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Abstract

This paper presents a magnetoencephalography (MEG) study on reading in Bangla, an east

Indo-Aryan language predominantly written in an abugida script. The study aims to uncover

how visual stimuli are processed and mapped onto abstract linguistic representations in the

brain. Specifically, we investigate the neural responses that correspond to word length in

Bangla, a language with a unique orthography that introduces multiple ways to measure

word length. Our results show that MEG signals localised in the anterior left fusiform gyrus,

at around 130ms, are highly correlated with word length when measured in terms of the

number of minimal graphemic units in the word rather than independent graphemic units

(akśar) or phonemes. Our findings suggest that minimal graphemic units could serve as a

suitable metric for measuring word length in non-alphabetic orthographies such as Bangla.

Introduction

In processing visual stimuli, the first brain responses detectable by non-invasive recording

occur approximately 100–200ms after presentation. For instance, magnetoencephalography

(MEG) recordings show that activity from left fusiform gyrus distinguishes noisy vs. clean

visual stimuli at *100ms (M100), word length effects around *130ms (M130), and words vs.

non-linguistic symbols at *170ms [1]. In reading, these early brain responses are modulated

by psychophysical variables, such as colour attributes and motion features of the visual stimu-

lus [2–4]. However, some findings demonstrate that these earliest brain responses reflect more

abstract linguistic analysis, beyond simple psychophysical responses [5]. Word length, mea-

sured in number of characters, modulates neural responses *100-130ms after visual presenta-

tion [6–8], and is distinct from brain responses indexing other lexical access processes [9].

Quantifying word length as the number of characters may be a suitable metric for alphabetic

writing systems, such as English or Finnish, in which one character generally corresponds to

one phoneme, and can surface independently. In other writing systems, corresponding brain

responses could reflect either ‘lower-level’ psychophysical variables, e.g., pixel density or visual
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angle subtended, or the initial stages of more complex linguistic analysis, e.g., stages of phono-

logical analysis. Here, we present a magnetoencephalography (MEG) study on reading in Ban-

gla (Bengali), which uses a non-alphabetic orthography in which independent graphemic units

(akśar, or ôkkhôr) are composed of smaller graphemic units, and may correspond to multiple

phonemes. This allows for multiple, separable metrics of word length. We find that, in Bangla,

MEG signals localising to anterior left fusiform gyrus at *130ms correlate best with word

length, estimated as the number of minimal graphemic units in the word, rather than akśar or

phonemes. However, post hoc analyses suggest that this brain response may also differentially

reflect some phonemic analysis. This finding may help clarify the cognitive mechanism by

which visual stimuli map onto more abstract linguistic representations, and the function of the

‘visual word form area’ more broadly [10].

Bangla orthography

Bangla (Bengali) is an east Indo-Aryan language spoken predominantly in the South Asian

region of Bengal, including Bangladesh and the Indian states of West Bengal, Jharkhand, Tri-

pura, and Assam. Bangla is primarily written in the Bangla or pūrbônagôri (পুব �নাগরী, ‘eastern

city’) script, also shared with several other languages. The Bangla script is an abugida. Tradi-

tionally, abugidas are characterised as writing systems in which consonant characters carry an

‘inherent’ vowel, in Bangla /ô/ (realised variably as [ɔ] or [o]). Consonants that are followed by

other vowels are modified by the addition of a diacritic before, after, under, or around the con-

sonant to ‘overwrite’ the inherent vowel, e.g., ক /kô/ carries the inherent vowel /ô/, butকী /ki/

কু /ku/ েক /ke/ েকা /ko/ are modified with other vowel characters. Consonant sequences are

often written as ‘conjunct characters’, in which elements of both consonants are conjoined

into a single, complex character. For instance, ক /kô/ and ল /lô/ can form the conjuncts�
/klô/,� /lkô/,� /kkô/, and � /llô/. We use character to refer to the minimal, dependent units

of a Bangla symbol, and we borrow the native word akśar (Bangla: অ�র /ôkkhôr/ ‘letter’) to

correspond to the independent symbol, which may consist of one or more consonant charac-

ters, and zero or one vowel characters. Note that the akśar is the unit Bangla speakers consider

as a ‘letter’ for the purposes of spelling, dictionary order, etc.

Additionally, the rules mapping Bangla orthography to phonology are complex. As men-

tioned, the ‘inherent vowel’ /ô/ is unwritten; it is inferred from the lack of a vowel diacritic

after a consonant. However, not all consonants that lack a vowel diacritic are pronounced with

the inherent vowel, e.g., the inherent vowel appears after both consonants ব<b> andড়<ṛ>
in বড় /bôṛô/ ‘big’, although the inherent vowel /ô/ only appears after the first consonant ক
<k> but not the second ম<m> in কম /kôm/ ‘less’. Bangla contains some digraphs with pro-

nunciations determined by surrounding context, e.g., যা<ya> can correspond to the pho-

neme /ê/ (realised as [æ] or [e]) or /ja/. Finally, Bangla orthography is conservative, and

maintains some orthographic conjunct characters in clusters that have been phonologically

simplified, e.g., �<mb> may be pronounced as /mô/ or /mbô/, depending on the surround-

ing context. Taken together, the number of phonemes does not perfectly correspond to the

number of characters or akśar in the word. This property of Bangla allows us to disentangle

different metrics of word length—graphemes, akśar, and phonemes, which may correspond to

different processing strategies for reading Bangla. These properties are exemplified up in Fig

1A with the Bangla word �া� klantô ‘tired’, which consists of 6 phonemes (/klantô/), 5 char-

acters, and 2 akśar.
Here, we report on an MEG study in Bangla to clarify the well-attested effect of word length

on early neural responses (M100, M130). We leverage the imperfect correlations between

three methods of reckoning word length to better clarify what dimension of ‘word length’
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early brain responses correspond to. Our analysis also included word frequency, and we

included factors corresponding to ‘lower level’ psychophysical variables as nuisance regressors

—including word width, normalised perimetric complexity, and luminance. Word width, the

physical width of the visual stimulus, was highly correlated with all three measures of word

length and normalised perimetric complexity. Normalised perimetric complexity correlated

with word length measured in akśar, and negatively correlated with the other two measures of

word length. Luminance negatively correlated with word length measured in akśar. Finally,

word length did not correlate with any other variable of interest (see Fig 1B). We find that

brain activity localising to anterior left fusiform gyrus significantly correlates with word length,

Fig 1. Illustration of A: Word length measures, B: Correlation matrix and C: Results. A: Illustration of the separation of word length as measured in

phonemes, characters, and akśar with the word�া� klantô ‘tired’. This word consists of 6 phonemes, 5 characters (one for each phoneme, excluding

the inherent vowel /ô/), and 2 akśar (one for the conjunct consonant + vowel combination�া<kla> and one for the conjunct consonant combination

� <nt>). B: Correlation matrix of the regressors in the experiment. This consists of WordFreq (word frequency, in parts-per-million), luminance,

WLa (word length in akśar), PerComp (perimetric complexity, normalised by dividing by WLc), WLc (word length in characters), and WLp (word

length in phonemes). Non-significant correlations are absent; shading corresponds to magnitude of correlation coefficient. C: Results of two-stage

regression analysis and post hoc likelihood ratio tests [11]. Both clusters correspond to WLc beta coefficients, with corrected p-values and time windows

given in the inset boxes. Each brain plot demonstrates the spatial coordinates of the significant clusters outlined in black. Red and blue shading

correspond to positive and negative t-values of the second stage regression, in the peak of the cluster timecourse. Timecourse plots show the beta

coefficients of the cluster (top timecourse) and the results of the likelihood ratio tests for the three definitions of word length (bottom timecourse). Gray

shading indicates the temporal extent of the cluster. Red lines in bottom timecourses correspond to χ2(1) = 3.9� p = 0.05 and χ2(1) = 2.8� p = 0.10.

https://doi.org/10.1371/journal.pone.0292979.g001
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as measured by characters, or the minimal graphemic units constituting a Bangla character.

Post hoc analyses on the brain activity in these spatial coordinates suggest that this effect may

also reflect some initial stages of some phonological processing. The number of akśar did not

produce significant correlations with brain responses, suggesting that this traditional reckon-

ing is not a crucial component for the early stages of reading in the brain. Our analysis revealed

no significant sensitivity to word frequency in the early stages, as observed in EEG [9].

Materials and methods

Participants

Twenty-four right-handed, self-reported native speakers of Bangla with normal or corrected-

to-normal vision participated in the study. They were recruited from the New York University

and surrounding communities in Abu Dhabi. Language history in the form of a questionnaire

was collected to screen for eligibility, and written informed consent was provided by all partici-

pants prior to the experiment. Compensation was provided upon completion. The NYU Abu

Dhabi Institutional Review Board approved all experimental protocols. The recruitment took

place between 2/03/2022 to 15/11/2022.

Materials

Our study consisted of 304 morphologically complex words: 152 grammatical and 152 pseudo-

words. Grammatical words were existing Bangla words. The grammatical words were either

abstract nouns beginning with the derivational prefixes �িত prôti- and দুঃ duḥ-, noun-noun

compounds (জলকামান jôl-kaman ‘water-cannon’), or concrete nouns with classifier, case, or

number suffixes (classifier িট -ṭi; plural classifiers �েলা -gulo,�িল -guli; human classifier জন
-jôn; accusative case েক -ke; locative case য়/এ -e; classifier+genitive case িটর -ṭi-r, টার, -ṭa-r;
plural genitive/dative েদর -der). The pseudowords were created with the prefixes �িত prôti-
and দুঃ duḥ-, but attached to morphologically unlicensed stems to produce unattested words.

Importantly, our pseudowords are composed of familiar Bangla prefixes and stems, are not

immediately detectable as non-words and are orthographically and phonologically well-

formed. Their status as ungrammatical words is only detectable after morphological analysis

following word-form identification. The stimuli were constructed to address an unrelated

question related to processing of multimorphemic words.

Procedure

All visual stimuli were presented in the centre of the screen. A fixation cross appeared pre-

stimulus for 500ms, followed by the word, which stayed on the screen for 2000ms. The inter-

stimulus interval (ISI) was jittered, varying between 300-500ms. Stimuli were presented in

black Vrinda Bangla font in Bangla text (font size 25) against a gray background using the

experiment control Presentation1 software (Version 23.0, Neurobehavioral Systems, Inc.,

Berkeley, CA, www.neurobs.com). The stimuli were projected onto a screen inside the Mag-

netically Shielded Room (MSR; Vacuumschmelze, Hanau, Germany) using a projector. The

stimulus was equally divided into two blocks. Each block’s stimulus order was completely ran-

domised, and the order of presentation of the blocks alternated between participants.

Task

The experiment consisted of a lexical decision task in which participants were presented with

strings of characters appearing in the middle of the screen. Participants were instructed to

indicate via button press with the non-dominant (left) hand whether they recognised the string
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as a word of their language, and to answer as quickly and accurately as possible. The buttons

were counterbalanced; half of the participants indicated yes by pressing the left button on the

response box and the other half by pressing the right button. Between the blocks, participants

could take a self-timed break to perform small movements to remain comfortable. The average

total time for the experiment was 15 minutes.

Data acquisition

The head contours of all participants were digitised using a hand-held FastSCAN laser scanner

(Polhemus, VT, USA) to enable coregistration during data preprocessing; five fiducial points

were marked (left and right preauricular points, and three spots on the forehead) on each par-

ticipant’s head and were also digitised using the scanner. While inside the MSR, marker coils

were placed on the points to localise the participant’s head with respect to the MEG sensors.

We took marker measurements before and after the experiment to record the relative move-

ment of the participant’s head, which was corrected during coregistration. Continuous record-

ing of MEG data was performed using a 208-channel axial gradiometer system (Kanazawa

Institute of Technology, Kanazawa, Japan) at a sampling rate of 1000 Hz. An online low-pass

filter with a cutoff frequency of 200 Hz and a high-pass filter with a cutoff frequency of 0.01 Hz

was applied on-line.

Data analysis

Preprocessing

Three reference channels positioned at a distance from the head of the participant recorded

noise inside the MSR. To reduce MEG noise, we used the Continuously Adjusted Least

Squares Method (CALM) [12] in MEG160 (Yokogawa Electric Corporation and Eagle Tech-

nology Corporation in Tokyo, Japan) for each participant. Next, we imported the denoised

data into MNE-Python [13] and applied band-pass filtering between 1 and 40 Hz. Subse-

quently, we removed bad channels using visual inspection, and then extracted epochs without

applying a baseline from 100 ms before the stimulus onset to 600 ms post-stimulus. We used

Independent Component Analysis (ICA) to remove noise sources. We set 95% as the cutoff

percentage of signal variance to be captured by the components identified by ICA. In order to

avoid random noise bursts from contributing to explaining the variance, a first round of ICA

computations was performed, in which we iteratively excluded epochs with values that were

outliers compared to other epochs in the resulting components, for the sake of calculating a

subsequent cleaner ICA. For each component, we defined the set of outlier epochs conserva-

tively as the smaller of two sets: the set of epochs whose variance levels were in the top 5% of all

epochs and the set of epochs whose maximum values exceeded the third-quartile of all epochs’

maximum values by three times the inter-quartile range. Because the exclusion criteria were

conservative, most components did not contribute to any epoch exclusions, and the algorithm

targeted primarily those epochs which contributed to significant noise bursts in one or more

components. Subsequently, we re-calculated the ICA solution only on the basis of the remain-

ing epochs and removed those ICA components belonging to identifiable sources (heartbeats,

blinking). The remaining components constituted the cleaned mapping from MEG channels

to the ICA solution; this mapping was then applied in reverse to all of our epochs (including

those excluded to calculate the ICA solution), producing an ICA-cleaned signal. Following

this, bad channels were first interpolated, and then a 100ms baseline correction was applied.

Epochs exceeding the absolute threshold value of 2 pT were rejected (0—15 (min-max) and

2% of epochs removed, across participants), resulting in the final cleaned sensor-space signal.
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Source reconstruction

Sensor data was projected into source space using MNE-Python. MEG data were coregistered

with the FreeSurfer template brain ‘fsaverage’ (CorTechs Labs Inc., California, USA and 175

MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts,

USA). The fsaverage template brain was scaled to match the digitised headshape and fiducial

markers. An ico-4 source space was then built with 2562 vertices per hemisphere using the

minimum norm estimate algorithm [14]. A forward solution was then computed using the

boundary element method (BEM) [15]. Channel noise covariance matrices were estimated

using the baseline period (100ms before each epoch) and regularised using the automatic

method [16]. Combining the forward solution and the noise covariance matrix, an inverse

solution was computed for each evoked response. For computing the inverse solution, we used

a fixed dipole orientation. This method places a dipole orthogonal to the cortical surface at

each source point. This allows for estimating signed (i.e., exiting or entering) signals, which

provides an additional dimension for detecting differences in neural activity than free dipole

orientation [17]. Finally, the signals were noise normalised in the spatial dimension, yielding a

dynamic statistical parameter map (dSPM) [18]. Subsequent analyses were conducted on sin-

gle-trial spatio-temporal timecourse (STCs).

Source-space analysis

Because our research question involves initial stages of processing word forms, prior to lexical

access, our analysis includes both grammatical and ungrammatical words. Preliminary analy-

ses on only grammatical words did not produce any reliable effects, likely due to weak power.

Because we are focused on the initial stages of interpreting orthographic features, before mor-

phological analysis occurs [5, 19], there are no expected differences between grammatical and

pseudoword stimuli.

For analysis, we conducted a two-stage spatio-temporal cluster-based permutation test. For

each individual, we fit a regression to each time point and source point, across all trials. This

produced a beta estimate for each factor of the regression, at each time and source point for

the individual. Afterwards, one-tail t-tests were conducted on the beta values, determining

which beta values were significantly different than zero. In the second stage, spatio-temporal

cluster-based permutation tests were conducted on the t-values, following the procedure

described by [20]. Clusters were formed by identifying significant (p< 0.05) t-values that were

adjacent in space and time that had the same sign (i.e., positive or negative). The cluster algo-

rithm was further constrained such that the minimum cluster contained 20 source points and

20ms. Cluster statistics were calculated by summing the t-values. The null distribution was

then estimated by randomly permuting the labels and recomputing cluster statistics 10,000

times. Corrected cluster-level p-values were estimated by comparing the original test statistic

against this bootstrapped null distribution, and were considered significant at α = 0.05. Search

parameters for the clustering algorithm were constrained to bilateral temporal and occipital

cortices, from 70–210ms. Time points were selected by visual inspection of raw sensor data,

and were selected to include expected M100, M130, and M170 responses e.g., [19]. Both gram-

matical and pseudoword trials were included, and trials were not excluded based on partici-

pants’ responses. Regression factors included three variables of word length, as defined by the

number of akśar (WLa), the number of characters (WLc), and the number of phonemes

(WLp). We also included a factor of whole-word frequency, since this may effect neural

responses at later time windows. Finally, we included psychophysical variables corresponding

to the width of word in pixels, the estimated luminance of the word printed against the gray

background, and the normalised perimetric complexity [21]. Perimetric complexity is the
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square of the length of the perimeter divided by the total ink area, Fig 2. Perimetric complexity

is demonstrated to be near proportional to identification of letters, across fonts and writing

systems. We divide the total perimetric complexity by the number of characters (WLc), thus

deriving a normalised estimate of perimetric complexity by character. This normalisation is

suggested by [9], as a way to deconfound perimetric complexity with the length of a word.

These psychophysical variables were included because they could plausibly effect the earlier

(M100) response in earlier visual cortices. The full regression model in the two-stage regres-

sion model is given in Eq (1).

dSPM � 1þWLa þWLc þWLp þ LuminanceþWidthpx þ
Perim:Complex

WLc
þWordFreqPPM ð1Þ

Word length metrics were calculated by using the native word-length functions in Micro-

soft Excel and Python, which estimate WLa and WLc respectively. In calculating WLc, we fur-

ther ‘penalised’ conjunct characters by including the combining character hasant ◌ͅ, which is

used to render complex conjunct consonant characters. WLp was calculated using the Bangla-

desh Bangla to IPA transcription tool (http://www.ipa.bangla.gov.bd/) to represent each word

as a sequence of international phonetic alphabet (IPA) characters. IPA diacritics correspond-

ing to aspirated stops (h) and dental articulation ( ̪ ) were removed before counting, since these

diacritics resulted in all aspirated and dental stops being counted twice. Additional ad hoc cor-

rections were made for consistency in transcription.

The three definitions of length were expected to be highly inter-correlated—longer words

should be longer by all three definitions of word length. We similarly expected some correla-

tion between the psychophysical variables and the word length metrics. The correlation matrix

of these variables is shown in Fig 1B. We do not orthogonalize our collinear variables, as we

are specifically interested in understanding the effect of the word length variables, regressing

out the psychophysical responses [22]. We address these multicollinearities in the post hoc
analyses. We also included lexical frequency as a regressor. Lexical frequency was estimated by

searching the Bangla IndicNLP corpus [23] for all words that contain the experimental items.

Word frequency was smoothed by adding 0.1 to all counts. Non-word stimuli from the experi-

ment therefore had a total raw count of 0.1. Frequency was represented as ‘parts-per-million’

(PPM) in the regression model. Psychophysical variables were estimated by rendering each

Bangla word in the Vrinda font as a monochromatic image with aliasing against a gray back-

ground, using the Python library PIL [24]. Luminance and word width were measured in-

Fig 2. Illustration of perimetric complexity. Perimetric complexity is the square of the length of the perimeter of a word (dashed line) divided by the

total ink area (light gray). This ratio is illustrated here for the word�া� klantô ‘tired’. Our models normalise perimetric complexity by dividing

perimetric complexity by WLc.

https://doi.org/10.1371/journal.pone.0292979.g002
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software by rendering the word as an image and using in-software functions. These measures

are proportional to the relevant physical variables of interest as projected on the screen. Word

width as measured in pixels is used as a proxy for visual angle subtended on the screen. Peri-

metric complexity was calculated following the procedure described by [21]. However, this

measure is highly correlated with word length as measured in characters; thus, we normalised

perimetric complexity by dividing it by WLc (see also [9]). We also computed the height of

each word in pixels, and the number of pixels contained in the area of the word. However,

these variables were highly correlated with other psychophysical variables, and thus were

excluded from further analysis.

We ran a separate two-stage spatio-temporal cluster-based permutation to determine

whether the MEG signal distinguished between grammatical words and pseudowords within

the time and search coordinates of interest. This analysis was conducted with the same param-

eters as the analysis of interest, except with a single factorial regressor, coding each trial as a

grammatical word or a pseudoword.

Results

Behavioural results

A linear mixed-effects model fit to the RT results show (see Fig 3) that participants were slower

to respond to pseudowords compared to grammatical words (β = 65.84, SE = 11.47, t = 5.74,

p< 0.001). A logit mixed-effects models fit to participants’ acceptance/rejection responses

show that grammatical words were accepted more often than pseudowords (β = -3.70,

SE = 0.12, z = -30.18, p< 0.001). Model results are reported in Table 1. All statistical analyses

were performed in R (v4.3.2) [25] using the lme4 package [26]. Button presses reflect the out-

put of participants’ interpretation of a word after lexical access and morphological analysis,

whereas we focus on the MEG signal correlating to the pre-morphological orthographic pro-

cesses here.

Fig 3. Behavioral results. Mean reaction time (in milliseconds) and percentage acceptance across both conditions.

https://doi.org/10.1371/journal.pone.0292979.g003
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MEG results

In the main analysis, we identified three significant clusters. Two clusters corresponding to

WLc were identified. The first cluster was identified in anterior left fusiform gyrus, from 120–

192ms (p = 0.0017). This cluster consisted of positive t-values, corresponding to a positive cor-

relation between word length in characters and MEG activity (dSPM). The second cluster was

identified in the left temporal pole, from 121–179ms (p = 0.0427). In contrast, this cluster con-

sisted of negative t-values, corresponding to a negative correlation between word length in

characters and MEG activity. No significant clusters of WLp or WLa were identified in this

analysis. The spatial extent and time course of beta coefficients are plotted in Fig 1C. These

two clusters suggest that the brain responses peaking around 130–150ms (M130) correlate pri-

marily with the length of a word as expressed in characters. The spatial distribution of the posi-

tive cluster in anterior left fusiform gyrus appears to be consistent with previous findings on

early stages of reading in the brain [1, 17, 27], which localises this brain activity to the ‘visual

word form area’. The timing of these results is also consistent with EEG findings, which show

a profile for word length effects between 100–150ms that is distinct from other early lexical

access effects, such as word frequency and concreteness [9].

We also found a significant cluster of normalised perimetric complexity. Although this was

included as a nuisance regressor, we report on it here since it overlaps with the WLc cluster.

This cluster localised to left fusiform gyrus, from 151-180ms (p = 0.0189), and showed a posi-

tive correlation between normalised perimetric complexity and MEG signals. This is shown in

Fig 4. No significant effects of any of the other variables was observed.

Because of the multicollinearity of our regressors, we also conducted a post hoc analysis on

the spatial coordinates of the cluster. We averaged the raw activation from the spatial coordi-

nates of both WLc clusters for each participant and trial. Then, for each millisecond, we fit a

linear model consisting of the same form as the two stage regression in (1), fit over the aver-

aged timecourses extracted for each participant and trial. For each word length variable, we

then fit a separate reduced model, removing the word length variable, at each millisecond. We

then conducted a likelihood ratio test at each time point comparing each model, to determine

whether the more complex model incorporating the word length variable is a better fit than

the model without the word length variable. This then produces a time-course of χ2(1) test-sta-

tistic for each word length variable, showing when each factor contributes significantly to

explaining the data. These distributions are given in Fig 1C.

This post hoc analysis reveals a somewhat different pattern. In the spatial coordinates of the

cluster located in anterior left fusiform gyrus, the likelihood ratio tests suggest that WLp may

Table 1. Model summary.

RT1

Predictors β SE CI t value p value

(Intercept) 986.27 32.23 [923.10, 1049.45] 30.61 <0.001

Condition [Pseudowords] 65.84 11.47 [43.36, 88.33] 5.74 <0.001

Response2

Predictors β SE CI z value p value

(Intercept) 1.79 0.13 [1.54, 2.05] 14.15 <0.001

Condition [Pseudowords] -3.70 0.12 [-3.95, -3.46] -30.18 <0.001

Formula: 1 RT * Condition + (1|Participant) + (1|Item)
2 Response * Condition + (1|Participant) + (1|Item)

Summaries of the linear mixed effect model for reaction time (RT) and the logistic mixed effect model for Response.

https://doi.org/10.1371/journal.pone.0292979.t001
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contribute significantly to explaining the data during the critical time window (120–192ms), as

seen by the peak of χ2-values surpassing the χ2(1) = 3.9� p = 0.05 threshold. This effect was

likely not identified in the two-stage regression analysis because we constrained the clustering

algorithm to a minimum time-window of 20ms, and this peak lasted only 12ms. The WLc

timecourse, by comparison, also briefly peaked above the χ2(1) = 2.8� p = 0.10 threshold. By

contrast, the likelihood ratio tests in the negative cluster located in temporal pole did not sug-

gest any significant contribution of any word length variable. Additionally, there did not

appear to be any significant contribution in either cluster of WLa.

The two-stage regression model fit to the factorial variable Grammatical vs. Pseudoword

did not identify any significant clusters with the search and clustering parameters reported

here. This is compatible with the expectation that morphological and lexical analysis is likely

not launched during the M100 and M130 time windows.

Discussion

It is well-attested that the earliest brain responses to words in reading correlate with word

length. However, ‘word length’ is highly confounded with psychophysical variables, and can be

quantified differently depending on the orthographic and phonological rules of the language.

Here, we presented an MEG study in Bangla, a language with an abugida writing system,

which enables quantifying words in terms of minimal letter-forms (here, ‘characters’), and

larger, quasi-syllabic units (here, akśar). Additionally, because of complex orthography-pho-

nology mapping rules (similar to better studied languages like English and French), these two

metrics are not perfectly correlated with the number of phonemes in a word, allowing for dis-

entangling three separate measures of word length.

We found that MEG activity in anterior portions of left fusiform gyrus significantly corre-

lated with word length as quantified by characters, or the minimal orthographic units of a

Fig 4. Normalised perimetric complexity cluster. Results of two-stage regression analysis. Cluster corresponds to normalised perimetric complexity,

or the square length of the perimeter of the word divided by the ink area internal to word, divided by the word length in minimal graphemic units, WLc.

Corrected p-value and temporal extent given in the green box. Brain plot demonstrates the spatial coordinates of the significant clusters outlined in

black. Red shading corresponds to the positive t-values of the second stage regression, in the peak of the cluster timecourse. Timecourse plots show the

beta coefficients of the cluster, and gray shading indicates the temporal extent.

https://doi.org/10.1371/journal.pone.0292979.g004
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character. This suggests that the ‘visual word form area’ in Bangla readers may reflect compu-

tations that are sensitive to identifying phonologically-relevant units of a word, rather than

coarser-grained units such as the quasi-syllabic akśar, or a more abstract, finer-grained analy-

sis in terms of phonemes. Furthermore, this study provides clear evidence that visual word

form activity corresponds to properties of the orthography of a written word, rather than psy-

chophysical responses (which are more highly correlated with akśar count rather than charac-

ter count). This can help constrain theories of reading and orthographic processing in the

brain, which are mostly developed on data from languages with tighter correlations between

visual complexity, word length, and phoneme number. Moreover, post hoc analyses in the spa-

tial coordinates of this anterior left fusiform area suggest that word length as measured by the

number of phonemes in a word may also exert an effect on visual word form activity. Further

research in both Indic abugidas with similar psychophysical and orthographic properties to

Bangla (e.g., Hindi/Nepali/etc. Devanāgari, Punjabi Gurmukhī), other abugidas with different

orthography/phonology rules (e.g., Tibetan, Thai, Amharic/Ethiopic Ge’ez, Cree Syllabics),

and writing systems that involve composition of complex characters from minimal parts (e.g.,

Korean hangeul) may further constrain what kinds of computations left fusiform gyrus con-

tributes to orthographic and lexical processing.

The function of fusiform in the reading network

The fusiform gyri are part of a broader network of brain regions that facilitate reading, and

serve different functions. Other brain areas that are critical for reading involve the ‘dorsal path-

way’, which consists of left temporo-parietal regions, and may facilitate in mapping ortho-

graphic form to phonemic representations, and the ‘ventral pathway’, which consists of left

temporal regions and inferior frontal regions, which may facilitate mapping whole word-

forms to meanings and detecting ‘sight words’ [28–30]. These reading strategies may also be

deployed differently at different stages of development and across different writing systems

[31, 32]. The occipito-temporal regions, including the fusiform gyri, are a crucial component

of this network, since they serve as the first gateway mapping the visual stimuli to more

abstract representations, which may be used by either reading strategy. During the early stages

of reading development, activation in the occipital-temporal regions has been shown to

increase with reading skills acquisition, in line with the view of progressive formation of alpha-

betic and orthographic representations. [33, 34]

Our results contribute to our understanding of the fusiform gyri and their relationship to

the broader reading network by demonstrating that fusiform gyri facilitate sub-lexical analysis

of the word-form [5, 9]. Additionally, our results show that in an abugida like Bangla, these

processes are sensitive to the minimal graphemic units, which roughly correspond to pho-

nemes, rather than larger composed graphemes (akśar), which roughly correspond to

syllables.
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