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SUMMARY
The phenotypic impact of genetic variation of repetitive features in the human genome is currently under-
studied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components
of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank
(UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White
British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes,
such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar
trends are observed in other ancestries. A range of analyses argue against reverse causality or common
confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates
that rDNA CN is a genetic influence on trait variance in humans.
INTRODUCTION

Genome-scale analyses have revolutionized our knowledge

of the genetic architecture of common complex human traits.

However, in most cases only a small proportion of the genetic

component of trait variation has thus far been explained.

Although rare genetic variation in the single-copy portion of the

genomewill undoubtedly be amajor contributor to the remaining

genetic component, a key limitation of most previous genetic as-

sociation studies is that repetitive/multi-copy features have been

ignored. This is now beginning to change with the recent avail-

ability of large-scale whole-genome sequencing (WGS)-based

datasets, enabling more powerful and systematic investigations

of how genetic variation within repetitive/multi-copy genomic

features—such as variable nucleotide tandem repeats,1 short

tandem repeats,2 telomeres,3 and mitochondrial DNA4—

contribute to human traits.

Another key repetitive genomic feature is the multi-copy,

multi-locus 47S ribosomal DNA (rDNA) that codes for the 18S,

5.8S, and 28S ribosomal RNAs (rRNAs), thereby playing a central

role in cellular function (Figure 1A). The 47S rDNA displays

substantial inter-individual genetic variation in the form of CN

(�100–600 copies) and single-nucleotide variants (SNVs) in hu-

man populations.5,6 In fact, rDNA genetic variation is found in

most, if not all, species. The consequences of genetic variation

within the rDNA are better understood in non-mammalian organ-

isms, such as bacteria, in which specific copies of rDNA influ-
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ence the stress response,7,8 yeast, in which rDNA CN is thought

to influence lifespan,9 and Drosophila, in which rDNA CNmay in-

fluence gene expression in the rest of the genome.10 Thus far,

studies that have attempted to study associations between

rDNA genetic variation and human non-malignant phenotypes

have been hampered by small sample sizes,11–13 and/or profiling

methods that are likely semi-quantitative.14,15 Although associa-

tions between rDNA genetic variation and phenotype were found

in some cases, the statistical evidencewas not robust, at least by

current GWAS standards. The only study to date that used sam-

ple numbers similar to those typically considered in recent

GWASs analyzed rDNA CN variation in 7,268 individuals but

did not find an association with autism spectrum disorder, the

only phenotype that was studied.16 Although robust rDNA CN

changes have been reported for cancer, these are almost

certainly a consequence of the cancer state, without any clear

genetic evidence of being involved in the pathogenesis.17,18

Therefore, strong evidence for rDNA-associated genetic varia-

tion impacting human traits is, as yet, lacking.

rDNA is not represented on currently available commercial

array or exome capture platforms. Methods that do allow quan-

titative analysis of rDNA genetic variation in large sample

numbers include digital-droplet PCR and high-depth WGS.

Recently, the UK Biobank (UKB)—a population-based cohort

of approximately half a million participants associated with a

large amount of phenotypic and genomic data—released

�303 coverage WGS data for a total of �490,505 participants
une 12, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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in two separate releases (200,004 in November 2021 and

290,501 in December 2023).20–22 Although most diseases are

under-represented in the UKB, and the majority of individuals

are of White British (WB) ancestry, the UKB WGS dataset is still

an unprecedented opportunity to study the potential influence of

rDNA genetic variation on human phenotypes. Here, we present

a systematic analysis of rDNA CN variation, and its association

with common human traits, in the UKB.

RESULTS

Core influences on rDNA CN calls in the UKB
To provide a manageable focus for our study, and given evi-

dence of genetic variation from previous literature,5,6 we limited

analyses to 47S rDNA CN. The UKBWGS data are provided pre-

aligned to the Hg38 reference assembly, and re-aligning the data

to a tailored assembly that includes a 47S rDNA consensus

sequence is unfeasible in terms of cost and time.5,7,16,19 We

therefore developed a proxy estimation method for 47S rDNA

CN that leverages various rDNA analogues present as pseudo-

copies and unplaced contigs in Hg38, particularly from the highly

conserved 18S subunit (Figure S1; STAR Methods). Validation in

94WB individuals from the 1000 Genomes Project yielded highly

correlated rDNA CN estimates between the proxy and tailored

assembly methods (Figure 1B; Pearson’s R = 0.97, p = 6.5 3

10�56), and absolute 47S rDNA copies per individual derived

from these proxy estimates on UKB WB individuals are within

the ranges previously reported in the 1000 Genomes Project16

(Figure 1C). In addition, we and others have previously shown

that WGS-based rDNA CN estimates correlate strongly with

those derived from orthogonal ddPCR measurements.5,19

A potential technical influence on WGS-based rDNA CN calls

is sequencing center-associated effects.16 The first release of

UKB WGS data was generated in three batches at two different

sequencing centers: ‘‘Sanger Vanguard,’’ ‘‘Sanger,’’ and

‘‘deCODE.’’ Indeed, we found that Sanger Vanguard and Sanger

estimates display a higher mean relative to deCODE estimates

(Figure 1D). Therefore, for subsequent analyses we either com-

bined the Sanger releases and performed analyses on the

Sanger and deCODE subsets separately, used rDNA CN esti-

mates adjusted for sequencing center (Figure S2; STAR

Methods), or included sequencing center alongside assessment
Figure 1. Estimation of 47S rDNA copy number in the UKB

(A) Schematic representation of the human rDNA loci on a cytogenetic ideogram o

the localization of the rRNAs in the Large Subunit (LSU) and Small Subunit (SSU) o

which are not necessarily related with rDNA despite overlapping the 47S cluster

(B) Pearson’s correlation between the total 47S rDNA CN values obtained with th

proxy estimates obtained with the method proposed here (‘‘18S Ratio’’) for 94 sa

(C) Wilcoxon signed-rank test for the difference of means between previously p

ulation16 and those we derive from the 18S Ratios of UKB White British (WB) pa

(D) Wilcoxon signed-rank tests for the difference of means between the 18S Ratio

Note, several previous studies have shown that 18S-based rDNA CN estimates

(E) Comparison ofmean 18SRatio and corresponding 95%confidence interval am

split by sequencing center.

(F) Pearson’s correlation between 18S Ratios in genetically identified relative pai

center batch of the first WGS release.

(G) Manhattan plot for a GWAS of 18S Ratio in N = 127,231 unrelated WB partic

dashed line indicates the minus log10 p value corresponding to a 5 3 10�8 signifi
center, genetic principal components, and telomere length

(given the sub-telomeric location of 47S rDNA) as covariates.

Age and sex were also included as covariates, even though

they did not show any association with rDNA CN (Figures S3–

S5; ANOVA p = 0.203 for age, p = 0.219 for age squared; sex,

Figures S3–S6; ANOVA p = 0.839). The other major influence

on rDNA CN was self-reported ancestry (Figure 1E; ANOVA

p < 10�300). In particular, ‘‘Black or Black British’’ individuals dis-

played higher rDNA CN relative to other ancestries, consistent

with previous reports.6 Therefore, for the discovery analyses,

we focused on a single ancestry, namely WB individuals, who

comprise the vast majority of the WGS data (>85%, N =

169,919 in the first release, of which 157,227 remain after quality

control; see STAR Methods).

rDNA CN shows strong familial correlations, but is not
associated with genetic variation elsewhere in the
genome
Pairwise comparisons in monozygotic (MZ) twins, first-,

second-, and third-degree relatives with both individuals

sequenced in the same sequencing center batch showed high-

ly significant correlations, and an expected decrease in Pear-

son’s R with distance, from 0.95 to 0.11 (Figure 1F; using

sequencing center-adjusted estimates on all pairs yields similar

results; Figure S7). The data also further emphasize the tech-

nical robustness of the proxy rDNA CN calls.

We then asked if rDNA CN is influenced by genetic variation

elsewhere in the genome and performed a GWAS of rDNA CN.

Since the WGS data were generated from whole blood, we

included principal components obtained from proportions of

nucleated blood cell subtypes as covariates to control for the pos-

sibility of somatic differences in rDNACN (reviewedbyHall et al.23;

Figure S8). From over 7 million variants from 1000 Genomes Proj-

ect-imputed genotypes at MAF > 1%, a GWAS of all WB partici-

pants yielded a single variant (rs62153030) at whole-genome sig-

nificance level (beta = 2.64 3 10�6, standard error [SE] = 4.77 3

10�7, p = 3.4 3 10�8; Figure S9A; genomic inflation factor lm =

1; GWAS catalog accession GCST90356215). Identical results

wereobtainedwhenbloodcell compositionprincipal components

were not included (Figure S9B; GCST90356216). When consid-

ering only unrelated individuals (N = 127,231), no variants reached

whole-genome significance (Figure 1G; GCST90356217), yielding
f the Hg38 assembly as generated by the NIH’s Genome Decoration Page, and

f the ribosome. Blue-tinted chromosomal segments indicate ‘‘variable regions,’’

s.

e previously published method employed by Rodriguez-Algarra et al.19 and the

mples from the GBR population of the 1000 Genomes Project.

ublished total rDNA CN estimates from the 1000 Genomes Project GBR pop-

rticipants from the first WGS release.

s calculated on each of the UKB first WGS release sequencing center batches.

correlate strongly with those derived from 28S or 5.8S.5,6,16,19

ong top-level self-reported ethnic backgrounds in theUKB’s firstWGS release,

rs according to KING kinship thresholds20 sequenced in the same sequencing

ipants using 1000 Genomes Project-imputed variants at MAF > 1%. The red

cance threshold.
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Figure 2. Association between rDNA CN and blood cell composition

(A) Effect size (left) and significance level (right) for 18S Ratio associations from a phenome-wide screen in WB UKB participants from the first WGS release.

Displayed phenotypes reach FDR < 0.01 for N = 157,227 WB participants and are measured in at least half of those samples, with >200 cases in case/control

variables.

(legend continued on next page)
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an SNP heritability coefficient of h2g = 0:000288± 0:00513.

Furthermore, additional analyses, including conflicting results be-

tween sequencing centers, strongly indicated that the single

variant identified above was a false positive (Figures S9C–S9E;

GCST90356218 for Sanger and GCST90356219 for deCODE).

This conclusion is reinforced by the results obtained in the second

release UKB WGS data (presented below). Therefore, we find no

robust evidence for genetic variation elsewhere in the genome

influencing rDNA CN.

Phenome-wide association screen of rDNA CN
To identify human traits genetically associated with rDNACN, we

performed a phenome-wide association screen of 2,722 pheno-

types in the WB individuals, yielding 23 associations at

FDR < 0.01 (Figure 2A; Table S1). No FDR-significant associa-

tions were obtained on a control analysis using permuted

rDNA CN values (Table S2), and the directionality of effects

was consistent for all 23 associations in sequencing center-spe-

cific screens (Figure S10; Tables S3 and S4). However, phe-

nome-wide screens can only provide a broad overview of poten-

tial phenotypic associations. More detailed and focused

analyses, with appropriate statistical models and covariates

informed by domain knowledge, are necessary to ascertain the

true nature of the potential relationships. Given that 20 of the

23 hits were with phenotypes classified as either ‘‘blood count’’

or ‘‘blood biochemistry’’ in the UKB, we proceeded to perform

more comprehensive analyses focusing on these two UKB cate-

gories separately.

In the blood count category, the strongest associations

included lymphocyte percentage (beta = �0.035 [95% confi-

dence interval, �0.04 to �0.03], p = 9.52 3 10�43, FDR = 7.85

3 10�40), neutrophil counts (beta = �0.033 [0.028–0.038], p =

2.73 3 10�36, FDR = 2.57 3 10�33), and neutrophil percentage

(beta = �0.032 [0.026–0.037], p = 8.86 3 10�34, FDR = 2.65 3

10�31), all with N = 157,227 participants. We therefore posited

rDNA CN associates with specific blood cell subtype combina-

tions. Given the composite nature of blood and the shared mea-
(B) Effect size (left) and significance level (right) for the association between 18S

platelet-to-lymphocyte ratio [PLR], systemic immune-inflammation index [SII], a

release.

(C) Schematic illustration of reverse causality as potential explanation for obser

represents the issue of reverse causality when measuring mtDNA CN in whole b

trophils (green) compared with other blood subtypes (gray). When the proportion

apparently lower. The small vertical lines depict a hypothetical mtDNA CN of 2 in

example of what might be observed if reverse causality was influencing the asso

Given the positive association between rDNACNand neutrophil counts, that would

if the neutrophil proportion increased (e.g., from 30% to 70%), the measured rD

pothetical rDNA CN of 4 in neutrophils and 3 in other cells. (iii) Solely based on the

CN and blood cell composition could be in either direction (arrow 1, rDNA CN c

influencing rDNA CN, such as in (ii); NLR used here for illustration). We then consid

direction of the association between aging and NLR cannot be in the reverse direc

i.e., arrow 2, then we should observe an indirect association between the contex

(D) Significance levels for the association between known drivers of blood cell c

ticipants with WGS data available in the first sequencing release (dark gray), as w

contexts and 18S Ratio despite existing for the associations with NLR suggests

(E and F) (E) Seasonal and (F) circadian patterns on NLR and sequencing cente

number of participants included in each 18S Ratio group. The apparent monthly

(G) Mean and corresponding 95% confidence interval of the sequencing center-a

NLR, PLR, and SII. Increasingly dark shades of red indicate higher values of the
surement procedure for the distinct cell types, we fit a multivar-

iate linear model including all blood subtype counts to control for

their potential mutual influence, yielding various putative positive

and negative associations, most notably the positive association

with neutrophil counts (Figure S11; N = 157,227, standardized

beta (b) = 0.0273 [0.0221–0.0326], p = 1.67 3 10�24). rDNA CN

thus associates with the abundance of multiple blood cell sub-

types simultaneously. This combination of positive and negative

associations with various blood subtypes is a feature of rDNA

CN, as all pairwise correlations between blood cell subtype

counts in the UKB are in fact positive when not accounting for

rDNA CN (except for erythrocytes with platelets and basophils;

Figure S12). The specific blood cell composition profile associ-

ated with rDNA CN is also highly reminiscent of well-established

markers of systemic inflammation—such as neutrophil-to-

lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and

systemic immune-inflammation index (SII) (N3 L/P). These

markers also associate with rDNA CN: bSII = 0.0316 [0.0265–

0.0367], pSII = 9.91 3 10�34, bNLR = 0.0266 [0.0215–0.0317],

pNLR = 1.55 3 10�24; bPLR = 0.0201 [0.0150–0.0252], pPLR =

7.8 3 10�15 (all with N = 157,195; Figure 2B).

The association between rDNA CN and blood cell
composition is not due to reverse causality or
confounder effects
In large-scale association studies of variation in the single-copy

genome, it is assumed that the direction of causality is, either

directly or indirectly, from the variant to the trait. rDNA CN is re-

petitive, however, and such genomic features have the potential

to be somatically variable. The phenome-wide screen presented

above thus does not, in isolation, reveal the direction of the asso-

ciation between rDNA CN and blood cell subset proportions.

Therefore, even though rDNA CN displays very strong familial

correlations, it remained possible that blood cell composition

somehow influences rDNA CN. Such reverse causality effects

are known to be an issue for some multi-copy elements such

as mtDNA copy number (mtDNA CN). Neutrophils are known
Ratio and blood cell composition ratios (neutrophil-to-lymphocyte ratio [NLR],

nd lymphocyte-to-monocyte ratio [LMR]) in WB participants in the first WGS

ved associations between CN and blood cell composition. (i) This schematic

lood (20 hypothetical cells). Mitochondria are generally less abundant in neu-

of neutrophils increases (e.g., from 30% to 70%), the measured mtDNA CN is

neutrophils and 3 in other cells. (ii) This schematic represents a hypothetical

ciation between rDNA CN and blood cell composition (20 hypothetical cells).

entail neutrophils havingmore copies of rDNA than other cell types. Therefore,

NA CN would also be apparently higher. The small vertical lines depict a hy-

results in (A) and (B), the direction of causality in the association between rDNA

ausally influencing blood cell composition; or arrow 2, blood cell composition

er a context, such as aging, in which we know NLR changes (arrow 3; note the

tion). If reverse causality underlies the association between rDNA CN and NLR,

t under consideration, e.g., aging and rDNA CN, i.e., arrow 4.

omposition changes and NLR on all WB participants (light gray) and WB par-

ell as with 18S Ratio (black). The lack of association between the considered

reverse causality is not at play here (no arrows 4 and 2 in C(iii) above).

r-adjusted 18S Ratio for WB participants. Numbers in brackets represent the

fluctuations in 18S Ratios are likely random noise (ANOVA p = 0.3).

djusted 18S Ratio for WB individuals split into five quantiles according to their

corresponding trait.
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to harbor fewer mitochondria relative to other blood cell sub-

sets.4,24 Therefore, when measuring mtDNA CN in whole blood,

the relative proportion of blood cell subsets, in particular the pro-

portion of neutrophils, has a significant impact on the measured

value for mtDNA CN. This is illustrated schematically in Fig-

ure 2C(i). If the neutrophil proportion in whole blood increases,

as observed in aging and many diseases, then the measured

mtDNA CN is lower. Indeed, as demonstrated recently by Gupta

et al. using the UKB data, many previously reported trait associ-

ations with mtDNA CN disappear after adjustment for blood cell

composition.4

We therefore considered the possibility that the rDNA CN as-

sociations with blood cell subsets may also be due to similar

reverse causal effects. The positive association between neutro-

phil counts and rDNA CN could arise if, hypothetically, neutro-

phils harbor more copies of rDNA than other blood subtypes

(Figure 2C(ii)). Due to the lack of robust associations between

rDNA CN and variants elsewhere in the genome, a Mendelian

randomization (MR) approach cannot be used to assess causal

directionality from rDNA CN to blood cell subtype counts. Given

the breadth and size of the UKB dataset, however, we were able

to design a range of alternative analyses to test for potential

reverse causality.

As noted above, it is well established that neutrophil counts,

and NLR, are altered in different contexts including sex, aging,

and a range of diseases25 (we focus on NLR because it is the

best studied of the markers). Therefore, if measured rDNA CN

is simply a downstream consequence of changes in NLR (i.e.,

blood cell composition), with neutrophils harboring more copies

of rDNA in our hypothetical model, then in any context where

NLR increases we should also observe higher rDNA CN (Fig-

ure 2C(iii)). However, this does not occur in any of the contexts

we considered (Figures 2D and S13). Despite clear associa-

tions between the considered traits and NLR (in gray), none

of them are associated with rDNA CN (in black). It has also

been shown in the UKB that NLR displays circadian and sea-

sonal fluctuations,26 but again there was no concerted rDNA

CN change in either case (Figures 2E and 2F; note, on the other

hand, mtDNA CN measured in whole blood does co-vary

seasonally, consistent with reverse causal effects24). In addi-

tion, although MR cannot be used to assess causal direction-

ality from rDNA CN to blood cell subtype counts, an MR anal-

ysis can be performed to ask if there is a significant influence of

blood cell composition on rDNA CN using previously reported

genetic variants for blood cell subtype counts and percentages

(from the GWAS Catalog). This analysis found no evidence for
Figure 3. Validation of identified associations between rDNA CN and b

(A) Schematic representation of an unknown confounder simultaneously influenc

(B) Comparison between the significance levels in phenome-wide screens for bloo

from the first WGS release. Labeled phenotypes reach FDR < 0.01 in both axes.

(C) Significance levels for associations between 18S Ratio and blood cell composi

stringent WB subpopulations. Light-colored bars indicate that the correspondin

Reactive Protein as covariates.

(D) Comparison between effect sizes for the dark-colored (i) ‘‘Filtered’’ and (iv) ‘‘H

(E) Effect size (left) and significance level (right) for associations with 18S Ratio inN

ethnicities.

(F) Effect size (left) and significance level (right) for the 18S Ratio associations with

WB participants from different UK countries.
blood cell composition influencing rDNA CN (Table S5; STAR

Methods). It is also worth noting that the rDNA CN vs. blood

cell subset association appeared monotonic across the entire

range of marker values, not just extreme values that might indi-

cate acute disease or severe phenotype (Figure 2G). Therefore,

whereas Figures 2A and 2B show that rDNA CN and NLR asso-

ciate significantly, the results in Figures 2C–2G demonstrate

that NLR levels do not influence rDNA CN. The direction of

the association thus cannot be from NLR to rDNA CN, ruling

out reverse causality as an explanation for the observed

association.

We then considered the possibility of a common confounder

that simultaneously, but separately, influences both rDNA CN

and blood cell subset counts (Figure 3A). First, we observed

that technical factors known to affect blood cell counts27—delay

between venepuncture and count measurements (ANOVA p =

0.82) or machine drift over time (ANOVA p = 0.42)—were not

associated with rDNA CN. We then assessed any potential influ-

ence of biological confounders by overlapping phenome-wide

screens for rDNA CN with those for NLR, SII or PLR, identifying

seven distinct associations that were FDR significant in both

cases (Figure 3B; Tables S6–S8). Extending the list of considered

associations beyond FDR-significant ones to perform an even

more comprehensive analysis of potential confounders revealed

all top 15 categorized as either ‘‘blood biochemistry,’’ diseases,

or medications in the UKB. To assess the influence, if any, of

these potential confounders, we filtered the data, first by

removing all samples associated with any hematological disor-

der or that display aberrant blood cell composition measure-

ments (‘‘Filtered’’ subset derived using the criteria in previous

publications27–29; Figure 3C(i)), and then, from this, keeping

only unrelated individuals (Figure 3C(ii)) and only those not re-

corded as taking any medication with p value <0.01 in CN asso-

ciations (Figure 3C(iii)). In all cases, the associations with rDNA

CN remained strongly significant. Further sub-setting the data-

set to remove all individuals with any recorded disease (at any

time prior to recruitment), BMI > 30 kg/m2, and smokers, re-

tained significant associations for neutrophils, platelets, lympho-

cytes, SII, NLR, and PLR (‘‘Healthy’’ subset; Figures 3C(iv) and

3C(v)). Redoing the analyses using ‘‘blood biochemistry’’ vari-

ables as covariates did not diminish the associations. This em-

phasizes that the rDNA CN influence is on normal variation of

blood cell subset counts, and not just a general inflammatory

state. To note, although p values naturally weaken as the subsets

decrease in size, the effect sizes strengthened further in the

‘‘Healthy’’ subset (Figure 3D).
lood cell composition

ing both rDNA CN and a phenotype of interest, such as NLR.

d cell composition ratios (NLR, PLR, and SII) and 18S Ratio in WB participants

tion counts (top) or blood cell composition ratios (bottom) in progressively more

g linear model includes Calcium, Urate, IGF-1, Cystatin C, Creatinine, and C-

ealthy’’ models in (B).

= 22,609 UKB participants from the first WGS release of non-WB self-reported

NLR and SII in UKB participants of different self-reported ethnicities, as well as
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But, could there still be a factor during early development that

directionally changes rDNA CN and separately also influences

adult phenotypes? Firstly, this would have to be a very common

factor as the rDNA CN vs. blood subtype associations spans the

entire rDNACN range (Figure 2G). Second, the very highMZ twin

correlations (Pearson’s R = 0.95) are relevant here. In the original

zygote, prior to the twinning event, there is of course only a single

rDNA CN value. So, if rDNA CN genetically changes in a direc-

tional manner due to an environmental influence, at any point

from the zygotic stage onwards, the highly correlated adult MZ

twin rDNA CN values could only arise if the common environ-

mental confounding factor acts either (1) prior to the twinning

event, to change rDNA CN genetically, and this is the value in-

herited by both twins, or (2) after the twinning event, and the

rDNA CN simultaneously changes genetically in the two different

fetuses. Whatever mechanism is involved in this case, it would

have to be extremely finely tuned to genetically change the

rDNA CN in the same direction to an almost identical extent in

most, if not all, cells in both individuals. In both cases, this factor

would also need to influence adult phenotypes separately.

We consider both these alternative scenarios to be unlikely

and, collectively, our data do not support the existence of a

confounder in the association between rDNA CN and blood

cell subset counts. Nevertheless, detailed mechanistic studies

could be carried out in the future to further probe the issue of po-

tential confounding, if it exists.

Analysis of rDNA CN and blood cell subset profiles in
non-WB ancestries
Finally, we replicated the key rDNA CN vs. blood cell subset

findings in 22,609 individuals of non-WB self-reported ethnicity

(Figure 3E). Despite the substantially smaller sample numbers,

rDNA CN associations with SII and NLR remained statistically

significant in most of the White sub-categories, Chinese, and

with a clear positive trend in the others (Figure 3F). The differ-

ences in the strength of the association among the ethnicities

may reflect true biological differences, or be due to, for

example, population stratification within each group, smaller

sample numbers, or somehow be related to differences in the

range of rDNA CNs.

Association between rDNA CN and renal function
‘‘Blood biochemistry’’ represented the other major phenotypic

category identified in the rDNA CN phenome-wide screen, with
Figure 4. Association between rDNA copy number and renal function

(A) Effect size (left) and significance level (right) for the 18S Ratio associations with

models with targeted covariates fit onWB individuals from the firstWGS release no

are reported including and excluding principal components from nucleated bloo

(B) Effect size (left) and significance level (right) for 18S Ratio associations with Glo

and excluding C-Reactive Protein levels as covariate.

(C) Mean and corresponding 95% confidence interval of the sequencing center-

quantiles according to their eGFRcr+cc value. Increasingly dark shades of orange

(D) Odds ratio (left) and significance level (right) for the 18SRatio logisticmodel ass

WGS release.

(E) Pearson’s correlation between the effect sizes at FDR < 0.01 obtained on the pr

and Kidney Failure) plus a negative control (Lipoprotein A), and the correspondin

N values indicate the number of proteins from the first UKB OLink release reach

(F) Comparison between the proteomic effect sizes for the blood cell compositio
five FDR-significant associations (Figure 2A). Since the phe-

nome-wide screen did not account for factors potentially

affecting these measurements, we reanalyzed rDNA CN associ-

ations with all blood and urine biochemistry biomarkers. For this

analysis, we fit linear models on WB individuals not recorded

as taking statins, since statins are known to affect several

biomarker measurements, including additional covariates—fast-

ing time, extraction date and time, assay date, and sample dilu-

tion rate—based on previously published UKB GWASs30 (Fig-

ure 4A; although including individuals on statins yielded

virtually identical results for most markers; Figure S14). Given

the association with blood cell composition described above,

we fit the blood biomarker models with and without blood prin-

cipal components as covariates. All previous FDR-significant

hits remained statistically significant in either case, suggesting

that blood cell composition does not confound the results, and

both Urea and Microalbumin in Urine reached nominal signifi-

cance (Figures 4A and S15).

Most putative associations with biochemistry biomarkers

related to renal function (Creatinine, Cystatin C, Urea, Urate,

and Microalbumin in Urine). Of these, Cystatin C is considered

to be the most reliable indicator of renal function.31 Indeed, Cys-

tatin C remained the most strongly associated with rDNA CN in a

multivariate linear model including all blood biochemistry bio-

markers related to renal function simultaneously, regardless of

whether they appeared as nominally significant on their own (Fig-

ure S16A; this occurs both with and without C-Reactive Protein,

a well-established marker of inflammation, as a covariate).

Glomerular Filtration Rate values estimated from Cystatin C

and/or Creatinine measurements from blood (eGFR) are a widely

recognized method for assessing renal function.30 We thus

asked whether rDNA CN associates with eGFR, yielding signifi-

cantly negative effects regardless of the underlying biomarker,

particularly with estimates derived from both (eGFRcr+cc; N =

150,378, b = �0.0172 [�0.0217 to �0.0126], p = 2.31 3 10�13;

Figures 4B and S16B). Similar to Figure 2D, this association ap-

peared monotonic, spanning across the entire range of values

(Figure 4C). Since low eGFR values are indicative of kidney fail-

ure, we considered the possibility that rDNA CN associates with

renal disease. Grouping the renal disease codes described in a

previous study32—glomerular disease (N00 to N08), kidney

failure (N17 and N18), and urolithiasis (N20 to N23)—revealed a

significant positive association between rDNA CN and kidney

failure (Ncases = 12,689, odds ratio [OR] = 1.04 [1.021–1.06],
each blood and urine biochemistry biomarker in the UKB, obtained from linear

t recorded as taking statins. Results frommodels for blood-derived biomarkers

d cell-type proportions as covariates.

merular Filtration Rate estimates (eGFR) from different methods, both including

adjusted 18S Ratio for WB individuals from the first WGS release split into five

indicate higher values of the eGFR estimate.

ociationswith groupings of renal diseases inWBUKBparticipants from the first

oteomic associations for each of five traits of interest (NLR, PLR, SII, eGFRcr+cc,

g effect sizes on the proteomic associations with 18S Ratio on WB individuals.

ing FDR significance for that trait.

n (top) and renal function (bottom) traits in (E).
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Figure 5. Replication in the second WGS release

(A) Correlation between 18S Ratios in genetically identified relative pairs according to KING kinship thresholds20 sequenced in the same sequencing center batch

of the second WGS release.

(B) Effect sizes (left) and significance levels (right) for associations between 18S Ratio and blood cell composition counts (top) or ratios (bottom) in ‘‘Filtered’’

(N = 192,801) and ‘‘Healthy’’ (N = 35,290) WB subpopulations from the second WGS release.

(C) Effect size (left) and significance level (right) for associations with 18S Ratio in N = 28,777 UKB participants from the second WGS release of non-WB self-

reported ethnicities.

(D) Effect size (left) and significance level (right) for 18S Ratio associations with eGFR from different methods.

(legend continued on next page)
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p = 4.89 3 10�5; Figure 4D), suggesting high rDNA CN to be a

novel genetic risk factor for renal disease in WB individuals. A

similar effect can be observed in participants of non-WB

ethnicity, albeit non-statistically significant due to the much

smaller sample size (Ncases = 1,811, OR = 1.04 [0.987–1.096],

p = 0.136).

Analysis of rDNA CN-associated serum proteomic
profiles
Recently, the UKB released serum proteomic profiles for

approximately 10% of all individuals in the study.33–35 Different

traits and diseases represented in the UKB are associated with

specific serum proteomic profiles.33–35 If proteomic profiles

associated with the hematologic or renal traits are similar to

the proteomic profiles associated with rDNA CN, then this would

be consistent with the rDNA CN associations we described

above being genuine.

The proteomic data were generated using the antibody-

based OLink Explore 3072 platform that measures 2,941 pro-

tein analytes, representing 2,923 unique proteins. Of these,

we considered the 1,463 included in the first release. We

used proteomics data for the 35,753 WB individuals available,

of which 16,813 were included in the rDNA CN analyses above.

We focused on eGFR and kidney failure as renal function traits,

and the blood cell composition ratios most strongly associated

with rDNA CN—NLR, PLR, and SII—as hematological traits. We

also required a ‘‘negative control’’ trait for our analysis. The

expectation was that rDNA CN-associated proteomic profiles

would correlate with the proteomic profiles associated with

the hematological and renal traits discussed above, but not

with the proteomic profiles for a trait that is not associated

with rDNA CN at the genetic level. However, the negative con-

trol trait also had to fulfill several other essential criteria. First,

both blood subtype and blood biochemistry profiles can be

altered in many different physiological contexts. Any trait that

influences these profiles would not be appropriate as a control

since we would end up observing apparent correlations be-

tween rDNA CN-associated proteomic profile and the negative

control trait proteomic profile simply because of downstream

consequences (since we find rDNA CN to be an influence on

blood subtype and blood biochemistry profiles). Second, the

majority of traits in the UKB correspond with very low N values.

Using these as controls would be inappropriate since there

would be insufficient power to find any significant hits in the

associated proteomics profiles in the first place, given that pro-

teomics data are available for only �10% of the overall dataset.

We therefore restricted ourselves to traits associated with at

least 100,000 individuals included in the previous rDNA CN an-

alyses. Third, many traits in the UKB do not seem to alter serum

proteomic profiles. These include continuous traits that do not

show significant quantitative association with serum proteomic

profiles, or binary/categorical traits that are not associated with

proteomic differences among the different categories. These
(E) Odds ratio (left) and significance level (right) for the 18S Ratio logistic model a

second WGS release.

(F) Schematic representation of the potential (i) direct or (ii) indirect causal influen

that our data do not support the involvement of either reverse causality or confo
would not be useful as control. We therefore chose ‘‘Lipopro-

tein A’’ as a control that fulfills the above criteria.

For each of the six traits, we then fit linear models for all 1,463

proteins and compared the effect size for their FDR-significant

hits (Tables S9–S14) against those obtained in models fit with

rDNA CN (Table S15). Figure 4E shows that the effect sizes for

NLR, PLR, SII, kidney failure, and eGFR are significantly corre-

lated with the proteomic profile associated with rDNA CN.

Notably, all correlations with traits previously shown to associate

with rDNAmatch the expected orientation, with eGFRand kidney

failure reversing signs, consistentwith loweGFRvalues reflecting

worse renal function (Figure S17). In addition, these analyses

reveal that, although most proteomic effects are positive for

both blood ratios and kidney failure (and, conversely, negative

for eGFR), the magnitudes of the effects are larger for the renal

function-related phenotypes (Figure 4F). In contrast, the prote-

omics profile of the control variable shows no correlation with

the rDNA CN profile. Collectively, the above analysis provides

an orthogonal validation of the association between rDNA CN

and the hematological and renal traits presented above.

It is important to note that the serum proteomic profile is influ-

enced by different types of cells and biological processes, and

does not just reflect active protein synthesis. Even in the case

of protein synthesis, we cannot distinguish potential indirect ef-

fects, e.g., if an mRNA for a repressor is translated at a higher ef-

ficiency and that then causes lower levels of transcription, and

hence ultimately lower protein levels, from downstream target

genes (whichmay also explain the presence of some negative ef-

fects). Establishing the precise contribution of rDNA CN to the

proteomic profiles associated with kidney function and/or blood

cell composition will require further detailed mechanistic investi-

gations beyond the scope of this study.

Replication in second UKB WGS release
In December 2023, the UKB releasedWGS data for an additional

�300,000 individuals of whom 209,681 are of WB ancestry and

fulfill the same criteria employed for the first release. We pro-

cessed these sequences in a similar manner to the original sam-

ples and used them to replicate the key observations. In the sec-

ond release, highly significant differences in mean 18S ratio

estimates remained between sequences generated by deCODE

and Sanger (Figure S18; note, there is no ‘‘Vanguard’’ batch in

this release). Nevertheless, comparison of unadjusted 18S ratios

in twin pairs suggested harmonization between sequencing cen-

ters had improved. In particular, the Pearson’s R for pairs with

both twins sequenced in the second release (Pearson’s R =

0.92) is higher than when both twins were sequenced in the first

release or one in each (Pearson’s R = 0.83 in both cases; Fig-

ure S19). When considering relative pairs in which both individ-

uals were sequenced in the same center, results from the second

release are virtually identical to those from the first one (from

Pearson’s R= 0.95 for twins to R = 0.12 for third-degree relatives;

Figure 5A).
ssociations with groupings of renal diseases in WB UKB participants from the

ces of rDNA CN on human phenotypes, such as NLR. The red crosses indicate

unding effects.
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A GWAS analysis of rDNA CN on 162,283 unrelated WB

individuals from the second WGS release yielded two whole-ge-

nome-significant variants in chromosome 15 (15:20861938_

CCAAT_C with beta = 6.61 3 10�5, SE = 1.02 3 10�5, p =

1.1 3 10�10; and rs113939809 with beta = 6.16 3 10�5, SE =

1.13 10�5, p = 2.13 10�8; Figure S20; GWASCatalog accession

GCST90356220). In both cases, however, their effects in theunre-

latedGWAS for the first release did not even reach nominal signif-

icance (beta = 1.063 10�5, SE = 1.23 10�5, p = 0.38; and beta =

1.023 10�5, SE = 1.323 10�5, p = 0.44, respectively). Moreover,

rs62153030, the single whole-genome-significant variant in the

first release (when related individuals were included in the anal-

ysis) also failed to reach nominal significance in the second

release (beta = �2.32 3 10�7, SE = 4.64 3 10�7, p = 0.62). The

inconsistency of these results further suggests the spurious na-

tureof theputativehits, reinforcing the idea that rDNACNvariation

is not driven by variation elsewhere in the genome.

The key associations between rDNA CN and blood cell

composition measurements observed in the first release are

replicated in the second release. As Figure 5B shows, neutrophil

and platelet counts, as well as NLR, PLR, and SII remain highly

significantly associated with rDNA CN in a consistent direction

for both ‘‘Filtered’’ (N = 192,801) and ‘‘Healthy’’ (N = 35,290)

WB subpopulations generated as above. Neutrophil counts are

the top hit among the blood cell count measurements in both

cases (b = 0.0296 [0.025–0.034], p = 1.313 10�36 for ‘‘Filtered’’;

b = 0.0263 [0.016–0.037], p = 1.653 10�6 for ‘‘Healthy’’), with SII

being the most strongly associated among the blood cell

composition ratios (b = 0.0261 [0.0215–0.0307], p = 1.34 3

10�28 for ‘‘Filtered’’; b = 0.0369 [0.0262–0.0476], p = 1.60 3

10�11 for healthy). Similarly consistent results are also obtained

among non-WB participants (N = 28,777; Figure 5C).

In the case of renal function associations, consistent with the

results obtained in the first sequencing release, eGFR values

derived from Creatinine and/or Cystatin C measurements nega-

tively associate with rDNA CN, with eGFRcr+cc yielding the stron-

gest association (N= 199,588, b=�0.0193 [–0.0244 to�0.0142],

p = 9.063 10�14; Figure 5D). This is again accompanied with an

increased risk of kidney disease (Figure 5E), in this case for both

urolithiasis (Ncases = 7,015,OR=1.03 [1.00–1.05],p=0.0318) and

kidney failure (Ncases = 17,286, OR = 1.02 [1.01–1.04], p =

0.00797).

DISCUSSION

Our analyses support rDNACNvariation being a genetic influence

on hematological profiles and renal function in humans. At this

stage, further mechanistic investigation is limited by the lack of

suitable methods for the controlled genetic manipulation of

rDNACN inmammaliancells,but thereare several, not necessarily

mutually exclusive, speculative mechanisms by which rDNA CN

could influence cellular outcomes. First, there could be a variety

of effects on translational outcomes, including protein levels as

suggested by the analysis of the UKB proteomics data (pathway

(i) in Figure 5F). An alternative mechanism could be more indirect

(pathway (ii) in Figure 5F), whereby rDNA CN acts as a ‘‘sink’’ for

epigenetic modifier proteins, indirectly influencing gene expres-

sion in the rest of the genome.36 In support of this, rDNA CN has
12 Cell Genomics 4, 100562, June 12, 2024
beenshown toassociatewithsteady-stategeneexpressiondiffer-

encesof single-copygenes inhumancell lines.5 It is also important

to consider that tissue-specific influences of rDNA CN could

occur via interaction with tissue-specific expression of ribosomal

biogenesis factors and/or ribosomal proteins. For example, many

ribosomopathies—diseases caused by genetic mutations in ribo-

somal constituents or in factors with a role in ribosome assem-

bly—are associated with tissue-specific effects, often including

hematopoietic defects (reviewed by Kampen et al.37). Further-

more, Murre and colleagues found that, during human neutrophil

differentiation, rDNA is progressively sequestered at the lamina

in a heterochromatic environment and mature neutrophils do not

synthesize rRNA. They proposed that the life span of mature neu-

trophils may be influenced in part by variation in residual rRNA

abundance.38 It is possible that rRNA abundance is influenced

by rDNA CN. These are all speculative examples by which rDNA

CN might exert its effects, and it is quite possible that other

completely independent, and as yet unknown, mechanisms are

involved. In the future, it will be important to perform large-scale

analyses that provide amore directmeasure of cellular translation

in the cell type of interest using methods such as Ribo-Seq.39

The impact of rDNA CN on phenotypes is likely an underesti-

mate for several reasons. First, rDNA units are not all genetically

identical to each other. They harbor both SNVs and INDELs

whose prevalence might lead to distinct phenotypic outcomes,

and thus associations at more granular levels than the total num-

ber of copies will need to be explored. Second, we did not

consider epigenetic states. In themouse, it is known that specific

rDNA haplotypes are associated with increased DNA methyl-

ation levels,19 thereby potentially altering the ‘‘effective’’ CN in

terms of what is actually expressed. Third, the rDNA CN proxy

estimates undoubtedly retained some measurement error, thus

potentially reducing the strength of the associations that could

be detected. Fourth, phenome-wide screens have far greater

statistical power for identifying associations with continuous

measurements. Fifth, the UKB is not representative of the wider

UK population, since participants are relatively older and live in

more socioeconomically advantaged areas, with a sampling

bias for ‘‘healthier,’’ white, and female individuals.20 Finally, dis-

covery analyses were conducted solely on the firstWGS release,

limiting the statistical power to identify rDNA-associated traits.

Future studies could leverage the entire UKB WGS dataset for

discovery, along with other WGS datasets, for even greater po-

wer to find additional associations.

In summary, we report a novel source of genetic variation influ-

encing human phenotypes. In the absence of profiling rDNA, the

proportion of trait variance that should be attributed to rDNA-

associated genetic variation could mistakenly be considered as

‘‘intangible variation.’’ Rather, it is genetic variation that has thus

far been overlooked, acting in addition to genetic variation in the

rest of the genome to influence phenotypic outcomes in humans.

Limitations of the study
There are two key limitations to our work: (1) although we find no

evidence for reverse causality or common confounders influ-

encing our results, there could still be common factors influ-

encing both rDNA CN and phenotype but are not detectable in

the UKB data, and (2) we have performed a comprehensive
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analysis of only a single ancestral group (WB) and, although we

present evidence of replication in other ancestries, in the future

this needs to be done in other large non-UKB WGS datasets.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

1000 Genomes rDNA CN estimates Hall et al.16 Supplementary Information 1

18S Ratio estimates for UK Biobank participants This paper Return for UKB application 83271

18S Ratio GWAS summary statistics This paper GWAS Catalog: GCST90356215,

GCST90356216, GCST90356217,

GCST90356218, GCST90356219,

GCST90356220

Lymphocyte percentage of white cells GWAS

summary statistics

Astle et al.27 GWAS Catalog: GCST004632

Lymphocyte percentage of white cells GWAS

summary statistics

Vuckovic et al.28 GWAS Catalog: GCST90002389

Neutrophil count GWAS summary statistics Astle et al.27 GWAS Catalog: GCST004629

Neutrophil count GWAS summary statistics Keller et al.40 GWAS Catalog: GCST002557

Neutrophil count GWAS summary statistics Chen et al.29 GWAS Catalog: GCST90002351

and GCST90002355

Neutrophil count GWAS summary statistics Kachuri et al.41 GWAS Catalog: GCST90056178

Neutrophil count GWAS summary statistics Barton et al.42 GWAS Catalog: GCST90025977

Neutrophil count GWAS summary statistics Vuckovic et al.28 GWAS Catalog: GCST90002398

Neutrophil count GWAS summary statistics Sakaue et al.43 GWAS Catalog: CST90018968

Neutrophil percentage of white cells GWAS

summary statistics

Astle et al.27 GWAS Catalog: GCST004633

Neutrophil percentage of white cells GWAS

summary statistics

Vuckovic et al.28 GWAS Catalog: GCST90002399

Platelet count GWAS summary statistics Astle et al.27 GWAS Catalog: GCST004603

Platelet count GWAS summary statistics Guo et al.44 GWAS Catalog: GCST010229

Platelet count GWAS summary statistics Auer et al.45 GWAS Catalog: GCST009465

Platelet count GWAS summary statistics Read et al.46 GWAS Catalog: GCST008168

Platelet count GWAS summary statistics Ferreira et al.47 GWAS Catalog: GCST000510

Platelet count GWAS summary statistics Li et al.48 GWAS Catalog: GCST001783

Platelet count GWAS summary statistics Gieger et al.49 GWAS Catalog: GCST001337

Platelet count GWAS summary statistics Shameer et al.50 GWAS Catalog: GCST002186

Platelet count GWAS summary statistics Chen et al.29 GWAS Catalog: GCST90002357

and GCST90002361

Platelet count GWAS summary statistics Hu et al.51 GWAS Catalog: GCST90026525

Platelet count GWAS summary statistics Barton et al.42 GWAS Catalog: GCST90025951

Platelet count GWAS summary statistics Little et al.52 GWAS Catalog: GCST90094627

Platelet count GWAS summary statistics Kachuri et al.41 GWAS Catalog: GCST90056183

Platelet count GWAS summary statistics Vuckovic et al.28 GWAS Catalog: GCST90002402

Platelet count GWAS summary statistics Sakaue et al.43 GWAS Catalog: GCST90018969

Software and algorithms

TrimGalore Krueger53 https://github.com/FelixKrueger/TrimGalore

bowtie2 Langmeade and

Salzberg54
https://github.com/BenLangmead/bowtie2

samtools Li et al.55 https://github.com/samtools/samtools

BWA-MEM Li56 https://github.com/lh3/bwa

BOLT Loh et al.57 https://alkesgroup.broadinstitute.org/

BOLT-LMM
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plink2 Chang et al.58 https://www.cog-genomics.org/plink/2.0/

PHESANT Millard et al.59 https://github.com/MRCIEU/PHESANT

TwoSampleMR Hemanni et al.60 https://mrcieu.github.io/TwoSampleMR/

Analysis scripts used in this study This paper Zenodo: https://doi.org/10.5281/

zenodo.10938487
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Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Vardhman Rakyan (v.rakyan@qmul.

ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Individual-level 18S Ratio estimates generated for this study have been returned to the UK Biobank, and summary statistics for 18S

Ratio GWASs have been deposited in the GWAS Catalog (https://www.ebi.ac.uk/gwas/).

Analysis scripts developed for this study are publicly available at https://doi.org/10.5281/zenodo.10938487.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The present study associates phenotypic, genetic, and proteomic data from over 500,000 UK Biobank participants recruited be-

tween 2006 and 2010, obtained via project application 83271. The subpopulations created for each particular analysis are described

below in the appropriate Method Details subsections.

METHOD DETAILS

Variables of interest and covariates
Although some variables are only of interest in specific analyses andwill be describedmore in detail in their respective sections, those

that appear commonly as covariates and/or traits of interest are described here.

Sex was obtained from UKB field ID 31, with a value of ‘‘0’’ representing females and ‘‘1’’ males. Age at recruitment was ob-

tained from the first instance of field ID 21003, from which Age Squared was also derived as the value multiplied by itself. The

Assessment Center is recorded in field ID 54, and the Adjusted Telomere Length in field ID 22191. From the Genetic Principal

Components in field ID 22009, only the first 10 are used as covariates in all analyses. Increasing to all 40 available principal com-

ponents provides virtually the same results, even in the presence of high genetic heterogeneity (Figure S21). In that case, hetero-

geneity across ethnicities is largely controlled by including self-reported Ethnic Background from field ID 34 as additional

covariate.

Sequencing Center is an essential covariate to control when considering rDNA CN estimates from the UKB. For each sample in the

firstWGS release, the sequencing center batchwas obtained from the RGfield in the alignment file header. In particular, sampleswith

the string ‘‘CN:SC’’ included within RG were assigned to the ‘‘Sanger’’, with those without ‘‘Main Phase’’ in the same field further

assigned to the ‘‘Sanger Vanguard’’ batch; otherwise, samples were assigned to ‘‘deCODE’’. Both ‘‘Sanger’’ and ‘‘Sanger Vanguard’’

were combined into a single category of the Sequencing Center variable. For the second WGS release, Sequencing Center informa-

tion was obtained from the information available in field ID 32051.

In GWAS analyses of rDNA CN, additional covariates intended to control for potential differences in blood cell composition were

also included. This was achieved by obtaining principal components from the percentages of Lymphocytes (field ID 30180), Mono-

cytes (field ID 30190), Neutrophils (field ID 30200), Eosinophils (field ID 30210), andBasophils (field ID 30220). All individuals withmore

than 0% in Nucleated Red Blood cells (field ID 30230) were discarded from the analysis, leaving 472,269 participants. These were

then used as input for the PCA() function from the FactoMineR package61 version 2.8 with parameters scale.unit = TRUE, graph =

FALSE, and ncp = 10, providing 5 dimensions for each individual. Of these, the first four explain over 99.99% of the variance and

were thus included as covariates in the GWASs as well as in associations with blood biochemistry markers.
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Cell counts were obtained for Platelets (field ID 30080), Erythrocytes (field ID 30010), Lymphocytes (field ID 30120), Monocytes

(field ID 30130), Neutrophils (field ID 30140), Eosinophils (field ID 30150), and Basophils (field ID 30160). Blood cell composition ratios

were derived as follows:

NLR =
Neutrophil counts ð30140Þ
Lymphocyte counts ð30120Þ

PLR =
Platelet counts ð30080Þ

Lymphocyte counts ð30120Þ

LMR =
Lymphocyte counts ð30120Þ
Monocyte counts ð30130Þ

SII =
Neutrophil counts ð30140Þ3Platelet counts ð30080Þ

Lymphocyte counts ð30120Þ
To avoid deriving infinity values that are unsuitable for the linear modeling functions employed, these values were not calculated for

individuals with 0s recorded for Lymphocytes or Monocytes.

Temporal variables related with acquisition and processing of blood samples were considered in some analyses. Time and date for

venepuncture and processing were retrieved from field ID 3166 and 30142, respectively. The delay between them was calculated as

their difference. Month and hour of venepuncture used for seasonal and circadian patterns were parsed from field ID 3166.

Blood and urine biomarker measurements were obtained from the fields in category IDs 17518 (‘‘Blood biochemistry’’) and 100083

(‘‘Urine assays’’), respectively, whereas their assay dates and sample dilutions were obtained from category IDs 18518 (‘‘Blood

biochemistry processing’’) and 148 (‘‘Urine processing’’). In addition, urine sampling date was retrieved from field ID 20035, and fast-

ing time from field ID 74.

GFR estimates derived from Creatinine and/or Cystatin C measurements were calculated using the most recently-accepted for-

mulas, according to the National Kidney Foundation (https://www.kidney.org/professionals/kdoqi/gfr_calculator). In particular,

eGFRcr = gcr 3 min

�
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k
; 1

�acr

3 max

�
Scr

k
;1

�� 1:2

30:9938Age
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where Scr corresponds to the serumCreatinine measurement in field ID 30700multiplied by 0.0133 to convert its units from mmol/L to

mg/dL, as required by the formula; Scc is the Cystatin C measurement in field ID 30720 (already in mg/dL); Age is the age of recruit-

ment from field ID 21003; gcr is 142 for males and 143.704 for females; gcc is 135 for males and 130.035 for females; gcr+cc is 133 for

males and 123.956 for females; acr is 0.9 for males and 0.7 for females; and k is 0.9 for males and 0.7 for females.

Dates for the first reports of renal disease were obtained from fields in category ID 2414 (‘‘Genitorurinary system disorders’’). The

sole entry with a recorded date (‘‘1903-03-03’’) among those with special meanings according to UKB data coding 819 was dis-

carded. The remaining dates were then discretised as representing ‘‘cases’’ for their given disease code, with empty entries indi-

cating ‘‘controls’’. Only those participants considered as ‘‘controls’’ for all disease codes within a given combined disease group

(i.e., no valid date in any of the corresponding field IDs) were also deemed as ‘‘controls’’ for the resulting group.

Development and validation of 18S Ratio as rDNA CN proxy estimate
Previously-published rDNA CN estimates from sequencing data rely on alignments to tailored genome assemblies to identify rDNA

reads, and to filtered reference exomes to provide a baseline for single-copy read depth.5,19 Given the unfeasibility of obtaining such

alignments for all UKB sequences, and being aware of published studies having relied on rDNA pseudocopies and unplaced scaf-

foldings existing in human assemblies to extract rDNA reads from previously-aligned data,17 we developed a proxy estimation

method suitable for UKB alignments. To this end, we leveraged the available samples from the 1000 Genomes Project British in En-

gland and Scotland (GBR) population as a testbed. Figure S1 depicts the procedure schematically.

We obtained paired-end WGS fastq files stored at the corresponding sequence_read folder within the gridftp/1000g/ftp/phase3/

data/ path for the 94 GBR individuals available through the EMBL-EBI public endpoint in Globus, except those generated using

ABI SOLiD technologies. (13 individuals listed as having low-coverage WGS data available in the 1000 Genomes Project website,
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https://www.internationalgenome.org/data-portal/population/GBR, were not present on September 9th, 2022, when the data was

retrieved, and remain unavailable at the moment of writing). These files were then merged according to their sample and strand

of origin, and trimmed using trimgalore53 version 0.6.5 in paired-end mode with all other parameters as default. The trimmed se-

quences were then aligned in two different ways to either obtain rDNA CN estimates according to previously validated methods

or reproduce the alignment conditions in the UKB.

First, trimmed reads were alignedwith bowtie254 version 2.4.5 to the same reference sequences and following the same procedure

as described byRodriguez-Algarra et al.19 In brief, readswere first aligned to a tailoredHg38 assembly. In this, all regions identified as

similar to the rDNA were masked. Moreover, an entire rDNA unit reference (obtained from GenBank accession KY962518.1) was

included as additional contig after being tweaked to reduce potential loss of coverage around the Transcriptional Start Site (TSS).

To this end, the rDNA sequence spanning from a breakpoint 2120 base pairs upstream of the rDNA TSS (corresponding with the

midpoint of the repetitive element closest to the 30 end of the unit) and up to the end of the original reference was prepended to

the sequence from the TSS up to the breakpoint. This so-called ‘‘looped’’ rDNA reference then covers a single entire unit, but

with the start and end of the sequence moved upstream from the promoter. Trimmed reads were also aligned to the human exome

reference (labeled 9606 on the EMBL/EBI online repository) with sequences from sex chromosomes, smaller than 300 base pairs,

and those deemed as significantly similar by blastn62 version 2.7.1+ in --ungappedmode removed. The average read depth per sam-

ple was calculated on these alignments from the output of samtools depth55 version 1.10. rDNA CN was then obtained as twice the

quotient between average read depth at the 18S subunit from the tailored whole genome alignments and the value per sample ob-

tained from the exome alignments.

Second, to mimic the UKB alignments, trimmed reads were also aligned with BWA-MEM56 version 0.7.17 to the unmodified

Hg38 assembly (GRCh38.p13). Prior to alignment, however, singleton reads, which remain in the data despite their mate having

been previously discarded due to insufficient post-trimming length, were removed using the repair.sh script from BBMap63

version 38.95, with the -Xmx20g options. BWA-MEM was then executed with parameters -K 100000000 -Y, and its output piped

to samtools sort to obtain bam files sorted by position, which were then indexed with samtools index. These alignments were

then used to extract the number of rDNA reads in each sample as well as the number of reads mapped to numbered chromo-

somes, which served as baseline for the rDNA CN proxy estimates. For the former, the exact location of rDNA analogues in Hg38

is necessary. In particular, the region corresponding to the 18S subunit was extracted from the KY962518.1 reference sequence

(positions 3658 to 5526) and blasted against Hg38’s chromosome 21, as well as the chr22_KI270733v1_random and

chUn_GL000220v1 scaffolds. These three contigs harbor in the BWA-MEM alignments the vast majority of reads that bowtie2

assigns to the rDNA (Figure S22). The regions that blastn reported as 18S analogues (4 on chromosome 21, and 2 on each of the

other two scaffolds; Table S16) were then saved as a bed file and used as input for a samtools view -c call with options -M, -L

<bedfile>, and -X <bamfile> <index> to count the total number of 18S reads. These values were then divided by the sum of

reads assigned to numbered chromosomes as reported by samtools idxstats to obtain the 18S Ratio used as rDNA CN proxy.

Note that different versions of Hg38 might contain a different number of scaffolds, so further (or fewer) 18S analogues might be

present in other datasets.

On the UKB, 18S Ratios were obtained as described above for all WGS samples available in CRAM format for both first and second

releases. To this end, alignment files were accessed through the UK Biobank Research Analysis Platform (UKB RAP). These are

stored in subfolders within the /Bulk/Whole genome sequences/Whole genome CRAM files/ path for the first WGS release, and

/Bulk/GATK and GraphTyper WGS/Whole genome GATK CRAM files and indices [500k release]/ for the second. To enable paralle-

lisation of the computation, the paths to the CRAM files were split into batches and saved in separate files with up to 10,000 partic-

ipants each. The read counts were then retrieved using samtools through the UKB RAP application called swiss-army-knife (SAK)

version 4.5.0. In particular, two scripts were implemented, one to be executed locally and another stored within the UKB RAP

and called from the former. The communication between the two scripts was done through the dxpy python library installed on a

virtual environment using pip install dxpy. This provides the dx command line tool, which can then be used fromwithin the local script

to launch multiple SAK instances in the UKB RAP after successful login. These SAK instances were executed including the options

-iin="${project}${script_path}" and -icmd="bash ’${script}’ ’$i’", where ${project} is the result of dx pwd, i.e., the working directory in

the UKB RAP, ${script_path} is the location of the remote script within the UKB RAP workspace, ${script} is the file name of the

remote script, without the entire path, and $i is the index of the particular instance to be executed. The path to a folder where the

results should be saved was also provided using the --destination option. The remote script then reads the list of CRAM paths cor-

responding to its instance number and, for each, calls samtools to count the number of reads in the region of interest. To avoid the

CRAM files needing to be copied, which would seriously hamper the efficiency of the computation, their paths were prepended with/

mnt/project/. The resulting output files including the counts were then downloaded and processed locally to calculate the 18S Ratio

for each participant.

Total rDNA CN equivalents
Equivalent total rDNA CN values were derived from 18S Ratios calculated on all UKBWGS samples included in the first WGS release

with self-reported White British ethnic background (‘‘1001’’ in the first instance of field ID 21000) and Caucasian background

confirmed through genotyping (‘‘1’’ in field ID 22006). To this end, calculated 18S Ratios were then multiplied by the total sum of

the numbered chromosome sizes in Hg38 (2,875,001,522 bases) and divided by the size of the 18S subunit (1,871 bases). The
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distribution of these resulting values was then compared with the rDNA CN estimates derived from 18S that Hall et al.16 report for 85

of the GBR individuals from the 1000 Genomes Project.

Sequencing center adjustment
Sequencing-center adjustment of 18S Ratios was necessary for some analyses. After joining the two ‘‘Sanger’’ sequencing batches,

18S Ratios were adjusted by subtracting from ‘‘Sanger’’ estimates themagnitude of their corresponding regression coefficient from a

linear model fit with all samples from the first WGS release including only sequencing center as independent variable. This removes

the statistical significance in the difference of their means (Figure S2). The main text refers to these values as "rDNA CN estimates

adjusted for sequencing center’’, whereas several figure axes present them as ‘‘SC-adjusted 18S Ratio’’.

Ethnicity-specific subsets
All 502,384 UKB participants were assigned to ethnic supergroups according to their self-reported ethnicity, as recorded in the first

instance of field ID 21000. In particular, values of ‘‘1’’, ‘‘1001’’, ‘‘1002’’, and ‘‘1003’’ were assigned to ‘‘White’’; values of ‘‘2’’, ‘‘2001’’,

‘‘2002’’, ‘‘2003’’, and ‘‘2004’’ were assigned to ‘‘Mixed’’; values of ‘‘3’’, ‘‘3001’’, ‘‘3002’’, ‘‘3003’’, and ‘‘3004’’ were assigned to ‘‘Asian

or Asian British’’, values of ‘‘4’’, ‘‘4001’’, ‘‘4002’’, and ‘‘4003’’ were assigned to ‘‘Black or Black British’’; and values of ‘‘5’’ were as-

signed to ‘‘Chinese’’. Every other participant was considered belonging to ‘‘Other ethnic group’’. All 199,779 participants from the first

WGS release with 18S Ratio estimates were included in analyses of ethnicity-specific rDNA CN differences.

Analyses explicitly mentioning ‘‘White British’’ individuals only retain those that have both ‘‘1001’’ in field ID 21000 and ‘‘1’’ in field ID

22006 (166,919 individuals in the first WGS release). All analyses involving principal components from genotypes reduce this sub-

population further to remove those whose genotyping array was listed as ‘‘BiLEVE’’ (negative values in field ID 22000). The final

set was comprised of 157,227WB individuals from the firstWGS release (and 209,681 on the second release replication). Regression

analyses involving other ethnicities also remove ‘‘BiLEVE’’ array samples. WB individuals were split by UK country of birth according

to the value in field ID 1647 (‘‘1’’ for ‘‘England’’, ‘‘2’’ for ‘‘Scotland’’, and ‘‘3’’ for ‘‘Wales’’; other values in this field were discarded).

‘‘White Irish’’ and ‘‘White Other’’ individuals correspond to values ‘‘1002’’ and ‘‘1003’’ in field ID 21000, respectively.

Relatives
At the moment of writing, UKB provides genetic relatedness information for 107,076 pairs of participants, with 147,612 individual

participants represented. Pairs with kinship >0.4 were considered monozygotic twins, between 0.177 and 0.354 first-degree rela-

tives, between 0.0844 and 0.177 second-degree relatives, and between 0.0442 and 0.0884 third-degree relatives, according to

the reported KING estimates.20,64 Comparison between 18S Ratios in relatives were limited to pairs where both individuals belonged

to the ‘‘White British’’ subset described above.

First-degree relatives were further classified into ‘‘Fraternal’’ and ‘‘Parental’’ relationships. In particular, pairs with IBS0 value lesser

than 0.0012 were deemed ‘‘Parental’’, and the rest were considered as ‘‘Fraternal’’. Out of caution, five pairs with IBS0 lesser than

0.0012 – hence theoretically ‘‘Parental’’ relationships – were discarded since their births were less than 10 years apart (according to

the values recorded in field ID 34).

Each individual on the relatedness table was also assigned to a ‘‘family’’ following the process Figure S23 exemplifies, separating

first and secondWGS releases. First, the older individual of each pair was identified by their birth year (when birth year coincided, the

individual marked as number 2 on the relatedness table was arbitrarily assigned as ‘‘older’’ for this purpose). Then, ids for all

‘‘younger’’ individuals paired with each ‘‘older’’ relative were grouped alongside the id for the corresponding ‘‘older’’ individual.

Although this step is not mandatory, since each relationship pair could be considered its own group, it substantially increases the

efficiency of the computation on the 107,076 pairs. The groups were then used to construct a sparse matrix with the sparseMatrix()

function of the Matrix package65 version 1.5.3, on which a cross-product was calculated with the tcrossprod() function of the same

package. The result of the cross-product was converted into a graph with the graph_from_adjacency_matrix() function from the

igraph package66 version 1.4.1, and then employed as input for the clusters() function of the same package. The membership field

of the clusters() output provided a family ID for each of the relationship groups, which could finally be used to assign each individual

participant to a family by reconstructing who belonged to which group. These families were then employed to identify a subset ofN =

127,231 completely unrelated WB individuals in the first WGS release, and N = 162,682 in the second, by keeping only those without

entry in the relatedness table and the oldest ones from each family group.

Subsets derived from the White British population
The WB individuals used for association analyses were further subset to more stringent criteria. The subpopulations we denote

‘‘Filtered’’ recapitulate the exclusion criteria followed in previously-published blood-composition association analyses in the UK Bio-

bank.27–29 To this end, participants were excluded if they had any of the blood-related cancer codes listed in Table S17 recorded in

the first instance of field ID 20001 and/or any of the non-cancer blood-related diseases listed in Table S18 recorded in the first

instance of field ID 20002.Moreover, all individuals pregnant at themoment of recruitment (or with pregnancy status unknown; values

‘‘1’’ and ‘‘2’’ of field ID 3140) were also excluded, aswell as thosewith potentially-aberrant blood-relatedmeasurements. In particular,

participants were required to have amaximum of 2003109 leukocyte cells per blood liter (field ID 30000), 20 g/dL of hemoglobin (field
e5 Cell Genomics 4, 100562, June 12, 2024
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ID 30020), 60%of hematocrit (field ID 30030), and 1,0003109 platelets per blood liter (field ID 30080). Finally, all participants for which

their blood samples were processed more than 36 h after venepuncture were also discarded.

For the first WGS release participants, the ‘‘Filtered’’ subpopulation was further subset in two different ways. In particular, the

‘‘Filtered Unrelated’’ subpopulation only included participants not listed in the genetic relatedness table or who were the oldest

from each identified family. The ‘‘Filtered Unmedicated’’ subpopulation, on the other hand, excluded participants with any of the

medication codes listed in Table S19 recorded in the first instance of field ID 20003 and/or ‘‘taking other prescription medications’’

(a ‘‘1’’ in the first instance of field ID 2492).

The ‘‘Healthy’’ subpopulations excluded from the ‘‘Filtered’’ individuals any participant with any entry in the first instance of field ID

20001 (cancer) or 20002 (non-cancer disease). Furthermore, all participants with any entry recorded in the first instance of any field

belonging to category ID 2417 (‘‘Congenital disruptions and chromosomal abnormalities’’, listed in Table S20) were also excluded.

Finally, only participants listed as not being smokers at the time of recruitment (values ‘‘0’’ or ‘‘1’’ in field ID 20116) and with a

maximum BMI of 30 kg/m2 (field ID 21000) were retained in the ‘‘Healthy’’ subpopulation. For the first WGS release, the same criteria

were then used to generate the ‘‘Healthy Unmedicated’’ subpopulation from the ‘‘Filtered Unmedicated’’ one described above.

Participants recorded as taking any of the statin medications listed by Sinnott-Armstrong et al.30 – Simvastatin (1140861958), Flu-

vastatin (1140888594), Pravastatin (1140888648), Lipitor 10mg tablet (1141146138), Atorvastatin (1141146234), or Rosuvastatin

(1141192410) – on the first instance of field ID 20003 were removed for the associations between rDNA CN and blood biochemistry

in Figures 4A and S15. 24,575 participants were removed for that reason. The equivalent analysis in Figure S14, on the other hand,

includes all 157,227 WB individuals from the first WGS release.

Genome-wide associations
GWASs were conducted with BOLT-LMM57 version 2.4 on a set of variants pre-processed with plink58 version 2.0-20220602. In

particular, files for chromosomes 1 to 22 from the ‘‘22822 UKB imputation from genotype’’ release were initially filtered separately

using plink2 with parameters --autosome, --max-alleles 2, --mac 20, --geno 0.05, --hwe 1e-6, and --maf 0.001 (which, as mentioned

below, was increased to 0.01 after merging) for each WGS release separately on all participants with alignment data available. For

reference, on the first WGS release, this reduced the number of chromosome 1 variants from 7,402,791 to 1,086,793, with 5,850 var-

iants removed due to missing genotype data, 439,555 removed due to the Hardy-Weinberg exact test threshold, and 5,800,593

removed due to the minimum allele frequency threshold. Despite including the --max-alleles option, some multi-allelic variants ap-

peared to be retained, causing errors in further steps. For that reason, all variants with multiple entries in the resulting pvar file

were tagged and explicitly removed using plink2 --exclude. On chromosome 1, this removed a further 1,445 variants in the first

WGS release, leaving a total of 13,763,355 variants across chromosomes.

Chromosome-specific files were thenmerged in plink2 with options --mind 0.1 and --maf 0.01, leaving 7,234,608 variants available

for association analyses in the first WGS release. Prior to executing BOLT-LMM on the WB individuals, however, a subset of inde-

pendent variants was identified with plink2 --indep-pairwise 200 50 0.25 and its output linked in the --modelSnps option of bolt --lmm.

This enables the model to be fit solely on those independent variants, but associations to be assessed on the entire variant set. Link-

age information was provided through the --LDscoresFile option with LDSCORE.1000G_EUR.tab.gz (included in the BOLT-LMM

release). Sex, assessment center, and sequencing center were included as qualitative covariates, and age, age squared, the first

10 genetic principal components, the first 4 blood composition principal components, and adjusted telomere length were included

as quantitative covariates, alongside associated options --covarUseMissingIndic and –covarMaxLevels 1000. The genomic inflation

factor of the resulting associations was calculated in R using the formula:

lm =
medianðqchisqð1 � pval; 1ÞÞ

qchisqð0:5;1Þ
where qchisq(p, df) calculates the quantile function of a c2 distribution with df degrees of freedom at probability values p, and pval is

the vector of significance values recorded at the P_BOLT_LMM_INF column of the BOLT-LMM output.

BOLT-REML was executed exactly as reported for BOLT-LMM above on the subset of completely unrelated WB individuals, re-

placing --lmm with --reml. The SNP heritability coefficient h2g and corresponding standard error was retrieved from the Variance

component 1: "modelSnps" entry in the output log file.

Phenome-wide screens
Phenome-wide screens were conducted using PHESANT,59 a software toolbox implemented in R and specifically designed for that

purpose in the UKB, on the set of 157,227WB participants from the first WGS release, as well as on the subsets of individuals whose

WGS data was sequenced in either deCODE or the Sanger. Fields belonging to the 67 UKB categories listed in Table S21 were

considered for their inclusion. For some categories, however, only some fields ended being included in the analysis. In particular,

all fields with any of the strings ‘‘record’’, ‘‘Reason’’, ‘‘Source’’, ‘‘Interpolated’’, ‘‘Method of recording’’, or ‘‘(pilot)’’ in their titles

were discarded. From category ID 100094 (‘‘Baseline characteristics’’), only the ‘‘Townsend deprivation index at recruitment’’ was

retained. Note this particular field currently appears in UKB’s search engine listed with ID 22189, but both our phenotype table

and PHESANT’s variable list refer to it as ID 189. From category ID 100011 (‘‘Blood pressure’’), only fields with ‘‘automated’’ in

the title were retained (field IDs 102, 4080, and 4081). From category ID 100033 (‘‘Early life factors’’), field IDs 120, 1647, 1767,
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and 20115 were discarded. Finally, from category ID 100043 (‘‘Hearing’’), only field ID 2247 (‘‘Hearing difficulty/problems’’) was

retained.

The selected fields were then processed to enable their use as phenotypes in PHESANT, which only considers values recorded in

the first instance (i.e., entries in the phenotype table of the form <field ID>-0.X), so every field without first-instance entries was dis-

carded. Table S22 lists the final set of 1,280 field IDs employed in the analyses. Moreover, variable names were transformed as re-

quested, prepending an ‘‘x’’ and replacing dashes with underscores.

The phenomeScan.r script from PHESANTwas executed for each reported trait of interest (18S Ratio, NLR, PLR, and SII) using the

exact same input and settings, but phenotypes from the ‘‘Blood count’’ category (ID 100081) were only considered for downstream

analyses of 18SRatio associations. Sex, age, age squared, sequencing center, assessment center, the first 10 genetic principal com-

ponents, and adjusted telomere length were used as covariates, and the --genetic="FALSE" option was included, since the principal

components were explicitly provided in the covariate table. The covariate table was subset accordingly for the sequencing centre-

specific analyses of 18S Ratio associations, and its rows shuffled for the positive control analysis in Table S2, whereby each entry of

the phenotype table did not match the corresponding 18S Ratio estimate and corresponding covariates. The script was run for each

analysis in 250 parts, which were then combined using the mainCombineResults.r script. Among the provided fields, PHESANT

explicitly excluded those from category ID 265 (‘‘Telomeres’’) due to them being ‘‘genetic’’. Field IDs 20002 (‘‘Non-cancer illness

code, self-reported’’), 40001, and 40002 (‘‘primary’’ and ‘‘secondary’’ causes of death, respectively) were also excluded due to

them having been ‘‘superseded’’ bymore specific variables, and field ID 87was excluded because of it being ‘‘polymorphic’’. Overall,

PHESANT generated output for 2,722 distinct phenotypes. To note, the total number of phenotypes exceeds that of input fields since

specific ones, such as the medications in 20003, lead to multiple ‘‘phenotypes’’.

From the combined results, entries of varType ‘‘CAT-SIN’’ that included a ‘‘-’’ character in their varName were discarded, since

PHESANT is not able to provide effect size estimates for these (all reported as �999). The number of cases in categorical variables

was extracted from the n column, as well as the total number of participants with reported values for each entry. Only phenotypes

with at least 200 cases and value recorded for at least half of the total number of individuals were considered for the analyses pre-

sented in the main figures, including the FDR computation – a total of 1,078 phenotypes. Moreover, for presentation purposes, some

variable names were shortened and/or edited to remove typos. For the sake of completeness, however, Tables S1–S4 and S6–S8

report the entire unaltered results as provided by PHESANT.

Mendelian randomisation
Previously-reported variants associated with blood composition were retrieved from the GWASCatalog67 (file gwas_catalog_v1.0.2-

associations_e108_r2023-01-14.tsv) to construct ‘‘exposure’’ sets for Mendelian Randomisation (MR). Entries from this table corre-

sponding with phenotypes of interest were identified according to theMAPPED_TRAIT and DISEASE/TRAIT columns. To best match

the population of interest, only those studies that included the strings ‘‘European’’ or ‘‘British’’ in the INITIAL SAMPLE SIZE variable

were retained, and all entries with the string ‘‘NR’’ in the same variable were discarded. (Studies employed for each phenotype are

shown in the key resources table). At the time of writing, no suitable associations were identified for leukocyte counts or systemic

inflammation markers. In particular, entries for NLR associations did not include effect sizes or standard deviations.

Standard deviations derived from Beta and p-values were calculated for each association using the get_se() function from the

TwoSampleMR package60 version 0.5.6, as are all other functions mentioned in this section. The value stored in the column

STRONGEST SNP-RISK ALLELE was split into SNP and effect_allele, as required by the format_data() function. When multiple as-

sociations were reported for the same combination of SNP and effect_allele, only the one with minimum p-value and/or maximum

Beta was retained. These were further reduced after applying clump_data() to retain only variants not in linkage disequilibrium.

The BOLT-LMM output for the GWAS from the first WGS release WB participants (deposited in GWAS Catalog accession

GCST90356215) was used to construct the ‘‘output’’ data required for the MR analysis. Similar to the exposure data, this was

also transformed using the format_data() function matching column names with parameters: snp_col = "SNP", beta_col =

"BETA", se_col = "SE", eaf_col = "A1FREQ", effect_allele_col = "ALLELE1", other_allele_col = "ALLELE0", and pval_col =

"P_BOLT_LMM_INF". Exposure and outcome data were then joined using the harmonise_data() function, which further discards

‘‘ambiguous’’ variants, either because of ‘‘incompatible alleles’’ and/or ‘‘being palindromic with intermediate allele frequencies’’.

Finally, MR itself was conducted using the mr() function with the method = "mr_ivw" option to employ the Inverse Variance Weighted

procedure.

Extraction and analysis of OLink proteomics data
Normalised Protein eXpresion (NPX) values for the first release of UK Biobank’s OLink proteomics data were retrieved as follows.

First, on the UKB RAP, subsets of individuals were selected using the Cohort Browser on the latest available data release, using

‘‘Number of proteins measured | Instance 0 > 0’’ and ‘‘Ethnic Background | Instance 0 IS ANY IF ‘British’’’ as filtering criteria. In

the case of 18S Ratio associations, ‘‘Coverage (from QC metrics for WGS processing) > 90’’ was also included as filtering criterion.

These subsets were then saved and later employed on the Table Exporter tool within the RAP, alongside a text file including protein

names obtained from DNA Nexus’ github page (https://github.com/dnanexus/UKB_RAP/blob/main/proteomics/field_names.txt) on

the 12th of August, 2023. To generate a table of proteomics NPX values, the Table Exporter also required explicitly including the value

‘‘olink_instance_0’’ in the Entity field within the AdvancedOptions. The tables resulting from submitting these jobs were then saved to
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be analyzed in R. The overall cohort included 46,020 participants when generated on the 8th of November, 2023 after the second

releases of both proteomics and sequencing data became available. Of these, 35,754 had values recorded for the variables of inter-

est, the control and its covariates and were used for the analysis. In the case of 18S Ratio associations, 16,813 participants from the

first WGS release were included.

Linear regression models were then fit to determine the potential association between each NPX value as response variable and

either 18S Ratio, one of the five variables of interest (NLR, PLR, SII, eGFR, and Kidney Failure) or the control (Lipoprotein A) as explan-

atory variable, including sex, age, age squared, assessment center, and 10 first genetic PCs as covariates in both cases, plus

sequencing center and adjusted telomere length for 18S Ratio. In addition, the proteomics Plate ID (UKB field ID 30901) of each in-

dividual was also included as a further categorical covariate in either case. Effect sizes for the associations with the variables of in-

terest or the control at FDR-adjusted significance level <0.01 were then compared with their corresponding effect sizes in the 18S

Ratio associations using Pearson’s correlation, as presented in Figure 4E.

QUANTIFICATION AND STATISTICAL ANALYSIS

General statistical analysis
Unless otherwise specified, all analyses were conducted using in-house scripts implemented in the R programming language version

4.3.1, with data manipulation and visualisation packages included in tidyverse68 version 2.0.0. Difference of means was assessed

using Wilcoxon signed-rank tests from R’s wilcox.test() function, including the paired = TRUE option when suitable. Correlation co-

efficients and p-values were derived using Pearson’s method from the cor.test() function, and ANOVA p-values were obtained using

the Anova() function from the car package69 version 3.1.2 over lm() linear regression models. ANOVA significance levels for contin-

uous variables exactly match that of the underlying linear model coefficient. Beta estimates and corresponding p-values for these

coefficients were calculated on models fit with all continuous-valued variables (both dependent and independent) normalised using

R’s scale() function. Odds ratios were calculated as eb using R’s exp() function from effect size estimates obtained on logistic regres-

sion models fit using R’s glm() function with the parameter family = "binomial". Details for the regression models can be found later in

the ‘‘Regression models’’ subsection. Confidence intervals for the effect sizes were calculated using the tidy() function from the

broom package version 1.0.5, with parameters conf.int = TRUE and conf.level = 0.95. All other confidence intervals were calculated

using the formula X ± tðð1�a=2Þ;N� 1Þ 3 ðbsX =
ffiffiffiffi
N

p Þ, where X indicates the mean of the variable of interest, bsX its empirical standard de-

viation, N the sample size, and tðð1�a=2Þ;N� 1Þ the 1 � a=2 quantile of a Student’s t distribution with N � 1 degrees of freedom, a

being 0.05 for a 95% interval, calculated with the qt() function. Quantiles for particular variables, such as the blood cell composition

ratios and eGFR values being divided into Low, Mid-Low, Mid, Mid-High, and High groups, were obtained with the cut_number()

function from the ggplot2 package, specifying n = 5 in this case.

Regression models
Regression models were fit and analyzed throughout the present study as reported above. This section describes the details specific

for each of those models. Unless otherwise specified, linear models with 18S Ratio as explanatory variable were employed. The ex-

ceptions were the linear models fit for the associations displayed in Figures S11 and S16A, denoted as ‘‘multivariate’’ in the text. In

these, 18S Ratio was included as response, with the variables for which association results are presented were all jointly included as

explanatory variables. No assumption of causal directionality is implied in any of these models. They address the extent to which the

combination of the variables of interest is able to predict the value of the response, and each individual coefficient relates to the in-

dividual contribution of each variable of interest to the overall prediction. In addition, associations between rDNA CN and renal dis-

ease groups in Figures 4D and 5E were obtained on logistic regression models with rDNA CN as explanatory variable, and including

solely a standard set of covariates consisting of sex, age, age squared, sequencing center, assessment center and adjusted telomere

length.

Significance of self-reported ethnic background differences in 18S Ratios was obtained with an ANOVA test over a linear model

with the same covariates listed above for the logistic model. Associations with sex and age onWB individuals were analyzed similarly

over a single linear model without self-reported ethnic background as covariate but with the first 10 genetic principal components

instead.

Single-ethnicity models for the association between 18S Ratio and blood cell composition included sex, age, age squared,

sequencing center, assessment center, the first 10 genetic principal components, and adjusted telomere length as covariates.

For the multi-ethnic analysis of Figures 3E, 5C, and S21, self-reported ethnic background was included as well.

For Figures 2D and S13, the same variables as above were employed as covariates in themodels assessing influences onNLR, but

with age and age squared being deemed response variables in their own models. The trait of interest for ‘‘Cancer’’ associations in-

dicates whether an individual has any entry in the first instance of field ID 20001.

In order to assess the potential effects of technical factors related with blood acquisition and processing on 18S Ratios, the linear

model employed included the same usual covariates listed above (sex, age, age squared, sequencing center, assessment center, 10

first principal components, and adjusted telomere length) as well as both the delay in processing the blood samples and the machine

drift over time. The drift was represented for each individual as the number of days between when their blood sample was processed

and the first date registered overall, after having discarded all individuals with over 36 h delay between their venepuncture and blood
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processing. In addition, models controlling for potential ‘‘Blood biochemistry’’ confounders included Calcium (field ID 30680), Urate

(field ID 30880), IGF-1 (field ID 30770), Cystatin C (field ID 30720), Creatinine (field ID 30700), and C-Reactive Protein (field ID 30710).

For the associations between 18S Ratio and biochemistry biomarkers in Figures 4A, S14, and S15, some variables aside from the

standard covariates abovewere included in themodel. In particular, fasting time (field ID 74) and the sample dilution corresponding to

each biomarker were incorporated as covariates alongside variables derived from the extraction and assay dates. Thesewere gener-

ated as follows to mimic the covariates employed by Sinnott-Armstrong et al.30 Year, month, hour, minute, and second were parsed

from blood (field ID 3166) and urine (field ID 20035) extraction dates. From this, a time of extraction covariate was derived by summing

the hour plus the minute divided by 60 and the second divided by 3600. A discretised month of extraction covariate was then derived

by combining the month and year values parsed before, except for all dates within 2006 and starting from the first of August 2010,

which were included in their own separate categories. The dates of processing, on the other hand, were treated as continuous vari-

ables indicating their delay from the earliest recorded for the biomarker. Blood biomarker associations were also calculated with and

without including blood-derived PCs (in Figures 4A, S14, and S15) andwith andwithout C-Reactive Protein (in Figures 4B and S16) as

covariates.
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