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Abstract
Metabolomic	age	models	have	been	proposed	for	the	study	of	biological	aging,	how-
ever,	they	have	not	been	widely	validated.	We	aimed	to	assess	the	performance	of	
newly	developed	and	existing	nuclear	magnetic	resonance	spectroscopy	(NMR)	me-
tabolomic	 age	models	 for	prediction	of	 chronological	 age	 (CA),	mortality,	 and	age-	
related	disease.	Ninety-	eight	metabolic	variables	were	measured	in	blood	from	nine	
UK	and	Finnish	cohort	 studies	 (N	≈31,000	 individuals,	 age	 range	24–86 years).	We	
used	nonlinear	and	penalized	regression	to	model	CA	and	time	to	all-	cause	mortality.	
We	examined	associations	of	four	new	and	two	previously	published	metabolomic	age	
models,	with	aging	risk	factors	and	phenotypes.	Within	the	UK	Biobank	(N	≈102,000),	
we	 tested	prediction	of	CA,	 incident	disease	 (cardiovascular	disease	 (CVD),	 type-	2	
diabetes	mellitus,	cancer,	dementia,	and	chronic	obstructive	pulmonary	disease),	and	
all-	cause	mortality.	Seven-	fold	cross-	validated	Pearson's	r between metabolomic age 
models	and	CA	ranged	between	0.47	and	0.65	in	the	training	cohort	set	(mean	abso-
lute	error:	8–9 years).	Metabolomic	age	models,	adjusted	for	CA,	were	associated	with	
C-	reactive	protein,	and	inversely	associated	with	glomerular	filtration	rate.	Positively	
associated risk factors included obesity, diabetes, smoking, and physical inactivity. In 
UK	Biobank,	correlations	of	metabolomic	age	with	CA	were	modest	(r = 0.29–0.33),	
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1  |  INTRODUC TION

Aging	can	be	broadly	defined	as	a	time-	dependent	decline	of	func-
tional capacity and stress resistance, associated with increased risk 
of	morbidity	 and	mortality	 (Burkle	 et	 al.,	 2015).	 The	 rate	of	 aging	
may vary between individuals and groups due to both environmental 
stressors,	including	lifestyle,	social	adversity	(Stringhini	et	al.,	2018),	
and	genetic	factors	(McDaid	et	al.,	2017).	This	divergence	in	the	rate	
of aging can lead to discrepancies between “biological” and chrono-
logical	age.	Markers	of	biological	age	may	allow	improved	prediction	
of	health-		and	life-	span	than	chronological	age	itself	and	allow	iden-
tification	of	vulnerable	individuals	(Ferrucci	et	al.,	2018).

Recently, high throughput “omic” methods, which provide si-
multaneous quantification of sets of multiple molecular features, 
have been used to develop “biological clocks” that provide a global 
measure	 of	 changes	 with	 age	 at	 the	 molecular	 level	 (Rutledge	
et al., 2022).	Metabolomics,	the	global	profiling	of	small	molecules	
with a molecular weight of <1500 Da	 in	the	body,	has	emerged	as	
a promising analytical approach for assessing molecular changes 
with	 age	 at	 the	 population	 level	 (Panyard	 et	 al.,	 2022; Robinson 
&	 Lau,	 2023).	 Overall,	 the	 rate	 of	 metabolism	 declines	 with	 age	
(Pontzer	et	 al.,	2021)	 and	more	 specifically	 all	 aging	hallmarks	are	
expected	to	have	detectable	effects	on	the	metabolome,	including	
hallmarks of cellular aging such as nutrient sensing, mitochondrial 
dysfunction, and altered intracellular communication which directly 
relate	 to	 metabolic	 alterations	 (Lopez-	Otin	 et	 al.,	 2016; Nilsson 
et al., 2019).

We	previously	 reported	 a	metabolomic	 clock	based	on	untar-
geted	 mass-	spectrometry	 (Robinson	 et	 al.,	 2020)	 in	 a	 cohort	 of	
around 2000 people, observing strong prediction of chronological 

age	 (CA)	 in	 internal	 test	 sets,	 associations	 between	metabolomic	
age and noncommunicable disease risk factors, and enrichment 
of	known	aging	pathways	among	model	predictors.	However,	 this	
clock cannot be easily applied to other datasets due the untargeted 
nature	of	the	data	used.	An	alternative	approach	is	to	use	nuclear	
magnetic	resonance	spectroscopy	(NMR),	a	metabolomic	platform	
that provides more precise quantification enabling more straight-
forward	application	across	studies.	van	den	Akker	et	al.	(2020)	used	
the	Nightingale	platform	of	NMR-	based	metabolomics	in	blood,	to	
linearly	model	CA	in	a	large	Dutch	Biobank	sample	of	25,000	peo-
ple	from	26	cohorts	 (age	range	18–85),	finding	their	metabolomic	
age measure was predictive of cardiovascular events and mortal-
ity.	While	their	metabolomic	age	measure	was	strongly	correlated	
with	CA	in	an	internal	test	set,	internal	validation	may	provide	over-
optimistic	 assessments	 of	 model	 performance	 (Rodriguez-	Perez	
et al., 2018)	and	their	measure	remains	to	be	widely	tested	 in	ex-
ternal datasets.

When	 developing	 biological	 age	 clocks,	 two	 divergent	 ap-
proaches	have	emerged:	training	on	CA,	which	will	identify	molecular	
features	and	pathways	that	change	with	CA	but	may	be	less	sensitive	
for	assessing	age-	related	health	status;	and	training	on	lifespan	(i.e.,	
time-	to-	all-	cause	mortality)	which	may	more	accurately	reflect	one's	
age-	related	 health	 status,	 yet	will	 also	 assess	 early-	effects	 of	 dis-
ease	in	addition	to	intrinsic	biological	aging	mechanisms	(Bernabeu	
et al., 2023).	In	this	regard,	the	multivariable	NMR-	based	metabolite	
score	of	 all-	cause	mortality	 developed	by	Deelen	 et	 al.	 in	 44,000	
people	may	be	considered	a	biological	age	marker	as	it	explicitly	as-
sesses remaining lifespan. The model was found to have greater pre-
dictive accuracy than a model containing conventional risk factors 
(Deelen	et	al.,	2019).

yet	all	metabolomic	model	scores	predicted	mortality	(hazard	ratios	of	1.01	to	1.06/
metabolomic	age	year)	and	CVD,	after	adjustment	 for	CA.	While	metabolomic	age	
models	were	only	moderately	associated	with	CA	in	an	independent	population,	they	
provided	additional	prediction	of	morbidity	and	mortality	over	CA	itself,	suggesting	
their wider applicability.

K E Y W O R D S
aging, biological age, cohort study, metabolome, metabolomics, molecular epidemiology, 
mortality,	NMR,	population	aging
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In	 the	 present	 study,	we	 aimed	 to	 develop	 new	NMR-	based	
metabolomic aging models, incorporating variable selection, non-
linear	 modeling,	 and	 lifespan	 information,	 within	 nine	 UK	 and	
Finnish	 cohorts	 of	 38,000	 samples	 covering	 most	 of	 adult	 life.	
To judge their potential utility for the assessment of differential 
metabolic aging, we assessed and compared their associations 
with aging risk factors, phenotypes, and cardiovascular disease 
and mortality incidence. Finally, to understand the reproducibil-
ity	of	the	NMR-	based	metabolomic	aging	models,	we	tested	their	
performance,	alongside	the	previously	published	Akker	et	al.	and	
Deelen	et	al.	models,	 in	the	UK	Biobank	(UKB,	N = 102,000	indi-
viduals)	for	the	prediction	of	CA,	mortality,	and	a	diverse	range	of	
age-	related	diseases.

2  |  METHODS

2.1  |  Study population

The	 study	 included	 six	 British	 cohorts	 participating	 in	 the	
UCL-	LSHTM-	Edinburgh-	Bristol	 (UCLEB)	 Consortium	 (Shah	
et al., 2013):	 The	 MRC	 National	 Survey	 of	 Health	 and	
Development	(NSHD),	the	Caerphilly	Prospective	Study	(CAPS),	
the	British	Women's	Heart	 and	Health	Study	 (BWHHS)	 (Lawlor	
et al., 2003),	 the	 Southhall	 and	Brent	Revisited	 Study	 (SABRE),	
the	Whitehall-	II	study	(WHII)	(Marmot	&	Brunner,	2005),	and	the	
UK	Collaborative	Trial	of	Ovarian	Cancer	Screening	Longitudinal	
Women's	Cohort	 (UKCTOCS)	 (Jacobs	 et	 al.,	2016).	 Two	 studies	
from	 Finland	 were	 included:	 The	 1966	 Northern	 Finland	 Birth	
Cohort	 (NFBC1966)	 and	 the	 Young	 Finns	 Study	 (YFS).	 In	 addi-
tion,	we	included	the	British	Avon	Longitudinal	Study	of	Parents	
and	 Children	 (Boyd	 et	 al.,	 2013),	 which	 included	 samples	 from	
fathers	 (ALSPAC-	partners)	 (Northstone	 et	 al.,	2023)	 and	moth-
ers	 (ALSPAC-	mothers)	 (Fraser	 et	 al.,	 2013).	 ALSPAC-	partners	
and	ALSPAC-	mothers	were	considered	as	different	cohorts	and	
analysed separately. Longitudinal samples were available from 
SABRE	 at	 two	 timepoints	 (SABRE1	 and	 SABRE2)	 which	 were	
collected	between	1988–1991	and	2008–2011.	Follow-	up	sam-
ples	 were	 available	 from	 NFBC1966	 at	 two	 timepoints	 when	
participants	 were	 31	 (NFBC1966	 [31 years])	 and	 46 years	 old	
(NFBC1966	 [46 years]),	 and	 longitudinal	 YFS	 samples	 available	
were	followed-	up	in	2001	(YFS2001),	2007	(YFS2007)	and	2011	
(YFS2011).	 These	 follow-	up	 samples	 were	 analysed	 separately	
since	 follow-	up	 clinics	 and	 sampling	 were	 conducted	 on	 sepa-
rate	occasions.	UKB	study	samples	 (N	≈102,000)	were	used	for	
model	 validation	 in	 this	 study.	Ethical	 approval	 for	each	cohort	
study	was	obtained	from	the	Local	Research	Ethics	Committees.	
Informed consent for the use of data collected via questionnaires 
and clinics and analysis of biological samples was obtained from 
all	 participants.	 Additionally,	 the	 current	 study	 was	 approved	
by	 the	 Imperial	College	Research	Ethics	Committee	 (Reference:	
19IC5567).	Details	on	individual	cohort	characteristics	are	listed	
in Table S1.

2.2  |  Metabolomic data acquisition and 
preprocessing

A	 high	 throughput	 1H	NMR	 spectroscopy	metabolomics	 platform	
(Brainshake	Ltd./Nightingale	Health©,	Helsinki,	Finland)	was	applied	
to	fasted	blood	serum,	except	in	UKB	where	EDTA-	plasma	samples	
were used for metabolomics analysis. The assay provides concen-
tration measurements for a range of metabolite variables including 
lipoprotein subclasses and individual lipids, fatty acids, glucose and 
various glycolysis precursors, ketone bodies, and amino acids. The 
NMR	 platform	 also	 reports	 on	 average	 sizes	 of	 lipoprotein	 parti-
cle	 subclasses	VLDL,	 LDL,	 and	HDL.	Details	of	 this	platform	have	
been	published	previously	(Soininen	et	al.,	2009;	Wurtz	et	al.,	2017).	
Two	hundred	and	thirty-	three	 lipid	and	metabolite	measures	were	
initially obtained from the assay platform, although some of the 
metabolic measures were frequently missing in one or more cohorts 
and	were	 removed	 from	 subsequent	 analysis.	Acetoacetate,	 pyru-
vate, glycerol, glycine, diacylglycerol, conjugated linoleic acid, and 
estimated	description	of	fatty	acid	chain	length	were	excluded	as	a	
result.	Derived	metabolic	variables,	including	variables	expressed	as	
ratios	or	percentages	were	also	excluded	to	limit	data	redundancy.	
Additionally,	 we	 also	 examined	 correlations	 of	 metabolic	 variable	
signals	 derived	 from	 Nightingale	 pre-	2020	 and	 post-	2020	 quan-
tification	 protocols	 available	 for	 6446	 YFS	 samples	 and	 excluded	
variables	 with	 Pearson's	 r < 0.7.	 The	 remaining	 98	 well	 quantified	
metabolic variable signals were considered in the main part of this 
study	(Table S2).	Multivariate	outlier	detection	was	carried	out	per	
study cohort, using the pcout function from R package mvoutlier. 
Since	our	key	objective	was	to	develop	multivariable	metabolomic	
models, a multivariate outlier detection method was chosen to iden-
tify and remove samples which behave uncharacteristically com-
pared the rest of the observations in the multivariate space prior to 
analysis. The method is based on principal components analysis and 
observations were considered location outliers if they have been as-
signed	a	weight	≤0.1,	and	these	were	subsequently	removed	from	
the	study.	Six	thousand,	one	hundred	four	samples	were	removed	as	
a	result,	and	the	number	of	samples	after	quality	control	was	37,888.

Additionally,	to	minimize	bias	originated	from	preanalytical	and	
analytical differences in among the study cohort datasets, we cali-
brated the metabolic data between cohorts and visits using meth-
odology	 as	 described	 in	Makinen	et	 al.	 (2022)	 as	 part	 of	 the	data	
preprocessing.	Whitehall	 II	 (WHII)	 was	 a	mixed-	sex	 cohort	 in	 the	
middle of the age range in among our samples and was thus defined 
as the reference dataset in the calibration, with all other study co-
hort	 datasets	 were	 normalized	 against	 the	WHII	 samples.	 During	
the cohort data calibration, a subset of samples of matching demo-
graphic	 characteristics,	 including	age,	 sex,	body	mass	 index	 (BMI),	
and ethnicity were selected from both the target and the reference 
datasets, and scaling factors were then estimated per metabolic 
variable and subsequently applied to the full cohort data in the tar-
get	 sets.	Principal	 component	analysis	was	performed	and	 the	 re-
sults confirm no clustering of samples by cohort could be observed 
in	the	first	two	principal	components	(Figure S1).	The	distribution	of	
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nontransformed	values	in	the	98	metabolic	variables	were	broadly	
normal, as determined through inspection of histograms and 
quantile-	quantile	 plots	 (Figure S2 and S3).	 Subsequent	 sensitivity	
analyses,	performed	using	log-	transformed	variable	data,	confirmed	
choice of data transformation had minimal effect on results.

2.3  |  Metabolome wide association study 
(MWAS) of age and mortality

To understand individual metabolite associations with aging, we 
first performed univariate analyses of metabolic variables with 
age	 and	mortality.	Cohort-	stratified	metabolome	wide	 associa-
tion	 study	 (MWAS)	 of	 age	 was	 assessed	 using	 multiple	 linear	
regression	 adjusted	 for	 sex,	 BMI,	 and	 ethnicity.	 Age	 stratified	
MWAS	 of	 age	 were	 performed	 to	 examine	 the	 consistency	 of	
age-	metabolite	 associations	 across	 the	 life-	course,	 and	 these	
analyses were additionally adjusted for cohort. The follow-
ing	 age	 group	 strata	were	 used:	 20–35,	 35–40,	 40–45,	 45–50,	
50–55,	 55–60,	 60–65,	 65–70,	 and	 >70.	 Multiple	 Cox	 propor-
tional	 hazard	 regressions	 (survival	 R	 package)	 adjusted	 for	 CA,	
sex,	and	BMI	were	used	to	estimate	the	associations	with	mor-
tality,	 within	 the	 UKCTOCS,	WHII,	 and	 SABRE	 cohorts	 where	
this	 information	was	available.	 Inverse	variance-	weighted	 fixed	
effect	meta-	analyses	were	used	to	pool	study	cohort	estimates,	
Benjamini	 &	 Hochberg's	 false	 discovery	 rate	 (FDR)	 was	 used	
when	 accounting	 for	 multiple	 testing,	 with	 an	 FDR-	corrected	
q < 0.05	denoting	significance,	and	heterogeneity	among	the	co-
horts/age	group	strata	was	assessed	using	Cochran's	Q	test	and	
I2 using the meta	R	package.	Variables	with	I2 values >0.75	were	
considered of high heterogeneity, whilst those with I2 values 
<0.25	were	considered	of	low	heterogeneity.

2.4  |  Multivariable predictive modeling of aging

NSHD	and	NFBC1966	were	birth	cohorts	and	were	excluded	from	
model	 training	 since	 study	 participants	 all	 share	 identical	 CA	 and	
would therefore likely bias the training sample set. Consequently, 
the training sample set consisted of 26,640 samples from eight 
study cohorts. To avoid problems associated with multicollinear-
ity in model training and improve model stability, a pruned variable 
set was generated from the full set of predictors using sequential 
backward	stepwise	selections	and	the	variable	inflation	factor	(VIF),	
derived using vif function in the car R package, as selection criteria. 
Starting	with	all	98	predictors	as	model	inputs,	in	a	stepwise	fashion,	
the	variable	with	the	largest	VIF	value	was	removed	and	a	new	model	
was generated with one less variable than in the previous step, until 
no	variables	had	a	VIF	≥5.	This	yielded	24	variables	(Table S2),	which	
were	 then	 used	 as	 input	 predictors	 in	 our	multivariable	 CA	mod-
els.	 Pairwise	 Pearson's	 correlations	 of	 the	 24	metabolic	 variables,	
both	within	the	training	cohort	set	and	within	UKB,	are	presented	
in Figure S4.	Seven-	fold	cross	validation	and	 leave-	one-	cohort	out	

(LOCO)	validation	were	used	to	assess	model	stability	and	prediction	
performance during training.

2.4.1  |  Elastic	net	and	MARS	models

Multivariable	 models	 of	 study	 CA	 were	 constructed	 using	 elastic	
net	regression	(glmnet and caret	R	packages),	and	2nd	degree	multi-
variate	adaptive	regression	splines	(MARS,	earth, and caret R pack-
ages)	 models.	 Elastic	 net	 is	 a	 versatile	 penalized	 linear	 regression	
model which simultaneously performs variable selection and mod-
eling fitting. It is computationally efficient, suitable for highly cor-
related	datasets,	and	resultant	models	are	easily	interpretable	(Zou	
&	Hastie,	2005).	The	alpha	parameter	in	glmnet was preselected as 
0.5	in	the	elastic	net	model.	The	MARS	approach	is	suitable	for	re-
gression problems when the relationship between predictors and 
response variables are nonlinear, as the model takes the form of 
an	expansion	in	product	spline	basis	functions	(Friedman,	1991).	A	
second-	degree	MARS	model	was	used	as	it	is	suitable	for	modeling	
quadratic	 predictor-	response	 relationships	 and	 is	 considered	 ef-
ficient when the number of model predictor variables is relatively 
small.	Model	variable	importance	scores	(VIP)	were	evaluated	in	the	
training sample data using the vip R package.

2.4.2  |  Study	mortality	score

Instead	 of	 training	 the	metabolic	 data	 on	 CA,	multivariable	mod-
eling was performed with survival treated as dependent variable in 
a	penalized	Cox	regression.	Study	samples	from	WHII,	SABRE,	and	
UKCTOCS	were	used	for	model	training,	which	was	performed	using	
the glmnet R package with alpha parameter in the elastic net model 
selected	 as	0.5.	 The	24	metabolite	 variables,	 and	 covariates	 com-
prised	of	age,	sex,	BMI,	ethnicity,	and	cohort	were	included	as	model	
input	predictors.	After	including	only	metabolic	variable	predictors	
and	 excluding	 contributions	 from	 other	 covariates,	 the	 resultant	
model was considered as the study mortality score, and these were 
subsequently	scaled	to	the	means	and	standard	deviations	of	CA	in	
the study cohort sample data to render score units in years.

2.4.3  |  Phenotypic	aging

The phenotypic aging model represented a hybrid approach, and 
it simultaneously incorporated metabolic information of both age 
and	mortality	 into	 the	model	 training	 process.	While	 this	 model	
was	trained	on	sample	CA,	we	additionally	introduced	a	weighted	
approach to allow differential predictor shrinkage based on the 
direction and strength of their associations with mortality in our 
study	 samples.	More	 specifically,	 the	 differential	weights	 on	 the	
predictors were introduced as penalty factors into the glmnet 
model.	Whereas	a	penalty	factor	of	0	would	suggest	no	shrinkage,	
metabolic variables with large penalty factors would be heavily 
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    |  5 of 16LAU et al.

penalized	 in	the	model.	P- values	obtained	from	proportional	haz-
ard regressions of metabolic variables on mortality were applied as 
model penalty factors, and in addition, variables showing opposing 
direction of associations with age and mortality were assigned a 
penalty factor of 1. This approach has the effect of enhancing the 
influence of metabolic variables that are closely associated with 
mortality/ health outcome whilst still providing a direct prediction 
on	sample	CA.

2.4.4  |  Akker	et	al.	and	Deelen	et	al.	models

The	Akker	et	al.	model	predicts	CA	(in	years)	directly.	Model	weight/
coefficients	were	extracted	from	their	original	publication	(van	den	
Akker	et	al.,	2020).	The	Deelen	et.al	model	was	computed	using	14	
log-	transformed	 and	 cohort-	scaled	 biomarkers	 multiplied	 by	 their	
weight	based	on	 log-	hazard	ratios	from	meta-	analyses	as	reported	
in	Deelen	et.al's	publication	(Deelen	et	al.,	2019),	and	subsequently	
summed. The resulting score was scaled to the means and standard 
deviations	of	cohort	CA	in	the	study	cohort	sample	data	to	render	
score	 units	 in	 years.	 Acetoacetate	 concentrations	were	missing	 in	
the	ALSPAC-	partners	 and	CAPS	study,	 and	 these	values	were	 im-
puted	 using	 k-	nearest	 neighbors	method	 from	 the	 impute R pack-
age	for	the	purpose	of	generating	the	Deelen	et	al.	and	Akker	et	al.	
model	scores.	The	Akker	et	al.	model	was	not	applied	to	the	UKB	as	
two of the specified model variables have since been discontinued 
and	were	not	available	in	the	UKB	dataset	(Bizzarri	et	al.,	2023).

Further details of the multivariable aging models are provided in 
the	Appendix	S1.

2.5  |  Covariate coding of disease risk factors and 
adverse health outcomes

Hypertension	 was	 defined	 by	 doctor	 diagnosis	 in	 the	 YFS	 and	
UKCTOCS	cohorts,	by	systolic	blood	pressure	≥140 mm	Hg	or	doc-
tor	diagnosis	in	the	NFBC1966,	ALSPAC-	mothers,	ALSPAC-	partners,	
and	SABRE	cohorts,	by	use	of	antihypertensive	medication	or	sys-
tolic	 blood	 pressure	 ≥140 mm	 Hg	 in	 the	 NSHD	 and	 BWHHS	 co-
horts	 and	 by	 systolic	 blood	 pressure	 ≥140 mm	 Hg	 only	 in	 WHII.	
Diabetes	 was	 defined	 by	 doctor	 diagnosis	 in	 the	 YFS,	 ALSPAC-	
mothers,	ALSPAC-	partners,	and	UKCTOCS	cohorts,	by	fasting	glu-
cose	≥7 mmol/L	or	 doctor	 diagnosis	 in	 the	NFBC1966,	NSHD	and	
CAPS	cohorts,	by	fasting	glucose	≥7 mmol/L,	2-	h	postload	glucose	
≥11.1 mmol/L	or	doctor	diagnosis	 in	 the	WHII	 cohort,	by	glycated	
hemoglobin	 (HbA1c) ≥ 6.6%	or	doctor	diagnosis	 in	the	BWHHS	co-
hort	 and	by	 fasting	 glucose	≥7 mmol/L	only	 in	 the	 SABRE	 cohort.	
Physical	 inactivity	was	 defined	 as	 no	 or	 less	 than	 once	 per	week	
of	moderate/vigorous	physical	 activity	 in	most	cohorts.	For	CAPS	
and	SABRE,	it	was	defined	as	the	lowest	tertile	of	calculated	weekly	
physical	 activity	 estimates.	 Smoking	 was	 classified	 as	 never/for-
mer	 versus	 current	 smoker.	 Alcohol	 consumption	 was	 defined	 as	
no/moderate	 versus	 heavy	 consumption.	 Heavy	 alcohol	 use	 was	

defined	in	the	NFBC1966,	YFS,	NSHD,	WHII,	CAPS,	UKCTOCS,	and	
BWHHS	for	men	as	>21 units	of	alcohol	per	week	and	for	women	
as >14 units	of	alcohol	per	week.	In	ALSPAC-	mothers	and	ALSPAC-	
partners, heavy alcohol use was defined as more than 4 times per 
week.	Three	measures	of	socioeconomic	position	 (SEP)	were	used	
representing	the	early,	mid-	,	and	later	life	periods:	Occupation	of	the	
participants'	 fathers	was	classified	as	a	manual	versus	nonmanual.	
Educational	 level	 was	 a	 binary	 indicator	 when	 comparing	 those	
with	up	 to	secondary-	level	 schooling	only	with	 those	with	 further	
or higher education. Current or last occupation of participants was 
classified as manual versus nonmanual.

Within	the	SABRE	and	UKCTOCS	cohorts,	coronary	heart	dis-
ease events were available: we have included both nonfatal and 
fatal	 myocardial	 infarction,	 revascularization,	 and	 unstable	 angina	
events	in	the	SABRE	cohort	analysis,	and	acute	coronary	syndrome,	
myocardial infarction, angina, and other acute and chronic isch-
aemic	heart	disease	events	were	 included	 in	the	UKCTOCS	analy-
ses.	Both	fatal	and	nonfatal	stroke	were	included	in	the	association	
analyses.	All-	cause	mortality	was	available	in	the	WHII,	SABRE,	and	
UKCTOCS	 cohorts.	 Within	 UKB,	 we	 analysed	 incident	 all-	cause	
mortality	and	cardiovascular	disease	(CVD),	type-	2	diabetes	mellitus	
(T2DM),	chronic	obstructive	pulmonary	disease	(COPD),	cancer,	and	
dementia.	CVD	defined	 as	 the	 composite	of	myocardial	 infarction	
(MI)	 cases	 (ST-	Elevation	MI	 and	 Non-	ST-	Elevation	MI)	 and	 stroke	
cases	 (ischaemic,	 intracerebral	 hemorrhage,	 and	 subarachnoid	
hemorrhage).

2.6  |  Analysis of metabolomic age with aging risk 
factors, phenotypes, and incident health events

Diabetes,	 hypertension,	 obesity	 (BMI>30),	 physical	 inactivity,	 cur-
rent smoking status, heavy alcohol consumption, education attain-
ment, and occupation status were included in the noncommunicable 
disease	 risk	 factor	 analyses,	 categorized	 as	 binary	 variables.	 Six	
aging-	related	biomarkers,	including	systolic	(SBP)	and	diastolic	blood	
pressure	(DBP),	pulse	pressure,	C-	reactive	protein	(CRP),	estimated	
glomerular	 filtration	 rate	 (eGFR),	 and	 forced	 expiratory	 volume	 in	
first	second	(FEV1)	were	available	from	multiple,	but	not	all	cohorts.	
Biomarkers	 were	 univariate	 scaled	 to	 facilitate	 cross-	comparison.	
Summary	of	biological	aging	markers	data	by	cohort	are	shown	 in	
Table S1. For the analysis of associations between metabolomic 
aging models, aging biomarkers, and disease risk factors, linear re-
gression	models	were	adjusted	for	CA,	sex,	and	ethnicity.	To	avoid	
including repeated samples from the same individuals from multi-
ple	 follow-	up	 visits,	 samples	 from	YFS2001,	 YFS2007,	NBFC1966	
(31 years),	and	SABRE2	were	excluded	from	the	risk	factors	analysis.	
Cox	proportional	hazard	regressions	adjusted	for	CA,	sex,	and	eth-
nicity were used to estimate the associations with disease and mor-
tality	 incidence	 (survival	 R	 package),	 within	 the	WHII,	 UKCTOCS,	
SABRE	cohorts,	and	the	UKB.	Since	all	analyses	were	adjusted	for	
CA,	 estimates	 can	 be	 interpreted	 as	 years	 of	 additional	 metabo-
lomic	 age	 relative	 to	 CA,	 equivalent	 to	 formulations	 such	 as	 “age	
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6 of 16  |     LAU et al.

acceleration” and “age gap” often used within the biological clock 
literature.	A	p value threshold of 0.001 was chosen for the reporting 
of statistical significance, considering multiple testing and the num-
ber	of	 independent	 tests	performed.	All	 analyses	were	conducted	
in R version 4.

3  |  RESULTS

3.1  |  Age and lifespan associations of metabolites

Analysis	of	metabolic	aging	included	26,640	samples	(aged	24–86,	
60%	female)	from	22,828	individuals	in	eight	cohorts,	including	728	
and	 1992	 participants	 from	 the	 SABRE	 and	 YFS	 cohorts	 respec-
tively,	 who	were	 assessed	 in	more	 than	 one	 follow-	up.	 Individual	
cohort characteristics can be found in Figure 1a and Table S1.

In	 meta-	analysis	 across	 individual	 cohorts	 and	 follow-	ups,	 we	
identified	 large	number	of	metabolic	 variables	 (N = 89)	 tested	 to	 be	
significantly	associated	with	CA	after	correcting	for	FDR	at	q < 0.05	
(Figure 2a).	For	example,	albumin,	histidine	(His),	leucine	(Leu),	phos-
pholipids	in	small	HDL	(S_HDL_PL),	and	diameter	for	VLDL	particles	
(VLDL_size)	were	found	to	decrease	with	higher	CA;	whilst	citrate,	glu-
cose, creatinine, β-	hydroxybutyrate	(bOHbutyrate),	docosahexaenoic	
acid	(DHA),	omega-	3	fatty	acids,	glutamine	(Gln),	tyrosine	(Tyr),	phe-
nylalanine	(Phe),	total	free	cholesterol	(Total_FC),	and	sphingomyelins	
were	among	 those	 found	 to	 increase	with	CA	the	most.	 (Figure 2a, 
Table S3).

To	 test	 for	 consistency	 in	 response	between	CA	and	metabolic	
variables,	 we	 performed	 additional	 metabolome-	wide	 association	
studies stratifying by age groups, additionally adjusting for cohort 
(Figure 2b).	 Metabolic	 variables	 showing	 consistent	 and	 positive	

associations	with	CA	across	age	groups	included	triglycerides	(TG)	in	
IDL,	TG	variables	 in	four	LDL	subfractions,	and	cholesterols	 in	very	
large	HDL	particles	(XL_HDL_C	and	XL_HDL_FC).	Conversely,	VLDL_
size,	albumin,	and	lactate	were	found	to	be	consistently	and	negatively	
associated	with	CA.	Although	positively	associated	with	CA	through	
meta-	analyses,	citrate,	omega-	3,	polyunsaturated	fatty	acids	(PUFA),	
Apolipoprotein	 B	 (ApoB),	 and	many	 cholesterols/cholesterol	 esters	
and lipoprotein subfraction measurements showed heterogenous as-
sociations	with	CA	across	different	age	ranges.	Whereas	the	increase	
in citrate levels with age appeared to be driven by older populations, 
the increases in many cholesterols/cholesterol esters and lipoprotein 
subfraction measurements appeared to be more prominent in those 
aged <60 years	(Figure 2b, Table S4).

As	lifespan	may	be	considered	the	most	relevant	phenotypic	end-
point	 for	 studying	 aging,	we	 examined	metabolite	 associations	with	
time	 to	all-	cause	mortality	 in	 three	cohorts	 (UKCTOCS,	SABRE,	and	
WHII)	 in	 which	 mortality	 data	 were	 available,	 consisting	 of	 10,648	
individuals	of	whom	2312	died	during	subsequent	follow-	up.	Cohort-	
specific	Cox	proportional	hazards	regression	models	were	adjusted	for	
age,	sex,	BMI,	and	ethnicity,	and	fixed-	effect	meta-	analysis	was	per-
formed	to	pool	together	individual	cohort	effect	estimates	(Figure S5, 
Figure 2c).	Seventeen	metabolic	markers	were	found	positively	asso-
ciated	with	all-	cause	mortality	after	adjusting	for	false	discovery	rate	
(q < 0.05),	 which	 include	 Phe,	 glycoprotein	 acetyls	 (GlycA),	 lactate,	
bOHbutyrate,	 acetate,	 creatinine,	 glucose,	 monounsaturated	 fatty	
acids	(MUFA),	triglycerides	in	seven	different	lipoprotein	subfractions	
and	 free	 cholesterol	 in	 small	HDL.	 Forty-	nine	metabolic	 biomarkers	
were	negatively	associated	with	all-	cause	mortality,	and	PUFA,	ome-
ga-	6,	 omega-	3	 fatty	 acids,	 and	 cholesterols	 and	 cholesterol	 esters	
in IDL were found to be most negatively associated with mortality 
in	 our	 study	 sample	 (Figure S5, Table S5).	 Our	 biomarker-	mortality	

F I G U R E  1 (a)	Study	cohorts	age	and	sex	profile	(37,888	samples	from	30,913	subjects,	of	which	26,640	samples	from	22,828	subjects	
were	used	for	model	training).	The	1966	Northern	Finland	Birth	Cohort	(NFBC1966)	and	National	Survey	of	Health	and	Development	
(NSHD)	are	both	birth	cohorts,	where	study	participants	all	share	identical	age,	and	were	only	used	for	risk	factor	association	analyses.	
Cohort	studies	with	multiple	follow-	ups	were	represented	by	the	same	color.	(b)	Current	study	workflow.
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    |  7 of 16LAU et al.

associations study results are in good agreement with results reported 
by	Deelen	et	al.	 (2019),	with	coefficients	of	mortality	associations	of	
individual metabolites of our analysis strongly correlated to the results 
reported	 (Figure S6).	 Next,	 we	 examined	 correspondence	 between	
metabolites associated with age, and those associated with mortality 
in	our	dataset	 (Figure 2c),	and	observed	that	while	some	age-	related	
metabolic	changes	(e.g.,	creatinine,	Phe,	and	TG)	contribute	to	mortality	
risk,	at	least	some	metabolites	positively	associated	with	CA	may	in	fact	

be	offering	a	protective	effect	against	premature	mortality	(e.g.,	PUFA,	
omega-	3/	omega-	6	fatty	acids,	DHA,	and	cholesterol	esters	in	IDL).

3.2  |  Multivariable modeling of metabolomic aging

Multivariable	predictors	for	CA	were	trained	using	machine	learn-
ing	approaches	 including	elastic	net	 regression	and	MARS,	using	

F I G U R E  2 (a)	Age	associations	with	NMR	metabolome	by	individual	cohort	studies.	Linear	regression	models	were	adjusted	for	sex,	BMI,	
and	ethnicity.	Metabolite	variables	shown	were	found	significant	after	FDR	correction	in	inverse	variance-	weighted	fixed	effect	meta-	
analyses.	(b)	Meta-	analysis	of	age-	group	stratified	age-	NMR	metabolome	associations.	Linear	regression	models	were	first	performed	in	the	
following	age	group	strata:	20–35,	35–40,	40–45,	45–50,	50–55,	55–60,	60–65,	65–70,	and	>70.	and	models	were	adjusted	for	sex,	BMI,	
ethnicity,	and	cohort.	Inverse	variance-	weighted	fixed-	effect	meta-	analysis	were	then	performed	to	pool	the	stratified	age-	group	model	
estimates.	Metabolic	variables	found	significant	with	FDR	q < 0.05	with	I2 values >0.75	(high	heterogeneity),	or	<0.25	(low	heterogeneity)	
were	shown.	(c)	Scatter	plot	of	model	regression	coefficients	of	chronological	age	against	mortality	pooled	hazard	ratios.	For	mortality	
analysis,	cohort-	specific	Cox	proportional	hazards	regression	models	were	adjusted	for	age,	sex,	BMI,	and	ethnicity;	fixed	effected	meta-	
analysis	was	performed	to	pool	together	individual	cohort	estimates.	Significant	metabolic	associations	against	both	age	and	mortality	after	
correcting	for	FDR	(q < 0.05)	were	highlighted	according	to	whether	they	shared	the	same	direction	of	associations:	red	(same	direction)	or	
green	(opposing	direction).The	list	of	full	names	of	the	abbreviated	metabolic	variables	can	be	found	in	Table S2.
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24 of the most reliable and independent metabolic variables 
(Figure 3a).	 Additionally,	 we	 also	 trained	 a	 modified	 elastic	 net	
model	on	CA,	which	we	refer	to	as	“phenotypical	aging”,	by	speci-
fying differential model input weights based on their directionality 
and strength of their associations with mortality in our study sam-
ples.	These	three	models	were	evaluated	using	7-	fold	cross	valida-
tions	(CV)	and	leave-	one-	cohort-	out	validations	(LOCO).	Albumin	
and citrate were estimated to be among the most important pre-
dictors	 in	 all	 three	CA	models	 (Figure 3b).	 The	 overall	 Pearson's	
correlation	coefficients	(r)	between	CA	and	the	CV	predicted	age	
were	0.57,	0.65,	and	0.47,	and	the	correlations	(r)	with	the	LOCO	
predictions	were	0.38,	0.37,	and	0.23,	respectively,	for	the	elastic	
net,	MARS,	and	phenotypic	age	models.	(Figure S7).	The	published	
Akker	 et	 al.	 CA	model	 performed	 relatively	 poorly	 in	 our	 study	
data,	giving	a	Pearson's	r = 0.26	with	CA	and	a	mean	absolute	error	
(MAE)	of	around	18 years	of	age.	Among	the	SABRE,	NFBC1966,	
and	YFS	cohorts	that	included	repeat	metabolomic	data,	we	com-
pared	change	in	predicted	age	(δ	predicted	age)	with	change	in	CA	
(δ	CA,	 i.e.,	years	between	assessments).	We	observed	significant	
positive correlation between δ predicted age and δ	CA	in	SABRE	
for	all	metabolomic	age	measures,	except	 the	Akker	et	al.	model	
(Figure 3c)	and	general	 increases	 in	median	metabolomic	age	be-
tween	follow-	ups	for	NFBC1966	(Figure 3d)	and	YFS	(Figure 3e).	

However,	the	models	generally	underpredicted	δ metabolomic age 
relative to δ	CA.

3.3  |  Metabolomic aging and 
age- related phenotypes

Next,	we	assessed	and	compared	associations	of	the	four	metabo-
lomic	aging	models	(trained	on	CA)	and	two	models	trained	directly	
on	mortality	(Deelen	et	al.	model	and	a	new	study	mortality	score),	
against	 noncommunicable	 disease	 risk	 factors	 and	 six	 common	
biomarkers	of	aging	phenotypes,	 in	analyses	adjusted	 for	CA,	sex,	
and	ethnicity.	Among	 the	 risk	 factors,	diabetes,	hypertension,	and	
obesity	statuses	were	positively	associated	(p < 0.001)	with	all	me-
tabolomic models, and physical inactivity was also positively associ-
ated	with	five	of	the	six	metabolomic	scores	examined	(Figure 4a).	
Additionally,	current	smoking	status	and	indicators	of	 lower	socio-
economic	positions	(low	education	attainment	and	manual	occupa-
tion	status)	were	also	positively	associated	with	the	Akker	et	al.	and	
Deelen	et	al.	models	and	the	study	mortality	score.	All	metabolomic	
models	examined	were	found	positively	associated	(p < 0.001)	with	
CRP	 (inflammation)	 and	 negatively	 associated	with	 glomerular	 fil-
tration	rate	(kidney	function).	Except	for	the	Akker	et	al.	model,	all	

F I G U R E  3 (a)	Scatter	plots	of	7-	fold	cross-	validated	predicted	age	against	chronological	age.	Samples	were	colored	by	cohorts.	(b)	
Variable	importance	(VIP)	scores	were	estimated	in	the	training	samples	based	on	the	relative	importance	of	predictors	in	the	models	(c–e)	
Longitudinal	model	predictions	of	changes	in	chronological	age	in	Southall	and	Brent	Revisited	(SABRE),	(d)	1966	Northern	Finland	Birth	
Cohort	(NFBC1966),	(e)	Young	Finns	Study	(YFS).	Changes	in	the	predicted	age	was	plotted	against	changes	in	chronological	age	at	follow-	
up	visits	in	SABRE,	and	the	boxplot	shows	the	distribution	of	changes	in	predicted	age	during	the	15 years	and	10 years	intervals	between	
follow-	up	visits	in	NFBC1966	and	YFS.
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    |  9 of 16LAU et al.

models	were	positively	associated	with	SBP	and	DBP,	and	negatively	
associated	with	forced	expiratory	volume	(Figure 4b).

Furthermore, we investigated the relationship of metabolomic 
age with incident health events in the cohorts with available data 
using	 Cox	 proportional	 regression	 models	 adjusted	 for	 CA,	 sex,	
and	 ethnicity,	 and	 fixed	 effect	 meta-	analysis	 to	 combine	 individ-
ual	cohort	estimates.	All	metabolomic	aging	models	trained	on	CA	
and	 lifespan	 were	 significantly	 associated	 with	 all-	cause	 mortal-
ity	 (N event = 2312)	and	coronary	heart	disease	 (CHD)	 incidences	 (N 

event = 1715),	and	with	 the	exception	of	 the	Akker	et	al.	model	and	
MARS,	all	other	models	were	significantly	associated	(p < 0.001)	with	
incidence	of	 stroke	 (N event = 888,	Figure 4c)	Phenotypic	aging	and	
the two models of lifespan, Deelen et al. and study mortality score, 
were most strongly associated with adverse health outcomes, with 
Hazard	Ratios	(HRs)	for	all-	cause	mortality	of	1.047	(95%	Confidence	
Interval	 (CI):	 1.038–1.056),	 1.056	 (95%	CI:	1.049–1.062),	 and	1.05	
(95%	CI:	1.044–1.057),	respectively,	per	year	of	metabolomic	age.

To understand the contribution of adiposity to the observed 
associations with metabolomic age markers, we additionally ad-
justed	for	BMI	in	sensitivity	analysis.	Associations	with	hyperten-
sion	and	blood	pressure	were	attenuated	for	the	CA	trained	model	
associations.	 However,	 adjusting	 for	 BMI	 did	 not	 significantly	
affect study models associations with adverse health outcomes 
(Figure S8).

3.4  |  Independent assessment in the UK biobank

Performance	 of	 the	 metabolomic	 aging	 models	 were	 tested	 in	
the	 large	 independent	UK	Biobank	 sample	 (Sudlow	 et	 al.,	 2015),	
comprising	of	metabolomic	data	from	101,524	individuals	and	ac-
companied	by	rich	phenotypic	and	follow-	up	data.	Models	trained	
directly	 on	CA	provided	modest	 predictive	 performance	 in	UKB,	
with	Pearson's	r	with	CA	of	0.29,	0.33,	and	0.33	for	phenotypic	age,	

F I G U R E  4 (a)	Associations	with	noncommunicable	disease	risk	factors.	Estimates	represent	standard	deviation	change	in	metabolomic	
age	associated	with	exposure	which	have	been	categorized	into	binary	variables.	(b)	Associations	with	age-	related	biomarkers.	Estimates	
represent	standard	deviation	(SD)	change	in	metabolomic	age	associated	with	1	SD	unit	change	in	biomarker	levels.	To	avoid	individuals	from	
being	accounted	for	more	than	once	in	the	analysis,	samples	from	YFS2001	and	YFS2007,	NFBC1966	(31 years),	and	SABRE2	were	excluded	
in	the	disease	risk	factor	analysis,	and	subsequently	up	to	28,000	samples	were	included.	(c)	Associations	of	metabolomic	age	models	with	
adverse	incident	health	events.	Cox	proportional	regression	models	were	adjusted	for	chronological	age,	sex,	and	ethnicity,	and	hazard	ratios	
were	estimated	per	unit	of	change	in	metabolomic	age.	969,	638	and	715	deaths,	respectively,	in	UKCTOCS,	SABRE,	and	WHII,	and	1273	
and	442	coronary	heart	disease	events,	and	707	and	181	stroke	events	were,	respectively,	recorded	in	the	UKCTOCS	and	SABRE	cohorts	
during	the	subsequent	follow-	up	period	of	up	to	25 years.	Analyses	in	(a–c)	were	based	on	cohort	fixed	effect	inverse	variance	weighted	
meta-	analyses	and	linear	regression	models	adjusted	for	chronological	age,	sex,	and	ethnicity.	*	denotes	a	p < 0.001	and	error	bars	represent	
the	lower	and	upper	limits	of	the	95%	confidence	intervals.
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elastic	 net,	 and	MARS,	 respectively.	 In	 addition,	 both	models	 of	
lifespan	(Deelen	et	al.	and	study	mortality	score)	also	showed	sig-
nificant	correlations	with	CA	(Pearson's	r:	0.09–0.17,	p < 1 × 10−10)	
in	the	UKB	(Figure 5a).

Among	1108	UKB	participants	with	 longitudinal	metabolomic	
data	measured	at	baseline	and	at	clinical	follow-	up	2–6 years	later,	
we	compared	change	in	metabolomic	age	(δ	metabolomic	age)	with	
change	in	CA	(δ	CA)	for	the	CA	trained	models,	categorized	by	years	
of	 follow-	up.	 For	 most	 follow-	up	 categories,	 we	 observed	 an	 in-
crease	in	median	metabolomic	age	over	follow-	up,	except	for	phe-
notypic	age	among	those	only	followed-	up	for	2 years.	The	MARS	
model showed the greatest concordance between δ	CA	and	δ me-
tabolomic age, with a median δ	metabolomic	age	of	5 years	 (IQR:	
−1.1–8.3 year)	among	those	with	δ	CA	of	6 years	(Figure 5b).

Using	Cox	proportional	regression	models	adjusted	for	CA	and	
sex,	 we	 studied	 associations	 of	 metabolomic	 aging	 models	 with	
all-	cause	mortality	 (N event = 6645),	 CVD	 (N event = 2585),	 T2DM	 (N 

event = 3850),	 cancer	 (N event = 8192),	 dementia	 (N event = 450),	 and	
COPD	 (N event = 1814)	 incidences	 in	 the	 UKB	 samples	 (Figure 5b, 
Table S8).	All	metabolomic	 aging	models	 tested	were	 significantly	
associated	(p < 0.001)	with	all-	cause	mortality	and	CVD.	Effect	esti-
mates	for	all-	cause	mortality	ranged	from	a	HR	of	1.023	per	year	of	
metabolomic	age	(95%	CI:	1.019–1.026)	for	the	Elastic	Net	model	to	

a	HR	of	1.056	(95%	CI:	1.053–1.059)	for	the	Deelen	et	al.	model.	The	
next	best	performing	model	was	phenotypic	 age	 (HR:	1.039	 [95%	
CI:	1.034–1.039]),	which	outperformed	the	MARS	model	(HR:	1.027	
[95%	CI:	1.023–1.030]),	which	 in	 turn	outperformed	the	 linear	CA	
trained	models	 for	 prediction	 of	 all-	cause	mortality.	 For	 instance,	
every	additional	year	of	MARS,	relative	to	CA,	was	associated	was	
a	3%	 increase	 in	mortality	 risk.	We	also	stratified	our	Cox	 regres-
sion	 analyses	by	 age	bands	 to	 examine	whether	 associations	with	
all-	cause	mortality	 differed	 among	 age	 bands.	 Generally,	 associa-
tions were stronger in the youngest age band: for those aged under 
55 years,	each	additional	year	of	MARS	age	was	associated	with	a	4%	
increase	in	mortality	risk,	compared	to	a	2%	increase	among	those	
aged	over	65 years	(Figure S9).

A	similar	pattern	of	the	relative	associations	with	the	metabolo-
mic	age	models,	was	observed	for	CVD.	All	models	except	the	elastic	
net model were also found to be significantly associated with inci-
dences	of	T2DM	and	COPD.	The	best	performing	model	for	T2DM	
prediction	was	phenotypic	age	 (HR:	1.089	[95%	CI:	1.083–1.095]),	
and the Deelen et al. model performed the best for prediction of 
COPD	(HR:	1.064	[95%	CI:	1.059–1.070]).	Both	the	mortality	score	
and the Deelen et al. model showed small significant association 
with cancer incidence, while only the Deelen et al. model was asso-
ciated with dementia incidence.

F I G U R E  5 (a)	Assessment	of	metabolomic	aging	model	scores	in	UK	Biobank	(N total = 101,524).	Pearson's	correlation	coefficients	
with	chronological	age	are	shown.	(b)	Longitudinal	assessment	of	metabolomic	aging	model	scores	in	UK	Biobank.	(c)	Associations	of	
chronological	age-	adjusted	metabolomic	age	scores	with	adverse	incident	events	in	the	UK	Biobank.	Cox	proportional	regression	models	
were	adjusted	for	sex	and	chronological	age.	Hazard	ratios	were	estimated	based	on	per	year	of	metabolomic	age.	*	denotes	a	p < 0.001	and	
error	bars	represent	the	lower	and	upper	limits	of	the	95%	confidence	intervals.
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4  |  DISCUSSION

In one of the largest epidemiological metabolomic studies to date, 
we have developed and tested the performance of various multivari-
able metrics to assess aging as a biological process.

In	brief,	metabolomics	data	were	generated	through	NMR	spec-
troscopy	in	blood	serum	from	nine	UK	and	Finnish	cohort	studies,	cov-
ering	an	age	range	from	24	to	86 years.	We	used	multivariate	adaptive	
regression	splines	(MARS)	and	penalized	regression	models	to	predict	
CA	and	mortality.	Alongside	 two	published	metabolomic	prediction	
scores	 (“Akker	 et	 al.”	 trained	on	CA,	 and	 “Deelen	et	 al.”,	 trained	on	
all-	cause	mortality),	 we	 examined	 associations	 of	 new	 CA-	adjusted	
metabolomic age models with aging phenotypes. These metabolo-
mic measures were associated with blood pressure parameters and 
C-	reactive	protein	levels	and	inversely	associated	with	glomerular	fil-
tration	 rate.	Risk	 factors	 associated	with	age-	adjusted	metabolomic	
age scores included obesity, diabetes, smoking, physical inactivity, 
and	 low	education	 level.	 In	 independent	 testing	 in	 the	UK	Biobank,	
correlations	with	CA	were	modest,	yet	all	metabolomic	model	scores	
predicted	all-	cause	mortality	and	CVD.

4.1  |  Performance of different models: 
Prediction of chronological age

One criterion that a biological age estimator should fulfill is that should 
change	with	CA	(Moskalev,	2019).	When	we	compared	our	models	to	
the	UKB	set,	correlation	with	CA	was	more	modest.	The	MARS	model	
performed the best, based on model fit in the training set and associa-
tions	with	CA	and	δ	CA	in	the	UKB,	indicating	the	value	of	incorporat-
ing	nonlinear	modeling.	However,	 taken	together,	models	trained	on	
CA	provided	only	moderately	 improved	age	prediction	performance	
compared	 to	models	 trained	on	 lifespan.	The	models	 trained	on	CA	
in our study also apparently outperformed the previously published 
Akker	et	al.	model	(albeit	tested	in	different	independent	populations),	
despite	it	being	trained	on	a	similarly	sized	dataset.	This	difference	may	
be due to the additional preprocessing and variable selection steps ap-
plied, thereby increasing model stability, and potentially due to use of 
fasting	samples	only	in	our	training	set	(i.e.,	not	in	UKB)	reducing	the	
influence of recent food intake on metabolite levels. Overall, as predic-
tors	of	CA	across	independent	test	sets,	models	based	on	NMR	me-
tabolomic	data	(LOCO	cross-	validated	r = 0.23–0.38,	and	r = 0.29–0.33	
in	UKB)	fall	a	long	way	short	of	gold-	standard	data	types	such	as	DNA	
methylation	 (Hannum	et	 al.,	2013;	Horvath,	2013)	which	 frequently	
show a r	of	greater	than	0.9,	although	models	based	on	NMR	metabo-
lomic	 data	 perform	 somewhat	 similarly	 to	 telomere	 length	 (Bekaert	
et al., 2005;	Vaiserman	&	Krasnienkov,	2021).

4.2  |  Prediction of mortality and disease incidence

Biological	age	estimators	should	also	predict	mortality	better	than	
CA	 and	 predict	 the	 early	 stages	 of	 a	 specific	 age-	related	 disease	

(Ferrucci	et	 al.,	2020; Levine, 2013).	To	 test	 this,	we	assessed	 the	
metabolomic	 scores	 adjusted	 for	 CA,	 against	 mortality,	 and	 inci-
dence	of	age-	related	disease.	All	models	were	able	to	predict	mor-
tality	 in	 both	 the	 training	 set	 and	 the	UKB,	with	 generally	 similar	
estimates	in	both	populations,	with	the	greatest	effect	size	seen	for	
the Deelen mortality estimator. The Deelen et al. model was also the 
only	model	that	could	predict	 incidence	of	all	age-	related	diseases	
tested	(CVD,	T2DM,	cancer,	dementia,	and	COPD)	in	UKB	suggest-
ing	it	is	able	to	capture	generalizable	age-	related	disease	susceptibil-
ity.	Phenotypic	age	performed	well	in	terms	of	mortality	and	disease	
prediction,	while	 still	 offering	 comparable	 associations	with	CA	 in	
UKB	 to	 the	models	 trained	purely	on	CA.	Effects	 sizes	 in	predict-
ing	time-	to-	death	for	the	presented	metabolic	models,	particularly	
Deelen et al. and phenotypic aging model, were comparable to 
those of reported biological age assessments based on clinical mark-
ers,	such	as	BioAge	and	PhenoAge	(Kuo	et	al.,	2021),	and	epigenetic	
clocks	such	as	the	Horvath,	Hannum,	and	DNAm	PhenoAge	clocks	
(Hannum	et	al.,	2013;	Horvath,	2013; Levine et al., 2018),	although	
smaller	than	the	GrimAge	epigenetic	clock	(Lu	et	al.,	2019).	However,	
the	advantage	of	age	models	based	on	NMR	metabolomic	data	com-
pared	 to	other	more	complex	 indicators	 is	 that	a	 single	analysis	 is	
required rather than assaying multiple clinical markers and they are 
relatively	cost-	effective,	especially	compared	to	acquisition	of	epi-
genetic	data.	Also,	our	study	results	have	shown	that	whilst	models	
trained	on	CA	were	consistently	associated	with	mortality	and	mor-
bidity after adjustment for sample age, models trained or capturing 
lifespan information, such as Deelen et al and our study mortality 
and phenotypic aging scores, will likely show significantly stronger 
effect against health outcomes.

4.3  |  Physiological interpretation

In	meta-	analysis,	we	observed	generally	consistent	decreases	with	
age in metabolic measures including albumin, a marker of liver and 
kidney	function,	essential	amino	acid	histidine,	the	branched-	chain	
amino	 acid	 leucine,	 phospholipids	 in	 small	HDL,	 and	 the	 diameter	
of	VLDL.	Conversely,	 increases	with	age	were	observed	 in	citrate,	
glucose,	amino-	acids	creatinine	and	glutamine,	aromatic	amino	acids	
tyrosine and phenylalanine, the ketone body β-	hydroxybutyrate,	
omega-	3	fatty	acids,	the	degree	of	unsaturation	of	fatty	acids,	tri-
glycerides,	and	large	and	very	large	HDL.	The	increase	in	triglyceride	
levels	is	well-	established	in	aging,	as	it	reflects	changes	in	plasma	TG	
clearance,	adipose	tissue	lipolysis,	and	the	partitioning	of	fat	(Spitler	
&	Davies,	2020).	Citrate,	in	addition	to	its	key	role	as	an	energy	hub	
metabolite, may be released through increased bone resorption 
(Granchi	et	al.,	2019)	and	has	also	recently	been	demonstrated	to	be	
an	independent	marker	of	extracellular	senescence	in	in-	vitro	models	
(James	et	al.,	2018).	Also,	increased	blood	level	of	phenylalanine	with	
age has previously been associated with dysregulated phenylalanine 
catabolism	and	cardiac	impairment	in	mice	(Czibik	et	al.,	2021),	and	
age-	related	reduction	in	creatinine	clearance	has	been	a	key	marker	
of	decline	in	kidney	function	(Weinstein	&	Anderson,	2010).	While	
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these	associations	have	generally	been	previously	reported	(Panyard	
et al., 2022),	we	confirmed	their	relationship	with	age	in	a	multico-
hort setting. Furthermore, we found that metabolic associations 
with	mortality	well	replicated	previously	reported	findings	(Deelen	
et al., 2019).	We	found	that	some	of	these	metabolites	were	related	
to mortality in a direction consistent with the relationship with age 
including	 creatinine,	 phenylalanine,	 and	 triglycerides,	 some	 age-	
related metabolites had neutral or nonsignificant relationship with 
mortality,	while	others	particularly	DHA,	omega-	3	fatty	acids,	and	
the degree of unsaturation of fatty acids showed inverse relation-
ships	with	mortality.	Given	that	circulating	metabolites	have	distinct	
physiological and regulatory functions, we speculate that some me-
tabolites showing different directions of association to mortality and 
age may in fact be offering a protective/adaptive or neutral response 
to	the	physiological	aging	processes.	For	instance,	DHA	is	thought	to	
reduce	oxidative	stress	and	inflammation	by	modulating	cyclooxyge-
nase,	 lipoxygenase,	 and	cytochrome	P450	 lipid	mediator	activities	
(Swanson	et	al.,	2012;	Zhang	et	al.,	2013).

The	models	presented	 trained	on	CA	 include	metabolites	with	
neutral and potentially adaptive metabolic effects, yet remarkably 
still provide additional prediction of mortality, suggesting the mod-
els	 are	 capturing	 a	 higher-	level	 picture	 of	 metabolic	 aging,	 which	
overall	contributes	to	mortality	risk.	While	aging	markers	trained	on	
mortality are more sensitive to aging risk factors and show improved 
prediction	of	age-	related	disease	generally	(Lu	et	al.,	2019),	they	will	
to	 a	 greater	 extent	 capture	 extrinsic	 contributions,	 such	 as	 early	
effects	of	disease,	to	metabolic	aging.	Within	this	study,	we	found	
that metabolic age models were sensitive to classical and modifiable 
risk	factors	of	mortality	(Stringhini	et	al.,	2017),	and	also	related	to	
clinical	biomarkers	of	system	function,	including	blood	pressure,	C-	
creative	protein,	forced	expiratory	volume,	and	glomerular	filtration	
rate.	 Unexpectedly,	 heavy	 alcohol	 use	 appeared	 to	 be	 negatively	
associated with some metabolomic age models, which may be re-
lated to the effects alcohol consumption has on metabolites such as 
citrate	(Wurtz	et	al.,	2016),	illustrating	a	limitation	of	the	metabolic	
modeling approach for certain risk factors.

4.4  |  Strengths and limitations

The use of multiple cohorts covering most of adult life is one of the 
strengths of this study and particularly important for analysis of me-
tabolites, which may be impacted by both endogenous factors such 
as	aging	and	exogenous	factors	such	as	diet,	since	the	relationship	
between	 age	 and	 exogenous	 factors	 (cohort	 effects)	will	 likely	 be	
stronger within single cohorts. The use of some repeat samples, al-
though in limited number, also increases the ability to detect endog-
enous aging effects, while the use of fasting samples in our training 
set	has	lessened	the	possible	influence	of	diet.	However,	the	com-
parison	cohort,	UKB,	is	based	on	nonfasting	EDTA-	plasma	samples,	
which	 may	 explain	 some	 of	 the	 relatively	 poor	 replication	 of	 the	
association	with	 age	 in	UKB.	 Another	 important	 limitation	 is	 that	
this	study	was	mainly	based	on	cross-	sectional	data,	which	is	more	

susceptible to cohort effects than studies based on longitudinal data 
and does not allow assessment of trajectories of aging over time 
(Ala-	Korpela	 et	 al.,	2023).	 Furthermore,	 the	 use	 of	 only	Northern	
European	 cohorts	 may	 limit	 generalizability	 to	 other	 populations.	
Nevertheless, the main strength was the use of large, independent 
training and test sets, allowing completely unbiased assessment of 
model performance.

Metabolic	profiling	based	on	NMR	provides	both	strengths	and	
limitations for development of ageing metrics in a multicohort set-
ting. The main advantage is that it is inherently quantitative, enabling 
comparable analyses of datasets across cohorts, and captures both 
small	molecules	and	lipid	metabolites.	It	is	also	high-	throughput	and	
cost-	effective	allowing	the	large	population	samples	required	for	pre-
cise	estimation	of	age-	associations.	The	main	limitation	is	the	lower	
coverage	of	NMR	compared	 to	mass-	spectrometry	based	methods,	
meaning that only the most abundant metabolites are detected, 
and	 many	 important	 and	 specific	 age-	related	 metabolites	 may	 be	
missed.	Identified	metabolites	such	as	citrate	and	DHA	are	undoubt-
edly important components of the aging metabolome, being both 
among those most strongly associated with age in previous studies 
that	employed	broader	MS-	based	analysis	(Darst	et	al.,	2019;	Menni	
et al., 2013).	However,	other	key	aging	metabolites	such	as	steroids,	
acylcarnitine, and tryptophan metabolites are not assayed by the cur-
rent	Nightingale	NMR	platform.	Future	metabolic	aging	studies	will	
need to combine broad, highly sensitive metabolomics with careful 
control of technical variation to allow combination across studies.

5  |  CONCLUSIONS

We	have	developed	and	tested	various	metabolic	aging	metrics	in	a	
very	large	dataset.	We	found	that	the	Deelen	et	al.	model	provides	
the	most	consistent	prediction	of	mortality	and	all	age-	related	dis-
eases tested and is therefore a good candidate model for studies 
investigating	metabolically	mediated	 effects	 on	 lifespan.	MARS,	 a	
nonlinear	method	was	found	to	improve	prediction	of	CA	over	other	
modeling techniques. Our phenotypic aging model directly predicts 
CA,	while	also	providing	good	predictive	ability	of	mortality	and	mul-
tiple	age-	related	diseases	and	presents	a	good	candidate	for	stud-
ies	of	overall	metabolic	aging.	Although	we	have	shown	that	NMR	
metabolomics	 can	only	provide	moderate	prediction	of	CA	across	
independent test sets, the technique provides valuable informa-
tion regarding metabolic health, which is intricately linked to popu-
lation	 aging.	We	 expect	 that	 future	 studies	 incorporating	 broader	
metabolomic analytical techniques will allow more comprehensive 
and specific assessment of metabolic aging. These models may have 
utility	for	large-	scale	epidemiological	analysis,	allowing	assessment	
of aging risk factors and mechanisms and stratification and identifi-
cation	of	at-	risk	groups.
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