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Abstract—A three-dimensional (3-D) near-field (NF) source
localization method is introduced for a bistatic multiple-input
multiple-output (MIMO) radar system equipped with arbitrary
electromagnetic vector sensors (EMVSs) at both the transmitter
and receiver. Firstly, to obtain estimates of the steering matri-
ces of the transmitting array and the receiving array, tensor
decomposition is performed on the covariance matrix of the
outputs. Then, multiple parameters of targets, including two-
dimensional direction-of-departure (2D-DOD), range from trans-
mitter to target (RFTT), along with two-dimensional direction-
of-arrival (2D-DOA), range from target to receiver (RFTR),
and two-dimensional receive polarization angle (2D-RPA) with
respect to receiver can be obtained by exploiting the property
of rotation invariance. Subsequently, a linear equation can be
constructed to determine all location parameters of NF targets.
The proposed method can provide automatically paired multi-
parameters without peak search and has low computational
complexity. Moreover, the Cramer-Rao bound (CRB) is derived
as a performance benchmark for the model under consideration,
and the effectiveness of the proposed method is illustrated by a
series of numerical simulations.

Index Terms—near-field, multiple-input multiple-output, elec-
tromagnetic vector sensors, tensor decomposition.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has garnered
lots of interest in the realm of array signal processing over
the last few decades [1–7]. Utilizing waveform and spatial
diversity techniques, MIMO radar demonstrates superior per-
formance over the conventional phased array radar in terms of
identifiability, resolution and anti-interference capability [8].

Since bistatic MIMO radar is a special case of MIMO radar,
various parameter estimation algorithms, including those based
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on multiple signal classification (MUSIC) [9], estimation of
signal parameters via rational invariance techniques (ESPRIT)
[10] and tensor decomposition [11], have been developed.
The methods in [9–11] are based on linear scalar sensor
arrays, primarily focused on one-dimensional (1-D) direction-
of-departure (DOD) and direction-of-arrival (DOA) estimation,
while in [12, 13], several methods are proposed with the
aim of obtaining two-dimensional (2D)-DOD and 2D-DOA
estimations. However, these methods are all developed based
on scalar sensor arrays only measuring the spatial information,
incapable of perceiving the polarization information of elec-
tromagnetic signals, which is of great significance in practice
[14]. In contrast to scalar sensors, an electromagnetic vector
sensor (EMVS) is composed of three orthogonally polarized
electric dipoles and three orthogonal magnetic loops [15],
which can not only achieve 2-D direction finding, but also
measure the auxiliary polarization angles and polarization
phase differences. For this purpose, electromagnetic vector
sensors are employed in bistatic MIMO radar to jointly esti-
mate 2D angle and polarization parameters of the targets[16].

As an emerging radar system, polarized MIMO radar can
measure both the spatial and polarization domain information
of the targets. A series of studies have been performed to
realize parameter estimation for such kind of MIMO radar.
With the use of the rotational invariance property, a method
is presented in [17] to acquire 2D estimates for a bistatic
MIMO radar system equipped with a uniform linear array
(ULA) comprising several EMVSs in both its transmitter
and receiver, which requires further pairing operations. To
address the limitations in [17], a parallel factor (PARAFAC)
estimator is developed in [18], which can obtain automatically
paired multiple parameters of interest. However, the methods
in [17, 18] are only adequate for ULA with half-wavelength
spacing. To this end, an L-shaped sparse array geometry for
a bistatic EMVS-MIMO radar is introduced in [19], which
is applicable to linear arrays whose inter-element spacing
exceeds half-wavelength, and it can achieve unambiguous
estimation of 2D-DOD, 2D-DOA and polarization parameters
with high resolution. An improved subspace method exploiting
the relationship of rotational invariance and the normalized
Poynting-vectors is presented in [20] to achieve the 2D angle
and polarization parameters based on a bistatic EMVS-MIMO
radar system with random array geometry.

It’s worth mentioning that all of the methods discussed
above are dedicated to the far-field sources whose the wave-
front’s curvature is approximately planar. However, in practical
applications, the target may be nearer to both the transmit and
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receive arrays. There are currently few researches focusing
on near-field (NF) parameter estimation for MIMO radar. In
[21], a 4-D NF parameter estimation method based on bistatic
MIMO radar is proposed, appropriate for the centro-symmetric
array structure. Besides, in [22], a method is presented for
jointy estimating DOA and range in a monostatic MIMO
radar system. Methods based on an approximated model with
Fresnel hypothesis are proposed in [21] and [22]. Although
the approximated model can reduce complexity, it inevitably
introduces a systematic error, resulting in decreased estimation
accuracy. To improve the performance, NF source localization
methods based on an accurate model are proposed in [23]
and [24] for bistatic MIMO radar systems. Based on an exact
spatial propagation model, both conditional and unconditional
Cramer-Rao bounds (CRBs) are analyzed in [25].

The methods in [21–24] are all based on scalar arrays. As far
as we know, there hasn’t been much emphasis on 2-D (except
for our previous research on incomplete EMVS [26]) or 3D
near-field source localization in bistatic MIMO radar furnished
with EMVS arrays. In this paper, a method for multi-parameter
estimation, including 2D-DOD, and range from transmitter
to target (RFTT), along with 2D-DOA, range from target
to receiver (RFTR), and two-dimensional receive polarization
angle (2D-RPA), is proposed for three-dimensional (3-D) NF
sources based on bistatic MIMO radar furnished with arbitrary
EMVSs at both the transmitter and receiver. The following are
the principal contributions of this study.

(1) Different from the bistatic MIMO radar based on scalar
arrays for near-field source localization established in [21–24],
a new bistatic polarimetric MIMO radar model equipped with
multiple complete EMVS at both the transmitter and receiver is
established for 3D near-field source localization, and the model
considers probing polarization and scattered echo polarization.

(2) The proposed method requires no paring procedure for
multiple parameters and has a closed-form expression without
ambiguities, which is applicable to arbitrary EMVS array
geometries for 3-D NF target localization; as a benchmark for
performance evaluation, the CRB for the considered model is
derived.

Notations: (·)−1, (·)+, (·)T and (·)H signify inverse,
pseudo-inverse, transpose, and conjugate transpose, respec-
tively; ◦, ⊙, ⊗ and ⊕ stand for the vector outer prod-
uct, Khatri-Rao product, Kronecker product and Hadamard
product, respectively; Ip is the p × p identity matrix, while
1p is the all-one p × 1 column vector; em and en denote
1 × M and 1 × N row vectors with the mth entry and nth
entry being 1 and 0 elsewhere, respectively; ∥·∥F represents
the Frobenius norm. Re{·}, angle{·}, diag{·} and blkdiag{·}
repersent diagonalization, real part, and block diagonalization
operation, respectively.

II. TENSOR AND PARAFAC DECOMPOSITION
PRELIMINARIES

Tensors are high-dimensional structures with dimensions
greater than or equal to three. Among them, vectors and
matrices can be regarded as special cases of tensors. Typically,
tensors of higher than second-order are termed higher-order

tensors. The following definitions are provided to help under-
standing some basics of tensor and PARAFAC decomposition
[27, 28].

Definition 1 (Tensor Unfolding): The mode-n matrix un-
folding of a tensor is to recombine the elements of a higher-
order tensor according to certain rules, and then form a
matrix. That is, the mode-n matrix unfolding of the tensor
X can be denoted as [X ]n, and the (i1, i2, · · · , iN )-element
of X is mapped to the (in, j)-th element of [X ]n, where

j = 1 +
N∑

k=1,k ̸=n

(ik − 1)Jk, Jk =
k−1∏

m=1,m ̸=n

Im.

Definition 2 (PARAFAC Decomposition): Tensor can be
represented by the sum of a set of rank-one tensors, and
the PARAFAC decomposition of a rank-K tensor X can be
mathematically formulated as follows

X =

K∑
r=1

v1,k ◦ v2,k ◦ · · · ◦ vN,k, (1)

where vN,k ∈ CIn×1. The representation of (1) in mode-n
matrix unfolding format is as follows

[X ]n = Vn[Vn+1 ⊙ · · ·VN ⊙ V1 ⊙ · · ·Vn−1]
T , (2)

where Vn = [vn,1, vn,2, · · · , vn,K ].
Definition 3 (Generalized Tensorization of a PARAFAC

model): For the PARAFAC decomposition model of Eq.
(1), let the order sets Qi = {Qi,1,Qi,2, · · · ,Qi,Mi} for
i = 1, 2, · · · , I represent a division of the dimensions Q =
{1, 2, · · · , N}, and the generalized tensorization of X can be
represented by a new tensor XQ1,Q2,··· ,QI ∈ CT1×T2×···×TI

with

XQ1,Q2,··· ,QI =

K∑
k=1

e(1)k ◦ e(2)k ◦ · · · ◦ e(I)k , (3)

where Ti =
Mi∏
m=1

IQi,m , e(i)k = v(Qi,Mi)
k ⊗ v(Qi,Mi−1)

k ⊗ · · · ⊗

v(Qi,1)
k .

III. SIGNAL MODEL
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Fig. 1. Geometry of the considered bistatic EMVS-MIMO radar.

As depicted in Fig. 1, consider a bistatic MIMO radar
system equipped with P and Q EMVSs at the transmitter
and the receiver, respectively, where all transmit EMVSs
and receive EMVSs are distributed in the 3-D space. In
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addition, the position of the pth transmit EMVS and that of
the qth receive EMVS can be expressed as (xt,p, yt,p, zt,p)
and (xr,q, yr,q, zr,q), respectively. The array elements at
(d

(x)
t , d

(y)
t , d

(z)
t ) and (d

(x)
r , d

(y)
r , d

(z)
r ) are taken as the refer-

ence elements of the transmit array and the receive array,
respectively. Without loss of generality, assume that there are
K uncorrelated narrow-band NF targets, and the location of the
kth target is parameterized by (θt,k, φt,k, θr,k, φr,k, rt,k, rr,k)
in which θt,k and φt,k represent the elevation and azimuth
angles of the kth target related to the transmitter, θr,k and
φr,k denote the elevation and azimuth angles of the kth target
related to the receiver, rt,k and rr,k represent the range from
the transmitter to the kth target and the range from the kth
target to the receiver. According to Fig. 1, the range from the
mth transmit EMVS to the kth target and the range from the
kth target to the nth receive EMVS can be expressed as Eq.
(4) and Eq. (5) at the bottom of this page. The narrowband
normalized electric field signal transmitted by the pth transmit
EMVS to the kth target can be expressed as [16, 29, 30].

rp,k (t) = VT
t,p,kbpsp (t)

=ζp,ksp (t)

=

[
ζp,k,H

ζp,k,V

]
sp (t)

(6)

where t represents the fast time index, and Vt,p,k denotes the
direction matrix of the pth transmit EMVS relative to the kth
target, defined as

Vt,p,k =



cosϕt,p,k cos θt,p,k − sinϕt,m,t,p,kk

sinϕt,p,k cos θt,p,k cosϕt,p,k

− sin θt,p,k 0

− sinϕt,p,k − cosϕt,p,k cos θt,p,k

cosϕt,p,k − sinϕt,p,k cos θt,p,k

0 sin θt,p,k


(7)

and bp is the 6 × 1 weight vector that controls the transmit
polarization waveform [31], sp (t) indicates the waveform
emitted by the pth transmit EMVS. In addition, ζp,k represents
the probing polarization corresponding to the pth transmit
EMVS, ζp,k,H and ζp,k,V are the horizontal and vertical
components of the waveform, respectively. Assume that the
transmitting array emits P mutual orthogonal waveforms
{sp (t)}Pp=1, which satisfy∫

Tm

si (t)s
∗
j (t) dt =

{
1, i=j

0, otherwise
(8)

where Tm is the pulse duration. Then, in the line-of-sight
scenario, the echo reflected by the kth target can be denoted
as

rk (t, τ) = uk (τ) ζ
T
p,khT

t,ks (t) (9)

where τ is the pulse index, uk (τ) denotes the reflection coef-
ficients of the kth target, s (t) = [s1 (t) , · · · , sP (t)] represents
the waveform vector, ht,k is the steering vector of the transmit-
ting array, given by ht,k =

[
ct,1,ke

jτt,1,k , · · · , ct,P,ke
jτt,P,k

]T
with ct,p,k =

rt,k
rt,p,k

being the spatial magnitude attenuation,
and τt,p,k = 2π

λ (rt,k − rt,p,k) the spatial phase factor due to
propagation delay.

Consequently, when the echo of the target is simultaneously
received by the receive EMVS array, the noise-contaminated
signal from the receiving EMVS array can be denotes as

x (t, τ) =
K∑

k=1

hr,kuk (τ)hT
t,ks (t) + w (t, τ) (10)

where hr,k is the steering vector of the receive array, given by

hr,k =
[[
cr,1,ke

jτr,1,kar,1,k
]T

, · · · ,
[
cr,Q,ke

jτr,Q,kar,Q,k

]T ]T ,
and ar,q,k represents the polarization response of the qth
receive EMVS with respect to the kth target, expressed as

ar,q,k = [er,q,k, hr,q,k]
T

= [e
(x)
r,q,k, e

(y)
r,q,k, e

(z)
r,q,k, h

(x)
r,q,k, h

(y)
r,q,k, h

(z)
r,q,k]

T

=Vr,q,kgr,q,k

(11)

where er,q,k =
[
e
(x)
r,q,k, e

(y)
r,q,k, e

(z)
r,q,k

]
stands for the electric-

field vector of the qth receiving EMVS relative to the kth
target, hr,q,k =

[
h
(x)
r,q,k, h

(y)
r,q,k, h

(z)
r,q,k

]
represents the magnetic-

field vector of the qth receiving EMVS relative to the kth
target, and Vr,q,k indicates the direction matrix of the qth
receiving EMVS relative to the kth target, which can be
denoted as

Vr,q,k =



cosϕr,q,k cos θr,q,k − sinϕr,q,k

sinϕr,q,k cos θr,q,k cosϕr,q,k

− sin θr,q,k 0

− sinϕr,q,k − cosϕr,q,k cos θr,q,k

cosϕr,q,k − sinϕr,q,k cos θr,q,k

0 sin θr,q,k


(12)

and gr,q,k denotes the polarization vector that is only related
to γr,q,k and ηr,q,k with Ξp,k ∈ C2×2 being the polarization
scattering matrix corresponding to the pth transmit waveform,

rt,p,k =

√
(rt,kut,k + d

(x)
t − xt,p)

2
+ (rt,kvt,k + d

(y)
t − yt,p)

2
+ (rt,kwt,k + d

(z)
t − zt,p)

2
(4)

rr,q,k =

√
(rr,kur,k + d

(x)
r − xr,q)

2
+ (rr,kvr,k + d

(y)
r − yr,q)

2
+ (rr,kwr,k + d

(z)
r − zr,q)

2
(5)

where ut,k = sin θt,k cosϕt,k, vt,k = sin θt,k sinϕt,k, wt,k = cos θt,k, ur,k = sin θr,k cosϕr,k, vr,k = sin θr,k sinϕr,k, and
wr,k = cos θr,k.
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describing the polarization transform property of the kth target
relative to the pth transmit EMVS [32], expressed as

gr,q,k = Ξp,kζp,k =

[
sin γr,q,ke

jηr,q,k

cos γr,q,k

]
(13)

with γr,q,k and ηr,q,k represent the polarization auxiliary angle
and polarization phase difference of the qth receive EMVS
relative to the kth target.

Thereafter, in the presence of a non-dispersive propagation
environment [11], matched filtering x (t, τ) by resorting to
sp (t) yields

yp (τ) =
∫
Tm

x (t, τ)s∗p (t) dt

=
K∑

k=1

uk (τ) ht,k (p)hr,k + np (τ)
(14)

where np (τ) =
∫
Tm

w (t, τ)s∗p (t) dt.
By stacking all the matched filter outputs column by col-

umn, we have

y (τ) =
K∑

k=1

[ht,k ⊗ hr,k]uk (τ) + n (τ)

= (Ht ⊙ Hr) u (τ) + n (τ)

(15)

where Ht = [ht,1, ht,2, · · · ,ht,K ] and Hr =
[hr,1,hr,2, · · · , hr,K ] represent the array manifold
matrices of the transmitting and receiving arrays,
respectively, u (τ) = [u1 (τ) , · · · , uK (τ)]

T ,
n (τ) =

[
nT
1 (τ) , · · · , nT

P (τ)
]T

.

IV. THE PROPOSED ALGORITHM

A. PARAFAC Decomposition

With the assumption that the NF targets are uncorrelated,
the covariance matrix of y(t) can be expressed as

R = E[y (τ) yH (τ)]

= [Ht ⊙ Hr]Ru[Ht ⊙ Hr]
H + σ2

nI6PQ

(16)

where Rs = E[u(t)uH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

K]) with k =
1, 2, · · · ,K being the corresponding signal power.

With a finite number L of snapshots, R can be estimated
through

R̂ =
1

L

L∑
τ=1

y(τ)yH(τ) (17)

Based on [27], R can be structured into a fourth-order tensor
as follows

R = Rs×1Ht×2Hr×3H∗
t×4H∗

r + σ2
kI (18)

where Rs×1 denotes a diagonal tensor with its (i, i, i, i)th
(i = 1, · · · , 4) entry being σ2

k and zeros elsewhere, and I
represents the tensor form of I6PQ.

Estimates of Ht and Hr can be obtained through the
following formulation

min
Ht,Hr,Rs

∥ R̂−Rs×1Ht×2Hr×3H∗
t×4H∗

r∥F (19)

by directly applying the quadrilinear alternating least squares
(QALS) technique [33]. Nevertheless, QALS is susceptible to
initial conditions and often experiences a slow convergence

speed. Therefore, in this paper, the complex parallel factor
analysis (COMFAC) algorithm, which is a fast and robust
version of the alternating least squares method, can be adopted
to accelerate its convergence. Furthermore, in order to reduce
computational complexity, R is required to be compressed
into a third-order tensor. In accordance with Definition 2, let
Q1 = {1},Q2 = {2}, and Q3 = {3, 4}, and then Eq. (18) can
be rewritten as follows

R̃ = F3,K×1Hr×2Ht×3H̃
∗
+ σ2

kĨ (20)

where F3,K×1 denotes a K×K×K identity tensor, Ĩ denotes
the related tensor form, and H̃

∗
= H∗

r×4H∗
t .

With Definition 3, R̃ can be transformed into a matrix
format as

[R̃]T(1) = (H̃
∗ ⊙ Hr)HT

t (21)

[R̃]T(2) = (Ht ⊙ H̃
∗
)HT

r (22)

[R̃]T(3) = (Ht ⊙ Hr)(H̃
∗
)T (23)

Then, based on Eqs. (16-18), the factor matrices Ht, Hr

and H̃
∗

can be estimated through the following fitting

min
Ht,Hr,H̃

∗
∥ [R̃]T(1) − (H̃

∗ ⊙ Hr)HT
t ∥F (24)

min
Ht,Hr,H̃

∗
∥ [R̃]T(2) − (Ht ⊙ H̃

∗
)HT

r ∥F (25)

min
Ht,Hr,H̃

∗
∥ [R̃]T(3) − (Ht ⊙ Hr)(H̃

∗
)T ∥F (26)

Subsequently, let Ĥt, Ĥr and ˆ̃H∗ denote the estimates of Ht,
Hr and H̃

∗
, respectively. Ĥt, Ĥr and ˆ̃H

∗
can be calculated via

Ĥ
T

t = (H̃
∗ ⊙ Hr)

+[R̃]T(1) (27)

Ĥ
T

r = (Ht ⊙ H̃
∗
)[R̃]T(2) (28)

( ˆ̃H
∗
)T = (Ht ⊙ Hr)[R̃]T(3) (29)

Finally, the estimates of Ht, Hr and H̃
∗

can be obtained
by the trilinear alternating least squares (TALS) method [13].
Much like QALS, TALS exhibits a very poor convergence
performance. Therefore, the COMFAC algorithm is used to
generate the estimates of Ht, Hr and H̃

∗
in this paper.

Remark: In order to ensure the uniqueness of PARAFAC
decomposition, according to the Kruskal’s theorem [11], the
ranks of Ht, Hr and H̃

∗
must satisfy

kHt + kHr + kH̃∗ ≥ 2K + 3. (30)

B. Parameter Estimation

Following the normalization of Ĥt, the estimate ĉt,p,k of the
spatial amplitude attenuation of the pth transmit array element
relative to the kth target can be extracted from the estimate Ĥt

of the transmit array steering matrix. Consequently, we have
ĉt,p,k = abs

(
Ĥt(p, k)

)
.
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Then, based on Eq. (4), we can construct a system of linear
equations for r̂t,k, θ̂t,k and ϕ̂t,k, which can be denoted as

1
ĉt,1,k

− 1 · · · 1
ĉt,P,k

− 1

−2Xt,1 · · · −2Xt,P

−2Yt,1 · · · −2Yt,P

−2Zt,1 · · · −2Zt,P


T

︸ ︷︷ ︸
Ft,k


r̂2t,k
rt,kut,k

rt,kvt,k

rt,kwt,k


︸ ︷︷ ︸

Θt,k

=


X2

t,1 + Y 2
t,1 + Z2

t,1

...
X2

t,P + Y 2
t,P + Z2

t,P


︸ ︷︷ ︸

Gt,k

(31)

where Xt,p = d
(x)
t − xt,p, Yt,p = d

(y)
t − yt,p and Zt,p =

d
(z)
t − zt,p.
Furthermore, Θt,k can be calculated via

Θ̂t,k =
(
FH
t,kFt,k

)−1
FH
t,kGt,k (32)

Therefore, 2D-DOD and RFTT can be estimated via
θ̂t,k = arctan

(√
Θ̂2

t,k(2,1)+Θ̂2
t,k(3,1)

Θ̂t,k(4,1)

)
ϕ̂t,k = arctan

(
Θ̂t,k(3,1)

Θ̂t,k(2,1)

)
r̂t,k =

√
Θ̂2

t,k (2, 1) + Θ̂2
t,k (3, 1) + Θ̂2

t,k (4, 1)

(33)

To proceed, following the normalization of Ĥr, a selection
matrix, denoted by Jr,q = eq⊗ I6, is defined. Accordingly, we
have Wr,q = Jr,qĤr. On this basis, it is not difficult to obtain
the following relationship

diag{Wr,q(i, :)} = diag{Wr,q(j, :)}Φ(i,j)
r,q (34)

where Φ
(i,j)
r,q = diag

{
a(i)r,q,1

a(j)r,q,1

,
a(i)r,q,2

a(j)r,q,2

, · · · , a(i)r,q,K

a(j)r,q,K

}
with i, j =

1, 2, 3, 4, 5, 6.
Let β

(i,j)
r,q,k represent the kth entry of Φ

(i,j)
r,q . And

construct êr,q,k = [1, β
(1,2)
r,q,k , β

(1,3)
r,q,k ]

T and ŵr,q,k =

[β
(1,4)
r,q,k , β

(1,5)
r,q,k , β

(1,6)
r,q,k ]

T . Thereafter, the estimates of the nor-
malized Poynting vector at the qth receive EMVS with respect
to the kth target can be expressed as ûr,q,k

v̂r,q,k

ŵr,q,k

 =
êr,q,k

∥ êr,q,k ∥
◦ ŵr,q,k

∥ ŵr,q,k ∥
(35)

Then, the 2D-DOA at the qth receive EMVS with respect to
the kth target can be calculated via θ̂r,q,k = arcsin(

√
v̂2r,q,k + û2

r,q,k)

ϕ̂r,q,k = arctan
(

v̂r,q,k
ûr,q,k

) (36)

Further, based on the obtained estimates of the 2D-DOA at
the qth receive EMVS with respect to the kth target, the
corresponding polarization vector can be calculated as follows

ĝr,q,k = V̂
+
(θr,q,k, ϕr,q,k)âr,q,k (37)

Thus, the 2D-RPA at the qth receive EMVS with respect to
the kth target can be calculated via γ̂r,q,k = arctan

(∣∣∣ ĝr,q,k(1)
ĝr,q,k(2)

∣∣∣)
η̂r,q,k = angle

(
ĝr,q,k(1)
ĝr,q,k(2)

) (38)

According to the relationship of the array geometry illustrat-
ed in Fig. 1, the position-to-angle related parameter equations
for receiver arrays can be established as Eq. (39) at the top of
next page.

Subsequently, the coefficient matrices and constant term
matrices of Eq. (39) can be obtained by

Fr,k =



tan ϕ̂r,1,k −1 0

...
...

...

tan ϕ̂r,Q,k −1 0

0 −1 tan θ̂r,1,k sin ϕ̂r,1,k

...
...

...

0 −1 tan θ̂r,Q,k sin ϕ̂r,Q,k



Gr,k =



d
(y)
r − yr,1 − tan ϕ̂r,1,k(d

(x)
r − xr,1)

...

d
(y)
r − yr,Q − tan ϕ̂r,Q,k(d

(x)
r − xr,Q)

d
(y)
r − yr,1 + tan θ̂r,1,k sin ϕ̂r,1.kzr,1

...

d
(y)
r − yr,Q + tan θ̂r,Q,k sin ϕ̂r,Q,kzr,Q


(40)

In a compact matrix form, Eq. (39) can be written, as a
whole, in the following

Fr,kΘr,k = Gr,k (41)

where Θr,k=

 r̂r,k sin θ̂r,k cos ϕ̂r,k

r̂r,k sin θ̂r,k sin ϕ̂r,k

r̂r,k cos θ̂r,k

.

Utilizing the least squares method, Θ̂r,k can be computed
by

Θ̂r,k = (FH
r,kFr,k)

−1FH
r,kGr,k (42)

Finally, the estimates of the 2D-DOA and RFTR of the
kth target corresponding to the reference element can be
represented by

θ̂r,k = arctan

(√
Θ̂2

k(1,1)+Θ̂2
k(2,1)

Θ̂k(3,1)

)
ϕ̂r,k = arctan

(
Θ̂k(2,1)

Θ̂k(1,1)

)
r̂r,k =

√
Θ̂2

k(1, 1) + Θ̂2
k(2, 1) + Θ̂2

k(3, 1)

(43)

Now we have achieved estimation of all the parameters of
interest of NF targets for EMVS-MIMO radar. The main steps
of the proposed algorithm are summarized in Table I.



6

{
tanϕr,q,krr,k sin θr,k cosϕr,k − rr,k sin θr,k sinϕr,k = d

(y)
r − yr,k − tan ϕ̂r,q,k(d

(x)
r − xr,k)

−rr,k sin θr,k sinϕr,k + tan θ̂r,q,k sin ϕ̂r,q,kr̂r,k cos θ̂r,k = d
(y)
r − yr,q + tan θ̂r,q,k sin ϕ̂r,q,kzr,q

(39)
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(a) 2D-DOD estimation.
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(b) 2D-DOA estimation.
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(c) RFTT and RFTR estimation.

Fig. 2. Scattering diagram of estimated values of the proposed method.

TABLE I
MAIN STEPS OF THE PROPOSED ALGORITHM.

Step Operation

Step 1 Construct the array covariance matrix R̂, and restructure it into a
fourth-order tensor as in Eq. (18).
Step 2 Compress R into a third-order PARAFAC data model R̃, and
execute PARAFAC decomposition on R̃ to calculate Ĥt and Ĥr .
Step 3 Construct a system of equations according to Eq. (31) and obtain
Θ̂t,k via Eq. (32).
Step 4 Obtain the estimates of 2D-DOD and RFTT via Eq. (33).
Step 5 Formulate Jr,q , and further obtain Wr,q .
Step 6 Obtain Φ

(i,j)
r,q via Eq. (34), and construct êr,q,k and ŵr,q,k to

obtain θ̂r,q,k and ϕ̂r,q,k according to Eq.(36).
Step 7 Compute ĝr,q,k via Eq. (37), and then obtain γ̂r,q,k and η̂r,q,k
with Eq. (38).
Step 8 Utilize the LS method to solve the linear equation in Eq.(41),
and finally obtain the estimates of 2D-DOA and RFTR via
Eq. (43).

V. ALGORITHM ANALYSIS

A. Deterministic Cramer-Rao Bound

In this subsection, the deterministic CRB is developed for
the analyzed bistatic MIMO system in which both the trans-
mitter and the receiver are equipped with arbitrary EMVSs.

First, define Θ = [θT
t ,θ

T
r , rTt , rTr ,φT

t ,φ
T
r ]

T with
θt = [θt,1, · · · , θt,K ]T , θr = [θr,1, · · · , θr,K ]T ,
rt = [rt,1, · · · , rt,K ]T , rr = [rr,1, · · · , rr,K ]T ,
φt = [φt,1, · · · , φt,K ]T and φr = [φr,1, · · · , φr,K ]T .
Then, the (p, q)th entry of the 6K × 6K CRB matrix for the
parameters in Θ can be denoted as [34–36]

[CRB−1]p,q =
2L

σ2
n

Re

{
∂HH

∂Θp
P⊥

H
∂H
∂Θq

RU

}
(44)

where H = Ht ⊙ Hr, P⊥
H = I6PQ − H(HHH)−1HH , and

RU = 1
LUHU.

Define H̃ = [Hθt ,Hθr ,Hrt ,Hrr ,Hφt ,Hφr ] with Hθt =[
∂h1

∂θt,1
, · · · , ∂hK

∂θt,K

]
, Hθr =

[
∂h1

∂θr,1
, · · · , ∂hK

∂θr,K

]
, Hrt =[

∂h1

∂rt,1
, · · · , ∂hK

∂rt,K

]
, Hrr =

[
∂h1

∂rr,1
, · · · , ∂hK

∂rr,K

]
, Hφt =

[
∂h1

∂φt,1
, · · · , ∂hK

∂φt,K

]
and Hφr =

[
∂h1

∂φr,1
, · · · , ∂hK

∂φr,K

]
. After a

series of simplifications, the closed-form expression for the
CRB can be denoted as

CRB =
σ2

2L

[
Re
{(

H̃
H
Π⊥

H H̃
)
⊕
(
RT

U ⊗ 16×6

)}]−1

. (45)

The detailed derivations are provided in the Appendix.

B. Computational Complexity

As it is difficult to find the exact computational com-
plexity of the proposed method, we only make an approx-
imate estimation for the dominant components. The pro-
posed method’s computational complexity mainly consists of:
(1) PARAFAC decomposition of the covariance matrix with
O
(
PK2 + 6QK2 + 6PQK2

)
flops, and (2) computation of

Φ
(i,j)
r,q (q = 1, · · ·Q) with O

(
5QK2

)
flops. Therefore,

the presented method has a computational complexity of
O
(
PK2 + 11QK2 + 6PQK2

)
.

C. The maximum number of identifiable targets

Suppose that the maximum number of identifiable targets
is K. The value of K is related to the uniqueness condition
of PARAFAC decomposition, which is dependent on the
Kruskal’s theorem. It can be observed that max(kHt) = P ,
max{kHr} = 6Q and max{kH̃∗} = 6PQ, so the value of K
can be calculated as

K =
P + 6Q+ 6PQ− 3

2
. (46)

Besides, the value of K relies also on the rotation invariant
relationship in Eq. (34), which satisfies

K 6 6Q− 1. (47)

Therefore, based on Eq. (46) and Eq. (47), the value of K
is

K = 6Q− 1. (48)
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Fig. 3. RMSE results versus SNR.
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Fig. 4. RMSE results versus the number of snapshots.
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Fig. 5. RMSE results versus the number of receive array elements.

TABLE II
POLARIZATION PARAMETER ESTIMATION.

γr,1,1(◦) γr,2,1(◦) γr,3,1(◦) γr,4,1(◦) γr,5,1(◦) γr,1,2(◦) γr,2,2(◦) γr,3,2(◦) γr,4,2(◦) γr,5,2(◦)
31 32 33 34 35 41 42 43 44 45

Estimated 30.9974 31.9997 32.9987 33.9986 34.9996 41.0044 41.9977 43.0001 43.9996 44.9989
RMSE 0.0011 0.0009 0.0015 0.0011 0.0008 0.0016 0.0011 0.0018 0.0014 0.0009

ηr,1,1(◦) ηr,2,1(◦) ηr,3,1(◦) ηr,4,1(◦) ηr,5,1(◦) ηr,1,2(◦) ηr,2,2(◦) ηr,3,2(◦) ηr,4,2(◦) ηr,5,2(◦)
11 12 13 14 15 21 22 23 24 25

Estimated 11.0060 11.9984 12.9980 14.0031 14.9996 20.9945 21.9998 23.0008 23.9958 24.9990
RMSE 0.0042 0.0042 0.0042 0.0038 0.0040 0.0037 0.0042 0.0044 0.0042 0.0039
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VI. SIMULATION RESULTS

Simulations are conducted to assess the effectiveness
of the proposed algorithms in this section. Unless
otherwise specified, assume that the bistatic MIMO
radar system is furnished with five EMVS at both the
transmitter and the receiver with (xt,p, yt,p, zt,p) =
(-2.5λ,-2.5λ,-2.5λ), (1λ,0.5λ,2λ), (1.5λ,-1λ,-1λ), (-
1λ,0.5λ,0.5λ), (2.5λ,2.5λ,2.5λ) and (xr,q, yr,q, zr,q) =
(-5λ,-5λ,-5λ), (2λ,-2λ,2λ), (3λ,-3λ,3λ), (-5λ,4.5λ,5λ),
(-4λ,-2.5λ,-2.5λ), respectively. There are two NF
uncorrelated targets with parameters θt = (60◦, 30◦),
φt = (30◦, 60◦), rt = (10λ, 12λ), θr = (50◦, 20◦),
φr = (20◦, 50◦), rr = (8λ, 15λ), (γr,1,1, γr,2,1, · · · , γr,5,2) =
(31◦, 32◦, 33◦, 34◦, 35◦, 41◦, 42◦, 43◦, 44◦, 45◦)
and (ηr,1,1, ηr,2,1, · · · , ηr,5,2) =
(11◦, 12◦, 13◦, 14◦, 15◦, 21◦, 22◦, 23◦, 24◦, 25◦). and All
simulations are based on 500 statistically independent Monte-
Carlo trials. In addition, the root mean square error (RMSE)
is employed to evaluate the performance of the proposed
algorithm, defined as

RMSE =

√√√√ 1

500K

K∑
k=1

500∑
i=1

(
ϑ̂i.k − ϑk

)2
(49)

where ϑ̂i.k accounts for the estimate of the parameters θt,k,
φt,k, rt,k, θr,k, φr,k and rr,k, at the ith trial, while ϑk denotes
the true value.

Simulation 1: In the first simulation, the bistatic MIMO
radar system is equipped with two EMVS elements (Q=2) at
both the transmitter and the receiver with (xt,m, yt,m, zt,m) =
(−2.5λ,−2.5λ,−2.5λ), (1λ,0.5λ,2λ) and (xr,n, yr,n, zr,n) =
(−5λ,−5λ,−5λ), (2λ, - 2λ,2λ). In order to verify the max-
imum number of identifiable targets by the proposed method,
the scatting diagram results are shown in Fig. 2 for the 6-
D parameters (2D-DOD, 2D-DOA, RFTT and RFTR) under
the signal-to-noise ratio (SNR) of 50dB, where the number of
snapshots is 50000. It can be clearly seen that when the bistatic
MIMO radar system is equipped with two EMVS elements at
both the transmitter and the receiver, the proposed method
can accurately estimate the parameters of 11 targets, which
are automatically paired.

Simulation 2: In the second simulation, the RMSE is
adopted to verify the performance of the proposed method, and
the deterministic CRB is given as a performance benchmark.
Fig. 3 presents the estimation results for angle, range and
polarization parameters with respect to SNR, and the number
of snapshots is 1000. As can be seen, the RMSEs decrease
as SNR increases, clearly showing that the proposed method
effectively locates the 3-D NF sources and properly identifies
the polarization parameters. Additionally, note that the RMSEs
for the angle and the range parameters do not approach the
deterministic CRB effectively, mainly because the presented
method only exploits the information inside the electromag-
netic vector without taking advantage of the array aperture.

Simulation 3: In the third simulation, the estimation results
of polarization parameters are presented in Table II, where
the number of snapshot is set to 2000, the SNR is fixed at

25dB, and the other settings are the same as Simulation 2.
Obviously, the proposed method can accurately estimate all
the polarization parameters.

Simulation 4: In this simulation, the RMSE results for
angle and range with the number of snapshots varying from
400 to 2000 are presented in Fig. 4, where the SNR is fixed
at 20dB, and the other settings are the same as Simulation
2. It can be seen that the RMSE results decrease as the
number of snapshots increases, which improves the time
diversity gain. In addition, the explanation for the clear gap
between the RMSEs of the angle and range parameters and
the associated deterministic CRBs is the same as stated in the
second simulation.

Simulation 5: To verify the performance of the proposed
method with respect to the number of receive antennas, the
RMSE results for angle and range are provided in Fig. 5,
with SNR=20dB, L = 1000, and P = 5. For a fixed number
of transmit antennas, the RMSEs of all parameters decrease
as the number of receive antennas becomes large, given the
increased degrees of freedom provided for exploiting the space
diversity gain in a MIMO system.

Simulation 6: In this simulation, in order to demonstrate
the spatial resolution of the proposed method, we examine
the probability of successful detection (PSD) with two targets.
Define PSD = T/500, where T records the trial number that
the absolute errors of estimated angles/range are under 1◦/1λ.
The suffix ’-d’ in the legend denotes the result computed by
taking the mean value of four direction angles (2D-DOA and
2D-DOD), and the suffix ’-r’ denotes the result calculated by
taking the mean value on two ranges (RFTT and RFTR). Fig.
6 shows the PSD performance, where the two targets’ pa-
rameters (θt, θr, ϕt, ϕr, rt, rr) are (45◦, 50◦, 25◦, 20◦, 3λ, 8λ)
and (46◦, 51◦, 26◦, 21◦, 4λ, 9λ), and the other simulation pa-
rameters are the same as in Simulation 2. It can be clearly
observed from Fig. 6 that the proposed method offers 100%
PSD for angles and ranges with the SNR at 0dB and 20dB,
respectively, with angle and range intervals being 1◦ and 1λ.

-30 -20 -10 0 10 20 30
SNR(dB)

0

20

40

60

80

100
angle interval(1 °) and range interval (1 )

Proposed-d
Proposed-r

Fig. 6. Illustration of PSD versus SNR.

VII. CONCLUSION

In this paper, the estimation of multi-parameters for 3-
D NF sources has been studied in a bistatic MIMO radar
system furnished with arbitrary EMVSs. A covariance-based
trilinear decomposition method is proposed to find the multiple
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parameters, by fully making use of the tensor structure of the
covariance matrix. In addition, the obtained 2D-DOD, 2D-
DOA, RFTT, RFTR, and 2D-RPA parameters can be automat-
ically paired and their estimation results have a closed-form
expression. Moreover, the CRB has also been deduced as a
performance benchmark. As shown by the provided numerical
simulation results, the presented method has attained a satis-
factory performance, although further improvement is needed
in the future given the clear gap between its performance and
the derived CRB.

APPENDIX

A. CRB derivation

Firstly, let Y =
[
yT (1) , yT (2) , · · · , yT (L)

]T . According
to Eq.(6), the mean µ of Y can be expressed as

µ =


Hu (1)

Hu (2)

...
Hu (L)

 = EΓ (50)

where H = Ht ⊙ Hr, E = H ⊗ IL, and Γ =[
uT (1) ,uT (2) , · · · , uT (L)

]T
.

Then, we define two unknown parameter vectors α =[
θT
t ,θ

T
r , rTt , rTr ,φT

t ,φ
T
r

]
with θt = [θt1, θt2, · · · , θtK ]T ,

θr = [θr1, θr2, · · · , θrK ]T , rt = [rt1, rt2, · · · , rtK ]T ,
rr = [rr1, rr2, · · · , rrK ]T , φt = [φt1, φt2, · · · , φtK ]T

and φr = [φr1, φr2, · · · , φrK ]T , along with β =[
Re
{
ΥT
}
, Im

{
ΥT
}]T . Combining these two together, a

new parameter vector is then constructed as ξ =
[
αT ,β

]T
.

As stated in [25], the CRB matrix for ξ is denoted as

CRB =
σ2

2

[
Re
{
ΩHΩ

}]−1
(51)

where Ω =
[

∂µ
∂αT ,

∂µ
∂βT

]
.

To simplify Eq. (44), we derive the related items as follows

∂µ

∂βT
= [E, jE] (52)

∂µ
∂θT

t
=


(

∂h1

∂θt1

)
u1 (1) · · ·

(
∂hK

∂θtK

)
uK (1)

...
. . .

...(
∂h1

∂θt1

)
u1 (L) · · ·

(
∂hK

∂θtK

)
uK (L)


=Hθt ⊙ U

(53)

where hk is the k-th column of H, and Hθt =[
∂h1

∂θt1
, · · · , ∂hK

∂θtK

]
. Thus, we can obtain

∂µ

∂αT
= [Hθt ⊙ U,Hθr ⊙ U, · · · ,Hφr ⊙ U] = ∆. (54)

Furthermore, we have

J = Re
{
ΩHΩ

}
= Re


 ∆H

OH

−jOH

 [∆,O, jO]

 (55)

Since we are only interested in CRB for angle and range
estimation, diagonalization is exploited to extract these corre-
sponding terms from J.

Define

V∆ =
(

OHO
)−1

OH∆ (56)

As OHO is nonsingular, V−1
∇ is valid, and we define

P =

 I2K 0 0
−Re {V∆} I 0
−Im {V∆} 0 I

 (57)

Then, we can find

[∆,O, jO]P = [(∆− OV∆) ,O, jO] (58)

Let Π⊥
H represent the orthogonal projection of HH onto the

null space, i.e.,

Π⊥
O = I6PQL − O

(
OHO

)−1

OH (59)

Thus, we have OHΠ⊥
O = 0, and further obtain

PHJP = Re


 ∆HΠ⊥

O

OH

−jOH

 [Π⊥
O∆,O, jO

]
= Re


 ∇ 0 0

0 OHO jOHO
0 −jOHO OHO




(60)

where ∇ = ∆HΠ⊥
E∆.

According to the property of a partitioned diagonal matrix,
we have

J−1 = P
(
PHJP

)−1
PT

=

[
I 0
× I

][
Re {∇} 0

0 ×

]−1 [
I ×
0 I

]

=

[
Re {∇} 0

0 ×

]−1

(61)

where × denotes the part not needed in the derivation. Sub-
stituting Eq.(57) and Eq.(51) into Eq.(47), and eliminating all
the unaffected parts, the CRBs for angle and range estimation
can be obtained as

CRB =
σ2

2
[Re {∇}]−1 (62)

Since O = H ⊗ IL, we have Π⊥
O = Π⊥

H ⊗ IL.
In addition,∆ can be rewritten as

∆ = [o1 ⊗ u1 (·) , · · · , uK+1 ⊗ u1 (·) , · · · , o6K ⊗ uK (·)]
(63)

where om represents the m-th column of the matrix H̃ =
[Hθt ,Hθr , · · · ,Hφr

], and uk (·) is the k-th column of U.
Since (E ⊗ F) (G ⊗ Q) = (EG)⊗ (FQ), we can obtain

Π⊥
O∆ =

[
Π⊥

H o1 ⊗ u1 (·) , · · · ,Π⊥
H o6K ⊗ uK (·)

]
(64)
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Therefore,∇ can be denoted as

∇ =


oH1 ⊗ uH

1 (·)
...
oH6K ⊗ uH

K (·)

Π⊥
O∆

=L ·


oH1 Π⊥

H o1R1,1 · · · oH1 Π⊥
H o6KR1,K

...
. . .

...

oH
6KΠ⊥

H o1R1,1 · · · oH6KΠ⊥
H o6KRK,K


=L ·

(
H̃

H
Π⊥

H H̃
)
⊕
(
RT

u ⊗ 16×6

)
(65)

where Rm,n represents the (m,n)-th entry of Rs = 1
LUHU.

At last, we get

CRB =
σ2

2L

[
Re
{(

H̃
H
Π⊥

H H̃
)
⊕
(
RT

u ⊗ 16×6

)}]−1

(66)
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