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Abstract. There has been recent interest in novel Clifford geometric invariants of linear trans-
formations. This motivates the investigation of such invariants for a certain type of geometric
transformation of interest in the context of root systems, reflection groups, Lie groups and Lie
algebras: the Coxeter transformations. We perform exhaustive calculations of all Coxeter transfor-
mations for A8, D8 and E8 for a choice of basis of simple roots and compute their invariants, using
high-performance computing. This computational algebra paradigm generates a dataset that can
then be mined using techniques from data science such as supervised and unsupervised machine
learning. In this paper we focus on neural network classification and principal component analysis.
Since the output – the invariants – is fully determined by the choice of simple roots and the per-
mutation order of the corresponding reflections in the Coxeter element, we expect huge degeneracy
in the mapping. This provides the perfect setup for machine learning, and indeed we see that the
datasets can be machine learned to very high accuracy. This paper is a pump-priming study in
experimental mathematics using Clifford algebras, showing that such Clifford algebraic datasets
are amenable to machine learning, and shedding light on relationships between these novel and
other well-known geometric invariants and also giving rise to analytic results.
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1. Introduction

Great interest in Clifford geometric invariants of linear transformations, originally proposed in [45],
was sparked in recent work from a practical [52, 53] and theoretical [1, 33, 52, 63] point of view. Or-
thogonal transformations, such as rotations, and their invariants are important in engineering, e.g.
moving cameras, robots etc. The types of transformations we are looking at in this work are also rota-
tions, particularly interesting because of their symmetry structures. Linear transformation invariants
are traditionally exemplified by the determinant and trace, which appear in the highest and lowest
coefficients of the characteristic polynomial. Typically such linear transformations are described by
matrices; however, in Clifford algebras one has the alternative to implement orthogonal transforma-
tions via versors. In Clifford algebras, algebraic objects have a clearer geometric interpretation than
in the standard matrix approach. There is a systematic way of calculating multivector invariants of
linear transformations via what are called ‘simplicial derivatives’, which we will introduce further in
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the next section. These Clifford geometric invariants are then systematically related to geometric in-
variant spaces of the linear transformation and the coefficients in the characteristic polynomial and
Cayley-Hamilton theorem1. This serves as motivation to study this type of new geometric invariant
of linear transformations.

From the perspective of some of our other work on root systems and reflection groups [28,30,31]
we are particularly interested in a certain type of linear transformations that occurs in this root
system context: the ‘Coxeter elements’ or ‘Coxeter transformations’. These are a particular type of
orthogonal transformation in reflection/Coxeter groups [47]. They are the group elements of the highest
order (called the ‘Coxeter number’, h) and they are all conjugate to each other. High-dimensional
root systems are notoriously difficult to visualise, and projection into a distinguished plane (called a
‘Coxeter plane’) is a common way of visualising the geometry. In these planes, the Coxeter elements
just act by h-fold rotations. Root systems are determined by a subset called the ‘simple roots’, which
act as a basis for the vector space and each determines a ‘simple reflection’ in the hyperplane to which
they are orthogonal2. A Coxeter element is then just given by multiplying each of the simple reflections
once in some permutation order, which at the versor level is just encoded by multiplying together the
root vectors in the Clifford algebra directly, doubly covering the orthogonal transformation. This set
of permutations giving rise to a set of Coxeter versors will be the focus of this paper, as these allow
us to calculate the full set of invariants from them, which we will refer to as the set of characteristic
multivectors (SOCM).

In previous work, the authors have established a paradigm for experimental mathematics: first,
using computational algebra techniques and high-performance computing (HPC) one can generate
a dataset of algebraic data; this dataset can then be mined by applying the standard data science
toolkit, in order to find patterns that were not obvious from an analytical perspective [25, 32, 38, 39,
41,42]. Mathematicians often calculate examples of interest by hand to formulate or test hypotheses.
Essentially, this computational algebra approach automates and scales up such an approach, and
turns the problem into a ‘data analysis’ task 3. One can either calculate a very large number of
examples and analyse these statistically via ‘data analysis’ ; or in other cases of interest, it may be
possible to calculate all the cases exhaustively and analyse the patterns that emerge, which can help
with hypothesis formulation and theorem proving.

At the ICCA conference in Hefei in 2020 a talk on this approach sparked much interest, resulting
in the creation of a Topical Collection (TC) on ‘Machine Learning Mathematical Structures’ in the
journal Advances in Applied Clifford Algebras [3]. This TC sits at the intersection of 3 different topics
– machine learning, mathematical structures, and Clifford algebras – and was intended to stimulate
new research across these interfaces. Whilst there have been many activities in pairwise combinations
(e.g. Machine Learning and Clifford algebras [7,14,21,34,36,50,51,55,57,58,67,69,70], mathematical
structures and Clifford algebras [4,5,44,60,62,64,71], and of course our examples for machine learning
algebraic structures earlier as well as others in this TC [15,43]), we are not aware of any research that
actually sits at the intersection of all three.

In the interest of such a first non-trivial intersection we therefore see our work as sufficiently
motivated: to investigate the machine learning of Clifford invariants of Coxeter elements. We con-
sider the three 8-dimensional root systems A8, D8 and E8, which are of course of wider interest in
terms of exceptional E8 and ADE patterns [8, 23, 27]. Eight dimensions allow 8! permutations of the
simple roots, which can all be explicitly calculated with HPC. They give rise to linear transforma-
tions (Coxeter transformations) whose simplicial derivatives can be taken in an automated way, and
whose characteristic multivectors are computed as the output. The 40320 input permutations are a
large enough number to make these examples accessible to data science techniques such as machine

1The decomposition of a linear transformation into orthogonal eigenspaces is also related to some interesting recent

work by [61].
2The existence of the Coxeter plane relies on the simple roots admitting a separation into two sets that are mutually

orthogonal within each set, often visualised as a bipartite (alternating) colouring of the corresponding Dynkin diagram.
3Clifford algebra multivector computations can easily be performed in such a python HPC setup using the galgebra

package [20].
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learning classification tasks (e.g. distinguishing between the three ADE types), principal component
analysis etc. Of course, the actual number of Coxeter versors will be lower, firstly because of the fact
that the simple roots can be decomposed into two sets that are mutually orthogonal within sets (lead-
ing to a k! reduction whenever k orthogonal simple roots are grouped together), but secondly because
such roots are also more widely orthogonal to other roots outside of the sets, as given by the adjacency
in the Dynkin diagram such that two roots are orthogonal if there exists no edge between them. So in
practice, there will be some degeneracy in the mapping from the permutations to the Coxeter versors
which will result in a significantly reduced set of invariants. Such (anti)commutation properties in the
Coxeter element can in principle be understood analytically. But in the interest of the experimental
mathematics approach followed here for now we prefer to just calculate the permutations exhaustively
using computational algebra and treat the repeats (whose structure is interesting in its own right,
and learning it essentially means learning the root system geometry and Dynkin diagram) as the data
science standard practice of data augmentation. Analytical considerations will largely be presented
in a companion paper though we point out a few instances where exhaustive computation has led to
analytical insights in this paper.

We organise this paper as follows. In Section 2, we introduce some of the detail on the aforemen-
tioned Clifford simplicial derivatives and invariants, as well as root systems and Coxeter transforma-
tions. We then discuss in Section 3 what datasets we are mining, and how they were generated using
computational algebra. This section also contains some exploratory data analysis around numbers of
distinct invariants as well as the connectivity structure of the bivector invariants. We then move onto
Machine Learning in Section 4; in particular, we discuss predictive performance as well as ternary
classification tasks, before moving onto gradient saliency sensitivity on the input and Principal Com-
ponent Analysis. We conclude in Section 5. Our computer code scripts and data can be found on
GitHub4.

2. Background

Thorough introductions to root systems and Clifford algebras are available elsewhere [28] so here we
will be succinct. A root system lives in the arena of a vector space with a scalar product (which
immediately allows one to consider the corresponding Clifford algebra). It is a collection of vectors
(called ‘roots’, and customarily denoted α) in that vector space which is invariant under all the
reflections in the hyperplanes to which the root vectors are perpendicular. We will only consider root
systems with roots of the same length, which can be assumed to be normalised 5. Such reflections in
the normal hyperplanes are given by x → x− 2(x · n)n, where x is the vector to be transformed and
n is a unit normal to the hyperplane.

A subset called ‘simple roots’ is sufficient to write all roots as (in our case) integer linear com-
binations of this basis of simple roots, whilst their corresponding reflections, the ‘simple reflections’,
generate the reflection group. Taking these simple reflections all exactly once leads to interesting types
of group elements called ‘Coxeter elements’. They are of the same order h (the ‘Coxeter number’),
and have invariant planes, called ‘Coxeter planes’, which are useful for visualising root systems in any
dimension (via projection into these planes). These reflection groups have interesting integer – in fact
prime – invariants, that are characteristic of the geometry, called ‘exponents’ m. This name derives
from the fact that Coxeter elements act on different invariant planes by h-fold rotations by m times
2π/h, which is usually interpreted as a complex eigenvalue of the Coxeter element (even though we are
by assumption in a real vector space). The root system geometry can also be encoded in diagrammatic
form (called ‘Coxeter-Dynkin diagram’), where each simple root corresponds to a node and orthogonal
nodes are not linked, whilst roots at 2π/3 angles are connected with a link (we will only be considering
such ‘simply-laced’ examples, see Fig. 1). Likewise, our simply-laced examples are tree-like and admit
an alternate colouring (or ‘bipartite’, e.g. black and white). This effectively means that all black roots

4https://github.com/DimaDroid/ML_Clifford_Invariants.git
5Note this is different from the normalisation convention used in Lie theory

https://github.com/DimaDroid/ML_Clifford_Invariants.git
https://github.com/DimaDroid/ML_Clifford_Invariants.git
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α1 α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7

α8

α1 α2 α3 α4 α5 α6 α7

α8

Fig. 1 The diagrams of the 8-dimensional simply-laced root systems A8, D8 and E8

(vertically downwards respectively), along with our labelling for the simple roots and
a bipartite colouring.

are orthogonal to each other, and likewise for the white roots. This colouring means that there are
distinguished types of Coxeter elements where first all the black reflections are taken, and then all
the white (or the other way round). We will call these ‘bipartite’ Coxeter elements. This bipartite
colouring also implies the existence of the Coxeter plane via a more complex argument, the details
of which we will omit here, but which relies on the adjacency matrix of the Dynkin diagram having
a distinguished largest eigenvalue and corresponding eigenvector, the Perron-Frobenius eigenvector
(which will make an appearance below). In our labelling of the 8 simple roots for A8, D8 and E8, α1

to α7 make one long string. The different diagrams arise depending on where the 8th root α8 attaches:
at the terminal node α7 for A8 (leading to bilateral symmetry), at the penultimate node α6 for D8

(leading to permutation symmetry of the terminal nodes), or α5 for E8
6.

As mentioned above, Clifford algebras can be constructed when one is working in an n-dimensional
vector space with an inner product, giving rise to a 2n-dimensional algebra of ‘multivectors’. The scalar
product is given as the symmetric part of the geometric product, i.e. a · b = 1

2 (ab + ba)7. Substitut-
ing this in the reflection formula above results in a cancellation which leads to the uniquely simple
‘sandwiching’ reflection formula in Clifford algebras

x → x− 2(x · n)n = −nxn. (2.1)

Both n and −n doubly cover the same reflection. Via the Cartan-Dieudonné theorem orthogonal
transformations are just products of such reflections so that one can build up

x → ±nk · · ·n1xn1 · · ·nk = ±ÃxA (2.2)

such transformations via defining multivectors that are the products of normal vectors which encode
the reflection hyperplanes, A = n1 · · ·nk (called ‘versors’), and a tilde denotes reversing the order of
these vectors in the product. These versors again doubly cover the transformation.

We discuss here for a moment how this applies when the orthogonal transformation is a Coxeter
element. In traditional root system notation, the simple reflections are denoted si such that a Coxeter
element is denoted w = s1 · · · sn. In the above versor framework, the reflections are encoded by the
root vectors themselves (as a double cover), whilst the multivectors W that one gets from multiplying
the simple roots together α1 · · ·αn doubly cover w

wx → ±αk · · ·α1xα1 · · ·αk = ±W̃xW. (2.3)

6Note that attaching to other roots is symmetry-equivalent to the options just mentioned with the exception of attaching
to α4, which leads to something called affine E7, or Ẽ7.
7The outer product a∧b = 1

2
(ab−ba) is the antisymmetric part, is a bivector and determines the plane that two vectors

generically span.
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We return now to the setting of linear transformations in Clifford algebras more generally again.
Let us denote this linear transformation by f(x). In order to calculate the desired invariants of this
linear transformation (the SOCM), we define the concept of ‘simplicial derivatives’.

First, let {ak}, k = 1, . . . , n denote a frame, i.e. a basis. Often we use either a Euclidean basis ei
or the basis of simple roots, αi. We denote by {ak} its reciprocal frame such that ai · aj = δij . In a
Euclidean basis this is effectively the basis itself; for a basis of simple roots the reciprocals are more
commonly known as co-roots (up to a different conventional normalisation factor). We also define
bk = f(ak) as the transformation acting on the basis frame vectors. The rth simplicial derivative is
then essentially defined as a combinatorial object

∂(r)f(r) =
∑

(ajr ∧ · · · ∧ aj1)(bj1 ∧ · · · ∧ bjr ) (2.4)

with sum over 0 < j1 < · · · < jr ≤ n8. These simplicial derivatives are invariants of the linear
transformation and are therefore ‘characteristic multivectors’ with geometric significance.

Now [45] showed that it is the scalar parts of these geometric invariants (denoted by ∂(s) ∗ f(s))
that constitute the coefficients in the Cayley-Hamilton theorem

Cf (λ) =

m∑
s=0

(−λ)m−s∂(s) ∗ f(s)

(where ∂(0) ∗ f(0) is interpreted as 1) and the characteristic polynomial

m∑
s=0

(−1)m−s∂(s) ∗ f(s)fm−s(a) = 0

for any vector a (where f0(a) is interpreted as a).

One can explicitly verify this for our examples. Using the galgebra package, one can perform
calculations in the 256-dimensional multivector algebra, calculating Coxeter versors from permutations
of the simple roots, and from that simplicial derivatives and geometric invariants. We will refer to the
simplicial derivatives ∂(r)f(r) as the invariant of order r or Invr (and to the full set as SOCM).

Since we are considering an even orthogonal transformation in an 8-dimensional space we get
some interesting structure in these invariants (see Table 1): firstly, we note that only even multivectors
occur (in principle, this allows us to reduce the length of the 256-dimensional multivectors by half).
Secondly, the lowest order invariant only has a scalar part (trivially), the next picks up a bivector
term, the next one a quadrivector term, the next a sextivector, till finally Inv4 (generically) has a
pseudoscalar term. Then it decreases again. In fact, thirdly, in our case we have a certain ‘mirror
symmetry’, where the top half in the Table is equal to the bottom half, though this is not generally
the case. In fact, all these pieces, which we could denote by Invkr are separately invariant under the

Coxeter versor: W̃ Invkr W = Invkr . So these Invkr are eigenmultivectors of the Coxeter element of grade
k, but they do not have to be k-blades (i.e. be able to be written as the outer product of k vectors9).

So amongst other multivector components, e.g. for E8 we in particular have 4 invariant bivectors
from the invariants. It turns out that these are orthogonal. The Coxeter element also acts on 4
invariant orthogonal bivectors (giving planes, and they are blades by construction) via the Coxeter
plane construction, so there is an immediate question of how our characteristic multivectors relate to
exponents and degrees. In fact, we will say here already that for E8 one can show that the two sets of
4 orthogonal eigenvectors (from the SOCM and the Coxeter construction) span the same 4d-subspace
of the 28d bivector space. Reflection groups can also have other interesting invariant subspaces such
as two H4-invariant subspaces in E8 [29, 31]. We are exploring these more analytical questions more
fully in the companion paper.

8This is due to the original notion of a multivector derivative essentially being equivalent to a projection.
9Something also noticed in the example in [53].
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Subinvariant
Invariants by Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 X
Inv1 X X
Inv2 X X X
Inv3 X X X X
Inv4 X X X X X
Inv5 X X X X
Inv6 X X X
Inv7 X X
Inv8 X

Table 1 Structure of the characteristic multivectors: non-zero grades are indicated
by an X.

3. Datasets

We choose dimension 8 because of the following compromise: 8! = 40320 gives us something resembling
‘big data’ which is accessible to data science techniques, whilst being computationally tractable10. It
is also the last dimension in which there are three simply-laced root systems, with the exceptional E8

adding some variety to the An and Dn families that exist in arbitrary dimensions. So we select A8,
D8 and E8, as this gives us scope for three-way (ternary) classification tasks and ADE patterns are
of course of wider interest.

The input vectors are the set of permutations in 8 elements, e.g. (0,1,2,3,4,5,6,7), labelling the
simple roots α1 through to α8 and encoding in which order the simple roots are taken in for computing
the Coxeter versor. The outputs are the 9 invariants {Inv0, . . . , Inv8} as multivectors.

input = (0, 1, 2, 3, 4, 5, 6, 7) = α1 . . . α8 → {Inv
0
, . . . , Inv

8
} = SOCM = output (3.1)

In 8-dimensions the multivector invariants have 256 components (some of which are trivial11).

3.1. Data Generation

The computational algebra approach followed here used python with the galgebra package for mul-
tivector computations [20]. Exploratory analysis for single permutations was performed in Jupyter
notebooks but once parallelised the computations were run on clusters at Queen Mary, University of
London, City, University of London, and University of Leeds. Data and Code can be found on GitHub.
We performed computations both in an Euclidean basis12, which is a bit more straightforward, and
the basis of simple roots via the multivector basis that it induces, which is more meaningful geometri-
cally and less dependent on the choice of simple roots in the Euclidean basis. According to our earlier
discussion around Table 1 we can also extract different grades of these invariants (e.g. scalar, bivector

etc), which we refer to as ‘subinvariants’ Invkr , from the full set (SOCM).

10With the caveat that there is degeneracy in the permutations leading to the same or similar Coxeter elements and

thus invariants, reducing the true number of different output vectors. Although it was not obvious from the beginning,

especially for E9 and D8.
11Since the odd components are typically 0 one could reduce this if needed, but for completeness and generalisability
we haven’t.
12Roots in the root system are often defined as columns of components in the Euclidean orthonormal basis in some

higher dimensional space. However, since the set of simple roots can generate the root system via addition, we can also
take simple roots as a basis, although not orthonormal. While this may seem more complicated, it is more meaningful

geometrically because everything we compute in geometric algebra using simple roots can be eventually expressed in
the basis of simple roots.

https://github.com/DimaDroid/ML_Clifford_Invariants.git
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3.2. Frequency Analysis

As was mentioned previously, for each of the A8, D8 and E8 root systems there are 8! = 40320
permutations of 8 root vectors from which we can construct the corresponding Coxeter elements and
the 9 geometric invariants.

Each invariant is a sum of 8 subinvariants written in terms of the wedge product of the different
number of basis vectors for the 8-dimensional vector space. These 8 subinvariants are scalar, vector,
bivector, trivector, quadrivector, and so on up to 8-vector pseudoscalar. The components for each of
the subinvariants can be written down in a chosen basis, e.g. in terms of simple roots. This allows us
to compare SOCMs corresponding to different Coxeter elements, or invariants of a chosen order, or
focus on subinvariants within the invariant of a chosen order.

These exhaustive computational algebra calculations already show interesting results. On the
highest level, we compare components of SOCMs and find that, although there are 40320 SOCMs we
can construct, only 128 are distinct, and this is the same number for each of the algebras. We can
think of these as ‘classes’ of SOCMs with the same components. Each class has a certain number of
representatives13 in it which we call frequency. The frequency of classes, which come in groups of 2, 4
or 8 and all have the same value, we call Doublets, Quadruplets and Octuplets, respectively. Although
the number of classes for each of the algebras is the same, frequencies of individual classes differ, see
Figure 2.

(a) A8 (b) D8

(c) E8

Fig. 2 Sorted multiplicities of the 128 unique SOCMs, for each root system consid-
ered: A8, D8, E8 respectively. A8 is mostly quadruplets, E8 mostly doublets and D8

half and half. See GitHub for the full list of values.

In the following, we will be using two types of operations on permutations:

13They have different order of roots in a permutation encoding Coxeter versor.

https://github.com/DimaDroid/ML_Clifford_Invariants.git
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• Inversion - we say that two permutations are related by inversion if the order of simple roots for
these permutations is reversed relative to each other, e.g. (0,1,2,3,4,5,6,7) and (7,6,5,4,3,2,1,0).

• B ↔ W - following the bipartite colouring of black roots and white roots, we can reduce (with
some degeneracy) a permutation to a black and white ‘barcode’. For example, (2,4,6,8,1,3,5,7)
becomes ‘• • • • ◦ ◦ ◦ ◦’. We say that two permutations are related by B ↔ W if we replace black
roots by white roots and vice versa.

There are some common features among all three algebras:

• All the frequency values come in Doublets, Quadruplets and Octuplets;
• The highest frequencies appear in Doublets;
• For Doublets, permutations of the class elements in one class are related by inversion to permu-
tations of the class elements in another class. Quadruplets are essentially two Doublets with the
same frequency and Octuplets are two Quadruplets with the same frequency.

Some other features which are different:

• For A8:
– Frequencies of all classes are odd numbers;
– There is a Doublet with the lowest frequency equal to 1 (i,e, two unique invariants). Classes
in this doublet are represented by permutations (0,1,2,3,4,5,6,7) and (7,6,5,4,3,2,1,0) 14;

– There is a Doublet with the highest frequency equal to 1385. This Doublet consists of two
invariants which are given by bipartite Coxeter elements: one of them is given by a Coxeter
element with first 4 black roots with increased root number and then 4 white ones with
increased root number as well; the second one is very similar and has first 4 white roots
and then 4 black ones with increased root number in both subsets;

– For Quadruplets, there are pairs of classes that are related by inversion. In addition, these
pairs within the Quadruplet are related to each other by B ↔ W . Presumably, having
inverse barcodes signifies similar combinatorial properties that result in the same frequency.

– As was mentioned before, in Doublets, two classes within it are related by inversion. In
addition, the two classes are related to each other by B ↔ W symmetry: if we assign a
black or white colour to every simple root according to Figure 1, we get a black and white
‘barcode’ for a permutation encoding a Coxeter element. One can check that the barcode
for the first class is the inversion (change black to white and vice versa) of the barcode for
the other class within the Doublet, i.e. the Doublets are self-dual under B ↔ W .

– In some Quadruplets, there is even more B ↔ W inversion symmetry: B ↔ W symmetry
between the pairs of classes that are related by inversion is enriched by the B ↔ W
symmetry within the pairs. This is because the barcode mapping is degenerate, i.e. non-
equivalent permutations can give rise to the same barcode;

– An Octuplet appears as two Quadruplets with the same frequency;
– There are 8 Doublets, 26 Quadruplets and 1 Octuplet in total.

• For D8:
– All frequencies are even numbers;
– There are no unique invariants, a Doublet with a frequency equal to 2, and a Doublet with
the highest frequency equal to 1582;

– No signs of B ↔ W symmetry;
– There are 20 Doublets and 22 Quadruplets.

• For E8:
– All frequencies are odd numbers;
– There are no unique invariants, a Doublet with the lowest frequency equal to 3 and a
Doublet with the highest frequency equal to 1511;

– No signs of B ↔ W symmetry;

14One might call them ‘maximally non-commuting permutations’, where none of the roots adjacent in the permutation
are orthogonal.
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Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 1 128 64
Inv3 1 128 64 128
Inv4 1 128 64 128 2
Inv5 1 128 64 128
Inv6 1 128 64
Inv7 1 128
Inv8 1

Table 2 Frequencies of subinvariants for A8/E8 group. Empty cells denote the fact
that all subinvariants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 0 128 64
Inv3 0 128 64 32
Inv4 0 128 64 32 0
Inv5 0 128 64 32
Inv6 0 128 64
Inv7 1 128
Inv8 1

Table 3 Frequencies of subinvariants for D8 group. Empty cells denote the fact that
all subinvariants for this order of invariants are trivially zero. But there are also
some non-trivial zeroes to do with the D8 geometry, in which the factorisation of
the Coxeter element into orthogonal eigenspaces contains two true reflections, also
signalled by having two exponents of h/2.

– There are 58 Doublets and 3 Quadruplets.

On the level of subinvariants within the invariants, one can perform the same analysis and find
frequencies given in Tables 2 and 3. The tables for A8 and E8 are identical; all three groups have
the same frequencies for bivector and quadrivector subinvariants. Empty cells denote the fact that all
subinvariants for this order of invariants are trivially zero (some are also less-trivially zero).

Another interesting thing to look at is the frequencies of invariants and subinvariants with the
identification of objects that differ up to an overall minus sign. We find that this modification does not
alter the frequencies of the full invariants, however, it does change the frequencies of subinvariants,
see Tables 4, 5, 6. We see that frequencies for bivector and sextivector (and pseudoscalar for A8)
subinvariants for A8 and D8 are halved, meaning that half of these subinvariants differ from the other
half by a minus sign. At the same time, scalar and quadrivector subinvariants are unchanged. The
picture is different for E8, where bivector, quadrivector and sextivector frequencies change non-trivially
under sign identification.

The idea behind these observations is to understand the symmetries of the root system. The
frequency of multiplicities for the three algebras should be determined by the permutation of these
symmetries. It is rather simple to determine the number of unique invariants and explain the existence
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Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 1 64 64
Inv3 1 64 64 64
Inv4 1 64 64 64 1
Inv5 1 64 64 64
Inv6 1 64 64
Inv7 1 64
Inv8 1

Table 4 Frequencies of subinvariants for A8 group up to an overall minus sign. Empty
cells denote the fact that all subinvariants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 40
Inv2 1 40 64
Inv3 1 52 48 36
Inv4 1 64 64 64 1
Inv5 1 52 48 36
Inv6 1 40 64
Inv7 1 40
Inv8 1

Table 5 Frequencies of subinvariants for E8 group up to an overall minus sign. Empty
cells denote the fact that all subinvariants for this order of invariants are trivially zero.

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 0 64 64
Inv3 0 64 64 16
Inv4 0 64 64 16 0
Inv5 0 64 64 16
Inv6 0 64 64
Inv7 1 64
Inv8 1

Table 6 Frequencies of subinvariants forD8 group up to an overall minus sign. Empty
cells denote the fact that all subinvariants for this order of invariants are trivially zero.
But there are also some non-trivial zeroes to do with the D8 geometry, in which the
factorisation of the Coxeter element into orthogonal eigenspaces contains two true
reflections, also signalled by having two exponents of h/2.

of Doublets and Quadruplets for the A8 algebra due to its simple Dynkin diagram, but much harder
for the D8 and E8 algebras.
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3.3. Bivector Subinvariants

Now we are restricting our focus to the bivector parts of the invariants, which as subinvariants are of
particular interest since bivectors generate planes for rotation (such as the Coxeter plane central to
the study of these root systems). Each of the bivector subinvariants has 28 entries, corresponding to

the
(
8
2

)
combinations that form a basis for the bivector subspace, whether this is in a Euclidean basis

or in the basis of simple roots. Here, we will be working in the basis of simple roots. Each bivector
subinvariant hence takes the form:

∑8
i,j=1|i<j cij(αi ∧ αj), for the 8 simple root basis vectors αi, and

general coefficients cij , which turn out to be even integers. This is motivated by the observation that
rather intriguingly, the bivector part of the bipartite E8 Coxeter element gives precisely rise to the
E8 diagram etc.

3.3.1. Interpretation as Graphs.
From each bivector subinvariant, one can construct a graph. This is done by associating a vertex to
each simple root, and including the edge between vertices i and j if cij ̸= 0. This construction method
manifestly creates undirected unweighted simple graphs (with no loops as cii = 0 ∀i, and at most one
edge between any pair of vertices). The generated graph is practically constructed via a symmetric
adjacency matrix, with binary entries, such that cij is taken as the upper triangle of a symmetric
matrix with any non-zero entries converted to 1. Since the adjacency matrices are symmetric their
eigenvalues are all real, and one can begin to analyse their eigenspectra15.

The Perron-Frobenius theorem [35, 59] asserts that square matrices with positive integer coef-
ficients have a unique largest real eigenvalue. In particular, for undirected graph adjacency matrices
this maximum eigenvalue takes value in the range (0, n−1], for graphs with n vertices16. Furthermore,
it turns out that the A, D, & E Dynkin diagrams are particularly special in the space of undirected
graphs, in that they are the only connected graphs whose maximum eigenvalue < 2 by Smith’s theo-
rem [66]. In fact, the Coxeter elements of bipartite form were observed to just give the Coxeter-Dynkin
diagram of the A8, D8 and E8 root systems. Since bivector graphs can be more generally induced
by all forms of Coxeter elements, this motivates the study of the maximum eigenvalues for all the
respective undirected graphs.

Returning to our databases, except for the trivial zero invariant formed from the bivector subin-
variant of Inv0 and Inv8, an initial unanticipated observation is that each of the graphs constructed
from each of the bivector subinvariants across the 3 databases are all connected. In addition to this,
there is no overlap of bivector subinvariants between algebras (excluding the trivial zero invariant).
Also there is no overlap of bivector subinvariants between the orders of invariants they come from,
within each of the algebras. However, there is small repetition of adjacency matrices (i.e. after reducing
non-zero entries to 1), and also graphs. Specifically, there are A8: (0, 38, 12), D8: (0, 1, 6), E8: (0, 0,
25) repeated (subinvariants, adjacencies, graphs) between orders 1 to 4, for each algebra respectively.

Analysing the multiplicities of the bivector subinvariants, for (A8, D8, E8) there are (513, 513,
513) distinct subinvariants across all orders for each algebra respectively. When considering the undi-
rected adjacency matrices constructed from these (out of 228 ∼ 2.7×109 possible undirected adjacency
matrices), these bivector subinvariants reduce to (219, 256, 251) distinct adjacency matrices respec-
tively. These matrices then further reduce to respectively (88, 144, 137) non-isomorphic graphs (out
of 11117 possible non-isomorphic graphs [65])17.

Now in examining the distribution of the maximum eigenvalues, we first note that the trivial
zero invariant, which is equivalent to the empty graph, has all eigenvalues zero, so is omitted in the
following analysis. To set a baseline for comparison we sample as many random connected adjacency
matrices as non-zero bivector subinvariants occur in each dataset (282240), compute their maximum

15Note that one may also create a directed weighted graph by setting the adjacency matrix upper triangle to be cij ;

however as the matrix is anti-symmetric, eigenvalues are complex, and hence cannot be sorted sensibly for analysis.
16The upper bound is saturated by the complete graph on n vertices.
17Noting that the trivial zero invariant (all 28 coefficients cij = 0) contributes a subinvariant, an adjacency matrix, and

an empty graph to the counts for each algebra.
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Fig. 3 Distributions of the maximum eigenvalues for 282240 random connected ma-
trices (of which 282086 are unique matrices, overall having 9741 unique eigenvalues).
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(a) A8 Subinvariants
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(b) D8 Subinvariants
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(c) E8 Subinvariants

Fig. 4 Distributions of the maximum eigenvalues for each of the bivector subinvari-
ants for each of the considered algebras: A8, D8, E8 respectively. Data includes all
282240 non-empty bivector subinvariants, coloured according to which order invariant
they correspond to.

eigenvalues, and plot the respective histogram of multiplicities in Figure 3. The maximum eigenvalues
for the adjacency matrices constructed from each bivector subinvariant were then computed for each
algebra’s dataset, and histograms of their distributions for each algebra are shown in Figure 4, coloured
according to the invariant order that they came from. In each class corresponding to invariant orders
1 to 4 (i.e. Inv1 to Inv4), there are A8: [36, 34, 18, 11], D8: [43, 41, 24, 36], E8: [54, 49, 18, 30] distinct
eigenvalues respectively with multiplicities as shown in the plots. Note that all these multiplicities
reduce to 1 when considering the unique non-isomorphic graphs at each order.

From the plots, it can be seen that the distributions do appear to roughly follow a partition
according to the order of the invariant they come from. This is perhaps hinting at how these different
order subinvariants span different subspaces of the full space of subinvariants, as dictated by their
eigendecompositions. Additionally, the actual A8, D8, and E8 graphs occur as bivector subinvariant
graphs for a large number of the Inv1’s only in each respective root system’s dataset (the point with
maximum eigenvalue below 2 in the A8 plot is the A8 graph of Figure 1, etc). Presumably, these are
due to Coxeter elements in bipartite form, and are in accordance with Smith’s theorem.

3.3.2. Eigenvector Centrality.
The maximum eigenvalue of a non-negative matrix has a corresponding eigenvector with exclusively
non-negative entries, as also dictated by the Perron-Frobenius theorem. One can then associate each
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(a) A8 Subinvariants
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(b) D8 Subinvariants
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(c) E8 Subinvariants

Fig. 5 The multiplicities that each of the 8 graph nodes (ie. simple roots αi) exists
as the most central node in a bivector subinvariant graph, for all graphs across all
invariant orders for each of the considered root systems: A8, D8, E8 respectively.
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(a) A8 Subinvariants
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(b) D8 Subinvariants
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(c) E8 Subinvariants

Fig. 6 The multiplicities of the variances across the distribution of eigenvector cen-
trality scores for each bivector subinvariant graph. These variances were computed
for each graph across all invariant orders for each of the considered root systems:
A8, D8, E8 respectively.

of these normalised non-negative entries to a centrality score for the graph node with corresponding
index. This is known as eigenvector centrality [19].

For these bivector subinvariant graphs, there are 8 nodes (corresponding to the simple roots) and
hence 8 respective centrality scores which can be computed for each graph for each invariant order
across each root system. Since the centrality scores are normalised, when examining the distribution
of measures across the nodes, it is most interesting to consider: (1) the most central node with the
highest score; as well as (2) the score distribution variance. Respectively, these then indicate which
parts of the graph are most important to the connectivity (and hence the most significant bivector
contribution to its graph structure); and the extent to which this significance is polarised towards
the requirement on this most central node to ensure connectivity. For instance, for the D8 and E8

Dynkin diagrams, the triply connected simple root is 6 and 5 respectively, so we would expect these
to have highest centrality. Likewise, the middle roots 4 and 5 in A8 should be the most central. But
these Dynkin diagrams are in some way minimal, and other bivector diagrams will be ‘more fully
connected’, so we expect centrality of different roots to change for more general Coxeter elements.

To examine this behaviour in the root systems considered, the eigenvector corresponding to the
previously studied largest eigenvalue was computed for each bivector subinvariant across all invariant
orders for each root system. The node index of the most central node was then identified, and the
variance of the centrality measure distribution calculated. The multiplicity distributions of these cen-
trality distribution measures are shown in Figure 5 for the node index of the most central node, and
Figure 6 for the variance in centrality scores across each bivector subinvariant.

The results in Figure 5 show some consistency of which nodes are the most central between the
root systems. In all cases the order 1 invariants (Inv1) have the most skewed distributions, with the
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first 2 nodes never being the most central, whilst the last nodes are the most central infrequently18.
From this one can deduce that the basis invariants {a4, a5, a6} are most significant to the Inv1’s
graph’s connectivity, as in our labelling of the simple roots {a1, a2, a3} are the start of a long string,
and are thus somewhat less central. But the relative multiplicities between the nodes can be used
to differentiate the root systems. Within the set of each root systems’s Inv1 invariants, the Dynkin
diagrams themselves are included as graphs. It is hence not surprising to see the D8 and E8 most
central nodes have indeed maximum multiplicity as the most central node for a6 and a5 respectively,
where the Dynkin diagram nodes have degree 3. Equivalently the A8 Inv1 invariants have a more
symmetric distribution of most central node, with the highest multiplicity for a4 (and with some
numerical differences, a5) matching the A8 Dynkin diagram. These results corroborate nicely the
similarity of the graphs within each order and our earlier assertion that the graphs for higher order
invariants ‘become more connected’.

Considering the higher order bivector subinvariant graphs, the range of multiplicities is noticeably
lower. However, range does not strictly decrease as order increases. Order 2 graphs have a similarly
noticeable skew towards more nodes closer to the middle of the basis order being more central, which
either does not occur or is not significant enough to conclude for orders 3 and 4. For A8 and E8 the
order 3 and 4 graphs have a somewhat consistent distribution of which node is the most central.

In a similar manner, the variances of the centrality measures shown in Figure 6 are larger for the
order 1 bivector subinvariants Inv21, extending the analysis of Figure 5 to the consideration of all the
nodes’ centrality scores (not just the most central one). The overlap in variance values for the higher
orders indicates that their respective graphs have similar connectivity properties, although there are
potential bounds which could separate some order 2 invariants (Inv2), particularly for the A8 and E8

algebras.
Overall the analysis of the bivector subinvariant graphs’ eigenvector centralities indicates that the

order 1 graphs are distinctly different to those coming from higher order invariants. The Inv1 invariants
tend to be more consistently structured (with the same basis elements creating the most central node)
and more skewed in centrality with central nodes more dominantly central. Generally, going to higher-
order invariants increases the connectivity, at least for A8 and E8, with some reasonably-well separated
clustering of the orders. For D8, the Inv3 invariants seem the most connected; this is likely due to the
unique geometry of D8, manifested e.g. also by the non-trivially zero scalar and pseudoscalar terms
in Table 3.

4. Machine Learning

Statistical methods have always held a strong footing in the realm of exploratory mathematical anal-
ysis. They are particularly useful for identifying patterns, which in turn lead to uncovering true
mathematical structures, and guiding conjectures into proven theorems.

Only in the last few decades have computational resources seen such explosionary growth that
many resource-heavy statistical methods have become feasible to implement. This has allowed the
development and application of large-scale computational statistical methods, a range of techniques
known commonly as machine learning (ML).

ML methods have been used broadly across a diverse range of fields, with outstanding and
surprising success. Within our area of mathematics and mathematical physics research, the plethora
of ML techniques have been largely unutilised, presenting many opportunities for new application
and insight. A selection of example successes of ML methods on mathematical data include: cluster
algebras [9, 25, 32], dessins d’enfants [40], tropical geometry [11, 24], knots [37], and various string
theory-inspired algebraic geometry datasets [2, 10,12,13,16–18,22,26,56].

ML as a field is subdivided into three core categories, : supervised, unsupervised and reinforcement
learning. The focus of this study is on the first two. In supervised learning, many-parameter functions
are fitted to large datasets of (input, output) pairs. In unsupervised learning there is no respective

18We note here that graph nodes have no intrinsic order; the one chosen here matches the basis order.
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output data, and traditional data analysis methods for feature extraction and clustering are applied
directly to the datasets.

4.1. Supervised: Neural Networks

Supervised ML concerns itself with learning functions which map inputs to outputs. The most common
supervised architectures for this, largely due to their versatility as universal approximators [46, 54],
are neural networks (NNs). NNs are built from layers of neurons, where the action at each neuron
starts with an input vector x, which is acted upon linearly by weights W and biases b, whose resulting
number is then passed to a non-linear ‘activation’ function a, producing the neuron output. Overall
this action looks like neuron : x 7−→ a(W · x+ b). These neurons are arranged in layers such that the
input is passed to each neuron in the first layer; their outputs are then compounded into a vector to
pass to the next layer etc, which cumulatively build up to a non-linear function19.

In order to approximate a given or implied non-linear function relating the input to the output,
the weights of a neural network can be adjusted, or ‘trained’, using data and an optimisation algorithm
(with respect to a ‘loss function’), in order to provide an in some sense ‘optimal’ approximation to the
original potentially highly complex non-linear function relating input and output [6]. Given a dataset
to learn with NNs, the data is first partitioned into training and test subsets. The train data is fed
into the NN in batches, and an optimiser then updates the NN parameters of weights and biases to
minimise the specified loss function over this batch. This process is then iterated for each batch over
the training dataset, then repeated for as many epochs as specified. The unseen test dataset inputs
are then passed into the trained NN to predict outputs, which are compared to the true outputs
with various learning measures to assess performance. The entire process may be repeated k times
in k-fold cross-validation, with k different partitions into train and test datasets to provide k output
performance measures, which can be averaged to provide statistical confidence.

4.1.1. Binary Classification of Invariants: real vs fake data.
It is expected that geometric invariants can be constructed, via some formula, from Coxeter elements
that carry information about the root system. So one might hope to find specific features of invariants
that depend on the root system/Lie algebra.

The dataset used consists of 3 subsets, one for each of the algebras A8/E8/D8, with 40320 entries
and 2304 components in each subset. To further enlarge the amount of data, we generated a ‘fake’
dataset for each of the A8/E8/D8 algebra. In the first iteration, ‘fake’ datasets were generated by
constructing empirical distributions for each of the 2304 components from all available invariants for
the corresponding algebra and then sampling from this distribution to create 40,000 unique elements in
new datasets. One can notice that in the ‘real’ data, the number of zeros in each entry is constant and
specific for different algebras 20. We implemented this feature in fake datasets we used by eliminating
fake data entries which do not satisfy this condition.

We started with one of the simplest supervised learning approaches, binary classification by a
dense neural network with an idea to train 3 NNs to distinguish invariants for one of the algebras from
other algebras and ‘fake’ invariants. Overall, we have 6 datasets of geometric invariant components
for A8, D8, and E8 algebras, as well as ‘fake’ datasets for each. From these, three final training/test
datasets were constructed, one for each algebra, where we labelled ‘real’ A8 or D8 or E8 algebra
invariant components with 1, two remaining ‘real’ algebras invariant components with 0, and 3 ‘fake’
datasets labelled as 0 as well. This is what we will imply when we say that we create training/test
datasets to distinguish one of the A8, D8, and E8 invariants from other ‘real’ invariants and the ‘fake’
ones.

One should notice however that training NNs to distinguish one of the A8/D8/E8 invariants
from others and fake invariants using all datasets is invalid. For all three of them, the prediction on
test datasets would be 100% accurate because, as described in section 3.2, there are only 128 unique

19Note this architecture is the most general in form, known as fully-connected or dense. One may restrict which neurons

receive which outputs from the previous layer in a variety of systematic ways to design more specific architectures.
201942 for E8, 2083 for D8 and 1805 for A8.
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invariants for each of the ADE datasets, leading to a large repetition of them (although with unequal
frequencies). Hence, there is a high chance that in a randomly chosen training subset, we would find
all 128 unique invariants. This would make the test stage biased, as it likely contains repetitions of
the training data. Effectively, these NNs are learning to reproduce this dataset of invariants perfectly,
but would not be able to generalise beyond it.

A more meaningful problem is to remove degeneracy in datasets for ‘real’ A8/D8/E8 invariants,
leaving just 128 elements in each. Then, we can mix original and fake invariants, which ensures that
we have some real invariants in the training set and others in the test set only. The proportion of data
in training and test datasets was again set to 80% and 20%. However, this makes the whole dataset
skewed as there are around 40000 fake invariants and only 3 × 128 real invariants. We kept data
unbalanced in the training set, but in the test set, to make it easier to interpret results, we cut the
number of fake invariants to be the same as the number of real invariants, meaning we had 3×{128/k
real and 128/k fake} invariants.

In this setup, we tried NN with architectures varying from 1 hidden layer with 32 units to 2
hidden layers with 256 units in each. In all of them, the ReLU activation function was used. During
training, we used the Adam optimizer (with a learning rate of 0.001) to optimize the log-loss function.
The train and test datasets represented an 80% / 20% split of the total data. The best performance
was demonstrated by 1 hidden layer 64, 128 and 256 units NNs with accuracies in the range of 0.90-
0.92. From this one might speculate that there should be some relatively simple invariant quantity
(similar to the genus of a surface) that was learned by the NNs to distinguish real invariants coming
from different algebras and fake invariants.

4.1.2. Regressing Invariants from Permutations.
As introduced in Section 2, Clifford algebras and the simplicial derivatives/characteristic multivectors
provide us with a systematic way of computing the geometric invariants (SOCM) occurring e.g. in
the Cayley-Hamilton theorem. In particular, this depends on the permutation order of the simple
reflections in a Coxeter element. It is, therefore, expected that there is an analytical formula that
directly predicts the corresponding geometric invariant from the order of the permutation of the
simple reflections. Since making conjectures or derivations from scratch is challenging in this task, in
the spirit of experimental mathematics, we hope that the use of supervised learning algorithms, which
train on labelled datasets to make predictions, can shed some light on this expected relation.

In this paper, we used dense NNs coded in python where the input is the (one-hot encoded [6])
permutation and the output is the coefficients of the invariants. For clearer results, we first partitioned
each dataset for A8, D8, E8 into 9 subdatasets for each of the 9 invariant orders, and then look at the
coefficients of both the full invariant and each subinvariant for each order subdataset, i.e., the scalar,
bivector, quadrivector, sextivector, and pseudoscalar for each invariant order Inv0-Inv8 (SOCM). The
NN model includes four dense layers of 256 units with ReLU activation function. In training, we used
the Adam optimizer (with learning rate 0.001) to minimise a mean-squared error loss. 5-fold cross
validation was also used, with test data subset being 20% of the full dataset. To calculate accuracy,
predictions were rounded to the nearest integer, and a prediction was considered correct if all of its
coefficients were predicted correctly after rounding.

Our ML results are summarised in Tables 7 to 9 for the A8, D8, E8 data in the simple root basis.
The results show near-perfect prediction of all invariants and subinvariants across all algebras. The
trivial scalar invariants are unsurprisingly all learnt perfectly, but in many other cases there is perfect
learning also. The lowest performance occurs for the sextivectors, where there is less data to learn
from. These results indicate that the NNs are capable of well approximating the complicated algorithm
carried out to compute these invariants, as well as accommodating for the basis permutations.

4.1.3. Gradient Saliency Analysis.
To better interpret the decision-making of our NN models – which are black-box models – we also
performed gradient saliency analysis [68]. In general, the magnitude of the elements in a weight vector
in the model tells us the importance of the corresponding input element for a particular output. We
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Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9996

Inv2 0.9996 1.0000 0.9999 0.9999

Inv3 0.9980 1.0000 0.9973 0.9480 0.9999

Inv4 0.9958 1.0000 0.9999 0.9999 0.9117 0.9596

Inv5 0.9986 1.0000 0.9995 0.9999 1.0000

Inv6 1.0000 1.0000 0.9948 0.9999

Inv7 0.9999 1.0000 1.0000

Inv8 1.0000 1.0000

Table 7 Summary of the final test accuracy (Acc) for the full invariants and each
subinvariant of the 9 invariants for A8 simple root data.

Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9955

Inv2 1.0000 1.0000 0.9912 0.9999

Inv3 0.9993 1.0000 0.9995 0.9999 1.0000

Inv4 0.9995 1.0000 0.9988 0.9891 0.9998 1.0000

Inv5 0.9995 1.0000 0.9986 1.0000 1.0000

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9999

Inv8 1.0000 1.0000

Table 8 Summary of the final test accuracy (Acc) for the full invariants and each
subinvariant of the 9 invariants for D8 simple root data.

Acc(Invi) Acc(Inv0i ) Acc(Inv2i ) Acc(Inv4i ) Acc(Inv6i ) Acc(Inv8i )
Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 1.0000

Inv2 0.9999 1.0000 1.0000 1.0000

Inv3 0.9994 1.0000 0.9906 0.9999 0.9891

Inv4 0.9969 1.0000 1.0000 0.9963 0.9793 0.9223

Inv5 0.9994 1.0000 0.9996 0.9999 0.9990

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9998

Inv8 1.0000 1.0000

Table 9 Summary of the final test accuracy (Acc) for the full invariants and each
subinvariant of the 9 invariants for E8 simple root data.

can extend this to consider the sensitivity of the entire NN function to the inputs by computing
the gradient of a given output with respect to the input via backpropagation. The magnitude of the
gradient indicates how sensitive the output is to a change in the input variable. The results for the
average gradient magnitudes across the test sets (and 100 cross-validation runs) are shown in Figure
7 for the multiclassification investigation equivalent to Section 4.1.1 but without considering the fake
data (performance was equivalently perfect), and Tables 10, 11, 12 in appendix A for the subinvariant
regression in Section 4.1.2.

The Figure 7 gradient saliency barcode maps show the relative importance of the subinvariant

inputs for algebra classification; hence the bivector
(
8
2

)
= 28 (=

(
8
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)
for the sextivector also) coefficients
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Fig. 7 Gradient saliency maps (barcodes) for ternary classification NN model. The
NN function takes as input the coefficients of the subinvariant and outputs one-hot
encoded: A8, D8, or E8. The saliency hence represents the relative importance of each
input coefficient (i.e. combination of simple roots) to determining the classification
output. Lighter colours indicate larger gradients and greater importance.

are represented by 28 vertical lines, whilst the quadrivector
(
8
4

)
= 70 coefficients are represented by

70 vertical lines. Note the trivial scalar as well as the pseudoscalar subinvariants are omitted, and the
remaining plots approximately satisfy the observed mirror symmetry between invariant orders (i.e.
Inv21 ∼ Inv27, Inv

4
3 ∼ Inv45, etc.).

For Inv21 and Inv27, the NNs rely almost exclusively on the final components of the coefficient
vector, with a similar skewed behaviour for Inv22 and Inv26 towards the final coefficients implying the
span of these final coefficient values is most disparate between the algebras and thus can be used
for classification. The Inv23, Inv

2
4, Inv

2
5 and Inv63, Inv

6
4, Inv

6
5 barcodes have less discernible patterns, but

in each case do appear to prioritise specific coefficient entries, emphasising that the entries in the
subinvariant coefficients vectors are not equally important as one may naively assume. The Inv2 (and
Inv5) quadrivector maintains the Inv2 bivector bias towards reliance on the final coefficient entries,
however the other quadrivector barcodes have a smoother spread of importance and more complicated
(NN-approximate) function differentiable structure.

These results provide insight into the relative importance of each coefficient to uniquely identi-
fying the respective algebra, and continues to guide our analytical study of these subinvariants in our
companion paper by indicating which subinvariants have the most clear coefficient dependence (Inv1
and Inv7 bivector, and Inv2 quadrivector) for us to focus on, in revealing the underlying behaviour of
these invariants.

In Tables 10, 11, 12, the saliency barcodes probe the NN learning of the subinvariants explicitly
from the Coxeter element root permutation (i.e. the order of the 8 roots in the Coxeter element)
– hence having 8 bars in each barcode. Satisfyingly, the mirror symmetry between opposite order
invariants is again approximately obeyed for each of the 3 algebras considered.

The trivial order 0 and 8 full invariants (with only scalar part such that they start with a single
1 followed by 255 0s), as well as all the scalar invariants, are as expected perfectly learned and have



Machine Learning Clifford invariants of ADE Coxeter elements 19

random saliency behaviour since the learning of a constant function is trivial and independent of the
inputs. One may expect perfectly equal barcodes, but the rounding of the outputs allows the final
neuron output to vary, so the stochastic search of the optimiser has a large range of functions which
give perfect results that it will be random walking in the function space throughout the training. This
makes the final function fairly arbitrary in this class of suitable functions and hence the barcodes
random, providing some measure of the level of noise in the learning.

Conversely the pseudoscalar for the order 4 invariants has different saliency properties between
the algebras, with focus on different parts of the permutation vector; where the A8, D8, E8 order
4 invariant pseudoscalars respectively are computed primarily from the end, middle, start of the
permutation vector. Note that the pseudoscalar component is 0 for D8 and therefore that barcode is
essentially noise, alike the scalar barcodes.

The remaining barcodes all have similar behaviour across the algebras. This is for the bivector,
quadrivector and sextivector subinvariants, which dominate the full invariant coefficient vector and
thus unsurprisingly lead to similar behaviour for the full invariant. This behaviour put focus on both
ends of the permutation barcodes, indicating the information about which roots are positioned at
the ends of the Coxeter element is the most important for determining the structure of each of these
respective subinvariants (as well as the full invariant).

Intuition one may extract from this is that at the ends of the permutation vectors the roots
have only one direction they can be permuted, and thus the root they are adjacent to is paramount to
determining whether that root can commute further into the permutation vector without changing the
Coxeter element; as dictated by whether the roots are connected in the Dynkin diagram. How the 40320
permutation orders split into the 128 Coxeter elements for each algebra may then be well correlated
with the end roots of the permutation, providing the NNs with important primary information in
directing the first steps of their functional algorithm for information flow through their architecture,
leading to correct calculations of the invariants. Further analytic analysis with focus on permutation
partitions grouped by their end roots should hope to reveal the dominant factors for the distributions
of these invariants.

4.2. Unsupervised: PCA

Principal component analysis (PCA) is a widely used machine learning technique for dimensionality
reduction and exploratory data analysis [48]. In short, one computes the principal components, which
are linear combinations of the initial variables, and performs a change of basis on the data. One then
projects the data onto only the first few principal components to obtain a lower-dimensional data
representation.

The first principal component is the normalised linear combination of initial variables that ex-
plains the largest variance in the data. The second principal component is uncorrelated with (i.e.
perpendicular to) the first principal component and explains the next highest variance, and so on.
The computation of the principal components can be broken down into the following steps:

1. The covariance matrix is computed. This is a symmetric matrix whose entries are the covariances
associated with all possible pairs of variables.

2. The next step is to compute the eigenvectors and eigenvalues of the covariance matrix. These
eigenvectors are the principal components, and the eigenvalues describe the amount of variance
carried in each principal component.

Note that often in general data science an extra step 0 is included whereby one standardises the
variables so that each contributes equally, which is especially important when different input features
have different units of measurement. However since all variables are unit-less and take values in a
similar range, we don’t standardise here. By ranking the eigenvectors in order of their eigenvalues,
highest to lowest, one gets the principal components in order of significance. Finally, to transform the
data into the new representation one performs a change of basis on the standardised data using the
principal components, followed by projection.
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(a) A8 (b) D8 (c) E8

Fig. 8 PCA plots of all 9 order invariants (SOCM) simultaneously for A8, D8 and
E8. Note that labels 5-8 don’t appear, as these invariants are mirror symmetric. This
plot and analysis are a good check of this fact.

Using the Coxeter element invariant data in the simple root basis as described in Section 3.1, we
perform PCA on the 9 order invariants both individually and combined, for A8, D8 and E8. With this
we plot the data in the first two principal components. The results for the 9 individual invariants of
A8, D8 and E8 are shown in Figures 11, 12 and 13 respectively and the PCA results on the combined
invariant data are shown in Figure 8. We can see clearly from Figures 11-13, that Inv0 and Inv8 just
give the trivial invariant, and furthermore Inv1 matches Inv7, Inv2 matches Inv6 and Inv3 matches
Inv5. This aligns with the connection we made earlier in Section 2. Comparing the individual plots for
A8, D8 and E8 we see that the plots for D8 and E8 roughly align, while the plots for A8 are different.
In D8, E8, for example, the plots for Inv3, Inv4 and Inv5 share a gap in the middle and all the data
points are roughly scattered on either side. On the other hand, the Inv4 plot for A8 presents a circular
pattern around the center, and whilst separated down the middle, the data points in the Inv3 and Inv5
plots of A8 are tightly clustered. For the A8 plots, there appears to be a 2-fold reflection symmetry
in the Inv1 − Inv7 plots, with the Inv1 and Inv7 plots having a second orthogonal 2-fold reflection
symmetry. For D8 and E8, there is instead an approximate 2-fold rotational symmetry.

Figure 8 shows the 2-dimensional PCA projections when fitting the principal components for all
the invariant orders considered together. The orders form distinct clusters and the two 2-fold reflection
symmetry of A8 and 2-fold rotation symmetries of D8 and E8 are approximately preserved. Figure
10a also shows the elbow plot of the PCA ratios against the number of principal components for PCA
performed on the combined dataset of all orders. The explained variance ratio is a measure of the
proportion of the total variance in the original dataset that is explained by each principal component.
This is equal to the ratio of its eigenvalue to the sum of the eigenvalues of all the principal components.
The x-axis in Figure 10a is the order number of the first principal components and the y-axis is log of
the explained variance ratio. For A8 and E8 we see a characteristic sharp drop in the ratio at around
the 100th principal component and for D8 at around the 75th principal component. This means that
in all cases the 256-dimensional vectors describing the invariants (of which of course only 128 are not
trivially zero) in fact can be reduced whilst preserving the majority of information. Furthermore, it
is interesting that D8 requires fewer principal components than the other two, which may be related
to the vanishing pseudoscalar as well as some scalar parts in this case, and a quarter as many unique
sextivector parts also as shown in Table 3.

As we saw in Section 3.2 the 40320 permutations give rise to only 128 unique Coxeter elements
for A8, D8 and E8 and the frequency of these 128 vary greatly. The frequency of invariants will have
a significant effect on the PCA results and therefore, for comparison, we repeat the PCA but on
the reduced dataset of 128 invariants. Again we perform the analysis on the 9 orders of invariant
individually, and combined. The individual PCA plots are shown in Figures 14-16 and the combined
plots are given in Figure 9. Figure 10b also shows the elbow plot of the explained variance ratios for
the combined PCA.
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(a) A8 (b) D8 (c) E8

Fig. 9 PCA plots of reduced datasets (with duplicates deleted) of all 9 order invari-
ants (SOCM) simultaneously for A8, D8 and E8.

(a) (b)

Fig. 10 Elbow plot of explained variance ratio against principal component number
for (a) full A8, D8 and E8 datasets and (b) the reduced A8, D8 and E8 datasets with
duplicates removed.

The discussed reflection and rotation symmetries of Figures 11-13 become clearer to see in Figures
14-16, as presumably uneven multiplicities no longer weight the projections asymmetrically. Also for
the A8 and D8 algebras, the Inv4 invariant projections become very nearly identical to the respective
Inv3 / Inv5 projections, emphasising a negligible impact of the inclusion of the pseudoscalar between
these invariant orders on the first two principal components (which turns out to be 0 for D8 but
not A8, see Tables 2 and 3). This, surprisingly, does not happen for E8, indicating the pseudoscalar
contribution to the principal components is more significant here.

Whereas we saw distinct clustering of the different orders in the combined PCA plots in Figure
8, we do not see this in the equivalent plots in Figure 9 from PCA on the combined datasets with
duplicates deleted. Comparing the combined plots to the unique plots for the reduced datasets we
see the patterns from the unique order plots in Figures 14-16 emerging in the combined plots in 9. It
appears as if all the unique plots have simply been overlaid on top of one another. This suggests that
principal components for all of the 9 orders are the same and also match the principal components
from the combined PCA.

The elbow plot in Figure 10b match almost identically that in Figure 10a and the same conclu-
sions hold.
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5. Conclusions

This work is a pump-priming study in experimental mathematics within the field of Clifford alge-
bras. This new paradigm combines an HPC computational algebra approach generating a significant
amount of algebraic data with a data science analysis of the resulting dataset. Performing exhaustive
calculations opens up a new angle to conjecture formulation and theorem proving, and sheds light on
the new geometric invariants for the important class of examples of Coxeter transformations. This de-
tailed example can be used as a foundation to explore the behaviour of invariants in other dimensions
or with different types of linear transformations. It was expected that there is a large degeneracy in
the mapping between input permutations, resulting in a smaller number of unique elements in the
dataset. This assumption was verified through the application of data analysis techniques. Moreover,
many unexpected features were discovered, such as the equality of the number of unique invariants
among all three algebras. The relatively small size of unique output invariants dataset in this ex-
ample made it perfectly suited to machine learning tasks, which perform very impressively. One
can of course go to arbitrary dimension to get larger data sets for An and Dn, but at the expense of
missing out on the E-type. The patterns observed in the reduced set of Coxeter elements, the invariant
bivectors, as well as the approach of ‘explainable AI’ using gradient saliency, have certainly pointed
in the direction of analytical results that generalise these computational observations here, some of
which we have mentioned above and some we will present in the companion paper.

The conjectural style of writing in this paper implies that there is still work to be done in the
future. Currently, many of the statements are preliminary and have not been checked rigorously. The
companion paper would aim to theoretically explain (at least some of) the features observed in this
work. Some of the most interesting questions it could answer are why the number of unique invari-
ants among three algebras is the same, how the symmetry determines the distribution of Doublets,
Quadruplets and Octuplets among the invariants, what the reason for variations in clustering of the
different orders in the combined PCA is, what causes the difference in the choice of important parts of
the permutation vector by NN for the classification task (which was revealed by the gradient saliency
analysis), and so on. Ultimately, the hope is to understand better the structure of the symmetry
structures, the geometric invariants and their geometrical meaning.
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Appendix A. NN Gradient Saliency Results

The gradient saliency results, showing the relative importance of the input parts of the Coxeter element
permutation for predicting the subinvariants at each order, are presented in the subsequent Tables 10,
11, 12.

Invi Inv0i Inv2i Inv4i Inv6i Inv8i

Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table 10 Summary of gradient saliency analysis for each invariant and subinvariant
for A8 simple root data. The NN function takes as input the permutation performed
on the original Coxeter element and outputs the coefficients of the respective subin-
variant. The saliency barcodes hence represent the relative importance of each root in
the permutation for computing the subinvariant coefficients. Lighter colours indicate
larger gradients and greater importance.

Appendix B. PCA Results

The 2-dimensional PCA projections for each dataset of invariants at each order for each root system
A8, D8, E8 are shown in Figures 11, 12, 13 respectively, whilst the 2-dimensional PCA projections
for the same partitioning of invariants into orders and types – however now reducing the datasets to
unique invariants – are shown in Figures 14, 15, 16 respectively.
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Invi Inv0i Inv2i Inv4i Inv6i Inv8i

Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table 11 Summary of gradient saliency analysis for each invariant and subinvariant
for D8 simple root data. The NN function takes as input the permutation performed
on the original Coxeter element and outputs the coefficients of the respective subin-
variant. The saliency barcodes hence represent the relative importance of each root in
the permutation for computing the subinvariant coefficients. Lighter colours indicate
larger gradients and greater importance.
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Invi Inv0i Inv2i Inv4i Inv6i Inv8i

Inv0

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv7

Inv8

Table 12 Summary of gradient saliency analysis for each invariant and subinvariant
for E8 simple root data. The NN function takes as input the permutation performed
on the original Coxeter element and outputs the coefficients of the respective subin-
variant. The saliency barcodes hence represent the relative importance of each root in
the permutation for computing the subinvariant coefficients. Lighter colours indicate
larger gradients and greater importance.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 11 PCA plots of the 9 orders of invariant (SOCM) for A8. The observed mirror
symmetry is a good consistency check.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 12 PCA plots of the 9 orders of invariant for D8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 13 PCA plots of the 9 orders of invariant for E8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 14 PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of
invariant for A8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 15 PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of
invariant for D8.
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(a) Inv0 (b) Inv1 (c) Inv2

(d) Inv3 (e) Inv4 (f ) Inv5

(g) Inv6 (h) Inv7 (i) Inv8

Fig. 16 PCA plots of reduced datasets (with duplicates deleted) of the 9 orders of
invariant for E8.
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