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H I G H L I G H T S  

• Demonstrated sensitivity of terahertz radiation to NaSICON-based electrolyte. 
• NaSICON densities quantified using effective medium theory. 
• Estimated densities correlates to Archimedes analysis. 
• Estimated densities agrees with to mercury porosimetry data.  
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A B S T R A C T   

With a growing interest on inorganic ceramics based solid-state electrolytes for all-solid-state batteries, there is a 
need to maximise their density to optimise electrochemical performance and fuel impermeability. In this paper, 
we demonstrate the sensitivity of terahertz time-domain spectroscopy (THz-TDS) combined with effective me-
dium theory to quantify the porosity or density of sodium superionic conductor (NaSICON)-based solid-state 
electrolyte (SSEs) pellets prepared at densities in the range of 2.2–2.9 g cm− 3, corresponding to 50–90 % rela-
tive densities sintered at 900–1150 ◦C. The results of which, have been validated against complementary 
Archimedes analysis and mercury porosimetry highlighting the potential of THz-TDS for rapid, contactless, non- 
destructive electrolyte characterisation.   

1. Introduction 

There is a growing interest on solid-state electrolytes (SSEs) for all- 
solid-state batteries due to superior thermal stability, lower flamma-
bility, improved durability and potentially higher energy density [1,2]. 
The widely investigated SSEs generally take the form of inorganic ce-
ramics or organic polymers where inorganic SSEs are superior in terms 
of ionic conductivity (<10− 5 S cm− 1 for organic polymers compared 
against 10− 3 S cm− 1 for inorganic ceramics [3,4]). With a high stability 
in ambient and high temperature conditions, as well as the possibility of 
manufacturing at scale, inorganic solid oxides such as perovskite, so-
dium superionic conductor (NaSICON), lithium superionic conductor, 
garnet and lithium phosphorus oxynitride are considered as the closest 
for widespread application [5]. These solid oxide SSEs can be 

manufactured in a number of ways such as pressing the powder followed 
by thermal treatment and subsequent polishing [2] or by screen print-
ing, atomic layer deposition and tape casting for scale-ups [6]. Common 
to all manufacturing strategies, there is a need to maximise the densities 
of solid oxide SSEs or minimise their porosities. This is important to 
minimise the amount of discrete grains present in the microstructure 
and reduce the associated grain boundaries [7] for maximising elec-
trolytes ionic conductivity [8] and minimising fluid permeability 
[9–11]. In particular, grain boundaries can reduce the bulk ionic con-
ductivity by at least an order of magnitude [12,13] and reduce fluids 
permeance by a factor of three [14]. The latter point is particularly 
important to reduce the likelihood of dendrite formation and hence the 
potential for cell short-circuiting and eventual device failure [15–17]. 

Common techniques to analyse the extent of densification of 
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inorganic ceramics SSEs include the Archimedes method, also known as 
hydrostatic weighing, helium pycnometry and mercury porosimetry 
[18,19]. Archimedes density determination is a straightforward tech-
nique that gives the sample bulk density but can be susceptible to errors 
such as deviating values with the presence of air bubbles at the surface, 
or drops of water lost upon immersing the sample [20]. Helium pycn-
ometry flows helium through the sample to determine the skeletal vol-
ume of the solid in the sample, which is then used to calculate the bulk 
density of the solid, excluding the void spaces. Measurement times are 
typically at the minutes time scale. In contrast, mercury porosimetry 
applies pressurised mercury as a non-wetting liquid into the pores of a 
sample. As an elevated pressure is needed to force mercury into smaller 
pores, a pore size distribution can be produced using gradually 
increasing pressures, at the expense of a longer measurement time, 
usually in the order of hours at increased computational complexity. 
Owing to the use of mercury, the technique is also destructive. As both of 
these techniques rely on fluids entering the sample through open and 
connecting pores, closed pores are therefore not probed. Therefore the 
extracted densities tend to be an overestimate [21–23]. X-ray computed 
microtomography is an alternative technique that is able to measure the 
electron density differences of the imaged material through 3D re-
constructions and can provide information on pore sizes and distribu-
tions non-invasively and non-destructively [24]. Even though this 
technique can provide detailed information on both closed and open 
pores, measurement times are typically in the order of hours, in addition 
to the computationally expensive image processing and tomographic 
reconstructions required for subsequent analysis [25]. Other techniques 
such as scanning electron microscopy (SEM), and X-ray diffraction 
(XRD) have also been used to characterise structural properties of 
inorganic ceramics SSEs [26–30] but the extracted information do not 
translate to a quantifiable measure of densification or porosity [31] thus 
often used to further support understanding. SEM measurements, for 
example allows sample morphology to be seen through cross-sectional 
images taken [32] while XRD is used to characterise crystallographic 
structures, phase purities and the level of crystallinity as a result of 
densification [33]. 

The terahertz portion of the electromagnetic spectrum is situated 
between 0.1 and 4 THz and can penetrate through non-metallic mate-
rials. Terahertz time-domain spectroscopy (THz-TDS) is a technique to 
coherently generate and detect broadband terahertz radiation. In 
particular, a femtosecond near-infrared pulses are focused onto a ter-
ahertz emitter, such as a semiconductor photoconductive antenna or 
nonlinear crystal, where each optical pulses produce sub-picosecond 
pulses with a frequency bandwidth from several hundred GHz to a few 
THz. These generated terahertz pulses in turn interact with the sample of 
interest where the resulting terahertz electric fields are measured by 
photoconduction or electro-optical detection with a coherent scheme. 
The key advantage of this technique is that the amplitude and phase of 
the terahertz pulse can both be measured for accurately extracting the 
sample’s dielectric response in the form of complex refractive index at 
terahertz frequencies. This an intrinsic material property that includes 
refractive index and absorption coefficient. Advances in the emerging 
THz-TDS have opened up many exciting applications [34–38] where the 
link between the extracted refractive index and the porosity in organic 
polymer pellets have been demonstrated producing porosity data 
consistent with helium pycnometry [23,39]. Compared to existing 
techniques, THz-TDS is attractive because measurements are 
non-destructive, which can be taken rapidly and without physical con-
tact. Motivated by these demonstrations, this paper explores the appli-
cability of THz-TDS to extracting the densities of environmentally 
sustainable NaSICON-based SSEs. 

2. Methods and materials 

2.1. Pellet compaction 

NaSICON powder compacts were used in this study where 500 mg of 
NaSICON powder was sieved through pores of 125 μm diameter and was 
directly compressed into flat-faced, cylindrical pellets using a manual 
hydraulic press (Specac, United Kingdom), using up to 0.5 tonnes of 
force with a minimum interval of 0.1 tonnes. The pellets had target 
thickness and diameter of ~2.5 mm and 12 mm, respectively. Pressed 
pellets were then sintered at temperatures between 900 ◦C to 1150 ◦C at 
50 ◦C increments, omitting the temperature of 950 ◦C, resulting in a 
porosity range of 10 %–50 %. For each of the sintering temperatures 
investigated, there were three repeats. Prior to characterisation, these 
pellets were sanded down to thicknesses between 0.8 and 1.1 mm using 
400 grit sandpaper, and surface polished using 1000 grit sandpaper. 

2.2. Terahertz porosity analysis 

THz-TDS measurements of the prepared pellets were acquired using 
a Tera K-15 spectrometer (Menlo Systems, Germany) in transmission 
(Fig. 1). Measurements were taken in ambient conditions where each 
waveform spanned a range of 100 ps at a time resolution of 0.033 ps. To 
mitigate the effect of noise and the potential for baseline drift, 500 av-
erages were taken to represent one measurement and a free-space 
reference measurement was acquired immediately prior to sample 
measurement, respectively. Waveform recordings of the reference and 
sample terahertz electric field data were then fast Fourier transformed 
for frequency domain analysis, where the sample spectra is normalized 
against the reference resulting in a complex transmission function with 
amplitude and phase components. These are then used to extract the 
frequency-dependent optical constants in the form of refractive index 
n(v) and absorption coefficient a(v) using Eqs (1) and (2), respectively 
[40] 

n(v)= 1 +
c

2πvd
Φ(v) (1)  

a(v)= −
2
d

ln

[

t(v)
(n(v) + 1)2

4n(v)

]

(2)  

where v is the corresponding frequency, c is the speed of light in vacuum 
(2.998 × 108 ms− 1), d is the thickness of the sample, t(v) and Φ(v) is the 
amplitude ratio and phase difference between sample and reference 
measurements, respectively. As part of signals preprocessing, the phase 
needs to be unwrapped, which effectively adds or subtracts multipliers 
of 2π to the phase to ensure a continuous spectrum. Given that the 
phases are unreliable at low frequencies, extrapolations from reliable 
data at higher frequencies are made. For further details on processing 
can be found elsewhere [40]. Sample porosity can be determined from 
the extracted refractive index using effective medium theory provided 
that scattering is negligible. Examples of effective medium theory 
include zero porosity approximation (ZPA) or Bruggeman’s Effective 
Medium Approximation (TB-EMA) [39] where both approaches 
consider two media in the sample i.e. solid electrolyte and air voids 
within the solid matrix. In ZPA, a linear relationship between the sam-
ple’s effective refractive index to its porosity is assumed [23] and is 
described as the following 

neff = nsolid + (1 − nsolid)f (5)  

where neff is the effective refractive index from measurement and 
analysis using Eq (1), nsolid is the refractive index of the bulk sample with 
zero porosity, and f is the sample’s porosity. Such a linear relationship 
may inaccurately estimate the porosity thus other models have also been 
explored [39], such as the TB-EMA model, which assumes spherical 
pores resulting in Eq (6) for a solid and air two-component system [39]: 
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n2
solid − n2

eff

n2
eff + 2

(
n2

solid − n2
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) (1 − f ) –
n2

air − n2
solid

n2
air + 2( n2

air − n2
solid)

f = 0 (6)  

where nair is the refractive index of air representing the inclusions within 
the solid. It should be noted that since there are only two components in 
the system, density and porosity are used interchangeably where 
porosity is converted to density by subtracting from 1, or 100 %. All the 
terahertz data analysis were processed using codes developed in Matlab 
(MathWorks Inc., MA, USA). 

2.3. Archimedes density 

An Archimedes setup is used to measure the bulk sample density and 
analysed using Eq 7 

ρsample = ρwater
mair

mair − mwater
(7)  

where ρsample corresponds to the density of the sample and ρwater is the 
density of water, which takes the value of 0.998 g cm− 3, while mair and 
mwater are mass readings of the sample when dry and suspended in water, 
respectively. 

2.4. Electrochemical impedance spectroscopy (EIS) 

A pellet sintered at each of the sintering temperatures was formed 
into a coin cell using layers of elemental sodium metal electrodes as the 
working and counter electrodes. The coin cell was pressed with a 
manually operated hydraulic press. To quantify the ionic conductivity of 
the electrolytes, EIS using SP-240 potentiostat (BioLogic, France) was 
performed on the coin cells at frequencies between 100 mHz and 1 MHz 
with an alternating current at a maximum potential difference of 10 mV 
for three cycles. The acquired data was fitted to a modified Randle cir-
cuit using the associated EC Lab software (BioLogic, France) to calculate 
the respective ionic conductivities (see SI). 

2.5. X-ray diffraction (XRD) 

XRD patterns were acquired on two pellets (1100 and 1150 ◦C) on 
the top surface and the middle section, made accessible after pellets 
were sanded down by ~13 mm, using a Rigaku Miniflex diffractometer 
(Rigaku Corporation, Japan) using a Cu-Kα source in the 2θ range of 
12–75◦. The patterns were refined using Rietveld refinement method 
with the Rigaku Smartlab Studio II to provide insight on the sample 
phase purity. 

2.6. Mercury porosimetry 

Measurements were acquired using PoreMaster 60 (Anton Paar 
GmbH, Austria) and Quantachrome PoreMaster with a pressure range of 

0.904–49.895 pounds per square inch absolute (PSIA), inclusive of the 
atmospheric pressure. The total sample porosity is calculated by 
expressing the intruded volume of mercury as a proportion of the sample 
volume. Due to destructive nature of mercury porosimetry, only one 
pellet at each of the sintering temperatures with the exception of 
1150 ◦C were analysed. 

3. Results and discussion 

3.1. THz-TDS 

The extracted frequency-dependent effective refractive indices and 
absorption coefficients of the samples sintered at different temperatures 
are shown in Fig. 2. It should be noted that spectral oscillations observed 
at frequencies higher than 0.6 THz are due to noise, approaching the 
experimental apparatus’ dynamic range. As expected, the amorphous 
morphology of the ceramics materials results in featureless, mono-
tonically increasing absorption spectra, with the refractive index spectra 
decreasing with increasing frequency [41]. Fig. 2 further shows that the 
extracted optical constants generally increase with increasing sintering 
temperatures resulting in higher densities with the exception of the 
samples at 1150 ◦C. As refractive index is related to porosity [42], Fig. 3 
shows the refractive indices at 0.4 THz as a function of sintering tem-
peratures where a large error bar for the 1150 ◦C batch is observed due 
to thermally induced phase change at elevated temperatures (See sec-
tion 3.4). The bulk solid’s refractive index is estimated to be ~3.27 and 
is determined by extrapolating from samples’ refractive indices and 
geometric densities for the theoretical maximum at 3.25 g cm− 3 [43]. 
Fig. 3 also shows the densities of the samples analysed using both the 
ZPA and TB-EMA models where only a marginal difference is observed 
between the two models. The TB-EMA model has consistently been more 
accurate as the ZPA model assumes a linear relationship. 

3.2. Archimedes density and mercury porosimetry 

Fig. 4 compares the extracted relative densities using THz-TDS 
against absolute densities using Archimedes density measurements 
and relative densities from mercury porosimetry. It can be seen that 
there is a direct correlation to the absolute densities, while a close 
quantitative agreement with mercury porosimetry, with discrepancies 
possibly due to the localised nature of terahertz measurements 
compared to the bulk nature of these complementary measurements. As 
a quick check, the Archimedes density measurement value extrapolated 
for a 100 % dense sample is found to be ~3.10 g cm− 3, which is slightly 
lower than the prior reported theoretical maximum of 3.25 g cm− 3 [43]. 
It should also be noted that comparison against Archimedes data for the 
outlier data points at 1150 ◦C is also in agreement at lower densities with 
similar error. 

Mercury porosimetry analysis further provides insight into the rela-
tive pore size distributions, which shows that at 900 ◦C, the pore sizes 

Fig. 1. (a) Schematic showing THz-TDS measurement of a SSE pellet. (b) Photo of SSE pellets.  
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were in the range of 7 μm up to 200 μm. Upon an increasing sintering 
temperature, the smallest and the very largest pores were removed. As 
the pellets continue to densify with higher sinter temperatures, the 
range of pore sizes converges to 10–20 μm (see SI). 

3.3. Ionic conductivity 

EIS ionic conductivities are shown in Fig. 5 as a function of pellet 
sintering temperature, where as expected, ionic conductivities increase 
with increasing sintering temperatures. This increase is by more than an 
order of magnitude, i.e. from 1 × 10− 5 S cm− 1 at 1000 ◦C to 3.3 × 10− 4 S 
cm− 1 at 1100 ◦C (with the exception of 1150 ◦C sample, see Section 3.4). 
This order of magnitude of difference in conductivities is due to inclu-
sion of grain boundaries in line with prior results [12]. The maximum 
measured ionic conductivity of 3.3 × 10− 4 S cm− 1 is in agreement with 
the previously reported value of 3.35 × 10− 4 S cm− 1 [44]. It should be 
noted that the 900 ◦C batch did not have sufficient density to withstand 
the pressure of coin cell preparation thus resulting in no EIS 

measurement. 

3.4. XRD and phase change 

In order to investigate the outlier data point at 1150 ◦C in Figs. 2–5, 
Fig. 6 compares the XRD patterns for the pellets sintered at 1100 ◦C and 
1150 ◦C against a reference pattern of NaSICON [45] where impurities 
are also highlighted. 

By performing a Rietveld analysis on the obtained patterns as 
detailed in SI, Fig. 7 compares the refined phase proportions, where 
apparent differences are observed. In particular, the pellet sintered at 
1150 ◦C has a greater proportion of low density NaSICON phase ‘NaSI-
CON low’ than the 1100 ◦C profile thus suggesting that the electrolyte 
has undergone phase change at this sintering temperature [46]. The 
phase change is also more pronounced at the middle of the pellet. The 
low density NaSICON phase has a calculated unit cell density of 3.09 g 
cm− 3 compared to the standard phase of 3.40 g cm− 3, which is com-
parable to the theoretical maximum of 3.25 g cm− 3 [43] but higher due 

Fig. 2. (a) Effective refractive indices and (b) absorption coefficients of the sintered pellets at different temperatures.  

Fig. 3. (a) Effective refractive indices and (b) corresponding relative densities analysed using ZPA and TB-EMA models. Lines are plotted to guide the eye.  

Fig. 4. Relative densities from THz-TDS against the corresponding (a) Archimedes absolute densities, and (b) relative densities using mercury porosimetry. Lines are 
plotted to guide the eye. 
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to being unit cell density. The significant proportion of the lower density 
NaSICON phase found in the pellets sintered at 1150 ◦C therefore results 
in a lower average density as observed with Archimedes data, consistent 
with terahertz measurements. 

3.5. Discussions 

Given that there is a close agreement between the presented results 
against complementary Archimedes analysis and mercury porosimetry, 
it therefore confirms the validity of our assumption on negligible scat-
tering at 0.4 THz or at wavelength of 750 μm. This is at least an order of 
magnitude greater than the 10s of μm pore sizes from mercury poros-
imetry (see SI). Furthermore, as TB-EMA is slightly more accurate than 
ZPA, our results also suggests that the pores are likely to be spherical in 
shape without much asymmetry. Despite the agreeable results, practi-
tioners of the technique should generally be aware of the following: 1) 
THz-TDS provides only provide bulk properties but not the detailed 
micro-structures e.g. pore size distribution. For these information, x-ray 
computed microtomography and mercury porosimetry are suitable 
modalities though mercury porosimetry is destructive and both would 
require relatively long measurement and analysis times (several hours at 
least); 2) The sampled volume is determined by the spot size of the 
incident terahertz beam, which is typically at 1–2 mm but can be 
reduced down to sub-mm with tighter focusing [34]; 3) Determining 
porosity/density from extracted effective refractive indices will require 
effective medium theory models to be established and an estimation of 
bulk material refractive index, which is material dependent; 4) Owing to 
the strong attenuating nature of these electrolytes, sample thicknesses 
will be limited down to sub-mm for terahertz beam penetration thus 
applicable to free-standing SSEs for ex-situ characterisation. The key 
advantages of THz-TDS, however, are the non-destructive/non-invasive 
and contactless aspect the measurements, which means that different 
techniques can be used to study the same sample. Moreover, the rapid 
nature at which measurements can be acquired (10–100 ms) and ana-
lysed (several seconds) suggest that it may find use in manufacturing 
quality control as process in-line sensor or for inspecting spatial varia-
tions across large-area SSEs, which is becoming increasingly popular [5, 
47]. At the same time, the semi-transparency of terahertz radiation to a 
range of materials [41], which could function as viewing windows to 
coin cells also highlights the potential for studying SSE’s in-situ dy-
namics. However, such an investigation would require careful cell 
design, measurement and analysis, which is the subject of further study. 

4. Conclusion 

In this study, we have demonstrated the sensitivity of THz-TDS to 
resolve the porosity or density of NaSICON-based SSEs pellets prepared 
at densities in the range of 2.2–2.9 g cm− 3, corresponding to 50–90 % 
relative densities sintered at 900◦ to 1150 ◦C, where the results have 
been benchmarked against Archimedes analysis, mercury porosimetry 
and the consequential effect on the SSEs’ ionic conductivities shown. 

Fig. 5. EIS ionic conductivities as a function of pellet sintering temperature. 
Line is plotted to guide the eye. 

Fig. 6. XRD patterns of the pellet sintered at 1100oC and at 1150 ◦C at the 
surface and middle of the pellet. Peaks due to impurities, namely zircon 
(ZrSiO4), silicon dioxide (SiO2), silicon sodium and sodium oxide (Na2O), and 
NaSICON (Na1+xZrSixP3-xO12) have been assigned. A NaSICON reference [45] is 
also included. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 7. Pie charts showing the phase proportion of (a) a pellet sintered at 1100 ◦C, the surface (b) and middle (c) of a pellet sintered at 1150 ◦C.  
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Using effective medium theory in the form of ZPA and TB-EMA, the 
density can be quantified at sufficient fidelity across NaSICONs. The 
Bruggeman model was found to be marginally closer to the true values 
as opposed to the ZPA approach, as a result of using an exponential 
relationship as opposed to ZPA’s linear model. To explain the anomalous 
results observed at 1150 ◦C, XRD measurements and Rietveld analysis 
were used to show material phase change, which resulted in lower 
densities with greater variation but still observable with THz-TDS thus 
highlighting the robustness of the proposed approach. Without a loss of 
generality, the presented methodology can also be applied to other 
inorganic SSEs provided that they are semi-transparent to terahertz ra-
diation. Our results show that while measurement and analysis are more 
complex compared to conventional techniques like Archimedes analysis 
and mercury porosimetry, THz-TDS is an emerging, contactless, non- 
destructive characterisation technique with clear potential to comple-
ment existing methods and to open up new opportunities for rapid SSE 
testing, enabling a greater material understanding for performance 
optimisation. 
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