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Abstract—In this paper, an underdetermined three-
dimensional (3-D) near-field source localization method is
proposed, based on a two-dimensional (2-D) symmetric
nonuniform cross array. Firstly, by utilizing the symmetric
coprime array along the x-axis, a fourth-order cumulant (FOC)
based matrix is constructed, followed by vectorization operation
to form a single virtual snapshot, which is equivalent to the
received data of a virtual array observing from virtual far-field
sources, generating an increased number of degrees of freedom
(DOFs) compared to the original physical array. Meanwhile,
multiple delay lags, named as pseudo snapshots, are introduced
to address the single snapshot issue. Then, the received data of
the uniform linear array along the y-axis is similarly processed
to form another virtual array, followed by a cross-correlation
operation on the virtual array observations constructed from
the coprime array. Finally, the 2-D angles of the near-field
sources are jointly estimated by employing the recently proposed
sparse and parametric approach (SPA) and the Vandermonde
decomposition technique, eliminating the need for parameter
discretization. To estimate the range term, the conjugate
symmetry property of the signal’s autocorrelation function is
used to construct the second-order statistics based received
data with the whole array elements, and subsequently, the
one-dimensional (1-D) MUSIC algorithm is applied. Moreover,
some properties of the proposed array are analyzed. Compared
with existing algorithms, the proposed one has better estimation
performance given the same number of sensor elements, which
can work in an underdetermined and mixed sources situation, as
shown by simulation results with 3-D parameters automatically
paired.
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I. INTRODUCTION

As an important topic in array signal processing, source
localization has been applied in various fields such as radar,
sonar and wireless communications [1–7]. Recently, as com-
pared with uniform linear arrays (ULAs) [8–11], near-field
(NF) source localization based on non-uniform linear arrays
(NLAs) [12–21], which often have more degrees of freedom
(DOF) and a larger aperture given the same number of
physical elements, has attracted particular attention. However,
due to the nonlinear phase difference of the near-field signal
model, it is a challenging task to develop effective localization
algorithms for near-field sources based on NLAs.

As a representative example, in [12], a near-field mixed-
order multiple signal classification (MUSIC) localization al-
gorithm based on sparse symmetric nested arrays is proposed,
which uses the special geometry of the array to constructs a
special fourth-order cumulant (FOC) matrix, and estimates the
direction of arrival (DOA) of near-field signals based on the
traditional MUSIC algorithm, while the range term is directly
estimated from the second-order covariance matrix with the
MUSIC algorithm. Using a symmetric double-nested array
(SDNA), a mixed source localization method is introduced
for DOA estimation with an FOC-based NF matrix followed
by the spatial smoothing MUSIC (SS-MUSIC) algorithm, and
the range estimates via 1-D peak searching [13]; in addition,
several properties are analyzed for the SDNA. Based on a
compressed symmetric nested array in [14], extended arrays
are added to expand the array aperture for localization of
mixed sources in [15] with optimal array configuration, leading
to a high accuracy for DOA and range estimation. In [16], two
nested array based sparse symmetric linear arrays (SSLAs),
with closed-form sensor position expressions and an increased
number of DOFs, are proposed for mixed-source localization;
two FOC matrices are built for DOA and range estimation
by employing spectral searching methods such as MUSIC or
sparse reconstruction based ones. Treating parameter estima-
tion of mixed sources as a regression problem, the convolution
neural networks (CNN) based localization and classification
method [17] is developed, exploiting the geometry of sym-
metric nested array, which shows improvement in estimation
accuracy for both DOA and range. In [18], a symmetric
displaced coprime array is designed for localization of mixed
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sources, where the equivalent far-field virtual array model
is constructed using the FOC, and then DOA estimation is
achieved by the spatial smoothing based subspace methods or
sparse reconstruction algorithms. Finally, the DOA estimate is
substituted to obtain the range estimation.

In [19], a near-field parameter estimation algorithm based
on symmetric ULA is proposed, which can be applied to
any NLAs as long as symmetry of the array is satisfied
with respect to the origin. It utilizes second-order statistics
to construct equivalent far-field (FF) virtual received data, and
then resorts to atomic norm minimization to transform angle
estimation into a semi-positive definite programming (SDP)
problem. With the estimated angle, range estimation can be
achieved by a spectral peak function. A unified model for
mixed sources accommodating arbitrary NLAs is proposed in
[20], based on which a 2-D localization algorithm is derived
with closed-form expressions for interested parameters. For
partly calibrated NLAs with gain-phase uncertainties, three
FOC matrices are constructed in [21] and the matrix pencil
method is then applied to obtain the coarse and fine estimates
of DOA and range parameters, with the array gain-phase errors
calibrated at the end.

So far most of the research in this area is based on the
two-dimensional (2-D) near-field source model, with rather
limited attempt for the three-dimensional (3-D) case except
for the method in [22], which is designed for a single source
only. Although 2-D near-field algorithms can be extended to
the 3-D scenario with appropriate modifications, additional
matching operations are required, and furthermore, significant
increase in the number of array elements may be inevitable,
resulting in increased hardware costs. More importantly, it
should be emphasized that existing 2-D (except for Ref. [23])
or 3-D near-field source localization methods with NLAs
cannot work in the underdetermined case where the number
of sources is more than that of array elements. In [23], a
unified symmetric linear array framework is developed for
mixed sources localization from a co-array perspective, thus
resulting in increased DOFs for estimating both DOA and
range of incident signals, based on a FOC matrix of the array
output and covariance matrix, respectively.

In this paper, an underdetermined 3-D near-field source lo-
calization method is proposed employing a symmetric nonuni-
form cross array. We first exploit the FOC of the near-field
observations with multiple delay lags to construct virtual far-
field pseudo-observations, providing increased DOFs. Then,
the recently proposed sparse and parametric approach (SPA)
[24] and Vandermonde decomposition technique [25] are em-
ployed to jointly estimate the 2-D angles of the near-field
sources, eliminating the need for parameter discretization.
Finally, by resorting to conjugate symmetry property of the
signal’s autocorrelation function, the one-dimensional (1-D)
MUSIC algorithm is applied to the extended data for range
estimation.

Notations: Matrices and vectors are denoted by boldfaced
uppercase and lowercase letters, respectively. The superscripts
(·)T , (·)∗, (·)H stand for transpose, conjugate and conjugate
transpose, respectively. The notations E {·}, ⊗ and ⊙ repre-
sent the statistical expectation, Kronecker product, Khatri-Rao

(KR) product, respectively. diag {Z} gives diagonal elements
of the matrix Z. tr (·) and vec (·) denote the trace and
vectorization operation, respectively.

II. SIGNAL MODEL
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Fig. 1. 3-D localization configuration for NF sources with a symmetric
nonuniform cross array.

As shown in Fig.1, the considered array consists of three
sub-ULAs symmetric about the origin and have a common
element located at the origin. Subarray 1 and subarray 2 form
a coprime array and are both located on the x-axis, with co-
prime numbers M1 and M2 being the number of elements on
each side of the origin, respectively. The whole set of array
element positions on the x-axis is denoted as Sx. Subarray 3 is
located on the y-axis and consists of My elements. Similarly,
the set of element positions on the y-axis is denoted as Sy .
The element spacing of the three subarrays is M2d, M1d
and d, respectively, where d = λ/4 with λ being the signal
wavelength. Assume that there are K spatially and temporally
uncorrelated NF narrowband sources incident on the array. The
2-D angles of the kth source with respect to the x-axis and y-
axis are represented as αk and βk, respectively, and the range
with respect to the origin is represented as rk. Thus, the kth
source can be characterized by a parameter pair (αk, βk, rk).
At time instant t, the received data from the three subarrays
can be respectively represented as

x1(t) = A1(α, r)s(t) + n1(t), (1)

x2(t) = A2(α, r)s(t) + n2(t), (2)

y(t) = Ay(β, r)s(t) + ny(t), (3)

where A1(α, r) = [a1(α1, r1),a1(α2, r2), · · · ,a1(αK , rK)]
∈ C(2M1−1)×K , A2(α, r) = [a2(α1, r1),a2(α2, r2), · · · ,a2
(αK , rK)] ∈ C(2M2−1)×K , Ay(α, r) = [ay(β1, r1),ay(β2, r2
), · · · ,ay(βK , rK)] ∈ CMy×K are the steering matrices of the
three subarrays with each element in the corresponding column
being a1m(αk, rk) = e−jτ1m,k , a2m′(αk, rk) = e−jτ2m′,k

and ayn(βk, rk) = e−jτyn,k , respectively, where −(M1 −
1) 6 m 6 (M1 − 1), −(M2 − 1) 6 m′ 6 (M2 − 1),
−(My − 1)/2 6 n 6 (My − 1)/2, and τ1m,k, τ2m′,k, and
τyn,k represent the propagation delays of the kth source from
the 0th to the mth and the m′th sensors of subarray 1 and
subarray 2, and the nth sensor of subarray 3, respectively.
s(t) = [s1(t), s2(t), · · · , sK(t)] is the incident signal vector,
and n1(t), n2(t), and ny(t) are the corresponding additive
white Gaussian noise vectors. For convenience, in the follow-
ing, the steering matrices of the three subarrays are simplified
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into A1, A2, and Ay , respectively. Considering the k-th
column of A1, A2 and Ay , which is also referred to as steering
vectors, with the Fresnel approximation [26–28], we have

a1(αk, rk) =[e−j[−(M1−1)M2wxk+(−M1+1)2M2
2φxk],

e−j[−(M1−2)M2wxk+(−M1+2)2M2
2φxk],

· · · , e−j[(M1−1)M2wxk+(M1−1)2M2
2φxk]]T ,

(4)

a2(αk, rk) =[e−j[−(M2−1)M1wxk+(−M2+1)2M2
1φxk],

e−j[−(M2−2)M1wxk+(−M2+2)2M2
1φxk],

· · · , e−j[(M2−1)M1wxk+(M2−1)2M2
1φxk]]T ,

(5)

ay(βk, rk) =[e−j[−((My−1)/2)wyk+(−(My−1)/2)2φyk], · · · ,
1, · · · , e−j[((My−1)/2)wyk+((My−1)/2)2φyk]]T ,

(6)

where wxk = −2πd cos(αk)/λ, φxk = πd2sin2(αk)/λrk,
wyk = −2πd cos(βk)/λ, and φyk = πd2sin2(βk)/λrk.

Overall, we use x(t) to represent the array output of the
entire x-axis and z(t) the output of the entire physical array,
expressed as,

x(t) =

[
x1(t)

x2(t)

]
=

[
A1

A2

]
s(t) +

[
n1(t)

n2(t)

]
= Axs(t) + nx(t),

(7)

z(t) =

[
x(t)

y(t)

]
=

[
Ax

Ay

]
s(t) +

[
nx(t)

ny(t)

]
= Azs(t) + nz(t).

(8)

III. THE PROPOSED ALGORITHM

In this section, by jointly exploiting the spatial and temporal
information of incident signals, the FOC of array observations
is utilized to construct the virtual array data equivalent to
the far-field (FF) pseudo observations, which increases the
DOFs compared to the original physical array. The specific
construction method for the virtual FF pseudo observations is
provided as follows.

A. Construction of virtual FF data

At first, by appropriately selecting elements of the subarrays
along the x-axis, the FOC of the array output at lag τ is
calculated as follows

C1(p, q, τ) = cum{x(p, t+ τ),x∗(−p, t),

x(−q, t+ τ),x∗(q, t)}

=

K∑
k=1

e−j[2(p−q)wxk]

cum {sk(t+ τ), s∗k(t), sk(t+ τ), s∗k(t)}

=
K∑

k=1

e−j2(p−q)wxkcsk(τ),

(9)

where p, q ∈ Sx, x(p, t) represents the received data at position
p on the x-axis array at time t, and csk(τ) = cum{sk(t +

τ), s∗k(t), sk(t + τ), s∗k(t)}, is the FOC of the k-th signal at
lag τ . For each τ , vectorizing C1 yields

c1(τ) = vec(C1(:, :, τ)) = B1cs(τ), (10)

where cs(τ) = [cs1(τ), cs2(τ), · · · , csK(τ)]
T is the FOC

vector for the signal at lag τ . Here, c1(τ) can be considered
as the virtual data of FF sources, while B1 the corresponding
steering matrix.

It is evident that positions of virtual array elements are the
sum and difference set between the positions of array elements
in subarray 1 and subarray 2. As pointed out in [29], there
exist some redundant elements in the coprime array, and thus
by removing the redundancy from c1(τ), the new virtual array
received data can be expressed as

c̃1(τ) = B̃1cs(τ), (11)

where B̃1 is the new virtual array steering matrix. By uni-
formly sampling the lag τ , L pseudo snapshots are collected
for the virtual received data as

C̃1 = [c̃1(Ts), c̃1(2Ts), · · · , c̃1(LTs)] = B̃1Cs, (12)

where Cs = [cs(Ts), cs(2Ts), · · · , cs(LTs)]. Compared to the
original received data, the number of virtual array elements
corresponding to the constructed virtual FF data is greatly
increased. Furthermore, with the usage of FOC, the range term
is eliminated, which conveniently allows subsequent 2-D angle
estimation.

B. Estimate αk and βk

In order to avoid the off-grid problem in existing sparse
reconstruction based methods, the matrix reconstruction tech-
nique called SPA is used to recover a covariance matrix with
Toeplitz structure. However, due to the possibility of holes in
the above virtual FF received data, as proven in Sec. IV, its
noise-free covariance matrix may not be Toeplitz. Therefore,
directly using the virtual received data for covariance matrix
recovery requiring a Toeplitz structure may lead to a failure.
Fortunately, it can be proved that the virtual array is definitely
a redundant array (detailed proof can be found in Sec. IV),
whose co-array is equivalent to a corresponding ULA with
the same array aperture.

To proceed, denote BΣ as the co-array manifold matrix of
the virtual array observing FF sources, which has a Vander-
monde structure. Given a selection matrix Γ, the relationship
between B̃1 and BΣ can be expressed as follows

B̃1 = ΓBΣ, (13)

where Γ is a P × Q matrix, P is the number of elements
in the virtual array, and Q is the number of elements in the
corresponding co-array.

Therefore, by calculating the covariance matrix of C̃1 with
the help of (13), we have

R1 = E
{
C̃1C̃

H
1

}
= B̃1CsC

H
s B̃H

1

= B̃1PB̃
H

1

= ΓBΣPBH
ΣΓH ,

(14)
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where P is a diagonal matrix with all its diagonal elements
being non-negative. Define RΣ = BΣPBH

Σ , and since BΣ

is a Vandermonde matrix, RΣ is Toeplitz. Although R1

may not necessarily be a Toeplitz matrix, it encompasses all
the elements present in RΣ by introducing an appropriate
selection matrix Γ for the symmetric coprime array.

In order to estimate 2-D angles simultaneously, we further
utilize the received data from subarray 3 to construct another
virtual array received data, i.e.,

C2(u, v, τ) = cum{y(u, t+ τ),y∗(−u, t),

y(−v, t+ τ),y∗(v, t)}

=
K∑

k=1

e−j2(u−v)wykcsk(τ),

(15)

where u, v ∈ {−(My − 1)/2, · · · , 0, · · · , (My − 1)/2}.
Expressing (15) in a matrix form, and then applying vector-

ization together with redundancy-removal operations, we have

c2(τ) = B2cs(τ), (16)

where B2 = [b21,b22, · · · ,b2K ] is the virtual array
manifold matrix constructed by subarray 3, and b2k =
[e−j2(−(My−1))wyk , e−j2(−(My−2))wyk , · · · , e−j2(My−1)wyk ]
denotes the steering vector corresponding to the kth column
of B2. Similar to (12), L pseudo snapshots of the virtual
received data can be obtained as

C2 = [c2(Ts), c2(2Ts), · · · , c2(LTs)] = B2Cs, (17)

where the manifold matrix B2 of the virtual received data
C2 is of Vandermonde form, and thus its covariance matrix
possesses a Toeplitz structure. Then, to construct a two-level
Toeplitz matrix by performing cross-correlation and vectoriza-
tion operations on C̃1 and C2, one can obtain

r1 = vec(E{C2C̃
H
1 }) = (B̃∗

1 ⊙B2)rcs = D1rcs, (18)

where rcs is a vector formed by the diagonal elements of
the covariance matrix of Cs. Since B̃∗

1 may not necessarily
be a Vandermonde matrix, D1 may not possess a two-level
Vandermonde structure. Therefore, substitute (13) to (18),
leading to

r1 = (B̃∗
1 ⊙B2)rcs

= (ΓB∗
Σ ⊙B2)rcs

= [Γb∗
Σ1 ⊗ b21, · · · ,Γb∗

ΣK ⊗ b2K ]rcs

= [Γb∗
Σ1 ⊗ I(2My−1)×(2My−1)b21, · · · ,Γb∗

ΣK⊗
I(2My−1)×(2My−1)b2K ]rcs

= [(Γ⊗ I(2My−1)×(2My−1))(b
∗
Σ1 ⊗ b21), · · · ,

(Γ⊗ I(2My−1)×(2My−1))(b
∗
ΣK ⊗ b2K)]rcs

= (Γ⊗ I(2My−1)×(2My−1))(B
∗
Σ ⊙B2)rcs

= ΓΣ(B
∗
Σ ⊙B2)rcs,

(19)

where I(2My−1)×(2My−1) is an identity matrix, ΓΣ = (Γ ⊗
I(2My−1)×(2My−1)) is a selection matrix, and bΣk represents
the kth column of BΣ. The covariance matrix of r1 can be
calculated as follows

R2 = E{r1rH1 } = ΓΣTΣΓ
H
Σ , (20)

where TΣ = (B∗
Σ ⊙ B2)rcsr

H
cs(B

∗
Σ ⊙B2)

H is a two-level
Toeplitz matrix. Similar to (14) for the non-Toeplitz case,
although R2 may not be a two-level Toeplitz matrix, it
contains all the elements of the two-level Toeplitz matrix TΣ,
which is used for 2-D angle estimation.

In practice, as the number of snapshots is limited, the FOC-
based covariance matrix R2 is obtained through maximum
likelihood estimation using the sample data. Then, matrix
recovery techniques are required to recover the Toeplitz form
of the matrix TΣ. Here, the SPA [24], which could carry
out parameter estimation in the continuous range without dis-
cretization, is utilized to recover the corresponding noiseless
matrix of TΣ. The optimization is formulated as follows

min
w,TΣ

||r1||22w + tr[TΣ]

s.t.

[
w rH1

r1 TΣ

]
> 0 .

(21)

After TΣ is obtained by using the SDP solver, the Van-
dermonde decomposition technique called matrix pencil and
pairing (MaPP) [25] is applied for the two-level Toeplitz
matrix TΣ to obtain the estimates for the automatically paired
angles α̂ and β̂. The theorem of MaPP is restated below.

Theorem 1 ([25]): Given a positive semi-definite two-level
Toeplitz matrix TΣ with rank(TΣ) < min{Mx,My}, where
Mx and My denote the total number of array elements on x-
axis and y-axis, respectively, TΣ can be uniquely decomposed
as

TΣ =
K∑

k=1

pk(ax(−αk)a
H
x (−αk))⊗ (ay(βk)a

H
y (βk)), (22)

where pk > 0.
Remark 1: It should be noted that, although the above

theorem is valid when rank(TΣ) < min{Mx,My}, it is
shown in [25] that when rank(TΣ) > min{Mx,My}, the
correct decomposition can also be found with large probability.

C. Estimate rk

In this part, the range parameters are estimated by fully
utilizing the spatial-temporal information of the signals, which
also works in underdetermined scenarios. Applying the cross-
correlation operation to the observation of each physical
element and that of the origin element, one can have

rz(τ) = E
{
z(t+ τ)zH0 (t)

}
= Azrs (τ) , (23)

rz(−τ) = E
{
z(t)zH0 (t+ τ)

}
= Azrs (−τ) , (24)

where z0 (t) represents the observation at the origin element
at time t, and rs (τ) = diag

{
E
{
s (t+ τ) sH (t)

}}
. Since

rs (τ) = r∗s (−τ), we obtain

r∗z(−τ) = (Azrs (−τ))
∗
= A∗

zr
∗
s (−τ) = A∗

zrs (τ) . (25)

Then, cascading rz(τ) and r∗z(−τ) by column, a new
column is constructed as follows

r̃z(τ) =

[
rz(τ)

r∗z(−τ)

]
=

[
Az

A∗
z

]
rs (τ) = Ãzrs (τ) . (26)
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Similar to (12), by uniformly sampling lag τ , the L pseudo
snapshots data matrix R̃z(τ) is obtained as

R̃z = [̃rz(Ts), r̃z(2Ts), · · · , r̃z(LTs)] = ÃzRs, (27)

where Rs = [rs(Ts), rs(2Ts), · · · , rs(LTs)]. By applying
the 1-D MUSIC algorithm to R̃z and then conducting 1-D
peak search related to the range parameter by substituting the
estimated 2-D angles, estimation of the range parameters is
then achieved.

The proposed algorithm is summarized as follows.

Proposed Algorithm
Input: T snapshots of array observations x(t) and y(t) (t = 1, · · · , T ).

Output: 3-D parameters (αk , βk and rk) of the k-th NF signal.

1. Construct virtual FF observation of C1 on x-axis by exploiting the FOC.

2. Vectorize on virtual array observation and then remove the redundancy
to get C̃1 with L pseudo snapshots.

3. Apply a similar process on y-axis to obtain C2.

4. Perform cross-correlation operation on C̃1 and C2 to obtain single
snapshot data r1.

5. Apply SPA and MaPP on r1 to estimate αk and βk .

6. Construct the second-order statistics R̃z and apply 1-D MUSIC to
estimate rk .

IV. ANALYSIS OF THE PROPERTIES OF THE PROPOSED
ARRAY

As shown in Fig. 1, the position set of the symmetric co-
prime array in x-axis can be represented as

Sx ={m1M2d,−(M1 − 1) 6 m1 6 (M1 − 1)}∪
{m2M1d,−(M2 − 1) 6 m2 6 (M2 − 1)},

(28)

where according to (9), the position set of the corresponding
virtual array can be obtained as

V = {ui − uj |ui, uj ∈ Sx, i, j = 1, 2, · · · , 2(M1 +M2)− 3}.
(29)

Obviously, the element positions set in (29) is the difference
co-array (DCA) set of the physical element positions, which
can be divided into two parts: one part is the FOC-based
self-DCA sets, denoted as Ls1 and Ls2, of subarray 1 and
subarray 2 respectively, and the other part is the FOC-based
cross-DCA set Lc between the above two subarrays. Thus, V
can be rewritten as the union of the three subsets as follows

V = Ls1 ∪ Ls2 ∪ Lc, (30)

where Ls1 = {ℓs1|ℓs1 = (k1−k2)M2d,−(M1−1) 6 k1, k2 6
(M1 − 1)}, Ls2 = {ℓs2|ℓs2 = (k1 − k2)M1d,−(M2 − 1) 6
k1, k2 6 (M2 − 1)}, Lc = {ℓc|ℓc = (k1M2 − k2M1)d, |k1| 6
(M1 − 1), |k2| 6 (M2 − 1)}.

The subsets Ls1 and Ls2 can be equivalently represented as

Ls1 = {ℓs1|ℓs1 = mM2d,−2(M1 − 1) 6 m 6 2(M1 − 1)},
(31)

Ls2 = {ℓs2|ℓs2 = nM1d,−2(M2 − 1) 6 n 6 2(M2 − 1)}.
(32)

It can be seen from (31) and (32) that the virtual array
aperture of the two subarrays is twice that of the physical
subarrays, but there are holes in the co-array set united Ls1

with Ls2, and the subset Lc also should be considered.

A. The properties and related proof of Lc

Proposition 1:
a) Lc is symmetric about the origin.
Proof: Assume that 0 6 k1 6 (M1−1), −(M2−1) 6 k2 6

(M2 − 1), we have:

ℓ′c1 = k1M2 − k2M1. (33)

Then, when −(M1 − 1) 6 k3 6 0, let k4 = −k2, and we
obtain

ℓ′c2 = k3M2 − k4M1

= −k1M2 − k4M1

= −k1M2 − (−k2M1)

= k2M1 − k1M2.

(34)

It can be seen from (33) and (34) that the values of the sets
ℓ′c1 and ℓ′c2 are symmetric about the origin, so Lc is symmetric
about the origin.

b) The number of different elements of Lc is (2M1 −
1)(2M2 − 1)− (M1 − 1)(M2 − 1).

Proof: Define k1, k2, k3 and k4, which satisfy −(M1−1) 6
k1, k3 6 (M1−1), −(M2−1) 6 k2, k4 6 (M2−1), k1 ̸= k3,
k2 ̸= k4. Assume that k1M2 − k2M1 = k3M2 − k4M1, and
we can get

M1

M2
=

k1 − k3
k2 − k4

. (35)

With the range of values for k1, k2, k3 and k4, one can
easily obtain that −2(M1 − 1) 6 k1 − k3 6 2(M1 − 1),
−2(M2 − 1) 6 k2 − k4 6 2(M2 − 1). Since M1 and M2

are co-prime, (35) holds only if the following equations are
satisfied,

k1 − k3 = M1, k2 − k4 = M2, (36)

k1 − k3 = −M1, k2 − k4 = −M2. (37)

The values of each parameter that satisfy (36) are 1 6 k1 6
M1−1, k3 = k1−M1, 1 6 k2 6 M2−1, k4 = k2−M2, where
there are a total of (M1 − 1)(M2 − 1) combinations. Further-
more, it is easy to know that the combinations satisfying (37)
are the same as (36). Obviously, the total number of elements
(including duplicate elements) in Lc is (2M1 − 1)(2M2 − 1),
and by removing duplicate elements, the number of different
elements is (2M1 − 1)(2M2 − 1)− (M1 − 1)(M2 − 1).

c) Lc contains all integer multiples of d in the range of
−(M1M2 − 1)d 6 ℓc 6 (M1M2 − 1)d.

Proof: The above sub-proposition can be
transformed into another formulation: given any
integer ℓc ∈ [−(M1M2 − 1),M1M2 − 1], we can find
−(M1 − 1) 6 k1 6 (M1 − 1), −(M2 − 1) 6 k2 6 (M2 − 1),
satisfying ℓc = k1M2 − k2M1.

As proven earlier, the range of ℓc is symmetric about the
origin, so one has only to prove that given any integer ℓ′c1 ∈
[0,M1M2 − 1], we can find 0 6 k1 6 (M1−1), −(M2−1) 6
k2 6 (M2 − 1), satisfying ℓ′c1 = k1M2 − k2M1. Rewrite
ℓ′c1 = k1M2 − k2M1 as follows

k2M1 = k1M2 − ℓc1, (38)

and substituting 0 6 k1 6 (M1−1) and ℓ′c1 ∈ [0,M1M2 − 1]
into (38), we have −(M1M2 − 1) 6 k2M1 6 (M1 − 1)M2,
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and further infer that −M1M2 < k2M1 < M1M2, finally get
−M2 < k2 < M2.

d) − [2M1M2 − (M1 +M2)] d 6 ℓc 6
[2M1M2 − (M1 +M2)] d is the element range of Lc.

Proof: When k1 = −(M1 − 1), k2 = M2 − 1, ℓc provides
the minimum value of − [2M1M2 − (M1 +M2)]. When k1 =
M1 − 1, k2 = −(M2 − 1), ℓc reaches the maximum value of
2M1M2 − (M1 +M2).

e) In the positive half of Lc, M1M2 + aM1 + bM2, a >
0, b > 0 is the hole position.

Proof: Assume that ℓc = k1M2−k2M1 = M1M2+aM1+
bM2, a > 0, b > 0, −(M1−1) 6 k1 6 (M1−1), −(M2−1) 6
k2 6 (M2 − 1), we can get

M1

M2
=

k1 − b

M2 + k2 + a
. (39)

Since k1 − b 6 M1 − 1, M2 + k2 + a > 1 and M1, M2

are co-prime, (39) does not hold, and in turn, we get the hole
position in Lc.

B. The properties and related proof of V

Proposition 2:
a) The minimum continuous element position range of

V is [−M1M2d,M1M2d].
Proof: Since Ls1 and Ls2 contain elements −M1M2d and

M1M2d, respectively, and combined with Proposition 1-c, it
can be seen that the continuous element position range of V
is [−M1M2d,M1M2d].

b) The total number of elements in V is 3M1M2+(M1+
M2)− 6.

Proof: According to Proposition 1-c, we know
that the subset of Ls1 and Ls2 within the range
of [−(M1M2 − 1)d, (M1M2 − 1)d] is a subset
of Lc. Then, assuming that Ls1 and Ls2 have
the same elements as Lc within the range of
((M1M2 − 1)d,max{2(M1 − 1)M2d, 2(M2 − 1)M1d}],
the following results can be obtained

mM2 = k1M2 − k2M1,M1 6 m 6 2(M1 − 1)

nM1 = k3M2 − k4M1,M2 6 n 6 2(M2 − 1).
(40)

By simply transforming the above equation, we obtain

M1

M2
=

k1 −m

k2
M1

M2
=

k3
k4 − n

.

(41)

Since −(M1 − 1) 6 k1, k3 6 (M1 − 1) and −(M2 − 1) 6
k2, k4 6 (M2 − 1), it is easy to obtain that k1 − m <
0, k2 > −(M2 − 1), k3 > −(M1 − 1), k4 − n < 0.
Recall that M1 and M2 are co-prime, and thus, (41) does
not hold, according to which, we can infer that Ls1 and
Ls2 do not have the same elements as Lc in the range of
((M1M2 − 1)d,max{2(M1 − 1)M2d, 2(M2 − 1)M1d}].

Above all, the total number of non-redundant elements in
the virtual array is given as follows

(2M1 − 1)(2M2 − 1)− (M1 − 1)(M2 − 1)︸ ︷︷ ︸
cross-DCA

+ 2(M1 − 1) + 2(M2 − 1)− 2︸ ︷︷ ︸
self-DCA

= 3M1M2 + (M1 +M2)− 6.

(42)

Proposition 3: The Virtual array V is a redundant array.
Proof: The proof of proposition 3 can be converted to prove

that the co-array of the virtual array V is equivalent to a ULA
with the same array aperture. First, we give the co-array set
of V as follows

ΣV = {ℓV |ℓV = m1 −m2 + 1,m1,m2 ∈ V,m1 > m2} .
(43)

According to the properties of Lc and V in Proposition 1-
e and Proposition 2-a, it can be inferred that the set of hole
positions on the positive half of the virtual array V is

H+ =
{
ℓ+h |M1M2d < ℓ+h <

max{2(M1 − 1)M2d, 2(M2 − 1)M1d}} .
(44)

Consider a subset of ΣV , called Σ′
V , as follows

Σ′
V = {ℓ′V |ℓ′V = m1 −m2 + 1,m1 = ∆,

0 < m2 6 M1M2d} ,
(45)

where ∆ = max{2(M1 − 1)M2d, 2(M2 − 1)M1d}. It is easy
to obtain

Σ′
V = {ℓ′V |∆−M1M2d+ 1 6 ℓ′V 6 ∆}
= {ℓ′V |M1M2d−min {2M1d, 2M2d}+ 1 6 ℓ′V 6 ∆} .

(46)

Combining (44-46), one can attain

H+ ⊆ Σ′
V ⊆ ΣV . (47)

Similarly, it can be proven that the set of hole positions H−

on the negative half of the virtual array is a subset of ΣV .
Therefore, the virtual array V is a redundant array.

For better understanding, an array example is given, as
shown in Fig. 2, with M1 = 5 and M2 = 3.

V. PERFORMANCE ANALYSIS

A. Cramér-Rao Lower Bound

At first, we analyze the Cramér-Rao Lower Bound (CRLB)
and derive the closed-form expression for the 2-D angle and
range parameters of near-field sources. The specific process is
detailed as follows.

According to (8), the covariance matrix can be calculated
as follows:

Rc = E{ZZH} = AzPsA
H
z + σ2I, (48)

where Z = [z(1), z(2), · · · , z(T )], Ps = SSH with S =
[s(1), s(2), · · · , s(T )], and I is an identity matrix of dimension
2(M1 +M2) +My − 3.
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Fig. 2. An array example with M1 = 5, and M2 = 3.

Then, define a vector of unknown parameters as ξ =
[αT ,βT , rT ,pT

s , σ
2]T with α = [α1, α2, · · · , αK ]T , β =

[β1, β2, · · · , βK ]T , r = [r1, r2, · · · , rK ]T and ps =
[Ps(1, 1),Ps(2, 2), · · · ,Ps(K,K)].

The CRLB is obtained by the Fisher information matrix
(FIM) whose (i, j)-th element is given by [30],

FIMi,j = T tr
[
∂Rc

∂ξi
R−1

c

∂Rc

∂ξj
R−1

c

]
, (49)

where T denotes the number of snapshots and ξi denotes the
i-th entry of ξ. Then, by performing vectorization operation
on Rc, one can obtain

q = vec(Rc) = (A∗
z ⊙Az)p+ σ2i, (50)

where p = vec(P) and i = vec(I).
Therefore, the FIM can be rewritten as

FIM = T

[
∂q

∂ξ

]H
(RT

c ⊗Rc)
−1 ∂q

∂ξ
. (51)

According to the definition of ξ, we have

∂q

∂ξ
= [

∂q

∂α
,
∂q

∂β
,
∂q

∂r
,
∂q

∂ps
,
∂q

∂σ2
]

= [Aα
z Ps,A

β
zPs,A

r
zPs,A

∗
z ⊙Az, i]

= [ÃzP̃s,A
∗
z ⊙Az, i],

(52)

where Ãz = [Aα
z ,A

β
z ,A

r
z], P̃s = I3×3⊗Ps, in which Aα

z =
∂A∗

∂α ⊙ A + A∗ ⊙ ∂A
∂α , Aβ

z = ∂A∗

∂β ⊙ A + A∗ ⊙ ∂A
∂β , Ar

z =
∂A∗

∂r ⊙A+A∗ ⊙ ∂A
∂r . To obtain the CRLB of the 2-D angles

and ranges, we define η =
[
αT ,βT , rT

]
, γ = [pT

s , σ
2]T and

let

Qη =
(
RT ⊗R

)− 1
2 ÃzP̃s

Qγ =
(
RT ⊗R

)− 1
2 [A∗

z ⊙Az, i].
(53)

Furthermore, the FIM can be changed to

FIM = T

[
QH

η
Q

η
QH

η
Q

γ

Q
η
QH

γ
Q

γ
QH

γ

]
. (54)

Finally, the CRLB of 2-D angles and ranges can be obtained
as

CRLBη =
1

T

(
QH

η
Π⊥

Qγ
Qη

)−1

, (55)

where Π⊥
Qγ

= I−Q
γ
(QH

γ
Q

γ
)−1QH

γ
.

B. Complexity Analysis

In this part, the complexity of the proposed algorithm
and the comparison algorithms is analyzed. The complexity
evaluation primarily focuses on the following components:
1) the construction of the virtual array; 2) computation of
the covariance matrix; 3) Eigenvalue Decomposition (EVD);
4) spectral peak search; and 5) the optimization process.
Here, define the search interval of α as ∆θα, the search
interval of β as ∆θβ , and the search interval of r as ∆r. Let
Ran = 2D2/λ − 0.62

√
(D3/λ) represents the search range,

where D denotes array aperture, and DoF represents the
degrees of freedom of the virtual array. Then, the complexity
of all algorithms can be obtained, as shown in Table. I.

TABLE I
SUMMARY OF ALGORITHMS’ COMPLEXITY

Methods Complexity

Proposed O{9(2 (M1 +M2)− 3)2KL + 81KL +
5DoF ∗ L + (5DoF )2K + K2(5DoF )2.5 +
2 (2(M1 +M2)− 1)L + (2 (2(M1 +M2)− 1))2L +
(2 (2(M1 +M2)− 1))3(2 (2(M1 +M2)− 1))2Ran/∆r}

Wu O{27 (2 (M1 +M2)− 3) + K2(3 (2 (M1 +M2)− 3))2.5 +
(3 (2 (M1 +M2)− 3))2K + π(2 (M1 +M2)− 1)2/∆r +
K3}

Challa O{9(2 (M1 +M2)− 3)2KL + (2 (M1 +M2)− 3)5 +
2(2 (M1 +M2)− 3)2L + (2 (M1 +M2)− 3)3 + 81KL +
18L}

Deng O{2 (2 (M1 +M2)− 4)L + (2 (M1 +M2)− 4)3 +
2 (2 (M1 +M2)− 3)L+ (2 (M1 +M2)− 3)3}

TSMUSIC O{9(2 (M1 +M2 − 1) + 1)2K +
9(4 (M1 +M2 − 1) + 1)2K +
(2 (M1 +M2 − 1) + 1)3 + (2 (M1 +M2 − 1) + 1)3 +
(2 (M1 +M2 − 1) + 1)2π/∆θα + 81K + 225K + 9π/∆θβ}

Chen O{NxNy(T − L + 1)(2L − 1) + (2NxNy)2(2L − 1) +
4/3(2NxNy)3+πNx(Ny +1)(2NxNy)2/∆θβ +πK · (Nx+
1)(Ny + 1)2Nx(NxNy)/∆θα + Ran ·K(2NxNy)2/∆r}

VI. SIMULATION RESULTS

Simulations are conducted to demonstrate the performance
of the proposed method in comparison with Chen’s method
[28], TSMUSIC [31], Wu’s algorithm [32], Challa’s algorithm
[33], and Deng’s algorithm [34]. The impinging non-Gaussian
source signals are modelled as ejφt , where φt are uniformly
distributed in [0, 2π]. The inter-element spacing is set to λ/4
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TABLE II
RUNTIME COMPARISON.

Proposed TSMUSIC Challa Deng Wu Chen

Runtime(s) 17.7883 0.5439 1.4202 0.0014 1.6572 5.7863
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Fig. 3. 3-D scattergram of the estimated 10 NF sources.

, and the noise is assumed to be additive white Gaussian with
power σ2

w. All NF signals are of equal power σ2
s , and the

signal-to-noise ratio (SNR) is defined as 10log10
(
σ2
s/σ

2
w

)
.

Define the estimation root-mean-square error (RMSE) from
Mc Monte Carlo trials as:

RMSE =

√√√√ 1

McK

Mc∑
mc=1

K∑
k=1

(
x̂
(mc)
k − xk

)2

. (56)

Firstly, the underdetermined case is considered, where
there are 10 narrowband NF signals parameterized by {(23◦,
16◦, 9.00λ), (44◦, 42◦, 8.2263λ), (59◦, 58◦, 7.4526λ), (72◦,
71◦, 6.6788λ), (84◦, 84◦, 5.9051λ), (96◦, 96◦, 5.1314λ),
(108◦, 109◦, 4.3577λ), (121◦, 122◦, 3.5840λ), (136◦, 138◦,
2.8130λ), (157◦, 164◦, 2.0365λ)}, incident on the array with
9 elements in total (M1 = 2,M2 = 3,My = 3). The SNR
is set to 30dB, and the total number of snapshots is 5000
with pseudo snapshots being 100. The number of Monte
Carlo trials is 100. The simulation results are shown in
Fig. 3, where it can be seen that the 2-D angles and range
parameters of the 10 signals have been successfully identified
and correctly paired, showing that the proposed method is
effective for underdetermined estimation.

Secondly, the performance in terms of RMSE versus
SNR is investigated, where two NF signals arrive from
{(80◦, 70◦, 1.8λ), (130◦, 140◦, 2.3λ)}. Except for Challa’s al-
gorithm, the other ones have a total of 11 array elements.
TSMUSIC, Deng’s algorithm, and Wu’s algorithm all adopt a
symmetric ULA with 7 elements on the x-axis and 5 elements
on the y-axis, for the proposed, we set M1 = 2,M2 =
3,My = 5. Challa’s algorithm requires an even number of
elements along both axes, so in the simulation, it employs a
ULA with 8 elements on the x-axis and 6 elements on the
y-axis. The total number of snapshots is 1100, the number of
pseudo snapshots of the proposed algorithm, Deng’s algorithm,

and Challa’s algorithm is all set to 100, and the SNR varies
from 0dB to 30dB. The results are shown in Fig. 4.

It can be observed that the estimation performance of the
proposed algorithm for both angle α and range parameters is
significantly better than the compared algorithms. For angle β,
the proposed algorithm is better than Deng’s algorithm, and is
similar to Challa’s algorithm, Wu’s algorithm and TSMUSIC,
but slightly worse than Chen’s algorithm. This is because the
proposed algorithm generates 2M − 1 virtual elements along
the y-axis, one less than the 2M virtual elements generated
by the Chen’s algorithm. This difference accounts for the
slightly superior performance observed with Chen’s algorithm,
as the extra virtual element enhances its estimation capability.
In addition, it should be noted that, for the estimation of β,
Chen’s method is found to tightly follow the CRLB or even
coincident. This is because, in this paper, we derive CRLB
based on coarray for the considered nonuniform cross array,
while Chen’s method uses uniform cross arrays. Thus, the
derived CRLB is not the benchmark for Chen’s method.

In the third part, the influence of the number of snapshots on
estimation performance is studied. Except for the number of
snapshots and SNR, the other parameters are consistent with
the second simulation. Here, SNR = 5dB, and the number of
snapshots varies from 200 to 5000. The results are shown in
Fig. 5. It can be observed that for the first angle parameter
α and range parameter, the proposed algorithm outperforms
all the others, while for the second angle parameter β, the
proposed algorithm is superior to Deng’s algorithm, Wu’s
algorithm and TSMUSIC, and is similar to Challa’s algorithm,
but slightly worse than Chen’s algorithm.

In the fourth part, the influence of range separation on
estimation performance is studied. The parameter settings are
the same as the second simulation, except that the SNR is fixed
at 5dB, the initial range of the second source becomes the same
as the first one, and the range separation ∆λ of the second
source varies from 0 to 1.3λ. The results are shown in Fig.
6. It can be found that for 2-D angle parameters, the increase
of range separation has a little influence on estimation perfor-
mance. For range item, the estimation performance declines
as the range separation increases. In addition, the proposed
algorithm is superior to other comparison algorithms in terms
of α and range parameters. However, for β, it performs slightly
worse than Chen’s algorithm.

In the fifth part, the runtime comparison of all algorithms
is examined. The parameter settings are same as the second
simulation, except that the SNR is fixed at 20dB and the
number of snapshots is 2000. The results are shown in Table.
II. It can be found that the runtime of the proposed algorithm
is slightly higher than that of other comparison algorithms.
This is mainly because the proposed algorithm involves high-



9

0 10 20 30
SNR(dB)

10-3

10-2

10-1

100

101

R
M

S
E

(d
e
g

re
e
)

 estimation

(a) RMSE-α

0 10 20 30
SNR(dB)

10-2

10-1

100

101

R
M

S
E

(d
e

g
re

e
)

 estimation

(b) RMSE-β

0 10 20 30
SNR(dB)

10-3

10-2

10-1

R
M

S
E

(w
a

v
e

le
n

g
th

)

r estimation
Proposed
TSMUSIC
Challa
Deng
Wu
Chen
CRLB

(c) RMSE-r
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Fig. 5. RMSE versus the number of snapshots.

order cumulants construction, optimization operations for an-
gle solution and spectral peak search procedures. Although
having higher complexity, the proposed method has superior
estimation performance to the other methods.

Finally, we consider the scenario with mixed N-
F and FF sources. Except for the interested parameter-
s of the incoming sources, all other configuration pa-
rameters are the same as the first simulation. In this
part, the number of near-field sources is set to 7,
with parameters {(72◦, 72◦, 9.0000λ), (84◦, 84◦, 7.8394λ),
(96◦, 96◦, 6.6788λ), (108◦, 108◦, 5.5183λ), (121◦, 121◦,
4.3577λ), (136◦, 136◦, 3.1971λ), (157◦, 157◦, 2.0365λ)}; the
number of far-field sources is set to 3, with parameters
{(23◦, 23◦), (44◦, 44◦), (59◦, 59◦)}. The results are shown
in Fig. 7. Clearly, the angles of all 10 mixed sources have
been correctly identified. Additionally, Fig. 7(b) demonstrates
that the ranges of near-field sources have also been effectively
estimated. Furthermore, all the mentioned parameters are
correctly paired. So the proposed algorithm can still work in
the mixed source scenario.

VII. CONCLUSION

A near-field 3-D parameter estimation algorithm based on a
symmetric nonuniform cross array has been proposed, which

fully utilizes the spatial-temporal information of the received
signals. With FOC, the virtual array data is constructed that
is equivalent to far-field pseudo observations. Then, SPA
and two-level Toeplitz matrix decomposition techniques are
introduced to achieve estimation of 2-D angles with increased
DOFs in the virtual array. Finally, by exploiting the conjugate
symmetry property of the signal’s autocorrelation function, an-
other set of virtual array data containing the range parameters
is generated, and the range parameters are estimated using
the 1-D MUSIC algorithm. As demonstrated by simulation
results, the proposed algorithm can achieve underdetermined
3-D parameter estimation that is automatically paired, and it
outperforms four representative existing algorithms.
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