For the non-linear problem, let us consider the light-cone action for Einstein gravity,
which can be written in terms of positive and negative helicity fields — respectively, h+ and
h−. To the first interacting order in the gravitational coupling κ, it takes the form

S[h±] =
∫
d4x

(
h−□h+ + κ h− ∂

2
u

((
∂w

∂u
h+

)2
− h+

∂2
w

∂2
u

h+

)

+ κ h+ ∂
2
u

((
∂w̄

∂u
h−

)2
− h−

∂2
w̄

∂2
u

h−

)
+ O(κ2)

)
. (6.8)

See e.g. appendix C of [55] for the derivation, including the precise origin of h± in terms
of metric components. We wrote the action here up to cubic order, but an infinite number
of vertices is expected, unlike the case of Yang-Mills theory. What is similar to Yang-Mills
theory is that the duality under h± 7→ e±iθh± fails at non-linear level. Indeed, the scattering
amplitudes violate the selection rule of helicity conservation. This is not surprising given
the KLT relations expressing the amplitudes in gravity as a ‘square’ of those in Yang-Mills
theory [56]. The most compact formula for the MHV amplitudes in gravity was given in [57].
A fact about MHV amplitudes related to our discussion is that they can be derived from the
amplitude for the helicity flip of a graviton as it crosses a self-dual spacetime background [58].

Our conclusion that the duality is broken by interactions agrees with that of ref. [8],
which worked up to cubic order in a non-covariant formalism. The procedure employed there
is not straightforward, and indeed several authors have since raised the hope that there is an
implementation of the U(1) transformation at non-linear level that exhibits the duality. The
cubic order is actually subtle in the light-cone action, because the non-local field redefinitions9

h̃± = h± + κ
1
□
∂2

u

((
∂w

∂u
h±

)2
− h±

∂2
w

∂2
u

h±

)
(6.9)

put the action (6.8) into the form

S[h̃±] =
∫
d4x

(
h̃−□ h̃+ + O(κ2)

)
. (6.10)

The duality under h̃± 7→ e±iθh̃± then appears unbroken at this order. This field redefinition
is not trivial, and indeed it eliminates the 3-point graviton amplitudes (where 1

□ would be
singular); these amplitudes, however, only have on-shell support on complex kinematics.
Despite this subtlety at 3 points, the higher-point amplitudes (higher than 4 points) settle

9Here, 1
□ is understood in terms of the Green’s function. This type of field redefinition is related to the

notion of MHV Lagrangian in Yang-Mills theory [59, 60]. The gravity story is more intricate [61].
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the question, due to helicity violation.10 The breaking of the duality by the interactions is an
inescapable conclusion: it is independent of gauge choices and field redefinitions, relying instead
on the unambiguous action of the U(1) transformation on the asymptotic scattering states.

Recently, a proposal was made in [17] (see also [18]) that the duality holds exactly, which
conflicts with our conclusion. The claim there is that there is a way to implement the U(1)
transformation that agrees with the linearised story in the appropriate limit, but applies
also non-linearly, by mapping any vacuum solution into a vacuum solution. In other words,
it is an exact symmetry of the Einstein equations. Consider the curvature 2-form Rab of a
vacuum solution. It is claimed in [17] that the result of a suitably defined U(1) transformation,
(Rab)θ, is also the curvature 2-form of a vacuum solution. This would imply that (Rab)θ

satisfies exactly, for an associated metric, all three of the crucial relations: equation of motion,
first Bianchi identity, and second Bianchi identity. Our argument implies that, for a generic
starting solution (we will discuss exceptions), this is not possible. That is, (Rab)θ is a 2-form,
but it cannot be interpreted as the curvature 2-form of a vacuum solution. Consequently,
the proposed U(1) transformation is not a map from a generic vacuum solution into another,
and it does not imply a U(1) duality symmetry in Einstein gravity.

The first instance we are aware of where the duality in linearised gravity is mentioned,
ref. [4], agrees with our conclusion, while not elaborating on a proof. It is noted there that
the Weyl spinor11 ψABCD must satisfy in vacuum the following non-linear wave equation:

□g ψABCD − 3ψ(AB
EF ψCD)EF = 0 , (6.11)

where we use □g to emphasise the non-trivial metric. The second (differential) Bianchi
identity is crucial in the derivation. Unlike the analogous Maxwell case, where the wave
equation is linear, the U(1) transformation

ψABCD 7→ eiθ ψABCD (6.12)

“does not in general give rise to new exact solutions to the field equations”, quoting [4].
This statement does not exclude the possibility of a special sector of solutions where the
U(1) transformation takes us from one exact vacuum solution to another. It turns out
that this may occur even when the second term in (6.11) is non-vanishing, because □g is
also affected by the U(1) transformation. This is the case for the family of solutions to
be discussed in the next section.

Before proceeding, let us step back and address an intuitive way in which one may have
attempted to define the duality non-linearly in gravity. Suppose that we have initial data I
for which the action of the U(1) transformation is clear, so we have the map I 7→ Iθ. One
may say that the solution evolved from the initial data I, on the one hand, and the solution
evolved from the initial data Iθ, on the other hand, are related by a U(1) transformation in

10The four-point tree amplitudes preserve helicity. Indeed, ‘MHV’ in this case is two-plus two-minus.
When early works appeared applying helicity arguments to gravity amplitudes (e.g. [62, 63]), (n > 4)-point
amplitudes were still too hard to tackle. For this reason, it was often stated that the interactions preserve
helicity. A careful reading shows that there is no contradiction.

11Using the spinorial formalism introduced in [4], the self-dual part of the curvature is R+
AȦBḂCĊDḊ

=
1
2ψABCDεȦḂεĊḊ . Note that, in that paper, ∂µ denotes the covariant derivative.
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some sense, because the two sets of initial data are. But this is not the statement that the
theory has the U(1) symmetry. For the theory to have the symmetry, the final data F(I)
obtained by evolving I and the final data F(Iθ) obtained by evolving Iθ must themselves be
mapped under the duality, i.e. F(I) 7→ F(Iθ). This is precisely the question that we have
addressed in terms of scattering amplitudes: we have proven that, generically, F(I) ̸7→ F(Iθ)
for gravity. In the language used in (4.1), this corresponds to

eiθHS|in⟩ ̸= SeiθH|in⟩ (6.13)

for generic |in⟩ states. That is, H does not generate a symmetry of the S-matrix. We
believe this argument negates the claim in [28] that the duality can be realised non-linearly
for vacuum solutions with no incoming radiation. The latter condition means the initial
data is specified by canonical multipole moments in perturbation theory, which are then
shown to transform naturally under U(1). We have argued that, generically, this is merely a
transformation of the initial data, and does not represent a symmetry of the theory, which
would require a time-evolution-compatible U(1) transformation of the final data.

7 A duality-preserving sector of gravity: vacuum type D

We have shown that the duality is broken by the interactions among gravitons. In linearised
gravity, which admits the duality as we discussed, the interactions among gravitons are
neglected. However, in linearised gravity we still consider interactions with matter, similarly
to electromagnetism. We recall that, in electromagnetism, a static dyon with electric charge
e and magnetic monopole charge g sources the field strength (4.4). This is associated to
the U(1)-invariant amplitude (4.6). Similarly, in linearised gravity, a static particle with
mass m and NUT charge n sources the linearised Taub-NUT solution.12 This is associated
to the amplitude

A = m± in√
m2 + n2

εµν
± pµ pν (7.1)

for a ‘nutty particle’ with momentum p to absorb a ± helicity graviton, εµν
± being the latter’s

polarisation tensor [20].13 By considering the duality transformation (6.5) of the linearised
Riemann tensor for the Taub-NUT solution, we can conclude that

m− in 7→ eiθ(m− in) = m′ − in′ . (7.2)

Together with the duality transformation of the graviton, this makes the amplitude (7.1)
U(1)-invariant, as expected by the duality invariance of the linearised theory.

It turns out that the Taub-NUT family of solutions, labelled by the two parameters m and
n, admits the duality at the non-linear level. In fact, this property extends straightforwardly
to the whole family of vacuum solutions of algebraic type D, labelled by four parameters
(m,n, γ, ϵ); the two parameters γ and ϵ combine to represent rotation and acceleration. The

12The notion that this solution is a gravitational dyon goes far back; see e.g. [64].
13The momentum of the ‘nutty particle’ is p =

√
m2 + n2 u, where u is the velocity.
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explicit expressions are not important for us now, but can be found in [65]. The important
point is that, for a natural choice of coordinates, the Weyl spinor takes the form

ψABCD = (m− in)α(AαBβCβD) . (7.3)

Here, the spinors αA and βA depend on the coordinates, but not on the parameters (m,n, γ, ϵ).
While the solution has four parameters, only m and n give rise to curvature. Notice that
αAβ

A ̸= 0, so the second term in (6.11) is present. Nevertheless, from this form of the Weyl
spinor, it is clear that the U(1) transformation

ψABCD 7→ eiθ ψABCD (7.4)

has the effect (7.2), which takes us from the solution with parameters (m,n, γ, ϵ) to the
solution with parameters (m′, n′, γ, ϵ). That is, it is clear in this instance that the U(1)
transformation leads to an actual curvature tensor, associated with a metric.14 As discussed
recently in e.g. [13, 15, 21, 22], this transformation into a different solution can be interpreted
as an Ehlers transformation [66, 67].

The argument we gave in the previous section against the non-linear duality is avoided
for this family of solutions. The fact that the duality holds here no doubt raised hopes that it
would hold more generally in the vacuum solution space of Einstein’s theory. These solutions
are, however, not generic solutions. They are not algebraically general in the sense of the
Petrov classification, but algebraically special — in particular, of type D, which means they
have two principal null directions, associated to αA and βA, each of multiplicity two. A
related property is that these solutions admit a double-Kerr-Schild form using complexified
coordinates [65], which means that they have features generically encountered only for
linearised solutions. Notice that the form (7.3) of the Weyl spinor is linear in m and n. The
same special characteristics allow for these exact gravity solutions to be expressed in a very
simple manner as a ‘double copy’ of the analogous solutions in electromagnetism [19, 68, 69].

We do not know what is the largest class of gravity solutions within which the duality
holds. It is clear that it includes also some sector of type N solutions. The results of
refs. [13, 15] indicate that it may include a family of algebraically general solutions, in fact
the full integrable sector of solutions characterised by stationarity and axisymmetry, where
the duality is expressed in terms of enhanced Ehlers transformations. The expectation
is that the solutions in the duality-admitting class are effectively constructible ‘without
interactions among gravitons’, which excludes situations of clear physical interest. For instance,
interactions among gravitons are crucial in the two-massive-body inspiral or scattering
problems, beyond the leading perturbative order.

8 Conclusion

We have shown that Einstein gravity does not admit a global U(1) duality symmetry analogous
to the electric-magnetic duality in Maxwell theory. This is despite the fact that the symmetry

14Had we included a cosmological constant, i.e. had we considered five parameters (m,n, γ, ϵ,Λ), these
statements would still hold, except that Λ introduces curvature too, via the Ricci tensor as opposed to the
Weyl tensor.
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is present (i) in the linearised approximation, and (ii) at non-linear level for a special sector
of solutions that notably includes vacuum type D spacetimes, where the duality is known
to rotate between mass and NUT charge.

The argument presented here will not be entirely new to some people, but we hope to
have fleshed it out for a broad audience, and we are not aware of it being applied to gravity
before. The usefulness of scattering amplitudes in gravity, including at the classical level,
is now well established; see e.g. the recent reviews [70–75], where much work is concerned
with gravitational wave physics and/or the double copy. We have given here an example of
the power of scattering amplitudes to provide a sharp gauge-invariant answer to a question
that has generated some confusion over the years.

Finally, we note that the breaking of the global ‘electric-magnetic’ U(1) symmetry by
interactions in gravity is consistent with the lore that a theory of quantum gravity should
have no global symmetries; see e.g. [76–78]. This commonly refers to symmetries of ordinary
fields such as the original electric-magnetic duality of Maxwell theory, which is anomalous
on a curved spacetime [39]. In our instance of pure Einstein gravity, the global symmetry
is broken already at the classical level. It is worth mentioning in this broader context
that, in the literature dealing with the ultraviolet behaviour of pure (super)gravities, an
explicit connection has been noticed between anomalies and ultraviolet divergences in four
dimensions; see e.g. [32–35, 79–82]. This and other developments motivate further study
of the implications of broken symmetries in gravity.
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