
Calabi-Yau four-, five-, sixfolds as Pn
w hypersurfaces: Machine learning,

approximation, and generation

Edward Hirst * and Tancredi Schettini Gherardini †

Centre for Theoretical Physics, Queen Mary University of London, E1 4NS, United Kingdom

(Received 18 January 2024; accepted 21 March 2024; published 2 May 2024)

Calabi-Yau fourfolds may be constructed as hypersurfaces in weighted projective spaces of complex
dimension five defined via weight systems of six weights. In this work, neural networks were implemented
to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic
regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any
dimensional Calabi-Yau constructed in this way. The approximation always provides a tight lower bound,
is shown to be dramatically quicker to compute (with computation times reduced by up to 4 orders
of magnitude), and gives remarkably accurate results for systems with large weights. Additionally,
complementary datasets of weight systems satisfying the necessary but insufficient conditions for
transversality were constructed, including considerations of the interior point, reflexivity, and intra-
divisibility properties, overall producing a classification of this weight system landscape, further confirmed
with machine learning methods. Using the knowledge of this classification and the properties of the
presented approximation, a novel dataset of transverse weight systems consisting of seven weights was
generated for a sum of weights ≤ 200, producing a new database of Calabi-Yau fivefolds, with their
respective topological properties computed. Furthermore, an equivalent database of candidate Calabi-Yau
sixfolds was generated with approximated Hodge numbers.
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I. INTRODUCTION

Calabi-Yau manifolds have been an epicenter for aca-
demic breakthroughs since their conception by Calabi [1],
some 80 years ago. Amplified by the awarding of a Fields
medal for the proof of their existence by Yau [2], their
importance within mathematics and to the mathematical
community has since been firmly substantiated. However,
beyond their interest in mathematics, these geometries have
received notable acclaim within the physics community as
well. For self-consistency, in superstring theory, the space-
time within which we live must be ten-dimensional in
nature; to ensure compatibility with the four-dimensional
space-time we observe, the remaining six dimensions must
form some compact geometry, of which Calabi-Yau mani-
folds and their orbifolds are the most prudent and popular
candidates [3].
A selection of the defining features of Calabi-Yau

manifolds are what makes them so appropriate for string

compactification. Beyond being compact, their Kähler
SU(n) holonomy allows them to support the appropriate
fields, as fluxes, which can reduce to those seen in the
standard model. Moreover, being Ricci flat in nature, they
manifestly satisfy the vacuum Einstein equations desired to
incorporate gravity. Under dimensional reduction of a
string theory via Calabi-Yau compactification, many prop-
erties of the subsequent four-dimensional theory become
directly dependent on the used Calabi-Yau geometry, and
thus choosing the correct Calabi-Yau becomes paramount
to producing a theory that well models the Universe.
Unfortunately, the landscape of these geometries is

enormous, and its structure is largely unknown [4].
Through a variety of construction methods, billions of these
geometries have so far been enumerated [5,6], and with
numbers at this scale brute-force analysis of the correspond-
ing theories becomes computationally infeasible [7]. Data-
bases of this size hence require statistical methods of analysis
to extract meaningful insight, and, inspired by a multitude
of successes in other fields, academics have been recently
experimenting with the application of techniques from
machine learning.
Machine learning is a broadly used umbrella term for

techniques in computational statistics; loosely separated
into three subfields: supervised, unsupervised, and re-
inforcement learning [8–10]. The first subfield of super-
vised learning can be considered as advanced techniques in
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function fitting, requiring both input and output data to fit.
The second unsupervised learning subfield includes more
general feature analysis and dimensional reduction, looking
at input data on its own. The final subfield is reinforcement
learning, which trains an agent to search a space of
potential solutions for an optimum.
With use notably initiated for the string community in

the simultaneous works [11–14], successes inspired appli-
cations in a broader range of contexts. Beyond many
excellent programs of work seeking to numerically con-
struct the elusive Ricci-flat Calabi-Yau metrics [15–25]
enabling further steps in string phenomenology [26,27],
there has been a variety of papers finding real efficacy of
machine learning in predicting Calabi-Yau topological
properties.
In particular, supervised methods have been especially

amenable to the prediction of Hodge numbers, where
expensive and difficult computations can be avoided if
statistically confident predictions indicate a candidate
geometry is highly unlikely to be relevant for one’s desired
application. This has been shown in the Calabi-Yau
“threefold” (i.e., three complex dimensional) construction
cases of weighted projective spaces [11,28], complete inter-
sections [11,29–34], their generalized cases [35], and via
toric varieties [36,37].
While Calabi-Yau threefolds are excellent candidates for

superstring compactification from ten dimensions, super-
string theory also has interpretations within its parent
theories of M theory and F theory, which are 11 and 12
dimensional, respectively. Therefore, to compactify these
higher-dimensional theories down to four dimensions,
higher-dimensional geometries are needed. M-theory com-
pactification requires seven-dimensional manifolds [38],
notably G2 manifolds exhibiting ever-more elusive con-
structions; machine learning in this area has been initiated
by recent work considering the related G2-structure geom-
etries with success predicting their equivalent Hodge
numbers [39]. Alternatively, F-theory compactification
requires Calabi-Yau “fourfolds,” where machine learning
methods have been effective for the complete intersection
construction1 [41,42], for which an exhaustive list has been
determined [43,44]; however, machine learning methods
have not yet been tested for the other constructions.
While the database of Calabi-Yau fourfolds from

weighted projective spaces has been constructed [45–47],
the toric variety construction method is too large to be
enumerated in full [48], despite new work showing
machine learning methods can help search this intractable
space [49]. Therefore, inspired by an array of successes in
machine learning Calabi-Yau threefolds, this work looks to

examine the suitability of these methods to the yet
untouched database of Calabi-Yau fourfolds built from
weighted projective spaces, while developing on tech-
niques inaugurated in [28].
This paper begins by detailing the Calabi-Yau construc-

tion of interest in Sec. II, followed by analysis of the weight
system data and respective topological invariants in
Sec. III, with detail on generated complementary datasets.
In Sec. IV, the machine learning methods used are
introduced, followed by their application, results, and inter-
pretation. Central to this work, in Sec. V, is the presentation
of an approximation formula for computation of Hodge
numbers of Calabi-Yau manifolds constructed via weighted
projective spaces, providing a tight lower bound and enor-
mous improvements in computation time. In Sec. VI, this
approximation, as well as the other related properties, is
used to construct candidate transverse weight systems of
seven and eight weights with sums of weights up to 200,
along with the topological properties of the subsequent
Calabi-Yau five- and sixfolds, respectively. Finally, in
Sec. VII, results are summarized and outlook applications
discussed.
The code for this work was completed in PYTHON, with

use of machine learning libraries SCIKIT-LEARN [50] and
TensorFlow [51]; datasets and scripts are made available at
this paper’s respective repository on GitHub [52].
As a final comment, we leave some references to exciting

applications of machine learning across alternative sub-
fields in mathematical physics, which have included work
on amoeba [53–55], branes [56–59], conformal theories
[60–64], quivers [65–68], phenomenology [69–76], and
other related geometry [77–85]. With an abundance of
mathematical objects used throughout physics, the age of
application of machine learning to uncover new physical
understanding is alluring, just at its beginning.

II. BACKGROUND

The most natural appearance of Calabi-Yau fourfolds
is in the context of N ¼ 1 compactification of F theory to
four dimensions, which was studied in the seminal works
of [86–88], among others.
F theory emerges upon geometrization of the axiodilaton

present in type IIB superstring theory, resulting in a
12-dimensional theory. It was first developed in the seminal
work of Vafa [86]. A Calabi-Yau fourfold, which is
elliptically fibered, serves as the internal space for the
compactification of F theory to an N ¼ 1 supersymmetric
theory in four dimensions (see [89], for instance). As usual,
the moduli space is determined by the possible deformation
families, encoded in the cohomological data, which are the
main subject of this work. Moreover, Calabi-Yau fourfolds
can also appear in the compactification of M theory to three
dimensions, leading to an N ¼ 2 supersymmetric theory.
The two reductions are linked when the fourfold X is
elliptically fibered, as shown in [87]. For a given fibration

1We note recent successes in generating and machine learning
Calabi-Yau fivefolds [40], where the first systematic construction
of complete intersection Calabi-Yau fivefolds is presented,
producing a large but inexhaustive list of new spaces.
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E → X!π B, a compactification of M theory on X coincides
with a compactification of F theory on X × S1. The set of
Calabi-Yau fourfolds studied in this paper also includes
spaces with negative Euler number, a feature that allows for
supersymmetry breaking in M-theory compactification.

A. The construction

The Calabi-Yau fourfolds considered in this work are
constructed as codimension-one hypersurfaces in compact
complex five-dimensional weighted projective spaces P5

w.
A general n-dimensional weighted projective space Pn

w is
defined by considering Cnþ1, spanned by coordinates
fz0;…; zng, removing the origin to form Cnþ1=f0g ¼
ðC=f0gÞnþ1 ¼ ðC�Þnþ1, then subjecting it to an identifica-
tion given by

ðz0;…; znÞ ∼ ðλw0z0;…; λwnznÞ; ð2:1Þ

for all nonzero complex numbers λ∈C�. The integer
numbers wi’s are called “weights” (hence the name of
the construction), and the vector of weights ðw0; w1;…; wnÞ
is known as a “weight system” of nþ 1 weights. For
weight systems to uniquely define weighted projective
spaces, the set of weights needs to be coprime, removing
redundancy introduced by rescaling of the identification
parameter λ. There are infinitely many coprime weight
systems which thus each uniquely define a weighted
projective space. However, not all of these weighted
projective spaces will admit Calabi-Yau hypersurfaces; in
the cases they do, the weight system is defined as trans-
verse. For transverse weight systems, these Calabi-Yau
hypersurfaces are then homogeneous functions of specific
degree, as required to satisfy the defining vanishing first
Chern class property necessary to produce a Calabi-Yau.
To briefly introduce this, start by assuming we have a

transverse weight system such that the hypersurface can
avoid the singularities of the ambient Pn

w. This defining
hypersurface equation p ¼ 0 therefore has no common
solutions with its derivative dp ¼ 0. Defining T P as the
tangent bundle of the ambient Pn

w, such that the hypersur-
face submanifoldM has respective normal bundleN , then
T P ¼ T M ⊕ N , allowing the computation of the Chern
polynomial for the hypersurface submanifold from that of
the ambient space and normal bundle [90]. A tangent space
in T P is a space of vectors v ¼ vi ∂

∂zi that act on functions in
the ambient space (i.e., functions of the ambient space’s
homogeneous coordinates zi). The homogeneous nature of
the functions, however, leads to an identification in this
space of vectors vi ∼ vi þ wizi, since

P
i wizi ∂

∂zi f ¼ mf
for generic homogeneous function f of degree m, reducing
the space dimension by 1 as required. The independence
of the vectors (except for this identification) leads to
a decomposition of the tangent bundle into line
bundles T P ¼ ðOðw0Þ ⊕ Oðw1Þ ⊕ … ⊕ OðwnÞÞ=O, with

the trivial bundle in the denominator. The Chern poly-
nomial of these one-dimensional line bundles is then
cðOðwiÞÞ ¼ 1þ wiω, for ω the Kähler form of the ambient
space, leading to

cðT PÞ ¼ Πið1þ wiωÞ: ð2:2Þ

Whereas, since the degree d hypersurface equation is
codimension 1, it can be viewed as a fiber coordinate
forN , such thatN ¼ OðdÞ, and hence cðOðdÞÞ ¼ 1þ dω.
Therefore, the overall Chern polynomial for the hypersur-
face submanifold tangent space is

cðT MÞ ¼ Πið1þ wiωÞ
1þ dω

; ð2:3Þ

where the first Chern class c1 can be extracted by expansion
of the above, leading to the condition c1ðT MÞ ¼
ðPiðwiÞ − dÞTrðωÞ, which for the hypersurface to define
a Calabi-Yau manifold requires c1 ¼ 0, causing

d ¼
X
i

wi: ð2:4Þ

Therefore, Calabi-Yau manifolds can be constructed as
hypersurfaces in weighted projective spaces, where the
weights form a transverse weight system and the hypersur-
face is defined by a homogeneous equation of degree equal
to the sum of the weight system weights, wtot ≔

P
i wi.

B. Weight system properties

Consequently, for the central focus of this work, which is
Calabi-Yau fourfolds, we are interested in weight systems
consisting of six weights. For the hypersurface to be
Calabi-Yau, the weight system must be transverse, which
synonymously in the mathematics literature may also be
referred to as quasismooth, in that the hypersurface has no
additional singularities other than those inherited from the
ambient space. The complete list of transverse weight
systems of six weights was classified in [46], totaling
1100055. Transverse weight systems were first bulk gen-
erated in [90] for the threefold case of five-weight weight
systems, later extended to the full finite list of 7555
in [91,92]. In general, the number of transverse weight
systems was proved to be finite for any dimension in [93].
These constructions, as well as those for fourfolds in [46],
relied heavily on the use of these hypersurfaces as
potentials in Landau-Ginzburg theories [94,95], with lim-
ited direct interpretation in terms of the weights. However,
in the original construction in [90], a necessary but in-
sufficient condition for transversality was introduced in
terms of the weights exclusively.
This necessary but insufficient condition for a general

dimensional weight system to be transverse is based on
divisibility between these weights. We thus dub this
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property “intradivisibility.” A weight system is intradivi-
sible if and only if

∀wi ∃wj such that
wtot − wj

wi
∈Zþ; ð2:5Þ

such that each weight can be subtracted from the sum of the
weights and the result will be divisible by a weight in
the weight system.2 This property can be computed from
the weights alone and provides a means of identifying
weight systems that are certainly not transverse—where
this condition does not hold.
In addition to intradivisibility, another property of a

weight system is required for it to be transverse, and this
property comes from the more general toric interpretation
of the weighted projective spaces.3 In this interpretation, the
ambient Pn

w are toric varieties, defined by fans inRn, which
can be built from convex lattice polytopes inZn centered on
the origin.
A polytope [79] is itself defined by a collection of d

hyperplane inequalities such that all points x∈Rn are in the
polytope ifH · x ≥ b for some defining d × nmatrixH and
constant d vector b. The constituent parts of the polytope
as defined by the intersection of the hyperplanes are the
polytope faces, where 0 faces are vertices, 1 faces are
edges, and so on up to (n − 1) faces, which are facets. In the
case where the vertices’ coordinates are all integers across
the polytope, the polytope is a lattice polytope.4 If the
polytope contains a single lattice point in its strict interior,
then the polytope is called the interior point (IP); due to the
affine symmetry of the lattice, this point can always be
shifted to be the origin.5 The respective toric fan for a lattice
polytope is defined by constructing 1 cones, which are lines
connecting the origin to each vertex, then extending each
line infinitely. The remaining higher cones of the fan are
then defined by the intersections of the polytope hyper-
planes.6 The toric variety [99] is then constructed from the

fan through consideration of its respective dual fan; each
cone in the fan has a dual cone that is the set of all points
whose inner product with points in the cone produces a
non-negative number. The union of all dual cones is the
dual fan. Finally, the toric variety is defined as the maximal
spectrum of the generators of the dual fan’s 1 cones, i.e.,
taking the dual fan one-cone generators (vectors in Zn) and
treating their entries as exponents of the coordinates in
some Cn, each generator providing a condition on the
coordinate ring Cn, and the resulting spectrum of maximal
ideals of this quotient ring defines the toric variety.
From this construction it has been shown how polytopes

lead to toric varieties. Despite the series of steps needed to
go from the polytope to the variety, a surprising amount
about the variety can be deduced from the polytope
information alone. An example of this is that, for the
variety to be compact, the dimension of the polytope must
equal the dimension of the lattice it is defined on. In fact, in
this vein there is a more direct construction method for the
toric variety from the polytope and one more similar to the
weighted projective space construction. Whereas, where
weighted projective spaces are defined through one iden-
tification of Cnþ1 using one weight system as in (2.1), this
can be generalized to k identifications of Cnþk using k
weight systems. If these weights are selected to be vectors
spanning the kernel of the lattice polytope’s vertex matrix,7

then the generated variety is the same toric variety as that
constructed via the dual fan method above.
In this way, the weight systems of consideration for

weighted projective spaces can be generalized to include
combined weight systems (with many weight systems) for
toric varieties. The hypersurface equation defining the
potential Calabi-Yau in the weighted projective space then
becomes a generic hypersurface in the toric variety’s
anticanonical divisor class [100], with alternative interpre-
tations as nontransverse hypersurfaces in weighted projec-
tive spaces [101]. Inverting the process of extracting
weights from a polytope, polytopes can also be constructed
from (combined) weight systems. However, before intro-
ducing this, the definition of a polytope’s dual is needed.
In a similar way to how a polytope’s fan has a dual fan, a

polytope has a dual polytope, defined as the set of points
such that the inner product between any point in the
polytope and any point in the dual polytope ≥ −1. By
definition, the dual of an IP polytope is hence also IP [102].
However, the dual of a lattice polytope is not necessarily
lattice, and in the special cases where both a polytope and
its dual are lattice, the polytopes are denoted as a reflexive
pair—both satisfying the reflexivity property. In fact, it is

2We note a nomenclature subtlety in [28] where “transverse”
was used to depict a weight system satisfying this property, and
“Calabi-Yau” was used to depict a weight system that can admit a
Calabi-Yau hypersurface. In this work, we reserve transverse for
the weight systems with Calabi-Yau hypersurfaces where the
solutions to the hypersurface equation and its derivative are
transverse, and we introduce intradivisibility for weight systems
satisfying the property of (2.5).

3These can be alternatively generalized to fake weighted pro-
jective spaces [96], but this is another story.

4Lattice polytopes can also be physically interpreted as toric dia-
grams of quiver gauge theories [97].

5In the mathematics literature, lattice polytopes with exclu-
sively the origin in the strict interior are called “Fano,” since they
lead to Fano varieties. Where the boundary lattice points are only
the polytope’s vertices, the polytope is terminal Fano, while
where there are extra boundary lattice points, the polytope is
canonical Fano [98].

6To ensure a smooth toric variety, the polytope can first be
triangulated to resolve the singularities arising from the interior
points of the facets.

7We note that the GLðk;ZÞ symmetry in the kernel basis
manifests itself as the redundancy from the linear addition of
weight systems before identification. Additionally, on more
general lattices there are further identifications from the lattice
gradings to account for where the vertices are not primitive.
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one of the astounding beauties of the toric construction of
Calabi-Yau that the hypersurfaces in toric varieties from
dual lattice polytopes are in fact mirror symmetric [100]. A
weight system is thus “reflexive” if the lattice polytope
constructed from it is reflexive.
Let us return to the construction of an IP polytope from

an IP weight system. Here, the hyperplane equations
defining the polytope include an equality for each weight
system such that

P
i wixi ¼ wtot, and inequalities defined

by xi ≥ 0 ∀i [103]. Through this construction, the point
xi ¼ 1 ∀i is manifestly contained within the polytope,
since it naturally satisfies the equalities and inequalities,
noting that an affine transformation can set this point to
be the origin. This general polytope is hence always IP,
however, it may be rational and we are often more
interested in its restriction to a lattice.
To be able to then define and check the IP property of a

given weight system, it suffices to construct the respective
polytope and consider it as existing on the crudest lattice it
can (that generated by the polytope’s vertices). The dual
polytope can then be generated from this and, respectively,
the dual lattice (all real points that dot product with all
points in the polytope’s lattice to integers), however, the
vertices of the dual polytope may not lie on the dual lattice.
Thus, a restriction is required by taking the convex hull
of dual lattice points that lie within/on this dual polytope.
This restriction may slice parts of the dual polytope off,
producing a smaller dual polytope, which when taking the
dual again will produce an new version of the original
polytope, which we define to be the integer polytope of
interest, and in doing this the new boundaries may intersect
the origin. Therefore, the new restricted polytope may no
longer contain the origin in its interior and would thus not
be IP [48]. In the cases where the origin does remain in the
strict interior, the respective lattice polytope is IP, and we
define the weight system to be IP too.
All real polytopes constructed from weight systems are

simplexes, since there are as many intersections of the
single defining equality with the inequalities as there are
lattice dimensions (and also weights); equivalently, those
from the larger combined weight systems are the union of

simplexes. However, the restriction to the relevant lattice as
described above may generalize the polytope, causing the
lattice polytopes to be unions of simplexes also. For the
weight system to be transverse, there must be no further
unavoidable singularities than the origin, and this translates
to having no interior points on the polytope facets. It is
where this occurs that weight systems can be IP but not
transverse.
The importance of the IP property for weight systems

comes from [104], where it was shown that any transverse
weight system is by necessity IP for any size weight system.
However, the converse is not true, and thus overall we have
two independent necessary but insufficient conditions for
a weight system to be transverse: intradivisibility and IP.
Beyond this, we have another weight system property:
reflexivity; where its interrelation with transversality
depends on the construction dimension in question [45,103].
Denoting the sets of IP, reflexive, and transverse weight
systems of nweights by IPðnÞ,RðnÞ, and TðnÞ, respectively,
with their respective sizes as jIPðnÞj, jRðnÞj, and jTðnÞj, the
relations between, and frequencies of, weight systems with
each property are shown in Table I.
Because of the need for an identification, weight systems

are not defined for one weight, and since the transverse
property requires taking a codimension-one hypersurface,
this property is also not defined for weight systems of two
weights. For two weights, the single weight system is (1,1),
which is equivalent to the single one-dimensional IP and
reflexive polytope with vertices a distance 1 either side of
the origin. For three weights, there are three IP weight
systems fð1; 1; 1Þ; ð1; 1; 2Þ; ð1; 2; 3Þg, which are all both
reflexive and transverse, corresponding to three of the five
reflexive triangles. Stepping to four weights, the number
grows to 95 [104], whereas for five weights there is no
longer an equality between all these sets of weights, with
set sizes computed in [91,92,104]. The weight systems of
central focus in this work have six weights, and it is at this
stage that each set of weight systems becomes distinct,
where the IPð6Þ and Rð6Þ sets were computed in [48], and
the Tð6Þ set was addressed in [46]. Beyond systems with
six weights, the set sizes are unknown, as constructions

TABLE I. Known relations between the sets of weight systems satisfying the IP [IPðnÞ], reflexive [RðnÞ], and transverse [TðnÞ]
properties as the number of weights in the weight system increases. Additionally are shown the sizes of the sets of weight systems
satisfying those properties (denoted with j · j) at each weight system size. The weight systems for dimensions ≥ 7 have not been fully
computed yet. “?” indicate that those numbers have not been computed yet.

Property

Number of weights Relations jIPðnÞj jRðnÞj jTðnÞj
2 IPð2Þ ¼ Rð2Þ 1 1 � � �
3 IPð3Þ ¼ Rð3Þ ¼ Tð3Þ 3 3 3
4 IPð4Þ ¼ Rð4Þ ¼ Tð4Þ 95 95 95
5 IPð5Þ ¼ Rð5Þ ⊃ Tð5Þ 184026 184026 7555
6 IPð6Þ ⊃ Rð6Þ IPð6Þ ⊃ Tð6Þ 322383760930 185269499015 1100055
≥ 7 IPð≥ 7Þ ⊃ Rð≥ 7Þ IPð≥ 7Þ ⊃ Tð≥ 7Þ ? ? ?
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have not yet been attempted (until this work, as detailed in
Sec. VI). The intradivisibility property is not believed to
have a finiteness bound, which is why it is not included in
these count considerations. The interrelation of this prop-
erty with the others is discussed in more detail in Sec. III B.

C. Topological properties

As previously mentioned, the cohomological data of the
Calabi-Yau used in compactification determines the moduli
space of the resulting compactified supersymmetric theory.
Since Calabi-Yau manifolds are manifestly complex and
Kähler [102], the complexity allows use of the decom-
position of the complexified cotangent bundle into hol-
omorphic and antiholomorphic parts via eigenspaces of the

complex structure: T �
M ¼ T �ð1;0Þ

M ⊕ T �ð0;1Þ
M . This, in turn,

causes a decomposition of the differential forms as exterior
products of these holomorphic and antiholomorphic cotan-

gent bundles ΛkT �
M ¼ ⨁

pþq¼k
ΛpT �ð1;0Þ

M ⊗ ΛqT �ð0;1Þ
M , such

that the ðp; qÞ-forms are sections of each sum component
with vector space Ωp;qðMÞ. From here, the cohomology
arises using the decomposition of the exterior derivative
operator d ¼ ∂þ ∂, allowing definition of the Dolbeault
cohomology groups

Hp;q
∂

ðMÞ ¼ Kerð∂∶Ωp;qðMÞ ↦ Ωp;qþ1ðMÞÞ
Imð∂∶Ωp;q−1ðMÞ ↦ Ωp;qðMÞÞÞ : ð2:6Þ

These are defined for all p (arbitrarily they may instead be
defined for all q using ∂), and the dimension of these groups
defines the “Hodge numbers,”

hp;q ¼ dimHp;q
∂

ðMÞ: ð2:7Þ

These Hodge numbers may be arranged into a Hodge
diamond, where the symmetries of complex conjugation
(hp;q ¼ hq;p) and Serre duality (hp;q ¼ hn−p;n−q for
dimC M ¼ n) become clear. The Kählerity of the Calabi-
Yau manifolds relates these Hodge numbers to the com-
plexified de Rham real cohomological Betti numbers bk,
since

Hk
dðMÞ ¼ ⨁

pþq¼k
Hp;q

∂
ðMÞ;

⇒ bk ¼
X

pþq¼k

hp;q; ð2:8Þ

then also allowing for the manifolds’ Euler number χ to be
computed from these Hodge numbers via χ ¼Pkð−1Þkbk.
Furthermore, for the specialized Kähler case of Calabi-

Yau manifolds, there are even further restrictions on these
Hodge numbers. One of the defining properties of a Calabi-
Yau manifold is a unique holomorphic top form, which
then sets hn;0 ¼ 1, hence also setting to 1 the other Hodge

diamond corners (via the conjugation and duality) [105].
Additionally, as the Calabi-Yau’s are simply connected,
they have trivial first fundamental group and therefore also
trivial first homology group, setting h1;0 ¼ 0 and, respec-
tively, the remaining boundary components of the Hodge
diamond [106]. The final Hodge diamond therefore takes
the form

ð2:9Þ

showing that there remain few nontrivial components for
consideration in the subsequent string compactification.
For Calabi-Yau fourfolds, the nontrivial Hodge numbers
are fh1;1; h1;2; h1;3; h2;2g. It is noted that in this dimen-
sion there exists a further constraint on the Hodge
numbers [107], which reads

−4h1;1 þ 2h1;2 − 4h1;3 þ h2;2 ¼ 44; ð2:10Þ

allowing h2;2 to be eliminated from the above list.
These Hodge numbers, as well as the Euler number, are

of particular interest to physicists, and work characterizing
and classifying Calabi-Yau’s beyond these topological
properties has seen insightful early progress [108,109].
For the weighted projective space construction of Calabi-
Yau manifolds, there are direct formulas for these topo-
logical properties from the weights alone [110,111].
Specifically, these are

χ ¼ 1

wtot

Xwtot−1

l;r¼0

" Y
ijlqi&rqi ∈Z

�
1 −

1

qi

�#
;

Qðu; vÞ ¼ 1

uv

Xwtot

l¼0

" Y
θ̃iðlÞ∈Z

ðuvÞqi − uv
1 − ðuvÞqi

#
int

×

�
vsizeðlÞ

�
u
v

�
ageðlÞ�

; ð2:11Þ
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for weights wi, normalized weights qi ¼ wi=wtot, and
u, v as dummy variables of the Poincaré polynomial
Qðu; vÞ ≔P

p;q h
p;qupvq. For Qðu; vÞ, θ̃iðlÞ is the canoni-

cal representative of lqi in ðR=ZÞ5, ageðlÞ ¼P4
i¼0 θ̃iðlÞ,

and sizeðlÞ ¼ ageðlÞ þ ageðwtot − lÞ. Note also for χ, where
∀ ilqi or rqi ∉ Z then the product takes value 1. These
components are reintroduced and explained in more detail
in Sec. V.
These formulas, as can be seen from Eq. (2.11), are

especially complicated, requiring factorially many integer
divisibility checks as the weights in the weight system
increase in value, as well as numerous extremely expensive
polynomial divisions. It is with this in mind that this work
is motivated to investigate the efficacy of machine learning
methods at approximating these formulas in Sec. IV, with
the aim of distilling physical insight to form a suitable
approximation, as discussed in Sec. V, focusing on the
more demanding Poincaré polynomial formula for Hodge
numbers—from which the Euler number can be computed.

III. DATA ANALYSIS

In this section, the database of transverse six-vector
weight systems, used to construct Calabi-Yau (CY)

fourfolds via P5
w spaces, is analyzed from a general data

science perspective. Databases of weight systems satisfying
different combinations of the considered properties for
transversality are then generated and discussed, with further
data analysis.

A. The fourfolds dataset

Here, the global properties of the primary dataset under
investigation are summarized. It was first presented in [46],
where some patterns in the Hodge numbers arrangement
were discussed and illustrated by scattered plots, with
further preliminary plots available in [112]. Our work, on
the other hand, is a natural extension of the investigations
on the analogous manifolds in three complex dimensions,
performed in [28]. As such, we focus on the features that
are most relevant for machine learning purposes, and we
start from the distribution of the invariants, which is shown
in Fig. 1. We observe that, by using the logarithmic scale
for the frequency, all histograms display a similar behavior.
The majority of samples is always concentrated around low
values, and the ranges span several order of magnitudes.
The key features of the distributions in Fig. 1 can be
summarized as

hh1;1i ¼ 2933.83031481 ; hh1;2i ¼ 24.120100 ; hh1;3i ¼ 2300.33031481 ;

hh2;2i ¼ 20932.0121364482 ; hχi ¼ 31307.51820448−252 ; ð3:1Þ

FIG. 1. These plots illustrate the distribution of each of the invariants for Calabi-Yau fourfolds in weighted projective spaces. Each bin
contains 500 samples.
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where we borrow the notation meanmax
min from [44]. The

same range and similar mean values of h1;1 and h1;3 are a
hint of mirror symmetry, which is indeed present in this
dataset, as noted in [46]; Fig. 2(a) provides an illustration of
it. This plot should be compared with the famous threefold
version, where h1;1 þ h1;2 is plotted against the Euler
number χ [90]. Quantitatively, the degree of mirror sym-
metry is around 70%, as reported in [46]. This feature was
discovered in generating the set of Calabi-Yau’s con-
structed as hypersurfaces in weighted projective spaces,
derived from their embedding within toric varieties and
notably does not apply to the complete intersection Calabi-
Yau’s (CICY) construction [44,113].
Figure 2(b) shows the relation between the two highest

Hodge numbers (note that, due to mirror symmetry, this
would look almost identical if we were to plot h1;1 instead
of h1;3). The orange line corresponds to h1;1; h1;2 ≪ h1;3, as

can be seen from the relation (2.10) and a good amount of
data clusters along this line. This feature was noted in [44],
where they analyzed the less symmetric set of complete
intersection Calabi-Yau fourfold Hodge numbers and found
that the data only showed the linear behavior depicted in the
plot (in orange). The distribution of the nontrivial Hodge
numbers h1;• is shown in Fig. 2(c). By virtue of (2.10), this
contains all of the cohomological information of the
manifold. As we expect, the h1;1 − h1;3 plane at h1;2 ≈ 0
displays the mirror-symmetric behavior shown in Fig. 2(a)
(with a 45° rotation).
Another interesting feature of this dataset is that,

analogous to what was observed in [28], an evident linear
forking behavior in the plot of h1;1 vs highest weight of the
system can be observed. It is shown in Fig. 3, where the
dataset was also partitioned into reflexive and nonreflexive
weight systems. This partitioning is discussed in more

FIG. 2. Scattered plots of the Hodge numbers of Calabi-Yau fourfolds in weighted projective spaces. (a) Illustrates that the spaces are
mirror symmetric to a high degree. (b) Shows the relation between the two highest Hodge numbers, also compared with the constraint
(2.10). Finally, the 3D plot (c) illustrates the relation between the three independent Hodge numbers.
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detail and put in a broader context in Sec. III B. For now, we
just note that, for highest weights larger than ∼5 × 104, the
h1;1 values fall neatly into linear clusters. Motivated by the
findings presented in [28], we explore this behavior of
the dataset at hand with similar techniques. As it is evident
from Fig. 3, for large weights, there are eight peaks in the
h1;1=wmax distribution (where the largest weight is the final
weight in the weight system, such that wmax ¼ w5). These
are linear clusters in the h1;1 vs wmax plane, as shown in
Fig. 4(a). To neatly illustrate the clusters, we only consid-
ered systems with largest weights wmax⪆3 × 105, which
can be seen from Fig. 4(b). The gray lines are the clusters
obtained via the K-Means algorithm as used in [28], which
is now described. The statistical confidence of a clustering
behavior can be quantified by the inertia measure. Running
the K-Means algorithm on an input dataset with a pre-
specified number of clusters, the cluster centers/means μC
are randomly initialized and the data points are allocated
to the clusters to which they are closest. In each cluster,
the center is then updated to the mean of the data points
allocated to it, from which all data points are then
reallocated to the clusters they are closest to with respect
to these new means. This process is iterated until con-
vergence. Given a final set of clusters C, with associated
means μC, across the clustered dataset, which here is on
inputs ri ¼ h1;1=wmax, then the inertia is defined as

I ¼
X
C

X
ri ∈ C

ðμC − riÞ2: ð3:2Þ

We are implicitly assuming that any ri belongs to the
cluster whose mean to which it is closest. The number of
clusters for the problem at hand was found to be eight,
deduced by eye from Fig. 4. Furthermore, two normalized
versions of (3.2) may also be introduced, which have a nice
statistical interpretation,

Î ¼ I
nsamples

and ˆ̂I ¼ Î
maxðriÞ −minðriÞ

: ð3:3Þ

They are normalized with respect to the number of samples
and with respect to both the number of samples and the
range of the samples, respectively. For the clustering
analysis of the h1;1; wmax data reported in Fig. 4, we find

I ¼ 0.050; Î ¼ 9.3 × 10−6; ˆ̂I ¼ 3.8 × 10−5:

ð3:4Þ

In words, these value show that, on average, the ratios
h1;1=wmax that we considered are 0.0038% of the total range
from their nearest cluster [for range shown in Fig. 4(a) to be
≈0.25]. These results strongly corroborate the liner cluster-
ing behavior observed.

B. Additional weight datasets

The exact conditions for transversality of a weight system
are derived from the use of the transverse polynomials as
potentials of Landau-Ginzburg string vacua [91]. These
conditions arise from the necessity for the central charge
of these theories to be nine and a subtle application of
Bertini’s theorem allowing deformation of polynomials to
reduce the singularity structure to exclusively an isolated
singularity.
The direct combinatoric interpretation of these condi-

tions in terms of exclusively the weights is unclear, and as
demonstrated in [90] a first step toward a complete list of
necessary and sufficient conditions is provided by the
property we dub intradivisibility. Because of the necessary
but insufficient nature of this property, while all transverse
weight systems will satisfy it, there are many examples of
weight systems satisfying it that induce further singularities
on their subsequent hypersurfaces, preventing them from

FIG. 3. This plot of h1;1 as a function of the highest weight wmax
shows that the linear clustering observed in [28] for Calabi-Yau
threefolds in weighted projective spaces is also manifest in the
fourfolds dataset. Both reflexive and nonreflexive systems dis-
play the same behavior, although the regime h1;1 > 200000 is
dominated by reflexive ones. This is confirmed by the principal
component analysis shown in Fig. 6.

FIG. 4. These plots focus on the clustering observed in Fig. 3 for large weights and show that the clustering analysis correctly
reproduces the multilinear behavior. The clusters are shown as peaks in the h1;1=wmax histogram in (a) and as lines in the h1;1 vs wmax
plane in (b).
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being Calabi-Yau in nature and hence the weight system
transverse.
As well as the intradivisibility property, via works

in [100,114], there is a further necessary but insufficient
property required for a weight system to exhibit a Calabi-
Yau hypersurface. This property comes from the interpre-
tation of a weight system as a lattice polytope and,
respectively, the weighted projective space as a compact
toric variety. As described in Sec. II, the respective lattice
polytope must hence have a single interior point (denoted
as the IP property) for the subsequent toric variety to
exhibit a Calabi-Yau hypersurface. Additionally, at this
dimensionality (n > 4) the IP polytope no longer needs to
be reflexive to exhibit a Calabi-Yau hypersurface, relaxing
the necessity for this condition that is essential for the
Calabi-Yau construction in lower dimensions.
As demonstrated, for higher-dimensional Calabi-Yau

constructions, the relative importance of the previous essen-
tial properties becomes less clear, as well as their interre-
lations. Therefore, to graphically represent the dependencies
of these properties, a Venn diagram is presented in Fig. 5(a).
This in essence classifies the relevant ambient weighted
projective spaces, which are defined uniquely by coprime
weight systems.8 Principally, for a six-vector weight system
to be transverse and hence exhibit a Calabi-Yau fourfold
hypersurface, it must be both IP and intradivisible.9

It is therefore interesting to probe this relative impor-
tance among the necessary conditions using equivalent
datasets of weight systems satisfying different combina-
tions of these properties. Specifically, a dataset of weight
systems is constructed for every combination of these
properties. The partition of these weight systems is
described by starting with coprime weight systems satisfy-
ing neither IP nor intradivisibility (CnIPnD); then weight
systems satisfying either intradivisibility (DnIP), or IP,
which can then be nonreflexive (IPnRnD) or reflexive
(IPRnD); then weight systems satisfying both intradivisi-
bility and IP, but still not transverse, hence still split into
nonreflexive (DnR) and reflexive (DR); and then, finally,
the transverse weight systems exhibiting Calabi-Yau hyper-
surfaces, which are again either nonreflexive (CYnR) or
reflexive (CYR). This becomes a full partition of weight
systems into subdatasets with respect to these properties,
and these subdataset labels are chosen as acronyms to
reflect the satisfied properties of coprime ↦ C, IP ↦ IP,
intradivisible ↦ D, reflexive ↦ R, and where relevant the
absence of a property is denoted with an “n” before the
respective property notation (i.e., nonreflexive ↦ nR).
This partition is represented on the property interrelation
Venn diagram in Fig. 5(b), spanning all unique parts of it.
In generating these datasets, first the database of trans-

verse weight systems of [46] was partitioned into reflexive
and nonreflexive to produce the CYR and CYnR sub-
datasets, respectively. Then the publicly available sample
of 106 five-dimensional six-vector IP weight systems [48]
was partitioned into reflexive and nonreflexive as well as
intradivisible and nonintradivisible to initiate the respective
DR, DnR, IPRnD, IPnRnD subdatasets, explicitly ensuring
no overlap with the CYR and CYnR datasets. New to this
work, we generate all intradivisible six-vector weight

FIG. 5. Venn diagrams displaying (a) the conditional dependencies of the considered six-weight weight system properties and (b) the
partition of the weight system data into nonoverlapping subdatasets.

8Any common factor can be removed by redefinition of the
identification parameter λ, making the coprime case the natural
unique representative of each weighted projective space.

9We tested that, as expected, weight systems without the
Calabi-Yau property are incompatible with the formula obtained
via the Landau-Ginzburg model, described in Sec. V. Specifically,
the polynomial divisions involved in such an expression are not
well defined, i.e., the result contains a reminder.
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systems with a sum of weights with a maximum value of
400 (using functionality in this paper’s GitHub), partition-
ing off those that are not in the CY property subdatasets and
then checking the IP and reflexivity properties (using PALP

functionality [115]) to supplement the DR, DnR, and DnIP
subdatasets. Finally, coprime weight systems were gener-
ated stochastically10 and checked for intradivisibility and
IP. These coprime weight systems were then partitioned
into IPRnD, IPnRnD, and CnIPnD subdatasets, omitting
any that were intradivisible to keep the sum of weights
maximum value fixed for the DR, DnR, and DnIP datasets.
These datasets were then combined with the above and any
repetitions of weight systems removed. This substantially
increased the subdataset sizes, producing a final partition
with class sizes as shown in Table II.
As can be seen in Table II, the subdatasets are not

balanced in size. In some cases this is particularly natural,
where the CY subdatasets are exhaustive in their partition
between CYnR and CYR, including the entire finite list of
possibilities. Moreover, there are finitely many IP weight
systems that can be split among the appropriate properties,
of which only a sample is publicly available and which we
supplement with statistical searches. Conversely, the intra-
divisibility property is not expected to enforce finiteness on
the dataset of satisfying weight systems. Therefore, this set
has not been generated exhaustively in previous work and
is completed exhaustively here for a sum of weights up to
400.11 These class sizes are hence well motivated from a
viewpoint of exhaustive consideration and analysis, as well
as due to computational limitations. Conversely, there are
infinitely many coprime weight systems satisfying neither
intradivisibility nor IP, which we hence sample stochasti-
cally until a suitable order of magnitude matching the other
class sizes was achieved.
The difference in subdataset sizes provides concrete

stochastic information about the overlap of these weight
system properties, and one could then crudely infer
probabilities of a generic coprime weight system satisfying
each property combination using these dataset sizes. The
later machine learning architectures implemented have
generic adaptability to accommodate variable class sizes,

as described in Sec. IV B, and appropriate performance
measures are used to avoid bias misinterpretations of
learning.

C. Principal component analysis

Linear behavior in distributions can be analyzed through
principal component analysis (PCA). This unsupervised
machine learning technique extracts an orthonormal basis
for the dataset in question, with basis vectors ranked
according to their degree of contribution toward the
variance in the data’s distribution. The basis is computed
as eigenvectors of the dataset’s covariance matrix, where
the symmetric nature of the matrix ensures real eigenvalues
that can be ordered decreasingly and then used to rank the
basis. The normalized eigenvalues are named the explained
variance and provide a measure of relative importance of
each eigenvector (the larger the explained variance, the
more important the respective eigenvector). For a prespe-
cified desired degree of representation, a dataset can be
projected onto the first i eigenvectors in the ranked basis
such that the sum of the respective first i normalized
eigenvalues exceeds the desired proportion of representa-
tion. In this sense, PCA is often used as a dimensionality
reduction technique.
In this work, the union of all subdatasets of six-vector

weight systems was analyzed with PCA, as one large
dataset, to probe the capacity of linear structure being used
for simple classification between the subdatasets of the
partition. In this PCA, the explained variances were

ð0.999999498; 0.000885369; 0.000405971; 0.000233533;
0.000010095; 0.000001597Þ;

demonstrating a clear dominance in the first principal
component. Because of the nature of representation of the
weight systems, where the entries are sorted in increasing
size, it is expected that the latter parts of the vector will
dominate the most significant principal components.12

TABLE II. The sizes of the subdatasets of weight systems of six weights in each part of the partition, along with the means and ranges
across all weight values in each subdataset.

Subdataset CnIPnD DnIP IPnRnD IPRnD DnR DR CYnR CYR

Size 408124 9614 999975 988436 172462 81215 847122 252933
meanmax

min 19832941 391981 32378751 598581 422001 402001 396920281381 908032607331

10In a similar vein to [28], an exponential distribution was
fitted to the Calabi-Yau weight systems and used to generate
trial weight systems, which were checked to be coprime.

11The sum of the weight limit was selected as the limit of
computation reached at high power computer timeout of 240 core
hours.

12Within the method of PCA it is often typical to center and
scale the data components prior to analysis. Centering has no
physical effect on the features since the covariance is relative to
the mean, and so it is not implemented here; while scaling is
typically important where each component is a different measure
with different units—not applicable here where there are no units
and the relative sizes of the weights are inherently important to
the weight system definition.
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This is the case, as shown by the components of this
eigenvector for the first principal component,

ð0.000220159;−0.002178435; 0.007423314;
− 0.006743665;−0.342499831; 0.939461808Þ:

However, the final two components are still of the same
magnitude such that the projection is not trivial. The
dominance of the first principal component motivates a
one-dimensional projection of the data, using the above
eigenvector. The meanmax

min values for the one-dimensional
projections of each subdataset were

hCnIPnDi ¼ 356304117 ; hDnIPi ¼ 681671 ;

hIPnRnDi ¼ 592631316 ; hIPRnDi ¼ 12261411 ;

hDnRi ¼ 781712 ; hDRi ¼ 751692 ;

hCYnRi ¼ 831814390562 ; hCYRi ¼ 1911623136401 ;

ð3:5Þ

given to the nearest integer. They display similar lower
bounds throughout, while higher mean and maximum values
for nonreflexive subdatasets, and substantially larger ranges
for the CY data.
To explore the distributions of these projections, their

nearest integer values of the one-dimensional projec-
tions for each subdataset in the partition were plotted
according to their frequencies of occurrence in the histo-
gram of Fig. 6(a).
Plotted according to a log-log scale, the distributions

show a surprising approximate continuity of the lines. The
projection distributions all experience significant overlap in
the values they can take, and the overlap of the distribution
lines shows that each subdataset experiences regions of the
data space where the constituent vectors are distributed
similar to another subdataset (since frequencies are the

same in that range of the projections), making classification
difficult in each case of comparison.
Interestingly, the distributions of the CY subdataset

projection interpolates between the IP and D datasets in
the region of highest frequency, respecting this overlap
behavior in the full weight system generation where CY
weight systems must be both D and IP. Alternatively, in
each case when a property’s subdataset is split into R and
nR, the subsequent subdatasets exhibit distributions of a
similar shape. The nonreflexive cases then have a higher
density of high frequencies matching their usually more
populous subdatasets distributed over smaller ranges, as
demonstrated in (3.5).
The similarity between the R and nR subdatasets’ PCA

projections indicates classification architectures will likely
find identification of this property harder. The higher
skewed values of PCA projection, as well as the far larger
maximum values, for the CY datasets will perhaps be used
by the architectures to aid learning.
In addition, PCA is performed independently for the

dataset of transverse CY weight systems (i.e., union of the
CYR and CYnR subdatasets), exhibiting comparable
explained variances and dominant normalized eigenvector.
The two-dimensional projection of these data is presented
in Fig. 6(b) and shows a similar forking structure to Fig. 3,
equivalently seen for CY threefolds in [28]. Furthermore, as
seen in the plots against h1;1, the reflexive weight systems
dominate the tails of the forks. All these comparisons
corroborate the suggested intimately linear relationship
between the weights and h1;1, priming the data for machine
learning application.

IV. MACHINE LEARNING

In this section, we present the results of various inves-
tigations performed through supervised machine learning
(ML). Neural networks (NNs) are employed to predict the
Hodge numbers of Calabi-Yau fourfolds and to identify

FIG. 6. PCA of the classification partition of weight system data; explained variance demonstrated a single dominant principal
component. (a) The frequency distribution for the one-dimensional projections of the weight systems are shown for each part of the
partition (on a log-log scale). Equivalently, (b) shows a two-dimensional projection of the Calabi-Yau data, corroborating the forking
behavior observed.
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weight systems with specific properties. These two appli-
cations are different in nature, and for this reason, despite
using the same NN architecture, some of the metadata
choices differ.
NNs are high-dimensional nonlinear function fitters;

they are built from constituent neurons that receive a vector
input, act linearly on that vector to produce a number, then
act nonlinearly on that number with an activation function:
x ↦ actðw · xþ bÞ, for NN weights w (not to be confused
with weight system weights wi), bias b, and activation
actð·Þ. The neurons are organized into layers, such that the
output numbers of each neuron in a layer are concatenated
into a vector to pass to all the neurons in the next
layer. Overtraining the “optimizer” compares output pre-
dictions of the NN function to true values of training
data through a loss, updating the ðw; bÞ parameters to
optimize the fitting. After training is complete, the trained
NN is used to predict output values on independent test
data, from which performance measures can then be
calculated [8].
For the prediction of cohomological data, which has a

very wide range of possible values, a NN regressor was
used. Since the input data are small (just six integers), a
simple architecture with few layers was enough for this
problem. Specifically, we used the built-in multilayer
perception regressor from SCIKIT-LEARN, with the follow-
ing features: (16, 32, 16) layer structure, rectified linear unit
activation, mean squared error (MSE) loss, and Adam
optimizer. We chose a training-test split of 80:20 and

performed a fivefold cross-validation for each investiga-
tion. The batch size was set to 200, and we imposed an
upper bound of 250 epochs (the network could stop before
that if it reached convergence). Regarding the performance
measures, we focused on the following three:

MSE ¼ 1

n

X
ðypred − ytrueÞ2 ∈ ½0;∞Þ;

MAPE ¼ 1

n

X���� ypred − ytrue
ytrue

���� ∈ ½0;∞Þ;

R2 ¼ 1 −
P ðytrue − ypredÞ2P ðytrue − ytruemeanÞ2

∈ ð−∞; 1�; ð4:1Þ

for outputs y, where the bold numbers indicate the optimal
values, i.e., those corresponding to perfect prediction, and
MAPE stands for mean absolute percentage error.
Conversely, for the identification of weight system

properties, a NN classifier was employed. This was built
and implemented with the same architecture as the regres-
sor (using TensorFlow [51]), however, changing the loss and
performance measures to match the classification problem
style. The loss function was categorical cross-entropy, and
performance measures were functions of the confusion
matrix. A confusion matrix, CMij, counts the number of
test data inputs in class i that the trained NN classifies into
class j; this can then be normalized and the performance
measures defined,

Accuracy ¼
X
i

CMii ∈ ½0; 1�;

MCC ¼
P

ijk

�
CMiiCMjk − CMijCMki

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

i

�P
jCMij

��P
k≠i;lCMkl

���P
i

�P
jCMji

��P
k≠i;lCMlk

��q ∈ ½−1; 1�; ð4:2Þ

again where bold values indicate optimal values for perfect
learning. Note that where accuracy is very interpretable as
the proportion of correctly classified inputs, the Matthews
correlation coefficient (MCC) is, in general, a more
representative measure as it accounts for off-diagonal terms
and hence generalized type I and II errors.

A. Regressing Hodge numbers

Following the promising performances presented in [28],
we employ a supervised ML technique on the Calabi-Yau
weight system dataset under investigation. While for the
threefolds case both h1;1 and h1;2 could be learned to high
levels of precision, we find that the same is not true for
fourfolds. This does not come as a surprise, since the
underlying geometric structure becomes richer and more
complicated by going up in complex dimensions. In fact,

h1;1 is still learned with very high precision and accuracy,
while the architecture described above proves less adequate
for h1;2 and h1;3. This is partially shown in Table III, where
we also observe a trend that is common to all of our
findings. We note that the small-weights regime is essen-
tially different from the large-weights regime in terms of
ML performance. The neural networks yield consistently
better results when restricted to the first half of the dataset,
compared to the second half. This suggests that there are
some features, associated with the large-weights behaviors,
which are harder to learn with our architecture.13 Moreover,
we observe another drop in accuracy when investigating the

13One might think that this is motivated by the fact that the
second half of the dataset contains a wider range of cohomo-
logical numbers, since it has a wider range of weights. However,
this is not the case, as shown in Table IV.
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whole dataset, showing that the NN struggles to deal with
these two regimes at once. For reference, we report the
properties of the two halves in Table IV. In order to probe
the performance of ML on the full problem, i.e., determin-
ing the complete Hodge diamond, we also focused on
learning h2;2, both on its own and together with the two
Hodge numbers above. As shown in Sec. II, such a triple is
enough to contain all the cohomological information. The
results of these investigations are shown in Table V. We
again see that the accuracy drops from left to right,
according to the chosen subset. Finally, for completeness,
we also present our results on h1;2 and χ in Table VI. Since
both of them can be zero, the MAPE measure does not
apply to these cases, and therefore we omit it.
The fact that higher cohomologies in Calabi-Yau four-

folds are harder to learn with neural networks has already
appeared in the literature, in [41]. Although they analyzed a
different construction of fourfolds, i.e., CICY, their results
also indicate that h1;1 is the only Hodge number that can be
successfully learned to high levels of precision with fully
connected networks. Convolutional neural network variants
have exhibited the highest accuracies on the CICY matrix
inputs [32]; however, due to the permutation symmetry of
the configuration matrices, as well as the weight system
vectors for the construction considered here, the benefits of
the convolutional architecture’s focus on local properties is
lost. We therefore stick to the more general dense feed-
forward architectures.

TABLE IV. This table shows the ranges of the topological
quantities under investigation for the two halves of the dataset and
their mean value. The dataset is ordered according to the sum of
weights (see bottom right) and not according to any of the
cohomological properties. Hence, we see that the range of the
invariants does not split into two disjoint sets among the two
halves.

Subset First half Second half

h1;1 Min 1 212
Max 1173 303148
Mean 204.1 5663.5

h1;2 Min 0 0
Max 1989 2010
Mean 21.9 26.4

h1;3 Min 1 1
Max 303148 227486
Mean 1475.9 3124.7

h2;2 Min 82 1062
Max 1213644 1213644
Mean 6720.0 35143.9

χ Min −252 720
Max 1820448 1820448
Mean 9996.2 52618.8

wtot Min 6 4480
Max 4480 6521466
Mean 1561.6 60170.4

TABLE III. This table shows the performances of the fully connected neural network on h1;1 and h1;3 for the full dataset, the lower half
(which contains smaller weights), and the upper half (containing larger weights).

Data Investigated

h1;1 h1;3

First half Second half Whole First half Second half Whole

R2 0.9261� 0.0018 0.9114� 0.0024 0.9101� 0.0049 0.9378� 0.0086 0.279� 0.091 0.063� 0.076
MAPE 0.1578� 0.0056 0.2498� 0.0015 0.409� 0.045 1.68� 0.35 4.50� 0.72 3.03� 0.63
MSE 2072� 55 14519431�

496316
8066404�

550014
1188821�

90490
61416783�

6406298
48040860�

3496383

TABLE V. This table shows the performances of the fully connected neural network on h2;2 and on the triple ðh1;1; h1;3; h2;2Þ, which
specifies all the cohomological information. Again, we report results associated with the full dataset, to the lower half only (which
contains smaller weights), and to the upper half only (containing larger weights).

Data investigated
h2;2 ðh1;1; h1;3; h2;2Þ

First half Second half Whole First half Second half Whole

R2 0.944 0.714 0.6228 0.670 0.529 0.528
� 0.015 � 0.022 � 0.0082 � 0.093 � 0.016 � 0.015

MAPE 0.497 0.60 0.67 1.9 3.3 2.0
� 0.060 � 0.09 � 0.04 � 0.4 � 0.4 � 0.2

MSE 19287530 1295749477 1006910414 37962157 578685604 348268647
� 5619861 � 109548762 � 36669624 � 15616868 � 25936516 � 10385842
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1. NN gradient saliency

Some first steps toward interpretability of these NN
results start with gradient saliency analysis. The trained
NNs are (highly nonlinear) functions from inputs to out-
puts, and differentiating these functions with respect to
each of the inputs can give some indication of the
dependency of the output classification on each part of
the weight system.
In the saliency analysis performed here, each NN is

differentiated with respect to each of the inputs and the
differential evaluated at each of the test data inputs. The
absolute values of these gradient components are then
averaged over the test dataset, as well as averaged over
the run repetitions—here repeating the investigation with
randomized 80∶20 train:test splits for 100 independent
NNs of the same architecture. Since function scales can
vary through the NN layers, the relative saliency values are
the features of interest; they are represented, for the NNs
predicting h1;1, in Fig. 7. The six weights of the input
weight systems are represented by six boxes, where lighter
colors indicate higher saliency values and larger relative
importance. These results show that the NNs focus on the
weights in each system according to their size. They
prioritize the information encoded in the lower weights,
while the largest weights seem not to play an as important
role. This implies that the networks are not exploiting the
clustering behavior shown in Fig. 4, previously discussed.
Perhaps to be expected, if we consider that the vast majority
of weights actually lie in the “bulk” of the scatter plots,
while the linear behavior is only evident for systems with
extremely large weights.

2. Symbolic regression

While NNs have limited interpretability due to the large
number of constituent functions being concatenated, there
are other methods of supervised learning that are more
directly interpretable for extracting mathematical insight.
With the knowledge that NNs can well predict h1;1

values of Calabi-Yau fourfolds from the ambient weighted
projective space weights alone, there is hence experimental
evidence for approximate formulas connecting directly
these integers. Motivated by this, in this section, techniques
of symbolic regression are implemented via the GPLEARN

library to search for candidate approximation formulas.
Symbolic regression is a method of supervised learning

implemented via a genetic algorithm. Initially, a basis of
functions is provided to the agent; here we will restrict
ourselves to the standard normal division algebra basis:
fþ;−;×;÷g. Then, a population of candidate expressions
is randomly initialized as expression trees; where expres-
sion trees diagrammatically represent formulas as demon-
strated in Fig. 8. The population of expressions is then

TABLE VI. This table shows the performances of the fully connected neural network on χ and on the triple h1;2. Both invariants can be
zero, so we omit the MAPE measure, which is not well defined.

Data investigated
χ h1;2

First half Second half Whole First half Second half Whole

R2 0.9400 0.653 0.616 0.0715 0.0554 0.0436
� 0.0033 � 0.015 � 0.010 � 0.0069 � 0.0064 � 0.0038

MSE 46999083 3551553463 2309837118 2520 5100 3834
� 2865647 � 143894491 � 77130429 � 80 � 103 � 120

FIG. 7. NN gradient saliency scores for the h1;1 supervised
learning on input weight systems. The lighter colors indicate a
larger normalized absolute gradient for that weight in the input
six-vector weight systems, where the saliency scores are averaged
over the full test sets of each investigation and each of the 100
repetitions of the investigations.

FIG. 8. An expression tree representing a candidate learned
formula: w1 þ w2 þ w3w4

w2þ2w5
, via symbolic regression.
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evaluated on the training data, noting a parsimony factor
rewarding simpler expressions, and many of the best
performing expressions are selected for breeding by swap-
ping randomly selected subtrees. The output of the breed-
ing is a new population of expressions that are then
randomly mutated in a variety of ways to produce the
next generation. This process of evaluating, breeding, and

mutation is then iterated for a fixed number of generations,
where the best expression is then selected from the final
generation’s population as the output. This output expres-
sion is then tested on the test data to produce the final
performance measures, here using the same as for the NNs.
After 50 generations of 1000 expressions, with the

GPLEARN recommended breeding and mutation factors
and a parsimony of 0.8, the final output candidate expres-
sions as well as performance measures for three indepen-
dent runs were as given in Table VII.
With the goal of extracting just the first order behavior

for the NN approximate formula, the high parsimony and
simple function basis used has limited this regression
performance, leading to expected lower performance scores
relative to the NNs. Generalization to a broader basis with
lower parsimony can provide expressions with higher
performance, well demonstrated by a run using the full
GPLEARN basis,

�
þ;−;×;÷;−ð·Þ; ffiffi

·
p

;
1

·
; j · j; logð·Þ;maxð·Þ;minð·Þ; sinð·Þ; cosð·Þ; tanð·Þ

	
; ð4:3Þ

producing the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 þ 3

ffiffiffiffiffiffi
w4

p þmin

 
w4

logðcosðw0Þ − jw1jÞ
; 2w1 þmin

 
ðw3 − w0Þ;…

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 min

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
2 logðcosðw0Þ − jw1jÞ

q
;min

 
ðw3 − w0Þ;min

 ffiffiffiffiffiffiffiffiffiffiffi
w2w3

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
2w5

w3 − w0

s !!!vuut !!
; ð4:4Þ

with R2 score 0.896. However, due to the far higher
equation complexity and this relatively minimal increase
in performance, the lack of interpretability puts motivation
on consideration of the initially specified simple basis.
Candidate expressions are quoted in Table VII, where these
three independent expressions have similar performance
and some similar structure.
The first thing to note is that in each equation there are

three summed terms, which are each positive functions of
weights. More specifically, each has a term equal to w2

and another term either equal or proportional to w1. The
occurrence of these earlier weights somewhat corroborates
the importance of earlier parts of the weight system seen in
Sec. IVA 1, however, without the w0 factor—which may be
related to w0 having a significantly smaller range. In each
case, there is one further term involving higher weights, and
across these expressions all additional weights do occur in
this term. Overall, it is quite surprising how well such simple
expressions can perform at predicting the h1;1 values, and the
simple linear sum behavior does support there being an
approximate linear relationship as observed in Fig. 3.

B. Classifying CY property

The generation of weight system subdatasets for each
property combination, as described in Sec. III B, enables
the design of ML experiments to distinguish these proper-
ties in weight systems. In these cases, the problem is set up
as supervised classification, again using the same NN
architecture throughout these subinvestigations for consis-
tency and ease of comparison.14

To investigate the stability of the partition, a multi-
classification investigation is carried out between all eight
subdatasets. Subsequently, a binary classification inves-
tigation is then carried out to probe the ability of ML
architectures to identify each considered property: IP,
intradivisibility, reflexivity, transversality (i.e., CY); for
each of these, the datasets in each of the two classes were
formed by taking appropriate unions of the partition

TABLE VII. Candidate expressions for h1;1 as functions of the
six weights ðw0; w1; w2; w3; w4; w5Þ in the input transverse weight
systems from independent symbolic regression runs, with re-
spective performance measures.

Expression R2 MAPE

w1 þ w2 þ w3w4

w2þ2w5
0.884 0.322

3
4
w1 þ w2 þ 3

8
w3 0.872 0.332

w1 þ w2 þ 1
6
w4 0.860 0.339

14We note that tuning hyperparameters leads to improved
learning performance, however, here we are only focused on
showing the existence of good learning, maintaining consistent
architecture hyperparameters to compare between investigations.
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subdatasets. To avoid problems caused by unbalanced
datasets, during training class weights were fed into the
NN such that it is proportionally more rewarded for
correctly classifying weight systems in smaller classes;
furthermore, the MCC performance measure was used,
which is known to be unaffected by unbalanced class
sizes—in this sense, the MCC is the more appropriate
measure of learning.
The investigations, with the appropriate partitions of the

partition subdatasets, as well as class sizes, and finally the
averaged learning results over the fivefold cross-validation
are presented in Table VIII.

These classification results are all considerably strong.
For the multiclassification problem, an untrained NN
would have null performance expressed by an accuracy
∼0.125 and MCC ∼ 0; however, both performance mea-
sures are substantially higher than these scores. Therefore,
despite the weight systems being generally indistinguish-
able by eye, the NNs can learn to extract the appropriate
property information sufficiently enough to classify well.
Examining further the classification output, the averaged
normalized confusion matrix for this multiclassification
investigation is given by

0
BBBBBBBBBBBBBB@

0.084 0.000 0.012 0.004 0.000 0.000 0.009 0.000

0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

0.003 0.000 0.263 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.249 0.006 0.000 0.005 0.000

0.000 0.000 0.000 0.032 0.012 0.000 0.001 0.000

0.000 0.000 0.000 0.015 0.006 0.000 0.001 0.000

0.009 0.000 0.001 0.024 0.005 0.000 0.185 0.002

0.003 0.000 0.000 0.007 0.001 0.000 0.054 0.002

1
CCCCCCCCCCCCCCA

; ð4:5Þ

to three decimal places, where the row is the true class and
column is the predicted class. The matrix diagonal repre-
sents correctly classified weight systems. As can be seen,
the NNs prioritize the first, third, fourth, and sixth classes
such that the coprime weight systems with none of
the properties are well distinguished from IP and CY
subdatasets—these are also the most populous classes.
The off-diagonal terms are mostly zero, indicating good
learning. However, the demands of this multiclassification
problem are high; the architectures must learn to identify
many quite different properties simultaneously. Despite

this, the surprising success motivates the binary classifi-
cation of each property individually.
Each of the binary classification investigations exhibits

higher performance measures than multiclassification,
indicating that the architectures unsurprisingly perform
better when learning one weight system property at a time.
Theoretically, these trained NNs could then each be used in
turn to identify the properties of a new candidate weight
system and which part of the partition it probably lies in.
The benefit of this is the computation of, particularly, IP
and reflexivity becomes especially expensive for larger

TABLE VIII. Classification results for various partitions of the weight system data. The table shows the mean accuracy and MCC
scores, to three decimal places, with standard error, across the five cross-validation runs, for the respective investigations labeled by the
property being distinguished. The first investigation is multiclassification between all eight partitions of the weight system data:
fCnIPnD;DnIP; IPnRnD; IPRnD;DnR;DR;CYnR;CYRg; the remaining investigations are binary classifications between unions of
these nonoverlapping datasets as labeled by the index in the stated list of weight system partitions. The class sizes are also given for
reference (where the second class exhibits the investigated property); many are approximately balanced classifications, but where they
are not the MCC is a more appropriate nonbiased measure.

Investigation Data partition Class sizes Accuracy MCC

Multiclassification f0g; f1g; f2g; f3g;
f4g; f5g; f6g; f7g

[408124, 9614, 999975, 988436,
172462, 81215, 847122, 252933]

0.796� 0.007 0.740� 0.009

IP f0; 1g; f2; 3; 4; 5; 6; 7g [417738, 3342143] 0.963� 0.001 0.808� 0.008
Intradivisible f0; 2; 3g; f1; 4; 5; 6; 7g [2396535, 1363346] 0.906� 0.001 0.795� 0.003
Reflexive f2; 4; 6g; f3; 5; 7g [2019559, 1322584] 0.848� 0.002 0.681� 0.003
Calabi-Yau f0; 1; 2; 3; 4; 5g; f6; 7g [2659826, 1100055] 0.940� 0.002 0.852� 0.002
Calabi-Yau reflexive f6g; f7g [252933, 847122] 0.774� 0.001 0.132� 0.009

CALABI-YAU FOUR-, FIVE-, SIX-FOLDS AS Pn
w … PHYS. REV. D 109, 106006 (2024)

106006-17



weight systems, where the respective polytope is large, and
then calculating the dual polytope to check these properties
takes increasingly more memory and time. With the trained
NNs, candidate weight systems could be fed into these NNs
allowing quick elimination of weight systems unlikely to
satisfy these properties. Then the expensive analytic checks
can be performed for the filtered weight system database,
producing a far higher proportion of weight systems with
the desired properties.
Focusing on the MCC scores, the architectures struggle

most with identifying reflexivity, especially in the CY case.
Considering the number of steps required to compute this
analytically, via construction of the respective lattice
polytope, taking the dual polytope, and then performing
many integer checks of the corresponding vertices, this is
perhaps not surprising. Conversely, the performance for
identifying the IP property is then surprisingly high, which
still requires generating the polytope. Therefore, it is likely
the NNs can approximate the polytopes within their
architectures but struggle with the integer checks of
vertices—a property notoriously evasive for ML [116].
Respectively, the NNs can well learn the intradivisibility
property, a more direct computation with the weight data,
however, still with a number of necessary checks. Finally,
and most pleasingly, the CY property can be well learned
for fourfold weight systems, a result observed for threefolds
in [28]. The ability to so successfully predict the existence
of further singularity structure in the respective hyper-
surfaces beyond that of the ambient weighted projective
space remains astounding, for a method that is still unclear
how to perform directly without using the Landau-
Ginzburg string interpretation.

1. NN gradient saliency

The relative saliency values for each of the classification
tasks are represented in Fig. 9. For these investigations, the
saliency scores only show significant dependence on the

input features for the reflexivity identification, where the
earlier weights in the sorted weight systems (and hence
smaller weights) are more important in determining the
classification. This is accentuated for the CY reflexivity
investigation. This is likely related to the distribution in
Fig. 3, where reflexive weight systems appear to be skewed
toward lower weights.

V. THE APPROXIMATION

The computation of the Hodge numbers for Calabi-Yau
fourfolds as hypersurfaces in weighted projective spaces
was performed in [46] via the Landau-Ginzburg model.
Such a calculation involves constructing a number of
Poincaré-type polynomials and summing their contribu-
tions. To do so, one has to perform polynomial multi-
plications and divisions, which become computationally
expensive when the sum of the weights takes large values.
This is also the regime where the linear clustering behavior
is more manifest. In the present section, we introduce an
approximation for the Hodge numbers, which is well
defined for all Calabi-Yau weight systems, always provides
a lower bound, and is significantly faster to compute.

A. Presenting the formula

We first review the standard calculation by following
[111]. Given a weight system ðw0;…; wnÞ, we define

ðq0; q1;…; qnÞ ¼
�
w0

w
;
w1

w
;…;

wn

w

�
∈ Qnþ1

>0 : ð5:1Þ

Moreover, for 0 ≤ l < w, we further define

θðlÞ ¼ ðθ0ðlÞ; θ1ðlÞ;…; θnðlÞÞ ¼ ðlq0; lq1;…; lqnÞ;
θ̃ðlÞ ¼



θ̃0ðlÞ; θ̃1ðlÞ;…; θ̃nðlÞ

�
∈ ½0; 1Þnþ1; ð5:2Þ

(a) Multiclassification (b) IP

(c) Intradivisible (d) Reflexive

(e) Calabi-Yau (f) Calabi-Yau Reflexive

FIG. 9. NN gradient saliency scores for the property classification supervised learning on input weight systems. The lighter colors
indicate a larger normalized absolute gradient for that weight in the input six-vector weight systems, where the saliency scores are
averaged over the full test sets of each investigation and each of the 100 repetitions of the investigations.
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with θ̃ being the canonical representative of θðlÞ in
ðR=ZÞnþ1. To conclude, we reintroduce the last two quan-
tities that appear in the formula for the Hodge numbers,

ageðlÞ ¼
Xn
i¼0

θ̃iðlÞ ¼
X

θ̃iðlÞ≠0
θ̃iðlÞ;

sizeðlÞ ¼ ageðlÞ þ ageðwtot − lÞ: ð5:3Þ

Given these ingredients, then the full formula for the Hodge
numbers hp;q reads

X
p;q

ð−1Þpþqhp;qupvq ¼ 1

uv

X
0≤l<wtot

�Y
θ̃iðlÞ¼0

ðuvÞqi − uv
1− ðuvÞqi



int

× ð−uÞsizeðlÞ
�
v
u

�
ageðlÞ

: ð5:4Þ

It is evident that the polynomial products and divisions
within the square brackets are what takes most of the
computational resources. Just for reference, we note that,
for high weights, the software SageMath cannot perform the
calculation due to the high number of terms. For this
reason, the algorithm had to be hard coded directly. One
way to go about simplifying this formula is to identify
for which values of l the terms in the sum contribute the
most. Just by empirical observation, we find that the main
contributions come from the element of zero age and the
ones with maximal size.15 As we are about to argue in
detail, it turns out that including only terms of these types
provides a very efficient approximation for the Hodge
numbers. It is both very accurate and much faster to
implement. Moreover, it bounds the exact results from
below. Explicitly, the approximated Hodge numbers hp;qA
can be computed as

X
p;q

ð−1Þpþqhp;qA upvq ¼ 1

uv

��Y
i

ðuvÞqi − uv
1− ðuvÞqi



int

þ
X

sizeðlÞ¼n

ð−uÞwtot

�
v
u

�
ageðlÞ	

: ð5:5Þ

We tested this approximation against the two relevant
datasets: the Calabi-Yau fourfolds considered in this article
and the smaller set of Calabi-Yau threefolds. We start by
presenting our findings for the latter case.16

B. Application to Calabi-Yau threefolds

As just mentioned, (5.4) becomes more and more
involved to compute as the weights in the system become
larger. Since the dataset for Calabi-Yau manifolds in
weighted projective spaces are already ordered according
to the sum of the weights, we conveniently divided the
7555 threefolds’ weight systems (of five weights) into 11
groups, from lowest to highest. The plot in Fig. 10(a)
shows the mean percentage error of the approximation
formula (5.5) for each of those groups, both for h1;1 and
h1;2, showing that the approximation becomes more precise
as we go to higher weights. For reference, we also include a
measure for the mean sum of weights in each of the groups
h5=wtoti. We observe that the average percentage error for
large weights is remarkably small, lying somewhere
between 3% and 5% for both Hodge numbers.
The plot of Fig. 10(b) shows the ratio of the computa-

tional time against the sum of weights wtot. As anticipated,
the computational time needed to evaluate (5.5) is consid-
erably smaller than the time taken by the full version (5.4).
In fact, their ratio gets to values on the order of 10−2 for the
largest weight systems in the dataset.17

FIG. 10. These plots summarize the main features of the approximation (5.5), both in terms of accuracy and in terms of computational
efficiency, compared with the exact formula (5.4). The data refer to Calabi-Yau threefolds as hypersurfaces in weighted projective
spaces.

15This is well exemplified by looking at examples 4.5 and
4.6 in [111].

16For completeness,we point out that the approximation also fails
to be well defined for non-Calabi-Yau weight systems in general.

17One might argue that our implementation of the formula (5.4)
could be further optimized, reducing the time needed to compute
the Hodge numbers exactly. However, such an optimization
would lead to a quicker implementation of (5.5) as well, so that
we do not expect the ratio to change significantly.
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Some other useful figures for this approximation are
reported in Table IX. These results show that the approxi-
mation, even though it excludes the vast majority of the
terms that appear in (5.4), is still able to match the exact
values a significant number of times. Moreover, we find
another crucial feature of the truncated sum (5.5),

h1;1A ≤ h1;1 and h1;2A ≤ h1;2: ð5:6Þ

Thus, since this is also the case for fourfolds, the approxi-
mation presented in this work offers a quickly accessible
tool for extracting tight lower bounds of the Hodge
numbers.
As a final feature, we note that the dataset built from the

approximated Hodge numbers h1;1=2A correctly reproduces
the clustering behavior observed in [28]. This is best shown
with a histogram plot, in Fig. 11, where we can clearly see
various peaks in h1;1=wmax, corresponding to the slopes
of the clustering lines. They overlap almost completely,
showing that the clusters are essentially the same for both
datasets: the exact Hodge numbers and the ones obtained
via our approximation. Consistent with (5.6), the peaks

associated with h1;1A are slightly shifted to the left. Thus,
by narrowing down the full formula from the Landau-
Ginzburg model (5.4) to a small number of terms, we
obtained a much simpler expression, which still reproduces
the same behavior for large weights. This might be a step
forward toward the understanding of the linear clustering
that characterizes the cohomological numbers of Calabi-
Yau’s in weighted projective spaces.

C. Application to Calabi-Yau fourfolds

We now move to the case of fourfolds in weighted pro-
jective spaces. This dataset is considerably bigger com-
pared to threefolds, with 1100055 spaces, and it contains
systems with very large weights. A natural consequence is
that the computational times are much longer, which makes
the advantages of the approximation even more evident. To
give a concrete example, we focused on the millionth
weight system in the dataset, which reads [45, 74, 2460,
12792, 17876, 33173]. Our implementation of (5.4) takes
roughly 40 h, while the approximated version (5.5) is
computed in 49 sec. The ratio between the two is 0.00034.
Moreover, the approximated results are very accurate: the
exact ones are ðh1;1 ¼ 10718; h1;2 ¼ 0; h1;3 ¼ 986; h2;2 ¼
46860Þ, while the approximated ones read (10683, 0, 986,
46500).18

Regarding the precision of the approximation, we
illustrate it in Fig. 12(a), with a similar plot to the one
used for threefolds. We omit h1;2 from the picture because it
can take the value of zero, making the percentage error not
well defined. We sampled randomly and uniformly 20% of
the dataset and then divided it into groups of 2000 samples.
As before, all samples were ordered according to the sum of
weights, then divided into the groups, as shown by the gray
points. We observe once again that the percentage error gets
smaller as the weights become larger, reaching roughly
1% for the samples with largest weights, for all three
Hodge numbers. The plot in Fig. 12(b), on the other hand,
shows the comparison between the computational resour-
ces employed by the exact expression from the Landau-
Ginzburg model and by our approximation. It is evident
from the example just discussed that systems with large
weights necessitate a very long computation time for the
full formula (5.4). Thus, we collected data within the first
half of the dataset and then extrapolated our findings to the
second half, containing very large weights. The red curve
provides a good interpolation of the data, and it turns out to
give very accurate predictions as well. This can be con-
firmed by plugging wtot ¼ 66420, which corresponds to the
example weight system discussed above, into the expres-
sion for the best fit function. The result is tapp=t ¼ 0.00035,

TABLE IX. Performance measures for the approximation
applied to Calabi-Yau threefolds. Specifically, the R2 score, mean
absolute percentage error, mean absolute error, and percentage of
exact results where the approximation matched the true value.

h1;1 h1;2

R2 score 0.969 0.981
MAPE 0.113 0.075
MAE 7.1 3.3
Exact results 32% 56%

FIG. 11. This histogram plot shows that the approximated
Hodge numbers also cluster for certain values of the ratio
h1;1=wmax. Only weight systems with wmax > 250 are plotted
here, since this corresponds to the regime where the forking
behavior is most visible. This plot should be compared with the
one appearing in [28].

18To make this comparison, we had to match our conventions
with the ones used for the existing datasets; this is discussed in
the next section, after Eq. (6.2).
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which is remarkably close to the actual ratio (0.00034)
obtained from the explicit computation.
Finally, let us report the main properties of the approxi-

mation. They are shown in Table X, and they are extracted
from the same data plotted in Fig. 12(a), i.e., from a set of
roughly 220000 random Calabi-Yau weight systems. We
end this section by making a final remark. The first one is
that, analogous to the threefolds case, the approximation
provides a lower bound also for fourfolds. However, this is
trivially satisfied for h1;2, since our approximation always
yields zero for this case. Summarizing, we have that

h1;1A ≤ h1;1 h1;2A ≡ 0 ≤ h1;2; h1;3A ≤ h1;3; h2;2A ≤ h2;2:

ð5:7Þ

Therefore, use of this approximation in practical com-
putations of Hodge numbers not only provides a significant
speed improvement, but also will always be a lower bound.
Therefore, in designing string effective theories where the
topology of the chosen Calabi-Yau manifold for compac-
tification intrinsically sets many properties of the resulting
theory, this approximation allows for incompatible mani-
folds to be confidently and quickly discarded where any
hp;qA is larger than the desired values for the desired theory
being built. Additionally, it also provides a good approxi-
mation for the remaining candidates, allowing them to be

sorted prior to search with the full formula, such that many
less manifolds will need to be checked before finding the
correct topology for the desired theory.

VI. HIGHER WEIGHT SYSTEMS

The approximation has been tested on both threefolds
and fourfolds. These are the only two existing datasets of
Calabi-Yau manifolds built as hypersurfaces in weighted
projective spaces. Here, we present the first efforts toward
the understanding of these spaces in higher dimensions, by
generating a partial dataset of candidate transverse weight
systems of seven weights, and the respective Calabi-Yau
fivefolds’ Hodge numbers. We discuss how the approxi-
mation can be used to quickly extract information about
such a dataset, and we additionally generate a first partial
dataset of candidate transverse weight systems of eight
weights, then use (5.5) to construct an approximated list of
sixfolds’ Hodge numbers.

A. Calabi-Yau fivefolds

Calabi-Yau fivefolds appear in a number of dimensional
reductions in the literature. For instance, it was found
that M theory compactified on a Calabi-Yau fivefold
results in an exotic N ¼ 2 supersymmetric quantum
mechanics [117]. Moreover, Calabi-Yau fivefolds play a
role in F theory, where upon compactification, they provide
a way to systematically construct N ¼ ð0; 2Þ conformal
field theories (CFTs) [118,119], which may lead to their
classification. Therefore, an extended dataset of such
Calabi-Yau manifolds would make it possible to explore
the landscape of such CFTs. Additionally, in [120], a three-
dimensional string vacua with N ¼ 1 supersymmetry has
been found, which can be interpreted as a compactification
of S theory on a Calabi-Yau fivefold. Despite their role in
the construction of low-dimensional theories, examples of
fivefolds have not been systematically constructed, until
the recent effort in [40], which focuses on the CICY

TABLE X. Performance measures for the approximation ap-
plied to Calabi-Yau fourfolds. Specifically, the R2 score, mean
absolute percentage error, mean absolute error, and percentage of
exact results where the approximation matched the true value.

h1;1 h1;3 h2;2

R2 0.999 0.999 0.999
MAPE 0.058 0.039 0.082
MAE 74.7 32.4 681.9
Exact results 26.9% 48.7% 7.1%

FIG. 12. These plots summarize the main features of the approximation (5.5), applied to the dataset of Calabi-Yau fourfolds as
hypersurfaces in weighted projective spaces. (a) The mean accuracy for groups of 2000 weight systems ordered according to their sum of
weights. We used 20% of the dataset for this plot, sampled uniformly. The computational efficiency is analyzed in (b), where the
computational time of the approximation is compared to the one associated with the exact formula (5.4). We chose roughly 50000
samples randomly from the first half of the dataset (blue dots) and used these data to extrapolate the behavior for the second half. As
discussed in the text, the best fit function shown predicts very accurately the ratios for systems with larger weights.
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construction. Here, we present a second in that direction,
i.e., we generate, for the first time, a subset of Calabi-Yau
fivefolds obtained as hypersurfaces in P6

w. Specifically, we
generate all seven-weight weight systems whose sum of
weights wtot ≤ 200. To efficiently identify those that have
the required property to describe a Calabi-Yau (for more
details, see Sec. II), we employ a two-step approach. We
first systematically search all partitions of each sum of
weights up to 200 as weight systems, extracting those that
are coprime, IP,19 and intradivisible, performed with our
code functionality. Then, we use the approximation as a
tool for establishing the Calabi-Yau property and select
all the weight systems that are well defined with respect
to (5.5) or, equivalently, all those such that the polynomial
division ½Qi

ðuvÞqi−uv
1−ðuvÞqi � gives no reminder. The candidate

weight systems identified this way were then all checked
with respect to the exact formula (5.4), and all turned out to
be well defined, yielding the full exact Hodge diamond. To
provide confidence in the generated data, two nontrivial
checks on the cohomological data were performed. First,
computing the Euler number from the weights alone
with (2.11) and then verifying it agrees with the identity

χ ¼ 2h1;1 − 4h1;2 þ 4h1;3 þ 2h2;2 − 2h1;4 − 2h2;3; ð6:1Þ

in terms of the computed Hodge numbers. Moreover, we
also checked that the Hodge numbers satisfy the constraint
derived from the Atiyah-Singer index theorem,

11h1;1 − 10h1;2 − h2;2 þ h2;3 þ 10h1;3 − 11h1;4 ¼ 0: ð6:2Þ

Both checks were passed by all the weight systems, which
describe new Calabi-Yau geometries in complex dimension

five. For reference, let us present five examples of such
spaces, shown in Table XI. We point out a small difference
in definitions between this section and the previous ones. In
Secs. V B and V C, we compared our results with the
existing datasets (which can be found at [121]), whose
conventions are slightly different from ours. Namely, for
Calabi-Yau threefolds, h1;1 and h1;2 determined using (5.4)
have to be exchanged in order to match [121]. Analogously,
h1;1 and h1;3 should be swapped for fourfolds to be con-
sistent with the existing list. For the reminder of this paper,
we present our results as they are obtained from (5.4).
Having mentioned this subtlety, we note that a quick

consistency check of our results comes straightforwardly
from considering the first entry in Table XI. This weighted
projective space is trivial (i.e., is not actually weighted), so
that it gives rise to the simplest Calabi-Yau fivefold defined
by a degree-seven polynomial in P6. The associated coho-
mology matches the result reported in the appendix of [122].
The global properties of Calabi-Yau fivefolds as hyper-

surfaces in weighted projective spaces, with sum of weights
up to 200, read

hh1;1i ¼ 9004.6231487971 ; hh1;2i ¼ 24.0151800 ; hh1;3i ¼ 2.47030 ; hh1;4i ¼ 8.8501

hh2;2i ¼ 98932.325463560566 ; hh2;3i ¼ 194.9649301 ; hχi ¼ 215379.955556832−13248 : ð6:3Þ

The dataset of the 274730 weight systems with their
topological properties is made available on GitHub, pre-
sented in the format [[wi], wtot, [hp;q], χ], where hp;q are
written in the same order as in (6.3) above. Some further
analysis is given in Fig. 13.
As it can be guessed by looking at hh1;1i and hh1;4i, the

subset of spaces considered here does not show mirror
symmetry. This is due to the fact that we only restricted
ourselves to a small sum of weights, whose mirror-
symmetric pairs lie in the large-weights regime. We expect
the cohomological data in that regime to be practically
inaccessible, due to the large computational times

associated with (5.4). For this reason, we believe that
the approximation presented in Sec. V, which proved to be
extremely accurate for large weights in the fourfolds
investigation, could be a key tool for attempting such a
task. Moreover, we also expect the list of all possible
Calabi-Yau seven-weight weight systems to be astronomi-
cal in size. Once again, the truncated formula (5.5) provides
a quickly computable tight lower bound for the Hodge
numbers of all those yet undiscovered manifolds.

B. Calabi-Yau sixfolds

While their role in physics is marginal (they could only
be employed for compactifications of S theory), Calabi-Yau
sixfolds have their own relevance directly within math-
ematics. These spaces could provide additional information

TABLE XI. Examples of weight systems with seven weights,
describing Calabi-Yau fivefolds, together with the associated
invariants.

Weight system ½h1;1; h1;2; h1;3; h1;4; h2;2; h2;3; χ�
½1; 1; 1; 1; 1; 1; 1� ½1667; 0; 0; 1; 18327; 1; 39984�
½1; 6; 8; 12; 14; 19; 60� ½3999; 0; 4; 3; 44022; 26; 96000�
½5; 9; 9; 18; 27; 34; 51� ½577; 201; 0; 12; 5430; 1225; 8736�
½4; 4; 5; 10; 27; 45; 85� ½5087; 8; 0; 12; 55938; 193; 121608�
½25; 25; 25; 25; 28; 32; 40� ½185; 350; 1; 30; 566; 2351;−4656�

19Work in [104] showed that transverse weight systems are by
necessity IP for any size weight system.
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about the—still very mysterious to this day—landscape of
Calabi-Yau geometries, as they are the second nontrivial
family of Calabi-Yau manifolds in even complex dimen-
sions. Their construction as hypersurfaces of weighted
projective spaces involves using eight-weight weight sys-
tems, which are both more numerous and effectively
infeasible to run bulk computation of exact topological
parameters. For these reasons, we find the truncated
approximation formula to be especially pertinent, allowing
computation of approximated Hodge values for all the
generated candidate transverse weight systems with
wtot ≤ 200. Once again, we first identify the IP intra-
divisible weight systems and then select the ones that
are well defined with respect to (5.5), numbering 1482022
candidate transverse weight systems of eight weights
(accessible at this work’s respective GitHub in the same
format as for the fivefolds). From there the Euler number

was also computed exactly with the less computationally
intensive direct formula from weights (2.11). A few
examples are reported in Table XII.
Similar to before, the first manifold in Table XI is

nothing but the Calabi-Yau sixfold defined by a degree-
eight polynomial in P7. We find that our results, despite
coming from the truncated formula, exactly match the exact
Hodge numbers, which can be found in [123].
The preliminary analysis is also shown in Fig. 13, where

a comparison across different complex dimensions is
shown; it illustrates that, for a low sum of weights, the
fivefolds and sixfolds are appropriately skewed toward
positive Euler numbers. The approximated Hodge numbers
show a similar behavior to what one would expect based on
the other distributions. Just for reference, we report here the
main global features of the approximated invariants that we
computed,

hh1;1A i ¼ 96686.7147270231279 ; h1;2A ≡ 0; h1;3A ≡ 0; h1;4A ≡ 0; hh1;5A i ¼ 4.3281 ;

hh2;2A i ¼ 2424722.837596864466366 ; h2;3A ≡ 0; hh2;4A i ¼ 27.5651 ;

hh3;3A i ¼ 6189235.0958115642615542 ; hχi ¼ 11309730.817395069848−708480 : ð6:4Þ

TABLE XII. Examples of weight systems with eight weights, describing Calabi-Yau sixfolds, together with the
associated invariants.

Weight system ½h1;1A ; h1;2A ; h1;3A ; h1;4A ; h1;5A ; h2;2A ; h2;3A ; h2;4A ; h3;3A ; χ�
½1; 1; 1; 1; 1; 1; 1; 1� ½6371; 0; 0; 0; 1; 154645; 0; 1; 398568; 720608�
½1; 1; 3; 4; 15; 22; 43; 44� ½265283; 0; 0; 0; 6; 6629968; 0; 27; 16974104; 30764676�
½1; 1; 3; 8; 15; 16; 40; 84� ½484547; 0; 0; 0; 4; 12217438; 0; 17; 31218692; 56622576�
½7; 7; 7; 14; 14; 25; 41; 74� ½9905; 0; 0; 0; 22; 109916; 0; 40; 207950;−162552�
½18; 20; 20; 25; 25; 26; 30; 36� ½344; 0; 0; 0; 6; 7499; 0; 37; 19303; 34360�

FIG. 13. This figure illustrates some features of the cohomological data and Euler numbers for Calabi-Yau manifolds constructed as
hypersurfaces in weighted projective spaces. The threefolds’ and fourfolds’ data points exhaust all possible Calabi-Yau manifolds of that
type. For fivefolds and sixfolds, we restricted ourselves to weight systems with wtot ≤ 200. These are all newly discovered geometries.
The Hodge numbers for sixfolds were obtained through the approximation (5.5), hence they represent tight lower bounds of these
cohomological properties.
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VII. SUMMARY AND OUTLOOK

This work was focused on, but not limited to, the
analysis of Calabi-Yau fourfolds obtained as hypersurfaces
in weighted projective spaces. By restricting to systems
with large weights, a linear clustering behavior analogous
to the one found for threefolds in [28] was observed and
quantitatively corroborated through the K-Means clustering
normalized inertia. By gradually relaxing the conditions on
the weights, we were able to produce a partition of coprime
weight systems according to the most relevant properties:
IP, reflexivity, intradivisibility, and transversality (Calabi-
Yau), generating datasets for each subset in such a partition.
While all of the above was performed using concrete

analytic algorithms, statistical machine learning techniques
were also applied both to the dataset of Calabi-Yau four-
folds and to the partitioned set of more general weight
systems. Regarding the former, a fully connected regressor
network was shown to predict the cohomological Hodge
data and the Euler number from the system weights. We
found particularly good results, with R2 ∼ 0.91, for h1;1, on
the whole dataset. For the other invariants, we observed
very different results for systems with small weights as
opposed to systems with large weights. For instance, h1;3

and h2;2 showed results with R2 > 0.90 for the half of
the dataset containing lower weights, while the accuracy
dropped significantly for the other half. These three
numbers provide sufficient information to determine the
full Hodge diamond; however, results were also reported
associated with h1;2, which had a poor performance since it
is zero 48% of the time, and χ, which showed similar results
to h1;3 and h2;2.
The partition of weight systems according to their

respective properties within fIP; reflexive; intradivisible;
transverseg, where transversality implied the existence of
a Calabi-Yau hypersurface, was classified with the respec-
tive fully connected classification architecture. Multi-
classification results were surprisingly high between all
parts of the partition, reaching MCC scores of 0.740.
Separately, binary classification investigations managed to
well identify each property respectively from unions of the
partition subdatasets, struggling most with reflexivity.
Motivated by the strong performances of the neural

networks and inspired by the interpretability of the gradient
saliency analysis and symbolic regression, we explored a

simpler truncated version of the formula coming from the
Landau-Ginzburg model used for calculating the Calabi-
Yau Hodge numbers from the ambient Pn

w’s weight system.
This approximation drastically reduces the number of terms
involved in the computation, making it easier to study
analytically and substantially faster to compute numeri-
cally. Its main features are as follows: it provides a tight
lower bound for the Hodge numbers; it is especially
accurate for systems with large weights (average MAPE
of < 1% for the 10000 systems with largest weights); it is
dramatically faster than the exact formula (up to 104 times
quicker); it reproduces the observed linear clustering
behavior for large weights.
Finally, motivated by the speed improvements available

from this approximation, transverse weight systems (sat-
isfying the necessary intradivisible and IP properties and
well defined with respect to both the approximation and
exact Landau-Ginzburg formula) were generated for a sum
of weights wtot ≤ 200, for systems of seven weights
producing Calabi-Yau fivefolds. Additionally, where the
exact Landau-Ginzburg formula computation time was
infeasible for systems of eight weights, a complementary
dataset of candidate transverse weight systems (satisfying
the necessary intradivisible and IP properties and well-
defined with respect to just the approximation) was
generated, again for a sum of weights wtot ≤ 200, leading
to candidate Calabi-Yau sixfolds. Some preliminary analy-
sis of these data and the respectively computed topological
properties is provided with a thorough analysis, and its full
generation for wtot > 200 is left for future work.

These datasets, the respective code for analysis and ML,
and an example notebook illustrating functionality to check
intradivisibility, compute Euler number, and compute exact
and approximated Hodge numbers of an input weight
system of any size are all available at this work’s respective
GitHub repository [52].
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